WO2012077572A1 - 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 - Google Patents

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 Download PDF

Info

Publication number
WO2012077572A1
WO2012077572A1 PCT/JP2011/077823 JP2011077823W WO2012077572A1 WO 2012077572 A1 WO2012077572 A1 WO 2012077572A1 JP 2011077823 W JP2011077823 W JP 2011077823W WO 2012077572 A1 WO2012077572 A1 WO 2012077572A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
liquid crystal
group
acrylate
manufactured
Prior art date
Application number
PCT/JP2011/077823
Other languages
English (en)
French (fr)
Inventor
山本 拓也
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201180059686.6A priority Critical patent/CN103261957B/zh
Priority to JP2011554307A priority patent/JP5049409B2/ja
Priority to KR1020137010918A priority patent/KR101298418B1/ko
Publication of WO2012077572A1 publication Critical patent/WO2012077572A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4035Hydrazines; Hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method that is excellent in storage stability, hardly causes liquid crystal contamination, and can be sufficiently cured at a low temperature of about 80 ° C. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • Patent Document 1 and Patent Document 2 a method for manufacturing a liquid crystal display device such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from a conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a seal comprising a photocurable and heat-curable resin composition containing a photocurable resin such as a (meth) acrylic resin and a photopolymerization initiator, and a thermosetting resin such as an epoxy resin and a thermosetting agent.
  • a liquid crystal dropping method called a dripping method using an agent is being replaced.
  • a seal pattern is formed on one of the two substrates with electrodes.
  • a liquid crystal micro-droplet is dropped into the substrate frame in an uncured state of the sealant, the other substrate is superposed under vacuum, and light is applied to the seal portion to cure the photocurable resin ( Provisional curing step). Thereafter, heating is performed to cure the thermosetting resin, and a liquid crystal display panel is manufactured.
  • a sealant having a thermosetting resin is thermoset by heating at a temperature of about 120 ° C. for about 1 hour.
  • the conventional sealing agent has a problem that the adhesive strength is lowered when cured at a low temperature of about 80 ° C.
  • a thermosetting agent or a curing accelerator having a low melting point it is conceivable to use a thermosetting agent or a curing accelerator having a low melting point.
  • the pot life of the sealing agent is reduced. There was a problem that the sealant was shortened and the storage stability was poor.
  • An object of the present invention is to provide a sealing agent for a liquid crystal dropping method which is excellent in storage stability, hardly causes liquid crystal contamination, and can be sufficiently cured at a low temperature of about 80 ° C. Moreover, an object of this invention is to provide the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • This invention is the sealing compound for liquid crystal dropping methods containing curable resin, a thermal radical polymerization initiator, and the thermosetting agent which consists of a compound represented by the following general formula (A).
  • X represents CH 2 , CH (OH), C (OH) 2 , C 2 H 4 , CH 2 CH (OH), CH 2 C (OH) 2 , C (OH) C ( OH), CH 2 CO, COCO, NH represents a structure.
  • X represents CH 2 , CH (OH), C (OH) 2 , C 2 H 4 , CH 2 CH (OH), CH 2 C (OH) 2 , C (OH) C ( OH), CH 2 CO, COCO, NH represents a structure.
  • the present inventor has excellent storage stability by using a combination of a thermal radical polymerization initiator and a compound represented by the general formula (A) as a thermosetting agent, and hardly causes liquid crystal contamination. It has been found that a sealant for a liquid crystal dropping method that can be sufficiently cured at a low temperature of about 0 ° C. is obtained, and the present invention has been completed.
  • thermosetting agent By using a combination of a thermal radical polymerization initiator and a compound represented by the general formula (A) as a thermosetting agent, it has excellent storage stability, hardly causes liquid crystal contamination, and a low temperature of about 80 ° C. is sufficient.
  • the reason why a sealing agent that can be cured rapidly is obtained is as follows. It is known that when a thermal radical polymerization initiator is used as the sealant, the thermosetting property is improved. However, the reaction does not start unless the thermal radical initiator reaches a certain temperature (110 ° C. or higher).
  • thermosetting agent which consists of a compound represented with general formula (A) is excellent in compatibility with highly polar resin, such as an epoxy (meth) acrylate, and was used for the sealing agent for liquid crystal dropping methods as a thermosetting agent.
  • highly polar resin such as an epoxy (meth) acrylate
  • the thermosetting agent having high compatibility with the resin starts to dissolve when the temperature reaches about 80 ° C. Since the temperature of the radical starting point of the polymerization initiator is lowered, it is considered that radical curing and thermal curing can be started simultaneously.
  • both have low reactivity with the curable resin at room temperature, the resulting sealant has a long pot life and excellent storage stability.
  • the sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
  • the curable resin preferably contains a resin having a (meth) acryloyloxy group and a resin having an epoxy group, and the resin having the (meth) acryloyloxy group is represented by the following formula (1). It is more preferable that 40% by weight or more of the resin and / or the resin represented by the following formula (2) is contained in the curable resin.
  • the compound represented by the general formula (A) used as a thermosetting agent has high polarity
  • the compound represented by the following formula (1) or the following formula (2) has a polarity.
  • malonic acid dihydrazide having high polarity is a resin represented by the following formula (1) which is a curable resin and / or the following formula ( It is preferable to use in combination with the resin represented by 2).
  • the content of the resin represented by the following formula (1) and / or the resin represented by the following formula (2) in the curable resin is less than 40% by weight, the obtained sealing agent is inferior in adhesiveness. Or cause liquid crystal contamination.
  • the curable resin contains 60% by weight or more of a resin represented by the following formula (1) and / or a resin represented by the following formula (2).
  • the resin having the (meth) acryloyloxy group is not particularly limited.
  • an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, (meth) acrylic acid and an epoxy compound are reacted.
  • Epoxy (meth) acrylate obtained by this, urethane (meth) acrylate obtained by making the (meth) acrylic acid derivative which has a hydroxyl group react with isocyanate, etc. are mentioned.
  • the (meth) acryloyloxy group means an acryloyloxy group or a methacryloyloxy group
  • the (meth) acrylate means an acrylate or a methacrylate
  • the (meth) acrylic means Means acrylic or methacrylic.
  • the said epoxy (meth) acrylate represents the compound which made all the epoxy groups in an epoxy resin react with (meth) acrylic acid.
  • the ester compound obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group is not particularly limited, and examples of monofunctional compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, Lahydrofurfuryl (meth) acrylate, benzyl
  • bifunctional compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Lopylene oxide-added bisphenol A di (meth) acrylate, ethylene
  • tri- or higher functional group examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri (meth).
  • the epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid and the epoxy compound is not particularly limited.
  • an epoxy resin and (meth) acrylic acid are combined in the presence of a basic catalyst according to a conventional method. And the like obtained by reacting with.
  • the resin represented by the above formula (1) and the resin represented by the above formula (2) can also be obtained in this way.
  • the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate is not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A Type epoxy resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy Resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin Naphthalene phenol novolac-type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like. As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example. As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example. Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • epiclone HP7200 made by DIC
  • examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available naphthalenephenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy resins examples include ZX-1542 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicron 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031, Epicoat 1032 (all manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • epoxy (meth) acrylate examples include resorcinol type epoxy acrylate, 360 parts by weight of resorcinol type epoxy resin (manufactured by Nagase ChemteX Corporation, “EX-201”), and p-methoxyphenol as a polymerization inhibitor. 2 parts by weight, 2 parts by weight of triethylamine as a reaction catalyst and 210 parts by weight of acrylic acid can be obtained by stirring at 90 ° C. while feeding air and reacting for 5 hours.
  • Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), Epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200 PA, epoxy ester 80 MFA, Poxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate
  • the urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group is, for example, a (meth) acrylic acid derivative 2 having a hydroxyl group with respect to 1 equivalent of a compound having two isocyanate groups.
  • the equivalent weight can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • the isocyanate is not particularly limited.
  • MDI diphenylmethane-4,4′-diisocyanate
  • Hydrogenated MDI poly
  • the isocyanate is not particularly limited.
  • a polyol such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and excess isocyanate. It is also possible to use a chain-extended isocyanate compound obtained by the above reaction.
  • the (meth) acrylic acid derivative having a hydroxyl group is not particularly limited.
  • Commercially available products such as (meth) acrylate, mono (meth) acrylates of dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, Examples thereof include mono (meth) acrylate or di (meth) acrylate of a trivalent alcohol such as trimethylolethane, trimethylolpropane and glycerin, and epoxy (meth) acrylate such as bisphenol A type epoxy (meth) acrylate.
