WO2011155486A1 - 微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法 - Google Patents

微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法 Download PDF

Info

Publication number
WO2011155486A1
WO2011155486A1 PCT/JP2011/063037 JP2011063037W WO2011155486A1 WO 2011155486 A1 WO2011155486 A1 WO 2011155486A1 JP 2011063037 W JP2011063037 W JP 2011063037W WO 2011155486 A1 WO2011155486 A1 WO 2011155486A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite particles
group
graphite
aromatic vinyl
fine
Prior art date
Application number
PCT/JP2011/063037
Other languages
English (en)
French (fr)
Inventor
田中 洋充
加藤 誠
渡辺 修
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to US13/702,548 priority Critical patent/US9096736B2/en
Priority to CN201180028215.9A priority patent/CN102933492B/zh
Publication of WO2011155486A1 publication Critical patent/WO2011155486A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to fine graphite particles, a graphite particle dispersion containing the particles, and methods for producing them.
  • Graphite particles have various excellent characteristics such as heat resistance, chemical resistance, mechanical strength, thermal conductivity, electrical conductivity, lubricity, and light weight. Graphite particles are dispersed in a resin to impart these characteristics to a resin molded product. However, since the graphite particles are easily aggregated and have a low affinity with the resin or the solvent, they are dispersed in the resin or the solvent in an aggregated state. When the graphite particles in such an aggregated state are dispersed in a resin or a solvent, the above characteristics tend not to be sufficiently exhibited.
  • Patent Document 1 discloses a method of preparing fine graphite by dry pulverizing graphite powder using a vibration mill. In such mechanical treatment, although the graphite particles are refined, the graphite structure is also destroyed, so that there is a problem that the conductivity, thermal conductivity, and mechanical strength of the obtained refined graphite particles are reduced. .
  • Patent Document 2 discloses a method of preparing graphite oxide particles having a thin film shape by oxidizing graphite.
  • Patent Document 3 discloses a method of ionizing a cation and a cationic organic compound on the surface of graphite oxide obtained by subjecting graphite to an oxidation treatment to organicize graphite. Is disclosed. According to these methods, it is possible to obtain graphite oxide particles that can be highly dispersed in a resin or solvent, and by dispersing such graphite oxide particles in the resin, the characteristics of graphite in the resin or the like can be obtained. Can be given.
  • the present invention has been made in view of the above-described problems of the prior art, and can be highly dispersed in a solvent or a resin, and has superior characteristics compared to graphite particles refined by oxidation.
  • An object of the present invention is to provide fine graphite particles and a method for producing the same.
  • the present inventors have mixed graphite particles, a specific aromatic vinyl copolymer, and a hydrogen peroxide to perform a pulverization treatment, so that a solvent or a resin can be obtained. It is found that finely divided graphite particles can be obtained that can be highly dispersed in the composition, have excellent dispersion stability, and further exhibit superior conductivity compared to graphite particles refined by oxidation.
  • the present invention has been completed. Further, by introducing at least one hydrocarbon chain of an alkyl chain, an oligoolefin chain, and a polyolefin chain into the aromatic vinyl copolymer, the dispersion stability of the fine graphite particles in a hydrophobic solvent is further increased. As a result, the present invention has been completed.
  • the refined graphite particles of the present invention are plate graphite particles and the following formula (1) adsorbed on the plate graphite particles: — (CH 2 —CHX) — (1)
  • X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.
  • the graphite particle dispersion of the present invention contains a solvent and the fine graphite particles of the present invention dispersed in the solvent.
  • the aromatic vinyl copolymer includes the vinyl aromatic monomer unit, (meth) acrylic acid, (meth) acrylates, (meth) acrylamides, Those having other monomer units derived from at least one monomer selected from the group consisting of vinylpyridines, maleic anhydride and maleimides are preferred.
  • the aromatic vinyl copolymer is preferably a block copolymer.
  • the plate-like graphite particles preferably have a thickness of 0.3 to 1000 nm. Further, at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, and an epoxy group is bonded to 50% or less of carbon atoms in the vicinity of the surface of the plate-like graphite particles. preferable.
  • the fine graphite particles of the present invention further include at least one hydrocarbon chain selected from the group consisting of an alkyl chain, an oligoolefin chain, and a polyolefin chain, which is bonded to the aromatic vinyl copolymer. Also good.
  • the aromatic vinyl copolymer has a functional group
  • the hydrocarbon chain has a site that reacts with the functional group of the aromatic vinyl copolymer. It is preferable that at least one selected from a compound, an oligoolefin, and a polyolefin is formed by bonding to the functional group.
  • the functional group is preferably an amino group
  • the site that reacts with the functional group is preferably at least one selected from the group consisting of a chlorine atom, a carboxyl group, and a carboxylic anhydride group.
  • the refined graphite particles include at least one hydrocarbon chain selected from the group consisting of an alkyl chain, an oligoolefin chain, and a polyolefin chain. It is preferable that the aromatic vinyl copolymer bonded with is adsorbed on the plate-like graphite particles.
  • the method for producing fine graphite particles of the present invention comprises graphite particles, the following formula (1): — (CH 2 —CHX) — (1)
  • X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.
  • the hydrogen peroxide is preferably a complex of a compound having a carbonyl group and hydrogen peroxide.
  • the pulverization treatment is preferably ultrasonic treatment or wet pulverization treatment.
  • the method for producing fine graphite particles of the present invention includes at least one selected from alkyl compounds, oligoolefins, and polyolefins having fine graphite particles obtained in the pulverization step and a site that reacts with the functional group. And at least one selected from the alkyl compounds, oligoolefins, and polyolefins, and is selected from the group consisting of alkyl chains, oligoolefin chains, and polyolefin chains.
  • a hydrocarbon chain introduction step for introducing at least one of the above may be further included.
  • the aromatic vinyl copolymer preferably has a functional group.
  • the functional group is preferably an amino group
  • the site that reacts with the functional group is preferably at least one selected from the group consisting of a chlorine atom, a carboxyl group, and a carboxylic anhydride group.
  • the reason why the fine graphite particles of the present invention are excellent in dispersion stability is not necessarily clear, but the present inventors speculate as follows. That is, the graphite particles originally have a small interaction with the solvent and the resin and are likely to aggregate, so that it was difficult to highly disperse in the solvent or the resin.
  • the refined graphite particles of the present invention since the aromatic vinyl copolymer is adsorbed on the refined plate-like graphite particles, the cohesive force between the plate-like graphite particles is reduced, and in the solvent It is presumed that the dispersibility in the resin is improved. Furthermore, since the adsorptivity of the aromatic vinyl copolymer is stable, it is presumed that the dispersion stability of the fine graphite particles is also improved.
  • the dispersion stability of the fine graphite particles in a hydrophobic solvent is stabilized.
  • the present inventors speculate as follows. That is, at least one of an alkyl compound, an oligoolefin, and a polyolefin is bonded to the aromatic vinyl copolymer adsorbed on the plate-like graphite particles to at least one of an alkyl chain, an oligoolefin chain, and a polyolefin chain.
  • the present inventors infer as follows. That is, in the refined graphite particles of the present invention, since the graphite structure is maintained, it is assumed that the original characteristics of graphite are expressed as they are. On the other hand, when the graphite particles are refined by oxidation, the graphite particles can be sufficiently refined by oxidizing not only the surface of the graphite particles but also the inside. However, when the graphite particles are oxidized to the inside, there is a tendency that a part of the graphite structure is destroyed as the particles become finer.
  • the present invention can be highly dispersed in a solvent or a resin, has excellent dispersion stability, and exhibits excellent conductivity compared to graphite particles refined by oxidation. It becomes possible to obtain fine graphite particles and a graphite particle dispersion containing the same.
  • finer graphite particles with at least one hydrocarbon chain of an alkyl chain, an oligoolefin chain and a polyolefin chain bonded to an aromatic vinyl copolymer further improve dispersion stability in a hydrophobic solvent. It becomes possible to make it.
  • (A) to (C) are photographs showing the dispersion state of graphite particles in the graphite particle dispersions obtained in Example 1, Comparative Example 2 and Comparative Example 6, respectively.
  • 4 is an optical micrograph of the graphite particle dispersion obtained in Example 4.
  • 6 is an optical micrograph of the graphite particle dispersion obtained in Example 5.
  • 6 is an optical micrograph of the graphite particle dispersion obtained in Example 6.
  • 6 is an optical micrograph of the graphite particle dispersion obtained in Comparative Example 5.
  • 6 is an optical micrograph of the graphite particle dispersion obtained in Comparative Example 6.
  • 6 is an optical micrograph of the graphite particle dispersion obtained in Comparative Example 7.
  • 6 is an optical micrograph of a graphite particle dispersion obtained in Comparative Example 8.
  • FIG. 4 is a scanning electron micrograph of the graphite particle dispersion obtained in Example 4.
  • FIG. 4 is a scanning electron micrograph of fine graphite particles collected from the graphite particle dispersion obtained in Example 5.
  • FIG. 4 is a scanning electron micrograph of fine graphite particles collected from the graphite particle dispersion obtained in Example 6.
  • FIG. 2 is a scanning electron micrograph of graphite particles used as a raw material. It is a graph which shows the relationship between content of a styrene monomer unit, and the light absorbency of the graphite particle dispersion liquid after standing for 24 hours. It is a graph which shows the light absorbency of the graphite particle dispersion liquid after leaving still for 24 hours when various aromatic vinyl copolymers are mixed.
  • FIG. 3 is a graph showing a Raman spectrum of the fine graphite particles obtained in Example 1.
  • FIG. It is a scanning probe microscope picture which shows the surface shape of the graphite particle coating film formed by casting the graphite particle dispersion liquid obtained in Example 1 on the mica substrate. It is a graph which shows the cross-sectional shape of the part shown with the straight line in FIG. 12A.
  • the refined graphite particles of the present invention comprise plate-like graphite particles and an aromatic vinyl copolymer adsorbed on the plate-like graphite particles.
  • the fine graphite particles of the present invention may further comprise at least one hydrocarbon chain of an alkyl chain, an oligoolefin chain and a polyolefin chain bonded to the aromatic vinyl copolymer.
  • the plate-like graphite particles constituting the fine graphite particles of the present invention are not particularly limited.
  • known graphite having a graphite structure artificial graphite, natural graphite (eg, flake graphite, massive graphite, earthy graphite) ) Is obtained so that the graphite structure is not destroyed.
  • the thickness of such plate-like graphite particles is not particularly limited, but is preferably 0.3 to 1000 nm, more preferably 0.3 to 100 nm, and particularly preferably 1 to 100 nm.
  • the size of the plate-like graphite particles in the planar direction is not particularly limited.
  • the length (major axis) in the major axis direction is preferably 0.1 to 500 ⁇ m, more preferably 1 to 500 ⁇ m, and the minor axis.