  • the urethane (meth) acrylate is, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate. And then reacted for 2 hours while stirring under reflux at 60 ° C., and then added 51 parts by weight of 2-hydroxyethyl acrylate, stirred while refluxing at 90 ° C. while feeding air, and allowed to react for 2 hours. it can.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 Art resin U -1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-122P, U-108A, U-340
  • the resin having a (meth) acryloyloxy group is preferably one having 2 to 3 (meth) acryloyloxy groups in the molecule because of high reactivity.
  • the curable resin preferably contains a resin having an epoxy group.
  • the resin having an epoxy group is not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, orthocresol Novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphthalenephenol novolac epoxy resin Glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resin, glycidyl ester compound, bisphenol A type episulfide resin and the like.
  • Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like. As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example. As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example. Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • epiclone HP7200 made by DIC
  • examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available naphthalenephenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy resins examples include ZX-1542 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicron 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031, Epicoat 1032 (all manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • the resin having an epoxy group may be, for example, a resin having a (meth) acryloyloxy group and an epoxy group in one molecule.
  • a resin having a (meth) acryloyloxy group and an epoxy group in one molecule examples include a partial (meth) acryl-modified epoxy resin obtained by reacting a part of an epoxy group of a compound having two or more epoxy groups with (meth) acrylic acid.
  • the curable resin may contain only a resin having a (meth) acryloyloxy group and an epoxy group in the molecule.
  • the partial (meth) acryl-modified epoxy resin can be obtained, for example, by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. Specifically, for example, 190 g of phenol novolac type epoxy resin (manufactured by DIC, “N-770”) is dissolved in 500 mL of toluene, and 0.1 g of triphenylphosphine is added to this solution to obtain a uniform solution. After 35 g of acrylic acid was added dropwise under reflux stirring for 2 hours, the mixture was further stirred under reflux for 6 hours. Next, toluene was removed to remove 50 mol% of a epoxy novolak type partial acrylic resin having reacted with acrylic acid. A modified epoxy resin can be obtained (in this case 50% partially acrylated).
  • Examples of commercially available partial (meth) acrylic-modified epoxy resins include UVACURE 1561 (manufactured by Daicel Cytec Co., Ltd.).
  • the sealing agent for liquid crystal dropping method of the present invention is the above (meth) acryloyloxy group so that the molar ratio of (meth) acryloyloxy group to epoxy group in the curable resin is 50:50 to 95: 5. It is preferable to blend a resin having an epoxy group and a resin having the epoxy group.
  • the sealing agent for liquid crystal dropping method of the present invention contains a thermal radical polymerization initiator.
  • the above thermal radical polymerization initiator has a preferred lower limit of 10 hours half-life temperature of 50 ° C. and a preferred upper limit of 90 ° C.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator is less than 50 ° C., the storage stability of the resulting liquid crystal dropping method sealing agent may deteriorate.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator exceeds 90 ° C., it takes a long time to cure the liquid crystal dropping method sealing agent of the present invention, which may affect the productivity of the panel. .
  • the 10-hour half-life temperature refers to the concentration of the thermal radical polymerization initiator before the reaction when the thermal decomposition reaction is carried out at a constant temperature for 10 hours in the presence of an inert gas. It is the temperature at which it halves.
  • the thermal radical polymerization initiator is not particularly limited, and examples thereof include azo compounds and organic peroxides. Among these, a polymer azo initiator composed of a polymer azo compound having a number average molecular weight of 5,000 to 100,000 is preferable.
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, and the preferable upper limit is 100,000.
  • the number average molecular weight of the polymer azo initiator is less than 5000, the polymer azo initiator may adversely affect the liquid crystal.
  • the number average molecular weight of the polymer azo initiator exceeds 100,000, mixing with a resin having a (meth) acryl group may be difficult.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 10,000, and the more preferable upper limit is 90,000.
  • the above polymer azo initiator can be reliably cured by heat even in a seal portion where light is not irradiated by a black matrix or the like, and it is extremely unlikely to cause liquid crystal contamination. It preferably has a dimethylsiloxane unit or a polyalkylene oxide unit. As the structure having the polyalkylene oxide unit, one having a polyethylene oxide structure is preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples include polycondensates of polydimethylsiloxane having a terminal amino group, and examples of commercially available products include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all of which are sums). Kogure Pharmaceutical Co., Ltd.).
  • polymer azo compound a polymer azo compound represented by the following general formula (I) described in JP-A-2008-50572 and JP-A-2003-12784 is also preferably used. it can.
  • R 12 , R 13 , R 22 and R 23 each independently represents an alkyl group having 1 to 10 carbon atoms or a cyano group, and a and b each independently represent 0 to 4 A 11 and A 12 are polymer chains, and Y 11 and Y 12 are each independently —CO—O—, —O—CO—, —NH—CO—, —CO—. NH—, —O— or —S—.
  • the alkyl group having 1 to 10 carbon atoms represented by R 12 , R 13 , R 22 and R 23 is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, s- Butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, t-amyl group, hexyl group, cyclohexyl group, cyclohexylmethyl group, cyclohexylethyl group, heptyl group, isoheptyl group, t-heptyl group, n-octyl Group, isooctyl group, t-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the polymer chains represented by A 11 and A 12 are not particularly limited.
  • compounds in which Y 11 is —O—CO— and Y 12 is —CO—O— are preferred, and the polymer chains represented by A 11 and A 12 are polyether chains and polyester chains. Those are more preferred because they are particularly inexpensive and easy to manufacture.
  • the compound represented by the following general formula (II) has good solubility and the molecular weight of the polymerization initiator. Since control is easy, it is more preferable.
  • R 12 , R 13 , R 22 , R 23 , a and b are the same as those in the general formula (I), and R 11 and R 21 are each independently selected from 1 to 24 represents an alkyl group, Z 11 , Z 12 , Z 21 and Z 22 each independently represents an alkylene group having 1 to 4 carbon atoms, and m, n, s and t each independently represents 0 The sum of m + n and the sum of s + t are each independently 2 or more.
  • the alkylene group having 1 to 4 carbon atoms represented by Z 11 , Z 12 , Z 21 and Z 22 is methylene group, ethylene group, trimethylene group, propylene group, propylidene group, isopropylidene group.
  • the alkyl group having 1 to 24 carbon atoms represented by R 11 and R 21 is methyl group, ethyl group, propyl group, and the like.
  • the compound represented by the following general formula (III) has good solubility and excellent water resistance. Therefore, it is preferable.
  • R 12 , R 13 , R 22 , R 23 , a and b are the same as those in the general formula (I), and Z 13 and Z 23 each independently represent 1 to 18 represents an alkylene group, R 31 and R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 24 carbon atoms, and p and u each independently represents a number of 1 to 1000.
  • the alkylene group having 1 to 18 carbon atoms represented by Z 13 and Z 23 is a methylene group, an ethylene group, a trimethylene group, a propylene group, a propylidene group, an isopropylidene group, a tetramethylene group, Butylene group, isobutylene group, ethylethylene group, dimethylethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, 1,4-pentanediyl group, decamethylene group, undecamethylene group, 1,4-undecane Examples thereof include a diyl group, a dodecamethylene group, a 1,11-heptadecandiyl group, an octadecamethylene group, and the like.
  • the alkyl group having 1 to 24 carbon atoms represented by R 31 and R 41 is represented by the general formula (II). The thing illustrated as R ⁇ 11 > and R ⁇ 21 > in can be mentioned.
  • the alkyl group having 1 to 24 carbon atoms represented by R 31 and R 41 is preferably an alkyl group having 1 to 4 carbon atoms because of high reactivity.
  • the organic peroxide is not particularly limited, and a 10 hour half-life temperature having a lower limit of 80 ° C. and an upper limit of 150 ° C. is preferably used.
  • a 10 hour half-life temperature having a lower limit of 80 ° C. and an upper limit of 150 ° C.
  • the 10-hour half-life temperature is less than 80 ° C.
  • the resulting sealing agent may have poor viscosity stability at room temperature.
  • the 10-hour half-life temperature exceeds 150 ° C.
  • the more preferable lower limit of the 10-hour half-life temperature is 100 ° C, and the more preferable upper limit is 130 ° C.
  • the 10-hour half-life temperature means a temperature at which the time for reducing the concentration of the thermal radical polymerization initiator to half of the initial value is 10 hours.
  • organic peroxide compounds include ketone peroxide compounds such as methyl ethyl ketone peroxide, peroxyketal compounds such as 1,1-di (t-butylperoxycyclohexane), alkyl peroxyester compounds such as t-butyl peroxybivalate, diacyl peroxide compounds such as dilauroyl peroxide, peroxydicarbonate compounds such as (2-ethylhexyl) peroxydicarbonate, t Examples thereof include peroxycarbonate compounds such as butylperoxyisopropyl carbonate, dialkyl peroxide compounds such as di-t-butyl peroxide, hydroperoxide compounds such as t-amyl hydroperoxide, and the like.
  • ketone peroxide compounds such as methyl ethyl ketone peroxide
  • peroxyketal compounds such as 1,1-di (t-butylperoxycyclohexane)
  • alkyl peroxyester compounds