  • the length (minor axis) in the direction is preferably 0.1 to 500 ⁇ m, more preferably 0.3 to 100 ⁇ m.
  • a functional group such as a hydroxyl group, a carboxyl group, or an epoxy group is bonded (more preferably a covalent bond) to the surface of the plate-like graphite particles according to the present invention.
  • the functional group has an affinity with the aromatic vinyl copolymer according to the present invention, and the adsorption amount of the aromatic vinyl copolymer to the plate-like graphite particles is increased, so that the fine graphite particles of the present invention Tends to be highly dispersible in solvents and resins.
  • Such a functional group is 50% or less (more preferably 20% or less, particularly preferably 10% or less) of the total carbon atoms in the vicinity of the surface of the plate-like graphite particles (preferably, a region from the surface to a depth of 10 nm). It is preferable that it is bonded to the carbon atom.
  • the ratio of the carbon atom to which the functional group is bonded exceeds the upper limit, the plate-like graphite particles tend to have a low affinity with the aromatic vinyl copolymer because the hydrophilicity increases.
  • bonded However 0.01% or more is preferable.
  • the functional group such as a hydroxyl group can be quantified by X-ray photoelectron spectroscopy (XPS), and the amount of the functional group present in a region from the particle surface to a depth of 10 nm can be measured.
  • XPS X-ray photoelectron spectroscopy
  • the thickness of the plate-like graphite particles is 10 nm or less, the amount of functional groups present in the entire region of the plate-like graphite particles is measured.
  • the aromatic vinyl copolymer constituting the fine graphite particles of the present invention has the following formula (1): — (CH 2 —CHX) — (1)
  • X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.
  • the vinyl aromatic monomer unit represented by these and other monomer units are contained.
  • the vinyl aromatic monomer unit exhibits an adsorptivity to graphite particles, and the other monomer units exhibit an affinity with a solvent, a resin, and a functional group near the surface of the graphite particles. Therefore, such an aromatic vinyl copolymer is adsorbed on the plate-like graphite particles to reduce the cohesive force between the plate-like graphite particles and gives the plate-like graphite particles affinity with a solvent or a resin. It becomes possible to highly disperse the graphite particles in a solvent or resin.
  • the vinyl aromatic monomer unit is easily adsorbed on the graphite particles, the higher the vinyl aromatic monomer unit content, the more the amount of adsorption to the plate-like graphite particles, and the present invention.
  • the fine graphite particles tend to be highly dispersible in a solvent or resin.
  • the content of the vinyl aromatic monomer unit is preferably 10 to 98% by mass, more preferably 30 to 98% by mass, and particularly preferably 50 to 95% by mass with respect to the entire aromatic vinyl copolymer.
  • the content of the vinyl aromatic monomer unit is less than the lower limit, the amount of adsorption of the aromatic vinyl copolymer to the plate-like graphite particles tends to decrease, and the dispersibility of the fine graphite particles tends to decrease.
  • the content of the vinyl aromatic monomer unit exceeds the upper limit, the plate-like graphite particles are not given affinity with a solvent or a resin, and the dispersibility of the fine graphite particles tends to be lowered.
  • Examples of the substituent that the group represented by X in the formula (1) may have include an amino group, a carboxyl group, a carboxylic ester group, a hydroxyl group, an amide group, an imino group, a glycidyl group, an alkoxy group ( For example, a methoxy group), a carbonyl group, an imide group, a phosphate ester group, and the like are mentioned. Among them, an alkoxy group such as a methoxy group is preferable and a methoxy group is more preferable from the viewpoint of improving the dispersibility of the fine graphite particles. preferable.
  • vinyl aromatic monomer units examples include styrene monomer units, vinyl naphthalene monomer units, vinyl anthracene monomer units, vinyl pyrene monomer units, vinyl anisole monomer units, vinyl benzoate ester monomer units, and acetyl styrene monomer units.
  • styrene monomer units vinyl naphthalene monomer units, vinyl anthracene monomer units, vinyl pyrene monomer units, vinyl anisole monomer units, vinyl benzoate ester monomer units, and acetyl styrene monomer units.
  • a styrene monomer unit, a vinyl naphthalene monomer unit, and a vinyl anisole monomer unit are preferable.
  • Examples of the (meth) acrylates include alkyl (meth) acrylate, substituted alkyl (meth) acrylate (for example, hydroxyalkyl (meth) acrylate, aminoalkyl (meth) acrylate) and the like.
  • Examples of the (meth) acrylamides include (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide and the like.
  • Examples of the vinyl imidazoles include 1-vinyl imidazole.
  • Examples of the vinyl pyridines include 2-vinyl pyridine and 4-vinyl pyridine.
  • Examples of the maleimides include maleimide, alkyl maleimide, aryl maleimide and the like.
  • the number average molecular weight of the aromatic vinyl copolymer is not particularly limited, but is preferably 1,000 to 1,000,000, and more preferably 5,000 to 100,000. If the number average molecular weight of the aromatic vinyl copolymer is less than the lower limit, the adsorptive capacity to graphite particles tends to be reduced. On the other hand, if the upper limit is exceeded, the solubility in a solvent is reduced or the viscosity is remarkably increased. It tends to rise and become difficult to handle.
  • the number average molecular weight of the aromatic vinyl copolymer was measured by gel permeation chromatography (column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK), eluent: chloroform). It is a value converted with standard polystyrene.
  • a random copolymer or a block copolymer may be used as the aromatic vinyl copolymer, but the dispersibility of the fine graphite particles is improved. From this point of view, it is preferable to use a block copolymer.
  • the content of the aromatic vinyl copolymer preferably from 10 -7 to 10 -1 parts by weight with respect to the plate-like graphite particles 100 parts by weight, 10 -5 to 10 -2 parts by mass is more preferred.
  • the content of the aromatic vinyl copolymer is less than the lower limit, because the adsorption of the aromatic vinyl copolymer to the plate-like graphite particles is insufficient, the dispersibility of the fine graphite particles tends to decrease.
  • the upper limit is exceeded, there is a tendency that an aromatic vinyl copolymer that is not directly adsorbed on the plate-like graphite particles exists.
  • the fine graphite particles of the present invention may further comprise at least one hydrocarbon chain of an alkyl chain, an oligoolefin chain and a polyolefin chain bonded to the aromatic vinyl copolymer.
  • Such fine graphite particles are alkylated on the surface by the hydrocarbon chains and tend to exhibit excellent dispersion stability with respect to hydrophobic solvents.
  • such an alkyl chain, oligoolefin chain and polyolefin chain are preferably bonded to a side chain of the aromatic vinyl copolymer. This tends to further improve the affinity of the fine graphite particles for the hydrophobic solvent.
  • the alkyl chain, oligoolefin chain, and polyolefin chain include an aromatic vinyl copolymer having a functional group and a site that reacts with the functional group (hereinafter referred to as “reactive site”). Formed by the reaction of the alkyl compound, the oligoolefin, and the polyolefin with the reactive site of the alkyl compound, the oligoolefin, and the polyolefin, and the functional group of the aromatic vinyl copolymer. It is preferable that
  • Examples of the functional group include an amino group, a carboxyl group, a carboxylic acid ester group, a hydroxyl group, an amide group, an imino group, and a glycidyl group, and an amino group is preferable from the viewpoint of high reactivity with the reactive site.
  • Examples of the reactive site include a halogen atom (such as a chlorine atom, a bromine atom, and an iodine atom), a carboxyl group, a carboxylic acid anhydride group (such as a maleic anhydride group), a sulfonic acid group, an aldehyde group, and a glycidyl group.
  • a halogen atom, a carboxyl group, and a carboxylic anhydride group are preferable, a halogen atom is more preferable, and a chlorine atom is further preferable.
  • the combination of the functional group and the reactive site is preferably a combination of an amino group and a halogen atom, or a combination of an amino group and a carboxyl group or a carboxylic acid anhydride group from the viewpoint of increasing the reactivity of each other.
  • a combination of an amino group and a chlorine atom, a combination of an amino group and a maleic anhydride group is more preferable, and a combination of an amino group and a chlorine atom is particularly preferable.
  • the aromatic vinyl copolymer having the functional group examples include those having a functional group in at least one of the vinyl aromatic monomer unit and the other monomer unit, and the adsorptivity to the plate-like graphite particles is not impaired.
  • the other monomer unit is preferably another monomer unit having a functional group, and from the viewpoint that an alkyl chain, an oligoolefin chain and a polyolefin chain can be easily introduced, the other monomer unit is a functional group. More preferred are other vinyl monomer units having
  • the other vinyl monomer unit having the functional group is not particularly limited, but is selected from the group consisting of (meth) acrylic acid, (meth) acrylates, (meth) acrylamides, vinylimidazoles and vinylpyridines.
  • a functional group-containing vinyl monomer unit derived from a vinyl monomer having at least one functional group is preferred.
  • an aromatic vinyl copolymer containing other vinyl monomer units having such a functional group an alkyl chain, an oligoolefin chain, and a polyolefin chain can be easily introduced into the aromatic vinyl copolymer. Further, the obtained fine graphite particles have improved affinity with the solvent and the resin, and can be highly dispersed in the solvent and the resin.
  • Examples of the other vinyl monomer having an amino group include aminoalkyl (meth) acrylates, vinyl pyridines (for example, 2-vinyl pyridine, 4-vinyl pyridine), vinyl imidazoles (for example, 1-vinyl imidazole), and the like. It is done.
  • Examples of the other vinyl monomer having a carboxyl group include (meth) acrylic acid.
  • alkyl (meth) acrylate as the other vinyl monomer having the hydroxyl group, hydroxyalkyl (meth) acrylate, as the other vinyl monomer having the amide group, (Meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide and the like can be mentioned.
  • vinyl monomers having such a functional group from the viewpoint that an alkyl chain, an oligoolefin chain and a polyolefin chain can be easily introduced into an aromatic vinyl copolymer, hydroxyalkyl (meth) acrylate, Aminoalkyl (meth) acrylate, N, N-dialkyl (meth) acrylamide, 2-vinylpyridine and 4-vinylpyridine are preferred, aminoalkyl (meth) acrylate, 2-vinylpyridine and 4-vinylpyridine are more preferred. -Vinylpyridine is particularly preferred.
  • the alkyl compound, oligoolefin and polyolefin having a reactive site to be bonded to the aromatic vinyl copolymer having such a functional group are not particularly limited, but the alkyl compound and oligo having the functional group at the molecular end are not limited.
  • Olefin and polyolefin hereinafter referred to as “terminal functional group-containing alkyl compound”, “terminal functional group-containing oligoolefin” and “terminal functional group-containing polyolefin”, respectively) are preferred.