  • thermal radical polymerization initiator examples include Permec D, Permec H, Parmec N (all manufactured by NOF Corporation), Luperox DDM. Ketone peroxide compounds such as Arkema Yoshitomi, Perhexa C, Perhexa MC (both made by NOF Corporation), Luperox 230 (Arkema Yoshitomi) and other peroxyketal compounds, Perbutyl E, Perhexa Alkyl peroxy ester compounds such as 250, perocta O, perhexyl O (all manufactured by NOF Corporation), diacyl peroxide compounds such as PERROYL L, PALOIL SA, PALOIL IB (all manufactured by NOF Corporation), Parroyl TCP, Parroyl OPP, Parroyl SBP (all manufactured by NOF Corporation), etc.
  • Oxydicarbonate compounds such as Kaya-Carbon AIC-75 (manufactured by Kayaku Akzo), Luperox TBEC (manufactured by Arkema Yoshitomi), Luperox DI (manufactured by Arkema Yoshitomi), perbutyl D (Nippon Oil) And dihydroperoxide compounds such as Permenta H, Parkurumi P (all manufactured by NOF Corporation), Luperox TAH (manufactured by Arkema Yoshitomi), and the like.
  • a preferable minimum is 0.1 weight part with respect to 100 weight part of said curable resin, A preferable upper limit is 30 weight. Part. If the content of the thermal radical polymerization initiator is less than 0.1 parts by weight, the sealing agent may not be cured at a low temperature of about 80 ° C. When the content of the thermal radical polymerization initiator exceeds 30 parts by weight, the viscosity of the obtained liquid crystal dropping method sealing agent increases, which may adversely affect coating workability and the like.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.5 weight part, and a more preferable upper limit is 10 weight part.
  • the sealing compound for liquid crystal dropping method of the present invention contains a thermosetting agent composed of a compound represented by the general formula (A). Since the thermosetting agent comprising the compound represented by the general formula (A) can sufficiently proceed with thermosetting even in a small amount, it suppresses liquid crystal contamination by reducing the blending amount with respect to the epoxy equivalent. Can do.
  • the compound represented by the general formula (A) include malonic acid dihydrazide, succinic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, and the like.
  • malonic acid dihydrazide is excellent in compatibility with a resin having high polarity and thermal reactivity. Therefore, by using malonic acid dihydrazide as a compound represented by the general formula (A), the effect of suppressing liquid crystal contamination
  • a sealing agent for liquid crystal dropping method that is particularly excellent in thermosetting and adhesiveness can be obtained.
  • thermosetting agent which consists of a compound represented by the said general formula (A) is not specifically limited, A preferable minimum is 0.5 weight part with respect to 100 weight part of said curable resin, A preferable upper limit is 10 weight. Part. If the content of the thermosetting agent comprising the compound represented by the general formula (A) is less than 0.5 parts by weight, the sealing agent may not be cured at a low temperature of about 80 ° C. When content of the thermosetting agent which consists of a compound represented with the said general formula (A) exceeds 10 weight part, liquid crystal contamination will be caused and the display performance of the obtained liquid crystal display element may fall.
  • the more preferred lower limit of the content of the thermosetting agent comprising the compound represented by the general formula (A) is 1 part by weight, the more preferred upper limit is 5 parts by weight, the still more preferred lower limit is 1.6 parts by weight, and the more preferred upper limit is 4.0 parts by weight.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a photo radical polymerization initiator.
  • the photo radical polymerization initiator is not particularly limited, and for example, a benzophenone compound, an acetophenone compound, an acyl phosphine oxide compound, a titanocene compound, an oxime ester compound, a benzoin ether compound, a thioxanthone, or the like is preferably used. Can do.
  • Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACUREOXE01, and Lucin TPO ether (all manufactured by Bensoin Methyl). Benzoin ethyl ether, benzoin isopropyl ether (all of which are manufactured by Tokyo Chemical Industry Co., Ltd.) and the like. Of these, IRGACURE651, IRGACURE819, IRGACURE907, IRGACUREOXE01, and Lucillin TPO are preferred because of their wide absorption wavelength range. These radical photopolymerization initiators may be used alone or in combination of two or more.
  • a preferable minimum is 0.1 weight part and a preferable upper limit is 10 weight part with respect to 100 weight part of said curable resins.
  • the sealing agent for liquid crystal dropping method of the present invention may not be sufficiently cured.
  • the content of the radical photopolymerization initiator exceeds 10 parts by weight, the storage stability may be lowered.
  • the sealing agent for liquid crystal dropping method of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the coefficient of linear expansion, and further improving the moisture resistance of the cured product.
  • a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the coefficient of linear expansion, and further improving the moisture resistance of the cured product.
  • the filler is not particularly limited.
  • Inorganic fillers such as magnesium, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc.
  • organic fillers may be surface-treated with a silane coupling agent or the like for the purpose of improving dispersibility and adhesion.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • the silane coupling agent is not particularly limited, and for example, ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane and the like are preferably used.
  • the sealing agent for the liquid crystal dropping method of the present invention further includes a reactive diluent for adjusting the viscosity, a thixotropic agent for adjusting the thixotropy, a spacer such as a polymer bead for adjusting the panel gap, if necessary. It may contain a curing accelerator such as -P-chlorophenyl-1,1-dimethylurea, an antifoaming agent, a leveling agent, a polymerization inhibitor, and other additives.
  • a curing accelerator such as -P-chlorophenyl-1,1-dimethylurea
  • the method for producing the sealing agent for the liquid crystal dropping method of the present invention is not particularly limited.
  • the curable resin is used by using a mixer such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, or a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, or a three roll.
  • a method of mixing the thermal radical polymerization initiator, a thermosetting agent composed of the compound represented by the general formula (A), and a silane coupling agent added as necessary At this time, in order to remove the ionic impurities contained, it may be brought into contact with an ion-adsorbing solid.
  • a vertical conduction material can be produced by blending conductive fine particles with the sealant for the liquid crystal dropping method of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing compound for liquid crystal dropping method of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
  • one of two transparent substrates with electrodes such as an ITO thin film is applied to the rectangular liquid crystal dropping method according to the present invention by screen printing, dispenser coating or the like.
  • a liquid crystal micro-droplet is dropped onto the entire surface of the transparent substrate while the sealing agent for the liquid crystal dropping method of the present invention is uncured, and the other transparent substrate is immediately overlaid.
  • Irradiating light such as ultraviolet rays
  • to the sealing pattern portion of the process and the sealing agent for the liquid crystal dropping method of the present invention and temporarily curing the sealing agent, and heating and temporarily curing the temporarily cured sealing agent Examples thereof include a method having a step.
  • the sealing agent for liquid crystal dropping methods which is excellent in storage stability, hardly causes liquid-crystal contamination, and can fully be hardened at the low temperature of about 80 degreeC can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.
  • Examples 1 to 23, Comparative Examples 1 to 8, and Reference Example 1 According to the blending ratios described in Tables 1 to 6, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Netaro”), and further mixed using three rolls. The sealing agents for the liquid crystal dropping method of 1 to 23, Comparative Examples 1 to 8, and Reference Example 1 were prepared.
  • Adhesive strength evaluation 1 3 parts by weight of polymer beads having an average particle diameter of 5 ⁇ m (“Micropearl SP” manufactured by Sekisui Chemical Co., Ltd.) are dispersed by a planetary stirrer with respect to 100 parts by weight of the obtained liquid crystal dropping method sealing agent to obtain a uniform liquid.
  • a planetary stirrer Take a trace amount in the center of non-alkali glass with ITO electrode (20mm x 50mm x 0.7mmt), overlay the same type of glass on it and spread the sealant for liquid crystal dropping method, using a metal halide lamp Irradiation with ultraviolet rays of 100 mW / cm 2 was performed for 20 seconds. Thereafter, heating was performed at 80 ° C.
  • the adhesive strength of this test piece was measured using a tension gauge (comparative unit is N / cm 2 ). The case where the adhesive strength is 200 N / cm 2 or more is “ ⁇ ”, the case where it is 150 N / cm 2 or more and less than 200 N / cm 2 is “ ⁇ ”, and the case where it is less than 150 N / cm 2 is “ ⁇ ”. evaluated.
  • Adhesive strength evaluation 2 3 parts by weight of polymer beads having an average particle diameter of 5 ⁇ m (“Micropearl SP” manufactured by Sekisui Chemical Co., Ltd.) are dispersed by a planetary stirrer with respect to 100 parts by weight of the obtained liquid crystal dropping method sealing agent to obtain a uniform liquid.
  • a planetary stirrer Take a trace amount in the center of non-alkali glass with ITO electrode (20mm x 50mm x 0.7mmt), overlay the same type of glass on it and spread the sealant for liquid crystal dropping method, using a thalhalide lamp And 100 mW / cm 2 of ultraviolet rays were irradiated for 20 seconds. Thereafter, heating was performed at 120 ° C.
  • the adhesive strength of this test piece was measured using a tension gauge (comparative unit is N / cm 2 ). The case where the adhesive strength is 200 N / cm 2 or more is “ ⁇ ”, the case where it is 150 N / cm 2 or more and less than 200 N / cm 2 is “ ⁇ ”, and the case where it is less than 150 N / cm 2 is “ ⁇ ”. evaluated.
  • the sealing agent for liquid crystal dropping methods which is excellent in storage stability, hardly causes liquid-crystal contamination, and can fully be hardened at the low temperature of about 80 degreeC can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 本発明は、硬化性樹脂と、熱ラジカル重合開始剤と、下記一般式(A)で表される化合物からなる熱硬化剤とを含有する液晶滴下工法用シール剤である。 一般式(A)中、Xは、CH、CH(OH)、C(OH)、C、CHCH(OH)、CHC(OH)、C(OH)C(OH)、CHCO、COCO、NHのいずれかで表される構造を表す。