  • Such a terminal functional group-containing alkyl compound, a terminal functional group-containing oligoolefin, and a terminal functional group-containing polyolefin easily react with the aromatic vinyl copolymer having the functional group, and the aromatic vinyl copolymer can be easily alkylated. Chains, oligoolefin chains and polyolefin chains can be introduced.
  • alkyl compounds oligoolefins and polyolefins having a reactive site, specifically, chlorinated products, brominated products, hydroxyl group-containing products, maleic acid modified products, (meth) acrylic acid modified products of alkyl compounds, oligoolefins and polyolefins Among them, terminal chlorinated products and terminal hydroxyl group-containing products are preferable, and terminal chlorinated products are more preferable.
  • oligoolefin and polyolefin There are no particular restrictions on the type of oligoolefin and polyolefin, but from the viewpoint of easy introduction of oligoolefin chains and polyolefin chains, ethylene oligomers, polyethylene, propylene oligomers, polypropylene, and ethylene-propylene copolymers (oligomers and polymers) are used. preferable.
  • the number average molecular weight of the polyolefin having such a reactive site is not particularly limited, but is preferably 1 to 1,000,000, more preferably 1,000 to 10,000.
  • the introduced polyolefin chain is short, and the affinity of the refined graphite particles to the hydrophobic solvent tends not to be sufficiently improved. It is difficult to bond to an aromatic vinyl copolymer, and it is difficult to introduce a polyolefin chain.
  • the molecular weight of the alkyl compound having the reactive site is not particularly limited, but is preferably 70 to 500, and the number average molecular weight of the oligoolefin having the reactive site is not particularly limited. ⁇ 5000 is preferred.
  • the graphite particle dispersion of the present invention is such that such fine graphite particles are highly dispersed in a solvent.
  • the solvent used in the graphite particle dispersion of the present invention is not particularly limited, but dimethylformamide (DMF), chloroform, dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), hexane, toluene, dioxane, propanol, ⁇ -picoline, acetonitrile, dimethyl sulfoxide (DMSO), and dimethylacetamide (DMAC) are preferable, and dimethylformamide (DMF), chloroform, dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), hexane, and toluene are more preferable.
  • the fine graphite particles when the solvent is a hydrophobic solvent, the fine graphite particles have the alkyl chain, oligoolefin chain, and polyolefin chain from the viewpoint of further improving the dispersion stability.
  • said hydrophobic solvent Hexane, toluene, chloroform, a dichloromethane etc. are mentioned,
  • toluene is preferable from a viewpoint that the refined graphite particle
  • the concentration of the fine graphite particles is preferably from 0.1 to 200 g / L, more preferably from 1 to 100 g / L, per liter of the solvent.
  • concentration of the fine graphite particles is less than the lower limit, the consumption of the solvent tends to increase, which tends to be economically disadvantageous.
  • the upper limit is exceeded, the viscosity of the dispersion liquid is increased due to contact between the fine graphite particles. Tends to increase and fluidity to decrease.
  • the method for producing fine graphite particles of the present invention comprises mixing raw material graphite particles, an aromatic vinyl copolymer containing a vinyl aromatic monomer unit represented by the formula (1), a hydrogen peroxide, and a solvent. Then, the obtained mixture is pulverized, and if necessary, the aromatic vinyl copolymer in the obtained fine graphite particles is added to at least one of an alkyl chain, an oligoolefin chain and a polyolefin chain. This is a method of further introducing a hydrocarbon chain. Further, according to this method, the fine graphite particles of the present invention can be obtained in a state dispersed in a solvent, that is, as the graphite particle dispersion of the present invention.
  • raw graphite particles As the graphite particles used as raw materials in the method for producing the refined graphite particles and graphite particle dispersion of the present invention (hereinafter referred to as “raw graphite particles”), known graphite having artificial graphite structure (artificial graphite, natural graphite (for example, , Scaly graphite, lump graphite, earthy graphite)), and among them, what becomes plate-like graphite particles having a thickness in the above range by pulverization is preferable.
  • the particle diameter of such raw material graphite particles is not particularly limited, but is preferably 0.01 to 5 mm, and more preferably 0.1 to 1 mm.
  • ком ⁇ онентs such as a hydroxyl group, a carboxyl group, and an epoxy group are bonded (preferably covalently bonded) to the surface of the plate-like graphite particles constituting the raw graphite particles.
  • the functional group has an affinity for the aromatic vinyl copolymer, the amount of adsorption of the aromatic vinyl copolymer to the plate-like graphite particles is increased, and the resulting fine graphite particles are in a solvent or The dispersibility in the resin tends to increase.
  • Such a functional group is 50% or less (more preferably 20% or less, particularly preferably 10% or less) of the total carbon atoms in the vicinity of the surface of the plate-like graphite particles (preferably, a region from the surface to a depth of 10 nm). It is preferable that it is bonded to the carbon atom.
  • the ratio of the carbon atom to which the functional group is bonded exceeds the upper limit, the plate-like graphite particles tend to have a low affinity with the aromatic vinyl copolymer because the hydrophilicity increases.
  • bonded However 0.01% or more is preferable.
  • the hydrogen peroxide a compound having a carbonyl group (for example, urea, carboxylic acid (benzoic acid, salicylic acid, etc.), ketone (acetone, methyl ethyl ketone, etc.), carboxylic acid ester (methyl benzoate, ethyl salicylate, etc.))
  • a complex of hydrogen peroxide with quaternary ammonium salts potassium fluoride, rubidium carbonate, phosphoric acid, uric acid, and the like.
  • Such a hydrogen peroxide acts as an oxidizing agent in the method for producing fine graphite particles and graphite particle dispersion of the present invention, and can easily exfoliate between carbon layers without destroying the graphite structure of the raw graphite particles.
  • hydrogen peroxide enters between the carbon layers to oxidize the surface of the layer, and proceeds with cleavage.
  • the aromatic vinyl copolymer penetrates into the cleaved carbon layer and stabilizes the cleavage surface. Promoted.
  • the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles, and the fine graphite particles can be highly dispersed in a solvent or a resin.
  • the solvent used in the method for producing fine graphite particles and graphite particle dispersion of the present invention is not particularly limited, and those exemplified as the solvent used in the graphite particle dispersion of the present invention can be used.
  • the raw graphite particles, the aromatic vinyl copolymer, the hydrogen peroxide and the solvent are mixed (mixing step).
  • the mixing amount of the raw graphite particles is preferably 0.1 to 500 g / L per liter of solvent, and more preferably 10 to 200 g / L.
  • the mixing amount of the raw material graphite particles is less than the lower limit, the consumption of the solvent tends to increase, which tends to be economically disadvantageous.
  • the upper limit is exceeded, the viscosity of the liquid increases and handling becomes difficult. There is a tendency.
  • the mixing amount of the aromatic vinyl copolymer is preferably 0.1 to 1000 parts by mass, more preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the raw graphite particles.
  • the mixing amount of the aromatic vinyl copolymer is less than the lower limit, the dispersibility of the resulting fine graphite particles tends to be reduced.
  • the upper limit is exceeded, the aromatic vinyl copolymer is dissolved in the solvent. In addition, the viscosity of the liquid increases and handling tends to be difficult.
  • the mixing amount of the hydrogen peroxide is preferably 0.1 to 500 parts by mass, and more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the raw graphite particles.
  • the mixing amount of the hydrogen peroxide is less than the lower limit, the dispersibility of the obtained fine graphite particles tends to be lowered.
  • the upper limit is exceeded, the raw graphite particles are excessively oxidized and obtained. There is a tendency for the conductivity of the fine graphite particles to decrease.
  • the mixture obtained in the mixing step is pulverized to pulverize the raw graphite particles into plate-like graphite particles (pulverization step).
  • the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles produced thereby, and a graphite particle dispersion containing fine graphite particles excellent in dispersion stability in a solvent or resin is obtained. Can do.
  • Examples of the pulverization treatment according to the present invention include ultrasonic treatment (oscillation frequency is preferably 15 to 400 kHz, output is preferably 500 W or less), treatment with a ball mill, wet pulverization, explosion, mechanical pulverization, and the like. This makes it possible to obtain plate-like graphite particles by pulverizing the raw graphite particles without destroying the graphite structure of the raw graphite particles.
  • the temperature during the pulverization treatment is not particularly limited, and examples thereof include ⁇ 20 to 100 ° C.
  • the pulverization time is not particularly limited, and examples thereof include 0.01 to 50 hours.
  • the fine graphite particles obtained in the pulverization step, and the alkyl compound and oligoolefin having the reactive site if necessary, the fine graphite particles obtained in the pulverization step, and the alkyl compound and oligoolefin having the reactive site.
  • at least one of polyolefins are mixed, and at least one hydrocarbon chain of an alkyl chain, an oligoolefin chain and a polyolefin chain is introduced into the aromatic vinyl copolymer in the fine graphite particles ( Hydrocarbon chain introduction step).
  • the aromatic vinyl copolymer needs to have a functional group, and the functional group and the reactive site are bonded to the aromatic vinyl copolymer to form an alkyl chain, an oligoolefin chain.
  • at least one hydrocarbon chain of the polyolefin chains is introduced.
  • the refined graphite particles obtained in the pulverization step at least one of alkyl compounds, oligoolefins and polyolefins having the reactive site, and a solvent are mixed,
  • the aromatic vinyl copolymer having a functional group is reacted with at least one of an alkyl compound, an oligoolefin, and a polyolefin having a reactive site by heating the obtained mixture as necessary.
  • a solvent What was illustrated as a solvent used for the graphite particle dispersion liquid of this invention can be used.
  • the reaction temperature is preferably ⁇ 10 to 150 ° C., and the reaction time is preferably 0.1 to 10 hours.
  • the amount of the fine graphite particles mixed is preferably 1 to 200 g / L per liter of solvent, more preferably 1 to 50 g / L.
  • the mixing amount of the fine graphite particles is less than the lower limit, the consumption of the solvent tends to increase, which tends to be economically disadvantageous.
  • the upper limit is exceeded, the viscosity of the liquid increases and handling is difficult. Tend to be.
  • the mixing amount of the alkyl compound, oligoolefin and polyolefin having the reactive site is preferably 0.001 to 500 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the fine graphite particles. preferable.
  • the mixing amount of the alkyl compound, oligoolefin and polyolefin is less than the lower limit, the introduction amount of the alkyl chain, oligoolefin chain and polyolefin chain is small, and the dispersibility of the fine graphite particles in the hydrophobic solvent does not sufficiently improve
  • the above upper limit is exceeded, the viscosity of the liquid tends to increase and handling tends to be difficult.
  • the fine graphite particles of the present invention thus obtained may be used as they are in the state of a dispersion (the state of the graphite particle dispersion of the present invention), or the obtained graphite particle dispersion may be filtered. It may be used after removing the solvent by centrifugation or the like. Furthermore, the obtained fine graphite particles can be redispersed in a solvent and used as the graphite particle dispersion of the present invention.
  • Example 1 0.67 g of styrene (ST), 1.23 g of N, N-dimethylmethacrylamide (DMMAA), 10 mg of azobisisobutyronitrile and 5 ml of toluene were mixed, and a polymerization reaction was performed at 60 ° C. for 6 hours in a nitrogen atmosphere. . After allowing to cool, the mixture was purified by reprecipitation using chloroform-ether to obtain 1.0 g of ST-DMMAA (35:65) random copolymer. The number average molecular weight (Mn) of this ST-DMMAA (35:65) random copolymer was 78000.
  • Mn number average molecular weight
  • ST styrene
  • DMMAA N-dimethylmethacrylamide
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this VN-DMMAA (30:70) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this VA-DMMAA (30:70) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • FIG. 3A to 3C show SEM photographs of graphite particles collected from the graphite particle dispersions obtained in Examples 4 to 6, respectively.
  • FIG. 3D shows an SEM photograph of graphite particles as a raw material.
  • Example 7 0.82 g of ST-DMMAA (91: 9) in the same manner as in Example 1 except that the amount of styrene (ST) was changed to 1.82 g and the amount of N, N-dimethylmethacrylamide (DMMAA) was changed to 0.18 g. )
  • a random copolymer (Mn 58000) was obtained.
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this ST-DMMAA (91: 9) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • Example 8 0.53 g of ST-DMMAA (94: 6) in the same manner as in Example 1 except that the amount of styrene (ST) was changed to 1.88 g and the amount of N, N-dimethylmethacrylamide (DMMAA) was changed to 0.12 g. )
  • a random copolymer (Mn 70000) was obtained.
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this ST-DMMAA (94: 6) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • Example 9 0.77 g of ST in the same manner as in Example 1 except that 0.66 g of N-phenylmaleimide (PM) was used instead of N, N-dimethylmethacrylamide and the amount of styrene (ST) was changed to 1.34 g.
  • PM N-phenylmaleimide
  • ST styrene
  • a PM (67:33) random copolymer (Mn 62000) was obtained.
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this ST-PM (67:33) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • the graphite particle dispersions obtained in Examples 2 to 4 and Examples 7 to 12 were allowed to stand for 24 hours, and then diluted by adding 4 ml of DMF to 100 ⁇ l of this dispersion to obtain an optical path length of 1 cm. Absorbance at a wavelength of 500 nm was measured using a cell. The result is shown in FIG.
  • a graphite particle dispersion was obtained in the same manner as in Example 11 except that 20 mg of this ST-DMAEMA (91: 9) random copolymer was used instead of the ST-PM (91: 9) random copolymer. .
  • Example 19 A graphite particle dispersion was obtained in the same manner as in Example 11 except that the addition amount of ST-PM (91: 9) random copolymer was changed to 1 mg, 2 mg, 5 mg and 10 mg.
  • Example 20 A graphite particle dispersion was obtained in the same manner as in Example 11 except that the addition amount of the urea-hydrogen peroxide inclusion complex was changed to 1 mg, 2 mg, 10 mg, 20 mg, and 40 mg.
  • Example 21 instead of N, N-dimethylformamide (DMF), a graphite particle dispersion (ST-DMMAA (80) was used in the same manner as in Example 4 except that 2 ml of chloroform, chlorobenzene, dichlorobenzene or N-methylpyrrolidone (NMP) was mixed. 20) random copolymer addition) was obtained.
  • DMF N-dimethylformamide
  • NMP N-methylpyrrolidone
  • Example 22 A graphite particle dispersion (as in Example 11) except that 2 ml of dichloromethane, toluene, dioxane, propanol, ⁇ -picoline, acetonitrile or dimethyl sulfoxide (DMSO) was mixed instead of N, N-dimethylformamide (DMF). ST-PM (91: 9) random copolymer addition) was obtained.
  • ST-2VP 48K / 46K
  • ST-2VP styrene-2-vinylpyridine block copolymer
  • ST-2VP styrene-2-vinylpyridine block copolymer
  • ST-PEO (40K / 42K) block copolymer styrene-polyethylene oxide block copolymer
  • the atomic ratio of carbon to oxygen existing on the surface of the graphite particles is about 2 for oxygen atoms with respect to 100 carbon atoms in the raw graphite particles.
  • oxygen atoms are about 3 with respect to 100 carbon atoms, and hydroxyl group is formed on the surface of the graphite particles by the treatment with the hydrogen peroxide. It was found that was introduced.
  • the refined graphite particles (Example 11) treated with the urea-hydrogen peroxide inclusion complex in the presence of the aromatic vinyl copolymer according to the present invention about 1 oxygen atom per 100 carbon atoms. Declined. From this, it was confirmed that the aromatic vinyl copolymer according to the present invention was adsorbed and coated on the hydroxyl group on the surface of the plate-like graphite particles.
  • the aromatic vinyl copolymer according to the present invention adsorbs on the plate-like graphite particles and coats the surface, whereby the graphite particles are made finer and can be highly dispersed in various solvents. It is inferred that
  • the surface-oxidized graphite material was treated with a cationic organic compound to prepare an organized graphite material, which was dispersed in chloroform.
  • an organic graphite film was prepared in the same manner as described above.
  • the surface of the organic graphite film was treated with hydrazine as necessary, and then heat-treated at a predetermined temperature.
  • the electrical resistance of the coating surface was measured in the same manner as described above. It was measured.
  • FIG. 9 shows the relationship between the heat treatment temperature and the electrical resistance.
  • the electrical resistance of the coating film made of the finely divided graphite particles (Example 1) of the present invention is the surface oxidized graphite material.
  • the refined graphite particles of the present invention are very excellent in conductivity. It was confirmed that there was.
  • the absorbance of the organized graphite coating film was remarkably reduced in a long wavelength region of 500 nm or more. From this, it is speculated that many defects exist in the graphite layer in the organic graphite film. On the other hand, it is thought that the coating film (Example 1) which consists of the refined
  • the surface-oxidized graphite material was treated with a cationic organic compound to prepare an organized graphite material, which was dispersed in chloroform. Using this dispersion, an organic graphite film having a thickness of 1 ⁇ m was prepared in the same manner as described above. The Raman spectrum of this organized graphite coating was measured. The result is shown in the lower part of FIG.
  • FIG. 12A shows a surface SPM image of the graphite particle coating film.
  • FIG. 12B shows a cross-sectional shape of a portion indicated by a straight line in FIG. 12A.
  • the convex part in the graph of FIG. 12B represents the plate-like graphite particles constituting the fine graphite particles, and the height thereof corresponds to the thickness of the plate-like graphite particles.
  • the thickness of the plate-like graphite particles is about 0.34 nm, which corresponds to the thickness of the single-layer graphene. That is, it was found that the refined graphite particles contained in the graphite particle dispersion obtained in Example 1 were composed of plate-like graphite particles exfoliated up to one layer of the graphite sheet.
  • a graphite particle dispersion was obtained in the same manner as in Example 1 except that 20 mg of this ST-2VP (9: 1) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. .
  • the graphite particle dispersion was allowed to stand for 24 hours and then visually observed. As a result, the graphite particles did not settle, and the obtained dispersion was excellent in dispersion stability. Further, the obtained graphite particle dispersion was filtered, the filter cake was washed with DMF, and then vacuum dried to recover fine graphite particles.
  • Terminal hydroxyl group-containing polyolefin (Idemitsu Kosan Co., Ltd. “Epol (R)”) 4.59 g, triphenylphosphine 1.1 g and carbon tetrachloride 40 ml are mixed and heated in a nitrogen atmosphere at 80 ° C. with stirring for 12 hours. The mixture was refluxed to synthesize terminal chlorinated polyolefin. After evaporating the solution after heating to reflux, the terminal chlorinated polyolefin was extracted with hexane. Then, it refine
  • purified with silica gel chromatography (hexane solvent), and obtained 1.5-g terminal chlorinated polyolefin (Mn 2000 (catalog value)).
  • DMAMA 2-dimethylaminoethyl methacrylate
  • the obtained graphite particle dispersion was filtered, the filter cake was washed with DMF, and then vacuum dried to recover fine graphite particles.
  • the fine graphite particles were observed with a scanning electron microscope (SEM), they were refined into a plate shape having a length of 1 to 20 ⁇ m, a width of 1 to 20 ⁇ m, and a thickness of 10 to 50 nm. confirmed.
  • a refined graphite particle treated with a terminal chlorinated polyolefin was obtained in the same manner as in Example 34 except that 10 mg of this refined graphite particle was used. 2 mg of the fine graphite particles were dispersed in 1 ml of toluene or hexane, and the state of dispersion immediately after preparation and after standing for 1 day was visually observed. The results are shown in Table 6.
  • a graphite particle dispersion was prepared in the same manner as in Example 1 except that 0.1 g of this ST-4VP (9: 1) random copolymer was used instead of the ST-DMMAA (35:65) random copolymer. Obtained. The graphite particle dispersion was allowed to stand for 24 hours and then visually observed. As a result, the graphite particles did not settle, and the obtained dispersion was excellent in dispersion stability.
  • the obtained graphite particle dispersion was filtered, the filter cake was washed with DMF, and then vacuum dried to recover fine graphite particles.
  • the fine graphite particles were observed with a scanning electron microscope (SEM), they were refined into a plate shape having a length of 1 to 20 ⁇ m, a width of 1 to 20 ⁇ m, and a thickness of 10 to 50 nm. confirmed.
  • a refined graphite particle treated with a terminal chlorinated polyolefin was obtained in the same manner as in Example 34 except that 10 mg of this refined graphite particle was used. 2 mg of the fine graphite particles were dispersed in 1 ml of toluene or hexane, and the state of dispersion immediately after preparation and after standing for 1 day was visually observed. The results are shown in Table 6.
  • Example 39 12.5 g of graphite particles (“EXP-P” manufactured by Nippon Graphite Industry Co., Ltd., particle size 100 to 600 ⁇ m), 12.5 g of urea-hydrogen peroxide inclusion complex, ST-2VP prepared in the same manner as in Example 34 (9: 1) 1.25 g of random copolymer and 500 ml of DMF are mixed and wetted 10 times under the conditions of room temperature and cylinder pressure of 200 MPa using a wet atomizer (“Starburst Lab” manufactured by Sugino Machine Co., Ltd.). A pulverization process was performed to obtain a graphite particle dispersion. The graphite particle dispersion was allowed to stand for 24 hours and then visually observed. As a result, the graphite particles did not settle, and the obtained dispersion was excellent in dispersion stability.