Description

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
本発明は、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。
近年、液晶表示セル等の液晶表示装置の製造方法は、タクトタイム短縮、使用液晶量の最適化といった観点から、従来の真空注入方式から、例えば、特許文献1、特許文献2に開示されているような(メタ)アクリル樹脂等の光硬化性樹脂と光重合開始剤、及び、エポキシ樹脂等の熱硬化性樹脂と熱硬化剤を含有する、光、熱併用硬化型の樹脂組成物からなるシール剤を用いた滴下工法と呼ばれる液晶滴下方式にかわりつつある。
光、熱併用硬化型の樹脂組成物からなるシール剤を用いた滴下工法では、まず、2枚の電極付き基板の一方にシールパターンを形成する。次いで、シール剤未硬化の状態で液晶の微小滴を基板の枠内に滴下し、真空下で他方の基板を重ね合わせ、シール部に光を照射して光硬化性の樹脂の硬化を行う(仮硬化工程)。その後、加熱して熱硬化性の樹脂の硬化を行い、液晶表示パネルを作製する。
通常、熱硬化性の樹脂を有するシール剤は、120℃程度の温度で1時間程度加熱することにより熱硬化させているが、近年では、省エネルギー化や、高速応答するものの高温での安定性の悪い液晶材料を用いるために、シール剤をより低い温度で熱硬化させることが望まれている。しかしながら、従来のシール剤は、80℃程度の低温で硬化させると接着力が低くなるという問題があった。シール剤を低温で硬化させるための方法として、融点の低い熱硬化剤や硬化促進剤を用いることが考えられるが、融点の低い熱硬化剤や硬化促進剤を用いると、シール剤のポットライフが短くなり、シール剤が保存安定性に劣るものとなるという問題があった。
特開2001-133794号公報 特開平5-295087号公報
本発明は、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。
本発明は、硬化性樹脂と、熱ラジカル重合開始剤と、下記一般式(A)で表される化合物からなる熱硬化剤とを含有する液晶滴下工法用シール剤である。
Figure JPOXMLDOC01-appb-C000003
一般式(A)中、Xは、CH、CH(OH)、C(OH)、C、CHCH(OH)、CHC(OH)、C(OH)C(OH)、CHCO、COCO、NHのいずれかで表される構造を表す。
以下に本発明を詳述する。
本発明者は、熱ラジカル重合開始剤と、熱硬化剤として一般式(A)で表される化合物とを組み合わせて用いることにより、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤が得られることを見出し、本発明を完成させるに至った。
熱ラジカル重合開始剤と、熱硬化剤として一般式(A)で表される化合物とを組み合わせて用いることにより保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができるシール剤が得られる理由としては、以下のことが考えられる。
シール剤に熱ラジカル重合開始剤を用いると、熱硬化性が向上することが知られているが熱ラジカル開始剤はある程度の温度(110℃以上)まで達しないと反応が開始しない。また、一般式(A)で表される化合物からなる熱硬化剤は、エポキシ(メタ)アクリレート等の極性の高い樹脂との相溶性に優れ、熱硬化剤として液晶滴下工法用シール剤に用いた場合に液晶をほとんど汚染することがないことが知られているが、80℃程度の低温で硬化させると得られるシール剤は接着力に劣るものとなる。
しかしながら、熱ラジカル重合開始剤と該熱硬化剤とを組み合わせて用いた場合、樹脂との相溶性の高い該熱硬化剤は80℃程度の温度に達すると溶解が始まり、その溶解熱で熱ラジカル重合開始剤のラジカル開始点の温度が下がるために、ラジカル硬化と熱硬化を同時に開始することができるようになると考えられる。また、両者とも室温では硬化性樹脂との反応性が低いため、得られるシール剤は、ポットライフが長く、保存安定性に優れたものとなる。
本発明の液晶滴下工法用シール剤は硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリロイルオキシ基を有する樹脂とエポキシ基を有する樹脂とを含有することが好ましく、上記(メタ)アクリロイルオキシ基を有する樹脂として、下記式(1)で表される樹脂及び/又は下記式(2)で表される樹脂を上記硬化性樹脂中に40重量%以上含有することがより好ましい。本発明の液晶滴下工法用シール剤において、熱硬化剤として用いる上記一般式(A)で表される化合物は極性が高いため、下記式(1)や下記式(2)で表される極性の高い樹脂との相溶性が高く、これらを組み合わせて用いることにより、該熱硬化剤の液晶への溶出を防止し、液晶汚染を抑制することができる。上記の観点で特に、上記一般式(A)で表される化合物の中でも、高極性であるマロン酸ジヒドラジドを、硬化性樹脂である下記式(1)で表される樹脂及び/又は下記式(2)で表される樹脂と組み合わせて用いることが好ましい。
上記硬化性樹脂における下記式(1)で表される樹脂及び/又は下記式(2)で表される樹脂の含有量が40重量%未満であると、得られるシール剤が接着性に劣るものとなったり、液晶汚染を引き起こしたりすることがある。上記硬化性樹脂は、下記式(1)で表される樹脂及び/又は下記式(2)で表される樹脂を60重量%以上含有することが更に好ましい。
Figure JPOXMLDOC01-appb-C000004
上記(メタ)アクリロイルオキシ基を有する樹脂は特に限定されず、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
なお、本明細書において上記(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基又はメタクリロイルオキシ基を意味し、上記(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、上記(メタ)アクリルとは、アクリル又はメタクリルを意味する。また、本明細書において上記エポキシ(メタ)アクリレートとは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物は特に限定されず、単官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。
また、2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
また、3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。
上記(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレートは特に限定されず、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。上記式(1)で表される樹脂や上記式(2)で表される樹脂もこのようにして得ることができる。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物は特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鐵化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鐵化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鐵化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鐵化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鐵化学社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、エピコートYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鐵化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、具体的には例えば、レゾルシノール型エポキシアクリレートは、レゾルシノール型エポキシ樹脂(ナガセケムテックス社製、「EX-201」)360重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸210重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させることによって得ることができる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセルサイテック社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有する化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