  • EXP-P manufactured by Nippon Graphite Industry Co., Ltd., particle size 100 to 600 ⁇ m
  • ST-2VP prepared in the same manner as in
  • the obtained graphite particle dispersion was filtered, the filter cake was washed with DMF, and then vacuum dried to recover fine graphite particles.
  • the fine graphite particles were observed with a scanning electron microscope (SEM), they were refined into a plate shape having a length of 1 to 20 ⁇ m, a width of 1 to 20 ⁇ m, and a thickness of 10 to 50 nm. confirmed.
  • a refined graphite particle treated with a terminal chlorinated polyolefin was obtained in the same manner as in Example 34 except that 10 mg of this refined graphite particle was used. 2 mg of the fine graphite particles were dispersed in 1 ml of toluene or hexane, and the state of dispersion immediately after preparation and after standing for 1 day was visually observed. The results are shown in Table 6.
  • the obtained graphite particle dispersion was filtered, the filter cake was washed with DMF, and then vacuum dried to recover fine graphite particles.
  • the fine graphite particles were observed with a scanning electron microscope (SEM), they were refined into a plate shape having a length of 1 to 20 ⁇ m, a width of 1 to 20 ⁇ m, and a thickness of 10 to 50 nm. confirmed.
  • a refined graphite particle treated with a terminal chlorinated polyolefin was obtained in the same manner as in Example 34 except that 10 mg of this refined graphite particle was used. 2 mg of the fine graphite particles were dispersed in 1 ml of toluene or hexane, and the state of dispersion immediately after preparation and after standing for 1 day was visually observed. The results are shown in Table 6.
  • terminal chlorinated polyolefins are less likely to react with DMAMA units and 4VP units, the amount of polyolefin chains introduced is reduced, and even when terminal chlorinated polyolefins are bonded, steric polar groups It is presumed that the effect of shielding was small.
  • fine graphite particles comprising an aromatic vinyl copolymer containing 2VP units were treated with chlorinated polypropylene or maleic anhydride-modified polypropylene (Examples 37 to 38), the fine graphite particles immediately after preparation were used. Was excellent in hexane dispersibility immediately after preparation, but the hexane dispersion stability was found to decrease.
  • chlorinated polypropylene or the maleic anhydride-modified polypropylene has a functional group inside the molecule, and has low reactivity with respect to 2VP units as compared with a terminal chlorinated polyolefin having a functional group at the molecular end. It is presumed that the amount of polyolefin chain introduced is decreased, the tacticity of the polypropylene portion is high, and the solubility is poor.
  • the present invention it is possible to obtain highly refined graphite particles that can be highly dispersed in a solvent or a resin and that are excellent in dispersion stability. Further, by dispersing such fine graphite particles in a solvent or resin, a dispersion excellent in dispersion stability can be easily produced. Furthermore, the refined graphite particles of the present invention retain the graphite structure and impair the original characteristics of graphite (for example, heat resistance, chemical resistance, mechanical strength, thermal conductivity, conductivity, lubricity). Therefore, it is possible to easily impart the characteristics to the resin.
  • the fine graphite particles of the present invention are useful as a filler capable of imparting heat resistance, chemical resistance, mechanical strength, thermal conductivity, conductivity, lubricity and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 板状黒鉛粒子と、該板状黒鉛粒子に吸着した、下記式(1): -(CH-CHX)- (1) (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。) で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体とを備える微細化黒鉛粒子。

Description

微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法
 本発明は、微細化黒鉛粒子、それを含有する黒鉛粒子分散液、およびこれらの製造方法に関する。
 黒鉛粒子は、耐熱性、耐薬品性、機械的強度、熱伝導性、導電性に優れ、潤滑性を有し、軽量であるなど、様々な優れた特性を有するものであり、各種分野においては黒鉛粒子を樹脂中に分散させて樹脂成形品などにこれらの特性を付与している。しかしながら、黒鉛粒子は凝集しやすく、樹脂や溶媒との親和性も低いため、樹脂中や溶媒中には凝集した状態で分散される。このように凝集した状態の黒鉛粒子を樹脂中や溶媒中に分散させると前記特性が十分に発現しない傾向があった。
 このため、従来から、樹脂中や溶媒中に黒鉛粒子を高度に分散させるために、様々な黒鉛粒子の微細化方法が提案されている。例えば、特開平2-204317号公報(特許文献1)には、黒鉛粉を振動ミルを用いて乾式粉砕して微細黒鉛を調製する方法が開示されている。このような機械的処理では、黒鉛粒子は微細化されるものの、グラファイト構造も破壊されるため、得られる微細化黒鉛粒子の導電性、熱伝導性、機械的強度が低下するという問題があった。
 特開2005-53773号公報(特許文献2)には、黒鉛を酸化して薄膜状の酸化黒鉛粒子を調製する方法が開示されている。また、特開2009-242209号公報(特許文献3)には、グラファイトに酸化処理を施して得られる表面酸化グラファイトの表面のカチオンとカチオン性有機化合物とをイオン交換してグラファイトを有機化する方法が開示されている。これらの方法によれば、樹脂中や溶媒中に高度に分散させることが可能な酸化黒鉛粒子を得ることができ、このような酸化黒鉛粒子を樹脂中に分散させることによって樹脂などに黒鉛の特性を付与することが可能となる。
 しかしながら、酸化により微細化された黒鉛粒子の特性は、原料として用いた黒鉛粒子の特性に比べて低下する傾向にあり、このような微細化黒鉛粒子には、黒鉛本来の特性を十分に発現させるという点で、未だ改良の余地があった。
特開平2-204317号公報 特開2005-53773号公報 特開2009-242209号公報
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、溶媒中や樹脂中に高度に分散させることが可能であり、酸化により微細化された黒鉛粒子に比べて優れた特性を有する微細化黒鉛粒子およびその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、黒鉛粒子、特定の芳香族ビニル共重合体、過酸化水素化物を混合して粉砕処理を施すことによって、溶媒中や樹脂中に高度に分散させることができ、しかも分散安定性に優れており、さらに、酸化により微細化された黒鉛粒子に比べて優れた導電性を示す微細化黒鉛粒子を得ることができることを見出し、本発明を完成するに至った。また、前記芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を導入することによって、疎水性溶媒に対する微細化黒鉛粒子の分散安定性がさらに向上することを見出し、本発明を完成するに至った。
 すなわち、本発明の微細化黒鉛粒子は、板状黒鉛粒子と、該板状黒鉛粒子に吸着した、下記式(1):
-(CH-CHX)-     (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体とを備えるものである。また、本発明の黒鉛粒子分散液は、溶媒と、この溶媒中に分散された本発明の微細化黒鉛粒子とを含有するものである。
 このような微細化黒鉛粒子および黒鉛粒子分散液において、前記芳香族ビニル共重合体としては、前記ビニル芳香族モノマー単位と、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルピリジン類、無水マレイン酸およびマレイミド類からなる群から選択される少なくとも1種のモノマーから誘導される他のモノマー単位とを備えるものが好ましい。また、前記芳香族ビニル共重合体はブロック共重合体であることが好ましい。
 本発明の微細化黒鉛粒子および黒鉛粒子分散液において、板状黒鉛粒子としては厚さが0.3~1000nmのものが好ましい。また、板状黒鉛粒子の表面近傍の全炭素原子の50%以下の炭素原子には、水酸基、カルボキシル基およびエポキシ基からなる群から選択される少なくとも1種の官能基が結合していることが好ましい。
 また、本発明の微細化黒鉛粒子は、前記芳香族ビニル共重合体に結合した、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖からなる群から選択される少なくとも1種の炭化水素鎖をさらに備えていてもよい。このような微細化黒鉛粒子として、前記芳香族ビニル共重合体が官能基を有するものであり、且つ、前記炭化水素鎖は、芳香族ビニル共重合体の官能基と反応する部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種が前記官能基と結合することにより形成されたものであることが好ましい。前記官能基としてはアミノ基が好ましく、前記官能基と反応する部位としては塩素原子、カルボキシル基およびカルボン酸無水物基からなる群から選択される少なくとも1種が好ましい。