上記イソシアネートは特に限定されず、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイオシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネートは特に限定されず、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記水酸基を有する(メタ)アクリル酸誘導体は特に限定されず、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の市販品やエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートは、具体的には例えば、トリメチロールプロパン134重量部に、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、及び、イソホロンジイソシアネート666重量部を加え、60℃で還流攪拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込みながら90℃で還流攪拌し、2時間反応させることにより得ることができる。
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセルサイテック社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。
上記(メタ)アクリロイルオキシ基を有する樹脂は、反応性の高さから分子中に(メタ)アクロイルオキシ基を2~3個有するものが好ましい。
上記硬化性樹脂はエポキシ基を有する樹脂を含有することが好ましい。
上記エポキシ基を有する樹脂は特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鐵化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鐵化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鐵化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鐵化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鐵化学社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、エピコートYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鐵化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
また、上記エポキシ基を有する樹脂は、例えば、1分子中に(メタ)アクリロイルオキシ基とエポキシ基とを有する樹脂であってもよい。このような化合物としては、例えば、2以上のエポキシ基を有する化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得られる部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、上記硬化性樹脂は、上記1分子中に(メタ)アクリロイルオキシ基とエポキシ基とを有する樹脂のみを含有するものであってもよい。
上記部分(メタ)アクリル変性エポキシ樹脂は、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られる。具体的には例えば、フェノールノボラック型エポキシ樹脂(DIC社製、「N-770」)190gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.1gを加えて均一な溶液とし、この溶液にアクリル酸35gを還流撹拌下にて2時間滴下した後、更に還流撹拌を6時間行い、次に、トルエンを除去することによって、50モル%のエポキシ基がアクリル酸と反応したフェノールノボラック型部分アクリル変性エポキシ樹脂を得ることができる(この場合50%部分アクリル化されている)。
上記部分(メタ)アクリル変性エポキシ樹脂のうち、市販されているものとしては、例えば、UVACURE1561(ダイセルサイテック社製)が挙げられる。
本発明の液晶滴下工法用シール剤は、硬化性樹脂中の(メタ)アクリロイルオキシ基とエポキシ基との比がモル比で50:50~95:5になるように上記(メタ)アクリロイルオキシ基を有する樹脂と上記エポキシ基を有する樹脂とを配合することが好ましい。
本発明の液晶滴下工法用シール剤は、熱ラジカル重合開始剤を含有する。
上記熱ラジカル重合開始剤は、10時間半減期温度の好ましい下限が50℃、好ましい上限が90℃である。上記熱ラジカル重合開始剤の10時間半減期温度が50℃未満であると、得られる液晶滴下工法用シール剤の貯蔵安定性が悪くなることがある。上記熱ラジカル重合開始剤の10時間半減期温度が90℃を超えると、本発明の液晶滴下工法用シール剤の硬化に高温かつ長時間を要し、パネルの生産性に影響を与えることがある。
なお、本明細書において上記10時間半減期温度とは、不活性ガスの存在下において、一定の温度で10時間熱分解反応を行った際に熱ラジカル重合開始剤の濃度が反応前の濃度の半分になるときの温度である。
上記熱ラジカル重合開始剤は特に限定されず、アゾ化合物、有機過酸化物等が挙げられる。なかでも、数平均分子量が5000~10万である高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
上記高分子アゾ開始剤の数平均分子量の好ましい下限は5000、好ましい上限は10万である。上記高分子アゾ開始剤の数平均分子量が5000未満であると、高分子アゾ開始剤が液晶に悪影響を与えることがある。上記高分子アゾ開始剤の数平均分子量が10万を超えると、(メタ)アクリル基を有する樹脂への混合が困難になることがある。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は1万、より好ましい上限は9万である。
上記高分子アゾ開始剤は、ブラックマトリックス等により光の当たらない箇所のシール部分であっても熱により確実に硬化させることが可能であり、かつ、液晶汚染を生じることが極めて少ないことから、ポリジメチルシロキサンユニット又はポリアルキレンオキサイドユニットを有することが好ましい。
上記ポリアルキレンオキサイドユニットを有する構造としては、ポリエチレンオキサイド構造を有するものが好ましい。
このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
上記高分子アゾ化合物としては、その他にも特開2008-50572号公報や特開2003-12784号公報に記載された下記一般式(I)で表される高分子アゾ化合物も好適に用いることができる。
Figure JPOXMLDOC01-appb-C000005
式(I)中、R12、R13、R22及びR23は、それぞれ独立に、炭素原子数1~10のアルキル基又はシアノ基を表し、a及びbは、それぞれ独立に、0~4の数であり、A11及びA12は、高分子鎖であり、Y11及びY12は、それぞれ独立に、-CO-O-、-O-CO-、-NH-CO-、-CO-NH-、-O-又は-S-である。
上記一般式(I)中、R12、R13、R22及びR23で表わされる炭素原子数1~10のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、t-アミル基、ヘキシル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基、ヘプチル基、イソヘプチル基、t-ヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等が挙げられる。
上記一般式(I)中、A11及びA12で表わされる高分子鎖は特に限定されず、例えば、ポリオキシレン鎖、ポリメチレン鎖、ポリエーテル鎖、ポリエステル鎖、ポリシロキサン鎖、ポリ(メタ)アクリレート鎖、ポリスチレン-酢酸ビニル鎖、ポリアミド鎖、ポリイミド鎖、ポリウレタン鎖、ポリウレア鎖、ポリペプチド鎖等が挙げられる。なかでも、Y11が-O-CO-であり、Y12が-CO-O-である化合物が好ましく、A11及びA12で表される高分子鎖が、ポリエーテル鎖及びポリエステル鎖であるものが、特に安価で製造が容易であるのでより好ましい。
上記一般式(I)のうち、A11及びA12がポリエーテル鎖である高分子アゾ化合物の中では、下記一般式(II)で示される化合物が、溶解性がよく、重合開始剤の分子量制御が容易であるのでより好ましい。
Figure JPOXMLDOC01-appb-C000006
式(II)中、R12、R13、R22、R23、a及びbは、上記一般式(I)と同じであり、R11及びR21は、それぞれ独立に、炭素原子数1~24のアルキル基を表し、Z11、Z12、Z21及びZ22は、それぞれ独立に、炭素原子数1~4のアルキレン基を表し、m、n、s及びtは、それぞれ独立に、0~1000の数であり、m+nの和、s+tの和は、それぞれ独立に、2以上である。
上記一般式(II)中、Z11、Z12、Z21及びZ22で表わされる炭素原子数1~4のアルキレン基は、メチレン基、エチレン基、トリメチレン基、プロピレン基、プロピリデン基、イソプロピリデン基、テトラメチレン基、ブチレン基、イソブチレン基、エチルエチレン基、ジメチルエチレン基等が挙げられ、R11及びR21で表わされる炭素原子数1~24のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、t-アミル基、ヘキシル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基、ヘプチル基、イソヘプチル基、t-ヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、ラウリル基、ステアリル基、ベヘニル基等が挙げられる。
11及びR21で表わされる炭素原子数1~24のアルキル基は、炭素原子数が1~4であるものが、反応性が高いため好ましい。