 本発明の黒鉛粒子分散液において、前記溶媒が疎水性溶媒である場合、前記微細化黒鉛粒子としては、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖からなる群から選択される少なくとも1種の炭化水素鎖が結合した前記芳香族ビニル共重合体が前記板状黒鉛粒子に吸着しているものが好ましい。
 本発明の微細化黒鉛粒子の製造方法は、黒鉛粒子、下記式(1):
-(CH-CHX)-     (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体、過酸化水素化物、および溶媒を混合する混合工程と、前記混合工程で得られた混合物に粉砕処理を施す粉砕工程とを含むものである。
 前記過酸化水素化物としてはカルボニル基を有する化合物と過酸化水素との錯体が好ましい。また、前記粉砕処理としては超音波処理または湿式粉砕処理が好ましい。
 また、本発明の微細化黒鉛粒子の製造方法は、前記粉砕工程で得られた微細化黒鉛粒子と、前記官能基と反応する部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種とを混合し、前記芳香族ビニル共重合体に、前記アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種を結合させて、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖からなる群から選択される少なくとも1種を導入する炭化水素鎖導入工程をさらに含んでいてもよい。この場合、前記芳香族ビニル共重合体としては官能基を有するものが好ましい。また、前記官能基としてはアミノ基が好ましく、前記官能基と反応する部位としては塩素原子、カルボキシル基およびカルボン酸無水物基からなる群から選択される少なくとも1種が好ましい。
 なお、本発明の微細化黒鉛粒子が分散安定性に優れている理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、黒鉛粒子は、本来、溶媒や樹脂との相互作用が小さく、凝集しやすいものであるため、溶媒中や樹脂中に高度に分散させることは困難であった。一方、本発明の微細化黒鉛粒子においては、微細化された板状の黒鉛粒子に前記芳香族ビニル共重合体が吸着しているため、板状黒鉛粒子間の凝集力が低下し、溶媒中や樹脂中への分散性が向上すると推察される。さらに、芳香族ビニル共重合体の吸着性が安定しているため、微細化黒鉛粒子の分散安定性も向上すると推察される。
 また、本発明にかかる芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を導入することによって、疎水性溶媒に対する微細化黒鉛粒子の分散安定性がさらに向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、板状黒鉛粒子に吸着した芳香族ビニル共重合体に、アルキル化合物、オリゴオレフィンおよびポリオレフィンのうちの少なくとも1種を結合してアルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を導入することによって、微細化黒鉛粒子の表面がアルキル化されると推察される。表面がアルキル化された微細化黒鉛粒子は、疎水性溶媒に対する親和性が向上するため、疎水性溶媒に対する分散安定性がさらに向上すると推察される。
 また、本発明の微細化黒鉛粒子が、酸化により微細化された黒鉛粒子に比べて優れた導電性を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の微細化黒鉛粒子においては、グラファイト構造が保持されているため、黒鉛本来の特性がそのまま発現すると推察される。一方、黒鉛粒子を酸化により微細化する場合、黒鉛粒子の表面だけでなく、内部まで酸化することによって十分に微細化することが可能となる。しかしながら、黒鉛粒子を内部まで酸化すると粒子の微細化とともにグラファイト構造の一部が破壊される傾向にある。このため、酸化により微細化された黒鉛粒子においては、グラファイト構造に起因する特性、例えば、導電性、熱伝導性、機械的強度などの黒鉛本来の特性が低下すると推察される。
 本発明によれば、溶媒中や樹脂中に高度に分散させることが可能であり、しかも分散安定性に優れており、さらに、酸化により微細化された黒鉛粒子に比べて優れた導電性を示す微細化黒鉛粒子およびそれを含有する黒鉛粒子分散液を得ることが可能となる。特に、芳香族ビニル共重合体に結合した、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を備える微細化黒鉛粒子においては、疎水性溶媒に対する分散安定性をさらに向上させることが可能となる。
(A)~(C)は、それぞれ実施例1、比較例2および比較例6で得た黒鉛粒子分散液中の黒鉛粒子の分散状態を示す写真である。 実施例4で得た黒鉛粒子分散液の光学顕微鏡写真である。 実施例5で得た黒鉛粒子分散液の光学顕微鏡写真である。 実施例6で得た黒鉛粒子分散液の光学顕微鏡写真である。 比較例5で得た黒鉛粒子分散液の光学顕微鏡写真である。 比較例6で得た黒鉛粒子分散液の光学顕微鏡写真である。 比較例7で得た黒鉛粒子分散液の光学顕微鏡写真である。 比較例8で得た黒鉛粒子分散液の光学顕微鏡写真である。 実施例4で得た黒鉛粒子分散液の走査型電子顕微鏡写真である。 実施例5で得た黒鉛粒子分散液から採取した微細化黒鉛粒子の走査型電子顕微鏡写真である。 実施例6で得た黒鉛粒子分散液から採取した微細化黒鉛粒子の走査型電子顕微鏡写真である。 原料として使用した黒鉛粒子の走査型電子顕微鏡写真である。 スチレンモノマー単位の含有量と24時間静置後の黒鉛粒子分散液の吸光度との関係を示すグラフである。 各種芳香族ビニル共重合体を混合した場合における、24時間静置後の黒鉛粒子分散液の吸光度を示すグラフである。 芳香族ビニル共重合体の添加量と24時間静置後の黒鉛粒子分散液の吸光度との関係を示すグラフである。 ウレア-過酸化水素包接錯体の添加量と24時間静置後の黒鉛粒子分散液の吸光度との関係を示すグラフである。 実施例11および比較例6で得た黒鉛粒子分散液中の微細化黒鉛粒子のTOF-SIMS測定結果を示すグラフである。 従来の有機化グラファイト膜における加熱処理温度と電気抵抗との関係を示すグラフである。 実施例1で得た微細化黒鉛粒子の吸収スペクトルを示すグラフである。 実施例1で得た微細化黒鉛粒子のラマンスペクトルを示すグラフである。 実施例1で得た黒鉛粒子分散液をマイカ基板上にキャストして形成した黒鉛粒子塗膜の表面形状を示す走査型プローブ顕微鏡写真である。 図12A中の直線で示した部分の断面形状を示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明の微細化黒鉛粒子について説明する。本発明の微細化黒鉛粒子は、板状黒鉛粒子と、この板状黒鉛粒子に吸着した芳香族ビニル共重合体とを備えるものである。また、本発明の微細化黒鉛粒子は、前記芳香族ビニル共重合体に結合した、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖をさらに備えていてもよい。
 本発明の微細化黒鉛粒子を構成する板状黒鉛粒子は、特に制限されず、例えば、グラファイト構造を有する公知の黒鉛(人造黒鉛、天然黒鉛(例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛))をグラファイト構造が破壊されないように粉砕することによって得られるものである。
 このような板状黒鉛粒子の厚さとしては特に制限はないが、0.3~1000nmが好ましく、0.3~100nmがより好ましく、1~100nmが特に好ましい。また、板状黒鉛粒子の平面方向の大きさとしては特に制限はないが、例えば、長軸方向の長さ(長径)としては0.1~500μmが好ましく、1~500μmがより好ましく、短軸方向の長さ(短径)としては0.1~500μmが好ましく、0.3~100μmがより好ましい。
 また、本発明にかかる板状黒鉛粒子の表面には、水酸基、カルボキシル基、エポキシ基などの官能基が結合(より好ましくは共有結合)していることが好ましい。前記官能基は本発明にかかる芳香族ビニル共重合体との親和性を有するものであり、芳香族ビニル共重合体の板状黒鉛粒子への吸着量が増大し、本発明の微細化黒鉛粒子は溶媒中や樹脂中への分散性が高くなる傾向にある。
 このような官能基は、板状黒鉛粒子の表面近傍(好ましくは、表面から深さ10nmまでの領域)の全炭素原子の50%以下(より好ましくは20%以下、特に好ましくは10%以下)の炭素原子に結合していることが好ましい。官能基が結合している炭素原子の割合が前記上限を超えると、板状黒鉛粒子は、親水性が増大するため、芳香族ビニル共重合体との親和性が低下する傾向にある。また、官能基が結合している炭素原子の割合の下限としては特に制限はないが、0.01%以上が好ましい。なお、水酸基などの前記官能基はX線光電子分光法(XPS)により定量することができ、粒子表面から深さ10nmまでの領域に存在する官能基の量を測定することができる。なお、板状黒鉛粒子の厚さが10nm以下の場合には、板状黒鉛粒子の全領域に存在する官能基の量が測定される。
 本発明の微細化黒鉛粒子を構成する芳香族ビニル共重合体は、下記式(1):
-(CH-CHX)-     (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位と他のモノマー単位とを含有するものである。
 このような芳香族ビニル共重合体において、前記ビニル芳香族モノマー単位は黒鉛粒子に対する吸着性を示し、他のモノマー単位は溶媒や樹脂および黒鉛粒子表面近傍の官能基との親和性を示す。したがって、このような芳香族ビニル共重合体は、板状黒鉛粒子に吸着して板状黒鉛粒子同士の凝集力を低下させるとともに板状黒鉛粒子に溶媒や樹脂との親和性を付与し、板状黒鉛粒子を溶媒中や樹脂中に高度に分散させることが可能となる。
 また、上述したように、ビニル芳香族モノマー単位は黒鉛粒子に吸着しやすいため、ビニル芳香族モノマー単位の含有率が高い共重合体ほど、板状黒鉛粒子への吸着量が増大し、本発明の微細化黒鉛粒子は溶媒中や樹脂中への分散性が高くなる傾向にある。ビニル芳香族モノマー単位の含有量としては、芳香族ビニル共重合体全体に対して10~98質量%が好ましく、30~98質量%がより好ましく、50~95質量%が特に好ましい。ビニル芳香族モノマー単位の含有量が前記下限未満になると、芳香族ビニル共重合体の板状黒鉛粒子への吸着量が低下し、微細化黒鉛粒子の分散性が低下する傾向にある。ビニル芳香族モノマー単位の含有量が前記上限を超えると、板状黒鉛粒子に溶媒や樹脂との親和性が付与されず、微細化黒鉛粒子の分散性が低下する傾向にある。
 前記式(1)中のXで表される基が有していてもよい置換基としては、アミノ基、カルボキシル基、カルボン酸エステル基、水酸基、アミド基、イミノ基、グリシジル基、アルコキシ基(例えば、メトキシ基)、カルボニル基、イミド基、リン酸エステル基などが挙げられ、中でも、微細化黒鉛粒子の分散性が向上するという観点から、メトキシ基などのアルコキシ基が好ましく、メトキシ基がより好ましい。
 このようなビニル芳香族モノマー単位としては、例えば、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアントラセンモノマー単位、ビニルピレンモノマー単位、ビニルアニソールモノマー単位、ビニル安息香酸エステルモノマー単位、アセチルスチレンモノマー単位などが挙げられ、中でも、微細化黒鉛粒子の分散性が向上するという観点から、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアニソールモノマー単位が好ましい。
 本発明にかかる芳香族ビニル共重合体を構成する他のモノマー単位としては特に制限はないが、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルイミダゾール類、ビニルピリジン類、無水マレイン酸およびマレイミド類からなる群から選択される少なくとも1種のモノマーから誘導されるモノマー単位が好ましい。このような他のモノマー単位を含む芳香族ビニル共重合体を用いることによって、微細化黒鉛粒子は溶媒や樹脂との親和性が向上し、溶媒中や樹脂中に高度に分散させることが可能となる。
 前記(メタ)アクリレート類としては、アルキル(メタ)アクリレート、置換アルキル(メタ)アクリレート(例えば、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート)などが挙げられる。前記(メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミドなどが挙げられる。
 前記ビニルイミダゾール類としては、1-ビニルイミダゾールなどが挙げられる。前記ビニルピリジン類としては、2-ビニルピリジン、4-ビニルピリジンなどが挙げられる。前記マレイミド類としては、マレイミド、アルキルマレイミド、アリールマレイミドなどが挙げられる。
 このような他のモノマーのうち、微細化黒鉛粒子の分散性が向上するという観点から、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、N,N-ジアルキル(メタ)アクリルアミド、2-ビニルピリジン、4-ビニルピリジン、アリールマレイミドが好ましく、ヒドロキシアルキル(メタ)アクリレート、N,N-ジアルキル(メタ)アクリルアミド、2-ビニルピリジン、アリールマレイミドがより好ましく、フェニルマレイミドが特に好ましい。
 本発明の微細化黒鉛粒子において、前記芳香族ビニル共重合体の数平均分子量としては特に制限はないが、1千~100万が好ましく、5千~10万がより好ましい。芳香族ビニル共重合体の数平均分子量が前記下限未満になると、黒鉛粒子に対する吸着能が低下する傾向にあり、他方、前記上限を超えると、溶媒への溶解性が低下したり、粘度が著しく上昇して取り扱いが困難になる傾向にある。なお、芳香族ビニル共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィ(カラム:Shodex GPC K-805LおよびShodex GPC K-800RL(ともに、昭和電工(株)製)、溶離液:クロロホルム)により測定し、標準ポリスチレンで換算した値である。
 また、本発明の微細化黒鉛粒子においては、前記芳香族ビニル共重合体としてランダム共重合体を用いても、ブロック共重合体を用いてもよいが、微細化黒鉛粒子の分散性が向上するという観点から、ブロック共重合体を用いることが好ましい。
 本発明の微細化黒鉛粒子において、前記芳香族ビニル共重合体の含有量としては、前記板状黒鉛粒子100質量部に対して10-7~10-1質量部が好ましく、10-5~10-2質量部がより好ましい。芳香族ビニル共重合体の含有量が前記下限未満になると、板状黒鉛粒子への芳香族ビニル共重合体の吸着が不十分なため、微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、板状黒鉛粒子に直接吸着していない芳香族ビニル共重合体が存在する傾向にある。
 また、本発明の微細化黒鉛粒子は、前記芳香族ビニル共重合体に結合した、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖をさらに備えるものであってもよい。このような微細化黒鉛粒子は、前記炭化水素鎖によって表面がアルキル化され、疎水性溶媒に対して優れた分散安定性を示す傾向にある。また、このようなアルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖は、前記芳香族ビニル共重合体の側鎖に結合していることが好ましい。これにより、疎水性溶媒に対する微細化黒鉛粒子の親和性がさらに向上する傾向にある。
 このような微細化黒鉛粒子において、前記アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖としては、官能基を有する芳香族ビニル共重合体と、この官能基と反応する部位(以下、「反応性部位」という)を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンとがそれぞれ反応して、前記アルキル化合物、オリゴオレフィンおよびポリオレフィンの反応性部位が前記芳香族ビニル共重合体の官能基に結合することによって形成されたものであることが好ましい。
 前記官能基としては、アミノ基、カルボキシル基、カルボン酸エステル基、水酸基、アミド基、イミノ基、グリシジル基などが挙げられ、前記反応性部位との反応性が高いという観点から、アミノ基が好ましい。また、前記反応性部位としては、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子など)、カルボキシル基、カルボン酸無水物基(無水マレイン酸基など)、スルホン酸基、アルデヒド基、グリシジル基などが挙げられ、前記官能基との反応性が高いという観点から、ハロゲン原子、カルボキシル基、カルボン酸無水物基が好ましく、ハロゲン原子がより好ましく、塩素原子がさらに好ましい。さらに、前記官能基と前記反応性部位との組み合わせとしては、互いの反応性が高くなるという観点から、アミノ基とハロゲン原子の組み合わせ、アミノ基とカルボキシル基またはカルボン酸無水物基の組み合わせが好ましく、アミノ基と塩素原子の組み合わせ、アミノ基と無水マレイン酸基の組み合わせがより好ましく、アミノ基と塩素原子の組み合わせが特に好ましい。
 前記官能基を有する芳香族ビニル共重合体としては、前記ビニル芳香族モノマー単位および前記他のモノマー単位の少なくとも一方に官能基を有するものが挙げられ、板状黒鉛粒子に対する吸着性が損なわれないという観点から、前記他のモノマー単位が官能基を有する他のモノマー単位であることが好ましく、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖が容易に導入できるという観点から、前記他のモノマー単位が官能基を有する他のビニルモノマー単位であることがより好ましい。
 前記官能基を有する他のビニルモノマー単位としては特に制限はないが、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルイミダゾール類およびビニルピリジン類からなる群から選択される少なくとも1種の官能基を有するビニルモノマーから誘導される官能基含有ビニルモノマー単位が好ましい。このような官能基を有する他のビニルモノマー単位を含む芳香族ビニル共重合体を用いることによって、芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖を容易に導入することができ、また、得られた微細化黒鉛粒子は溶媒や樹脂との親和性が向上し、溶媒中や樹脂中に高度に分散させることが可能となる。
 前記アミノ基を有する他のビニルモノマーとしては、アミノアルキル(メタ)アクリレート、ビニルピリジン類(例えば、2-ビニルピリジン、4-ビニルピリジン)、ビニルイミダゾール類(例えば、1-ビニルイミダゾール)などが挙げられる。前記カルボキシル基を有する他のビニルモノマーとしては、(メタ)アクリル酸が挙げられる。前記カルボン酸エステル基を有する他のビニルモノマーとしては、アルキル(メタ)アクリレート、前記水酸基を有する他のビニルモノマーとしては、ヒドロキシアルキル(メタ)アクリレート、前記アミド基を有する他のビニルモノマーとしては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミドなどが挙げられる。
 このような官能基を有する他のビニルモノマーのうち、芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖を容易に導入することができるという観点から、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、N,N-ジアルキル(メタ)アクリルアミド、2-ビニルピリジン、4-ビニルピリジンが好ましく、アミノアルキル(メタ)アクリレート、2-ビニルピリジン、4-ビニルピリジンがより好ましく、2-ビニルピリジンが特に好ましい。
 このような官能基を有する芳香族ビニル共重合体に結合させる反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンとしては特に制限はないが、分子末端に前記官能基を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィン(以下、それぞれ、「末端官能基含有アルキル化合物」、「末端官能基含有オリゴオレフィン」および「末端官能基含有ポリオレフィン」という)が好ましい。このような末端官能基含有アルキル化合物、末端官能基含有オリゴオレフィンおよび末端官能基含有ポリオレフィンは、前記官能基を有する芳香族ビニル共重合体と反応しやすく、芳香族ビニル共重合体に容易にアルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖を導入することができる。
 反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンとして、具体的には、アルキル化合物、オリゴオレフィンおよびポリオレフィンの塩素化物、臭素化物、水酸基含有物、マレイン酸変性物、(メタ)アクリル酸変性物などが挙げられ、中でも、末端塩素化物、末端水酸基含有物が好ましく、末端塩素化物がより好ましい。オリゴオレフィンおよびポリオレフィンの種類としては特に制限はないが、オリゴオレフィン鎖およびポリオレフィン鎖が導入されやすいという観点から、エチレンオリゴマー、ポリエチレン、プロピレンオリゴマー、ポリプロピレン、エチレン-プロピレン共重合体(オリゴマーおよびポリマー)が好ましい。
 このような反応性部位を有するポリオレフィンの数平均分子量としては特に制限はないが、100~100万が好ましく、1千~1万がより好ましい。前記ポリオレフィンの数平均分子量が前記下限未満になると、導入されたポリオレフィン鎖が短く、疎水性溶媒に対する微細化黒鉛粒子の親和性が十分に向上しない傾向にあり、他方、前記上限を超えると、芳香族ビニル共重合体に結合しにくく、ポリオレフィン鎖が導入されにくい傾向にある。また、同様に、前記反応性部位を有するアルキル化合物の分子量としては特に制限はないが、70~500が好ましく、前記反応性部位を有するオリゴオレフィンの数平均分子量としては特に制限はないが、100~5000が好ましい。
 本発明の黒鉛粒子分散液は、このような微細化黒鉛粒子が溶媒中に高度に分散したものである。本発明の黒鉛粒子分散液に用いられる溶媒としては特に制限はないが、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N-メチルピロリドン(NMP)、ヘキサン、トルエン、ジオキサン、プロパノール、γ-ピコリン、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAC)が好ましく、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N-メチルピロリドン(NMP)、ヘキサン、トルエンがより好ましい。
 また、本発明の黒鉛粒子分散液において、前記溶媒が疎水性溶媒である場合には、分散安定性がより向上するという観点から、前記微細化黒鉛粒子は前記アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を備えるものであることが好ましい。前記疎水性溶媒としては特に制限はないが、ヘキサン、トルエン、クロロホルム、ジクロロメタンなどが挙げられ、中でも、前記炭化水素鎖を備える微細化黒鉛粒子がより高度に分散するという観点から、トルエンが好ましい。
 本発明の黒鉛粒子分散液において、前記微細化黒鉛粒子の濃度としては、溶媒1L当たり0.1~200g/Lが好ましく、1~100g/Lがより好ましい。微細化黒鉛粒子の濃度が前記下限未満になると、溶媒の消費量が増大し、経済的に不利となる傾向にあり、他方、前記上限を超えると微細化黒鉛粒子同士の接触により分散液の粘度が上昇し、流動性が低下する傾向にある。
 次に、本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法について説明する。本発明の微細化黒鉛粒子の製造方法は、原料の黒鉛粒子、前記式(1)で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体、過酸化水素化物、および溶媒を混合し、得られた混合物に粉砕処理を施し、必要に応じて、得られた微細化黒鉛粒子中の芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖をさらに導入する方法である。また、この方法によれば、本発明の微細化黒鉛粒子は、溶媒に分散した状態で、すなわち、本発明の黒鉛粒子分散液として得ることができる。
 本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法に原料として用いられる黒鉛粒子(以下、「原料黒鉛粒子」という)としては、グラファイト構造を有する公知の黒鉛(人造黒鉛、天然黒鉛(例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛))が挙げられ、中でも、粉砕することによって前記範囲の厚さを有する板状黒鉛粒子となるものが好ましい。このような原料黒鉛粒子の粒子径としては特に制限はないが、0.01~5mmが好ましく、0.1~1mmがより好ましい。
 また、原料黒鉛粒子を構成する板状黒鉛粒子の表面には、水酸基、カルボキシル基、エポキシ基などの官能基が結合(好ましくは共有結合)していることが好ましい。前記官能基は前記芳香族ビニル共重合体との親和性を有するものであり、芳香族ビニル共重合体の板状黒鉛粒子への吸着量が増大し、得られる微細化黒鉛粒子は溶媒中や樹脂中への分散性が高くなる傾向にある。
 このような官能基は、板状黒鉛粒子の表面近傍(好ましくは、表面から深さ10nmまでの領域)の全炭素原子の50%以下(より好ましくは20%以下、特に好ましくは10%以下)の炭素原子に結合していることが好ましい。官能基が結合している炭素原子の割合が前記上限を超えると、板状黒鉛粒子は、親水性が増大するため、芳香族ビニル共重合体との親和性が低下する傾向にある。また、官能基が結合している炭素原子の割合の下限としては特に制限はないが、0.01%以上が好ましい。
 また、過酸化水素化物としては、カルボニル基を有する化合物(例えば、ウレア、カルボン酸(安息香酸、サリチル酸など)、ケトン(アセトン、メチルエチルケトンなど)、カルボン酸エステル(安息香酸メチル、サリチル酸エチルなど))と過酸化水素との錯体;四級アンモニウム塩、フッ化カリウム、炭酸ルビジウム、リン酸、尿酸などの化合物に過酸化水素が配位したものなどが挙げられる。このような過酸化水素化物は、本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法において酸化剤として作用し、原料黒鉛粒子のグラファイト構造を破壊せずに、炭素層間の剥離を容易にするものである。すなわち、過酸化水素化物が炭素層間に侵入して層表面を酸化しながら劈開を進行させ、同時に芳香族ビニル共重合体が劈開した炭素層間に侵入して劈開面を安定化させ、層間剥離が促進される。その結果、板状黒鉛粒子の表面に前記芳香族ビニル共重合体が吸着して、微細化黒鉛粒子を溶媒中や樹脂中に高度に分散させることが可能となる。