上記一般式(I)で示される高分子アゾ化合物のA11及びA12がポリエステル鎖であるものの中では、下記一般式(III)で示される化合物が、溶解性が良く、耐水性に優れているため好ましい。
Figure JPOXMLDOC01-appb-C000007
式(III)中、R12、R13、R22、R23、a及びbは、上記一般式(I)と同じであり、Z13及びZ23は、それぞれ独立に、炭素原子数1~18のアルキレン基を表し、R31及びR41は、それぞれ独立に、水素原子又は炭素原子数1~24のアルキル基を表し、p及びuは、それぞれ独立に、1~1000の数である。
上記一般式(III)中、Z13、Z23で表わされる炭素原子数1~18のアルキレン基は、メチレン基、エチレン基、トリメチレン基、プロピレン基、プロピリデン基、イソプロピリデン基、テトラメチレン基、ブチレン基、イソブチレン基、エチルエチレン基、ジメチルエチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、1,4-ペンタンジイル基、デカメチレン基、ウンデカメチレン基、1,4-ウンデカンジイル基、ドデカメチレン基、1,11-ヘプタデカンジイル基、オクタデカメチレン基等が挙げられ、R31及びR41で表わされる炭素原子数1~24のアルキル基は、上記一般式(II)におけるR11及びR21として例示したものが挙げられる。R31及びR41で表わされる炭素原子数1~24のアルキル基は、炭素原子数が1~4であるものが、反応性が高いため好ましい。
上記一般式(III)中、p及びuが20~100であるものが、反応性が高いため好ましい。
上記有機過酸化物は特に限定されず、10時間半減期温度の下限が80℃、上限が150℃のものが好適に用いられる。上記10時間半減期温度が80℃未満であると、得られるシール剤の常温における粘度の安定性が乏しくなることがある。上記10時間半減期温度が150℃を超えると、得られるシール剤の反応性が乏しくなり、80℃で迅速な硬化ができないことがある。上記10時間半減期温度のより好ましい下限は100℃、より好ましい上限は130℃である。
なお、本明細書において上記10時間半減期温度とは、熱ラジカル重合開始剤の濃度が初期値の半分に減少する時間が10時間となる温度を意味する。
上記有機過酸化物系化合物としては、具体的には例えば、メチルエチルケトンパーオキサイド等のケトンパーオキサイド系化合物や、1,1-ジ(t-ブチルパーオキシシクロヘキサン)等のパーオキシケタール系化合物や、t-ブチルパーオキシビバレート等のアルキルパーオキシエステル系化合物や、ジラウロイルパーオキサイド等のジアシルパーオキサイド系化合物や、(2-エチルヘキシル)パーオキシジカーボネイト等のパーオキシジカーボネイト系化合物や、t-ブチルパーオキシイソプロピルカーボネイト等のパーオキシカーボネイト系化合物や、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド系化合物や、t-アミルハイドロパーオキサイド等のハイドロパーオキサイド系化合物等が挙げられる。
上記熱ラジカル重合開始剤としては、市販品を用いることもでき、有機過酸化物系化合物の市販品としては、例えば、パーメックD、パーメックH、パーメックN(いずれも日油社製)、ルペロックスDDM(アルケマ吉富社製)等のケトンパーオキサイド系化合物や、パーヘキサC、パーヘキサMC(いずれも日油社製)、ルペロックス230(アルケマ吉富社製)等のパーオキシケタール系化合物や、パーブチルE、パーヘキサ250、パーオクタO、パーヘキシルO(いずれも日油社製)等のアルキルパーオキシエステル系化合物や、パーロイルL、パーロイルSA、パーロイルIB(いずれも日油社製)等のジアシルパーオキサイド系化合物や、パーロイルTCP、パーロイルOPP、パーロイルSBP(いずれも日油社製)等のパーオキシジカーボネイト系化合物や、カヤカルボンAIC-75(化薬アクゾ社製)、ルペロックスTBEC(アルケマ吉富社製)等のパーオキシカーボネイト系化合物や、ルペロックスDI(アルケマ吉富社製)、パーブチルD(日油社製)等のジアルキルパーオキサイド系化合物や、パーメンタH、パークルミP(いずれも日油社製)、ルペロックスTAH(アルケマ吉富社製)等のハイドロパーオキサイド系化合物等が挙げられる。
本発明の液晶滴下工法用シール剤における上記熱ラジカル重合開始剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記熱ラジカル重合開始剤の含有量が0.1重量部未満であると、上記シール剤を80℃程度の低温で硬化させることができなくなることがある。上記熱ラジカル重合開始剤の含有量が30重量部を超えると、得られる液晶滴下工法用シール剤の粘度が高くなり、塗布作業性等に悪影響を与えることがある。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。
本発明の液晶滴下工法用シール剤は、一般式(A)で表される化合物からなる熱硬化剤を含有する。
上記一般式(A)で表される化合物からなる熱硬化剤は、少量でも充分に熱硬化を進行させることができるため、エポキシ当量に対して配合量を少なくすることで液晶汚染を抑制することができる。
上記一般式(A)で表される化合物としては、具体的には例えば、マロン酸ジヒドラジド、コハク酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド等が挙げられる。なかでも、マロン酸ジヒドラジドは、高極性である樹脂との相溶性や熱反応性に優れるため、一般式(A)で表される化合物としてマロン酸ジヒドラジドを用いることで、液晶汚染を抑制する効果、熱硬化性、及び、接着性に特に優れる液晶滴下工法用シール剤を得ることができる。
更に、上記マロン酸ジヒドラジドを、硬化性樹脂である上記式(1)で表される樹脂及び/又は上記式(2)で表される樹脂と組み合わせて用いることにより、液晶汚染を抑制する効果、熱硬化性、及び、接着性を更に向上させることができる。
上記一般式(A)で表される化合物からなる熱硬化剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限は0.5重量部、好ましい上限は10重量部である。上記一般式(A)で表される化合物からなる熱硬化剤の含有量が0.5重量部未満であると、シール剤を80℃程度の低温で硬化させることができなくなることがある。上記一般式(A)で表される化合物からなる熱硬化剤の含有量が10重量部を超えると、液晶汚染を引き起こし、得られる液晶表示素子の表示性能が低下することがある。上記一般式(A)で表される化合物からなる熱硬化剤の含有量のより好ましい下限は1重量部、より好ましい上限は5重量部、更に好ましい下限は1.6重量部、更に好ましい上限は4.0重量部である。
本発明の液晶滴下工法用シール剤は、光ラジカル重合開始剤を含有することが好ましい。上記光ラジカル重合開始剤は特に限定されないが、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等を好適に用いることができる。
また、上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACUREOXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(以上、いずれも東京化成工業社製)等が挙げられる。なかでも吸収波長域が広いことから、IRGACURE651、IRGACURE819、IRGACURE907、IRGACUREOXE01、及び、ルシリンTPOが好適である。これらの光ラジカル重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
上記光ラジカル重合開始剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.1重量部未満であると、本発明の液晶滴下工法用シール剤を充分に硬化させることができないことがある。上記光ラジカル重合開始剤の含有量が10重量部を超えると、貯蔵安定性が低下することがある。
本発明の液晶滴下工法用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の更なる向上等を目的として充填剤を含有することが好ましい。
上記充填剤は特に限定されず、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。これらの充填剤は、分散性や密着性向上の目的で、シランカップリング剤等で表面処理を施していてもよい。
本発明の液晶滴下工法用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤は特に限定されないが、例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
本発明の液晶滴下工法用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、チクソ性を調整する揺変剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素等の硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他添加剤等を含有してもよい。
本発明の液晶滴下工法用シール剤を製造する方法は特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリウムミキサー、ニーダー、3本ロール等の混合機を用いて、上記硬化性樹脂と、上記熱ラジカル重合開始剤と、上記一般式(A)で表される化合物からなる熱硬化剤と、必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。この際、含有するイオン性不純物を除去するために、イオン吸着性固体と接触させてもよい。
本発明の液晶滴下工法用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
上記導電性微粒子は特に限定されず、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
本発明の液晶滴下工法用シール剤及び/又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極付きの2枚の透明基板の一方に、本発明の液晶滴下工法用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶滴下工法用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ねあわせる工程、及び、本発明の液晶滴下工法用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
本発明によれば、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(A)レゾルシノール型エポキシアクリレートの合成
レゾルシノール型エポキシ樹脂(ナガセケムテックス製、「デナコールEX-201」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸649重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、レゾルシノール型エポキシアクリレート(A)を得た。
(B)ビスフェノールA型エポキシアクリレートの合成
ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート828EL」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸424重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、ビスフェノールA型エポキシアクリレート(B)を得た。
(C)ビスフェノールF型エポキシアクリレートの合成
ビスフェノールF型エポキシ樹脂(DIC社製、「エピクロン830S」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸462重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、ビスフェノールF型エポキシアクリレート(C)を得た。
(D)部分アクリル変性ビスフェノールA型エポキシ樹脂の合成
ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート828EL」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸212重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、50%部分アクリル変性ビスフェノールA型エポキシ樹脂(D)を得た。
(E)部分アクリル変性ビスフェノールE型エポキシ樹脂の合成
ビスフェノールE型エポキシ樹脂(三井化学社製、「エポミックR710」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸221重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、50%部分アクリル変性ビスフェノールE型エポキシ樹脂(E)を得た。
(F)部分アクリル変性ジフェニルエーテル型エポキシ樹脂の合成
ジフェニルエーテル型エポキシ樹脂(新日鐵化学社製、「YSLV80DE」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸229重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、50%部分アクリル変性ジフェニルエーテル型エポキシ樹脂(F)を得た。
(実施例1~23、比較例1~8、及び、参考例1)
表1~6に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合後、更に3本ロールを用いて混合させることにより実施例1~23、比較例1~8、及び、参考例1の液晶滴下工法用シール剤を調製した。
<評価>
実施例、比較例、及び、参考例で得られた液晶滴下工法用シール剤について以下の評価を行った。結果を表1~6に示した。
(パネル表示ムラ評価1)
透明電極と配向膜とが形成された基板に、得られた液晶滴下工法用シール剤を正方形の枠を描くようにディスペンサーで塗布してシールパターンを形成した。形成したシールパターンの内部に得られた液晶滴下工法用シール剤を点打ちした。続いて液晶(チッソ社製、「JC-5004LA」)の微小滴を透明基板の枠内全面に滴下塗布し、真空中にて別の透明電極と配向膜とが形成された基板を重ね合わせた。真空を解除した後、外枠シール部にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射した。この時、点打ちした液晶滴下工法用シール剤には紫外線が照射されないようにマスクをした。その後液晶アニールを80℃で1時間行い、液晶滴下工法用シール剤を熱硬化させて液晶表示素子を得た。
得られた液晶表示素子について、点打ちした液晶滴下工法用シール剤周辺の液晶に生じる色ムラを通電状態で目視にて観察した。その結果、色ムラが全くなかった場合を「◎」、色ムラがほとんどなかった場合を「○」、少し色ムラがあった場合を「△」、色ムラがかなりあった場合を「×」として評価した。
(パネル表示ムラ評価2)
透明電極と配向膜とが形成された基板に、得られた液晶滴下工法用シール剤を正方形の枠を描くようにディスペンサーで塗布してシールパターンを形成した。形成したシールパターンの内部に得られた液晶滴下工法用シール剤を点打ちした。続いて液晶(チッソ社製、「JC-5004LA」)の微小滴を透明基板の枠内全面に滴下塗布し、真空中にて別の透明電極と配向膜とが形成された基板を重ね合わせた。真空を解除した後、外枠シール部にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射した。この時、点打ちした液晶滴下工法用シール剤には紫外線が照射されないようにマスクをした。その後液晶アニールを120℃で1時間行い、液晶滴下工法用シール剤を熱硬化させて液晶表示素子を得た。
得られた液晶表示素子について、点打ちした液晶滴下工法用シール剤周辺の液晶に生じる色ムラを通電状態で目視にて観察した。その結果、色ムラが全くなかった場合を「◎」、色ムラがほとんどなかった場合を「○」、少し色ムラがあった場合を「△」、色ムラがかなりあった場合を「×」と評価した。
(接着強度評価1)
得られた液晶滴下工法用シール剤100重量部に対して平均粒径5μmのポリマービーズ(積水化学工業社製、「ミクロパールSP」)3重量部を遊星式撹拌装置によって分散させ均一な液とし、極微量をITO電極付き無アルカリガラス(20mm×50mm×0.7mmt)の中央部に取り、同型のガラスをその上に重ね合わせて液晶滴下工法用シール剤を押し広げ、メタルハライドランプを用いて100mW/cmの紫外線を20秒照射した。その後80℃で1時間の加熱を行い、接着試験片を得た。この試験片についてテンションゲージを用いて接着強度を測定した(比較単位はN/cm)。接着強度が200N/cm以上であった場合を「○」、150N/cm以上200N/cm未満であった場合を「△」、150N/cm未満であった場合を「×」として評価した。
(接着強度評価2)
得られた液晶滴下工法用シール剤100重量部に対して平均粒径5μmのポリマービーズ(積水化学工業社製、「ミクロパールSP」)3重量部を遊星式撹拌装置によって分散させ均一な液とし、極微量をITO電極付き無アルカリガラス(20mm×50mm×0.7mmt)の中央部に取り、同型のガラスをその上に重ね合わせて液晶滴下工法用シール剤を押し広げ、タルハライドランプを用いて100mW/cmの紫外線を20秒照射した。その後120℃で1時間の加熱を行い、接着試験片を得た。この試験片についてテンションゲージを用いて接着強度を測定した(比較単位はN/cm)。接着強度が200N/cm以上であった場合を「○」、150N/cm以上200N/cm未満であった場合を「△」、150N/cm未満であった場合を「×」として評価した。
(保存安定性評価)
得られた液晶滴下工法用シール剤を温度25℃、湿度50%RHの雰囲気下で48時間保存した後に、E型粘度計で粘度を測定し、保存前の粘度からの増粘率を下記の式にて計算した。
 増粘率(%)=100×(保存後の粘度)/(保存前の粘度)
増粘率が120%未満であった場合を「○」、120%以上130%未満であった場合を「△」、130%以上であった場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
本発明によれば、保存安定性に優れ、液晶汚染を引き起こすことがほとんどなく、80℃程度の低温で充分に硬化させることができる液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。

Claims (7)

  1. 硬化性樹脂と、熱ラジカル重合開始剤と、下記一般式(A)で表される化合物からなる熱硬化剤とを含有することを特徴とする液晶滴下工法用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    一般式(A)中、Xは、CH、CH(OH)、C(OH)、C、CHCH(OH)、CHC(OH)、C(OH)C(OH)、CHCO、COCO、NHのいずれかで表される構造を表す。
  2. 一般式(A)で表される化合物は、マロン酸ジヒドラジドであることを特徴とする請求項1記載の液晶滴下工法用シール剤。
  3. 硬化性樹脂は、下記式(1)で表される樹脂及び/又は下記式(2)で表される樹脂を40重量%以上含有することを特徴とする請求項1又は2記載の液晶滴下工法用シール剤。
    Figure JPOXMLDOC01-appb-C000002
  4. 熱ラジカル重合開始剤は、数平均分子量が5000~10万である高分子アゾ化合物であることを特徴とする請求項1、2又は3記載の液晶滴下工法用シール剤。
  5. 高分子アゾ化合物は、ポリジメチルシロキサンユニット又はポリアルキレンオキサイドユニットを有することを特徴とする請求項4記載の液晶滴下工法用シール剤。
  6. 請求項1、2、3、4又は5記載の液晶滴下工法用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。
  7. 請求項1、2、3、4若しくは5記載の液晶滴下工法用シール剤及び/又は請求項6記載の上下導通材料を用いてなることを特徴とする液晶表示素子。
PCT/JP2011/077823 2010-12-09 2011-12-01 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 WO2012077572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180059686.6A CN103261957B (zh) 2010-12-09 2011-12-01 液晶滴下工艺用密封剂、上下导通材料以及液晶显示元件
JP2011554307A JP5049409B2 (ja) 2010-12-09 2011-12-01 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
KR1020137010918A KR101298418B1 (ko) 2010-12-09 2011-12-01 액정 적하 공법용 시일제, 상하 도통 재료, 및 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274508 2010-12-09
JP2010274508 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077572A1 true WO2012077572A1 (ja) 2012-06-14

Family

ID=46207062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077823 WO2012077572A1 (ja) 2010-12-09 2011-12-01 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子

Country Status (5)

Country Link
JP (1) JP5049409B2 (ja)
KR (1) KR101298418B1 (ja)
CN (1) CN103261957B (ja)
TW (1) TWI398460B (ja)
WO (1) WO2012077572A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087103A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd ヒドラジド多量体、硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2014006324A (ja) * 2012-06-22 2014-01-16 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
CN105283803A (zh) * 2013-06-11 2016-01-27 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件
JP2016024242A (ja) * 2014-07-17 2016-02-08 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JP2017049578A (ja) * 2015-09-02 2017-03-09 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
WO2021246479A1 (ja) * 2020-06-04 2021-12-09 積水化学工業株式会社 ジヒドラジド化合物、硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021628A1 (ja) * 2014-08-07 2016-02-11 積水化学工業株式会社 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
KR102563022B1 (ko) * 2016-04-04 2023-08-07 덕산네오룩스 주식회사 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치
JP6235766B1 (ja) * 2016-05-13 2017-11-22 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
KR20210012994A (ko) * 2018-05-25 2021-02-03 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료 및 액정 표시 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114184A1 (ja) * 2006-03-29 2007-10-11 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2007334174A (ja) * 2006-06-19 2007-12-27 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
WO2008139736A1 (ja) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. 液晶表示パネル搭載基板、およびその製造方法
WO2009128470A1 (ja) * 2008-04-18 2009-10-22 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114184A1 (ja) * 2006-03-29 2007-10-11 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2007334174A (ja) * 2006-06-19 2007-12-27 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
WO2008139736A1 (ja) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. 液晶表示パネル搭載基板、およびその製造方法
WO2009128470A1 (ja) * 2008-04-18 2009-10-22 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087103A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd ヒドラジド多量体、硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2014006324A (ja) * 2012-06-22 2014-01-16 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
CN105283803A (zh) * 2013-06-11 2016-01-27 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件
JP2016024242A (ja) * 2014-07-17 2016-02-08 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JP2017049578A (ja) * 2015-09-02 2017-03-09 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
WO2021246479A1 (ja) * 2020-06-04 2021-12-09 積水化学工業株式会社 ジヒドラジド化合物、硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7007524B1 (ja) * 2020-06-04 2022-02-10 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Also Published As

Publication number Publication date
CN103261957A (zh) 2013-08-21
JP5049409B2 (ja) 2012-10-17
KR20130056913A (ko) 2013-05-30
TW201231488A (en) 2012-08-01
CN103261957B (zh) 2015-04-29
KR101298418B1 (ko) 2013-08-20
JPWO2012077572A1 (ja) 2014-05-19
TWI398460B (zh) 2013-06-11

Similar Documents

Publication Publication Date Title
JP5049409B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5238909B2 (ja) 液晶表示素子用遮光シール剤、上下導通材料及び液晶表示素子
JP5281204B1 (ja) 液晶表示素子用シール剤及び液晶表示素子
JP2018077544A (ja) 液晶表示素子用シール剤、上下導通材料、液晶表示素子、及び、ヒドラジド系熱硬化剤
JP2016056361A (ja) 重合性化合物、硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP2013060386A (ja) 変性ヒドラジド化合物、変性ヒドラジド化合物の製造方法、硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
WO2015152030A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6216260B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2010058767A1 (ja) 液晶滴下工法用シール剤及び液晶表示素子
JP5395872B2 (ja) 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP5660923B2 (ja) 液晶滴下工法用シール剤、及び、上下導通材料、及び、液晶表示素子
JP2012173488A (ja) 液晶滴下工法用シール剤、及び、液晶表示素子の製造方法
JP5820184B2 (ja) 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
JP5369242B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2012088412A (ja) 液晶表示素子用遮光シール剤、上下導通材料及び液晶表示素子
JP7000164B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP5751908B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6802147B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP5340500B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5965730B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6046533B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2013140250A (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP4977166B2 (ja) 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料、及び、液晶表示素子
JP5647505B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2012093582A (ja) 液晶滴下工法用シール剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554307

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847670

Country of ref document: EP

Kind code of ref document: A1