 本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法に用いられる溶媒としては特に制限はなく、本発明の黒鉛粒子分散液に用いられる溶媒として例示したものを使用することができる。
 本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法においては、先ず、前記原料黒鉛粒子と前記芳香族ビニル共重合体と前記過酸化水素化物と前記溶媒とを混合する(混合工程)。前記原料黒鉛粒子の混合量としては、溶媒1L当たり0.1~500g/Lが好ましく、10~200g/Lがより好ましい。原料黒鉛粒子の混合量が前記下限未満になると、溶媒の消費量が増大し、経済的に不利となる傾向にあり、他方、前記上限を超えると液の粘度が上昇して取り扱いが困難となる傾向にある。
 また、前記芳香族ビニル共重合体の混合量としては、前記原料黒鉛粒子100質量部に対して0.1~1000質量部が好ましく、0.1~200質量部がより好ましい。芳香族ビニル共重合体の混合量が前記下限未満になると、得られる微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、芳香族ビニル共重合体が溶媒に溶解しなくなるとともに、液の粘度が上昇して取り扱いが困難となる傾向にある。
 また、前記過酸化水素化物の混合量としては、前記原料黒鉛粒子100質量部に対して0.1~500質量部が好ましく、1~100質量部がより好ましい。前記過酸化水素化物の混合量が前記下限未満になると、得られる微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、原料黒鉛粒子が過剰に酸化され、得られる微細化黒鉛粒子の導電性が低下する傾向にある。
 次に、前記混合工程で得られた混合物に粉砕処理を施して原料黒鉛粒子を板状黒鉛粒子に粉砕する(粉砕工程)。これにより生成した板状黒鉛粒子の表面に前記芳香族ビニル共重合体が吸着して、溶媒中や樹脂中での分散安定性に優れた微細化黒鉛粒子を含有する黒鉛粒子分散液を得ることができる。
 本発明にかかる粉砕処理としては、超音波処理(発振周波数としては15~400kHzが好ましく、出力としては500W以下が好ましい。)、ボールミルによる処理、湿式粉砕、爆砕、機械式粉砕などが挙げられる。これにより、原料黒鉛粒子のグラファイト構造を破壊させずに原料黒鉛粒子を粉砕して板状黒鉛粒子を得ることが可能となる。また、粉砕処理時の温度としては特に制限はなく、例えば、-20~100℃が挙げられる。また、粉砕処理時間についても特に制限はなく、例えば、0.01~50時間が挙げられる。
 また、本発明の微細化黒鉛粒子および黒鉛粒子分散液の製造方法においては、必要に応じて、前記粉砕工程で得られた微細化黒鉛粒子と、前記反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンのうちの少なくとも1種とを混合し、微細化黒鉛粒子中の芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を導入する(炭化水素鎖導入工程)。この場合、前記芳香族ビニル共重合体は官能基を有するものである必要があり、この官能基と前記反応性部位とを結合せしめて前記芳香族ビニル共重合体に、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖のうちの少なくとも1種の炭化水素鎖を導入する。
 この炭化水素鎖導入工程においては、前記粉砕工程で得られた微細化黒鉛粒子と、前記反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンのうちの少なくとも1種と、溶媒とを混合し、必要に応じて得られた混合物を加熱することによって、官能基を有する芳香族ビニル共重合体と、反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンのうちの少なくとも1種とを反応させる。溶媒としては特に制限はなく、本発明の黒鉛粒子分散液に用いられる溶媒として例示したものを使用することができる。また、反応温度としては-10~150℃が好ましく、反応時間としては0.1~10時間が好ましい。
 前記微細化黒鉛粒子の混合量としては、溶媒1L当たり1~200g/Lが好ましく、1~50g/Lがより好ましい。微細化黒鉛粒子の混合量が前記下限未満になると、溶媒の消費量が増大し、経済的に不利となる傾向にあり、他方、前記上限を超えると液の粘度が上昇して取り扱いが困難となる傾向にある。
 また、前記反応性部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンの混合量としては、前記微細化黒鉛粒子100質量部に対して0.001~500質量部が好ましく、10~500質量部がより好ましい。前記アルキル化合物、オリゴオレフィンおよびポリオレフィンの混合量が前記下限未満になると、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖の導入量が少なく、疎水性溶媒に対する微細化黒鉛粒子の分散性が十分に向上しない傾向にあり、他方、前記上限を超えると、液の粘度が上昇して取り扱いが困難となる傾向にある。
 このようにして得られた本発明の微細化黒鉛粒子は、そのまま分散液の状態(本発明の黒鉛粒子分散液の状態)で使用してもよいし、得られた黒鉛粒子分散液にろ過や遠心分離などを施して溶媒を除去して使用してもよい。さらに、得られた微細化黒鉛粒子を溶媒に再分散させて本発明の黒鉛粒子分散液として使用することもできる。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、芳香族ビニル共重合体の数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(昭和電工(株)製「Shodex GPC101」)を用いて以下の条件で測定した。
<芳香族ビニル共重合体の測定条件>
・カラム:Shodex GPC K-805LおよびShodex GPC K-800RL(ともに、昭和電工(株)製)
・溶離液:クロロホルム
・測定温度:25℃
・サンプル濃度:0.1mg/ml
・検出手段:RI
 なお、芳香族ビニル共重合体の数平均分子量(Mn)は、標準ポリスチレンで換算した値を示した。
 (実施例1)
 スチレン(ST)0.67g、N,N-ジメチルメタクリルアミド(DMMAA)1.23g、アゾビスイソブチロニトリル10mgおよびトルエン5mlを混合し、窒素雰囲気下、60℃で6時間重合反応を行なった。放冷後、クロロホルム-エーテルを用いて再沈殿により精製し、1.0gのST-DMMAA(35:65)ランダム共重合体を得た。このST-DMMAA(35:65)ランダム共重合体の数平均分子量(Mn)は、78000であった。
 黒鉛粒子(日本黒鉛工業(株)製「EXP-P」、粒子径100~600μm)20mg、ウレア-過酸化水素包接錯体80mg、前記ST-DMMAA(35:65)ランダム共重合体20mgおよびN,N-ジメチルホルムアミド(DMF)2mlを混合し、室温で5時間超音波処理(出力:250W)を施して黒鉛粒子分散液を得た。
 (実施例2)
 スチレン(ST)の量を1g、N,N-ジメチルメタクリルアミド(DMMAA)の量を1gに変更した以外は実施例1と同様にして1.0gのST-DMMAA(50:50)ランダム共重合体(Mn=55000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMMAA(50:50)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例3)
 スチレン(ST)の量を1.23g、N,N-ジメチルメタクリルアミド(DMMAA)の量を0.67gに変更した以外は実施例1と同様にして1.0gのST-DMMAA(65:35)ランダム共重合体(Mn=67000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMMAA(65:35)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例4)
 スチレン(ST)の量を1.6g、N,N-ジメチルメタクリルアミド(DMMAA)の量を0.4gに変更した以外は実施例1と同様にして1.2gのST-DMMAA(80:20)ランダム共重合体(Mn=92000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMMAA(80:20)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例5)
 スチレンの代わりに1-ビニルナフタレン(VN)0.6gを用い、N,N-ジメチルメタクリルアミド(DMMAA)の量を1.4gに変更した以外は実施例1と同様にして0.27gのVN-DMMAA(30:70)ランダム共重合体(Mn=17000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このVN-DMMAA(30:70)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例6)
 スチレンの代わりに4-ビニルアニソール(VA)0.6gを用い、N,N-ジメチルメタクリルアミド(DMMAA)の量を1.4gに変更した以外は実施例1と同様にして0.39gのVA-DMMAA(30:70)ランダム共重合体(Mn=28000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このVA-DMMAA(30:70)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (比較例1)
 スチレン(ST)2g、アゾビスイソブチロニトリル10mgおよびトルエン5mlを混合した以外は実施例1と同様にして1.5gのST(100)単独重合体(Mn=95000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST(100)単独重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (比較例2)
 スチレンの代わりにメチルメタクリレート(MMA)0.67gを用いた以外は実施例1と同様にして1.23gのMMA-DMMAA(35:65)ランダム共重合体(Mn=62000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このMMA-DMMAA(35:65)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (比較例3)
 スチレンの代わりにメチルメタクリレート(MMA)1gを用いた以外は実施例2と同様にして0.6gのMMA-DMMAA(50:50)ランダム共重合体(Mn=53000)を得た。前記ST-DMMAA(50:50)ランダム共重合体の代わりに、このMMA-DMMAA(50:50)ランダム共重合体20mgを用いた以外は実施例2と同様にして黒鉛粒子分散液を得た。
 (比較例4)
 スチレンの代わりにメチルメタクリレート(MMA)1.23gを用いた以外は実施例3と同様にして0.8gのMMA-DMMAA(65:35)ランダム共重合体(Mn=43000)を得た。前記ST-DMMAA(65:35)ランダム共重合体の代わりに、このMMA-DMMAA(65:35)ランダム共重合体20mgを用いた以外は実施例3と同様にして黒鉛粒子分散液を得た。
 (比較例5)
 スチレンの代わりにメチルメタクリレート(MMA)1.6gを用いた以外は実施例4と同様にして0.8gのMMA-DMMAA(80:20)ランダム共重合体(Mn=63000)を得た。前記ST-DMMAA(80:20)ランダム共重合体の代わりに、このMMA-DMMAA(80:20)ランダム共重合体20mgを用いた以外は実施例4と同様にして黒鉛粒子分散液を得た。
 (比較例6)
 前記ST-DMMAA(35:65)ランダム共重合体を用いなかった以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (比較例7)
 スチレンの代わりにN,N-ジメチルメタクリルアミド(DMMAA)2gを用いた以外は比較例1と同様にして0.93gのDMMAA(100)単独重合体(Mn=72000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このDMMAA(100)単独重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (比較例8)
 スチレンの代わりにフェニルマレイミド(PM)0.6gを用い、N,N-ジメチルメタクリルアミド(DMMAA)の量を1.4gに変更した以外は実施例1と同様にして1.1gのPM-DMMAA(30:70)ランダム共重合体(Mn=55000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このPM-DMMAA(30:70)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 <黒鉛粒子分散液の目視による観察>
 実施例および比較例で得られた黒鉛粒子分散液を24時間静置した後、目視により観察した。図1中の(A)~(C)は、それぞれ実施例1、比較例2および比較例6で得られた黒鉛粒子分散液の写真である。図1に示した結果から明らかなように、黒鉛粒子と本発明にかかる芳香族ビニル共重合体とを混合した場合(実施例1)には、24時間静置しても黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった(図1中の(A))。また、実施例2~6で得られた分散液においても、24時間静置しても黒鉛粒子は沈降せず、分散安定性に優れたものであった。一方、本発明にかかる芳香族ビニル共重合体の代わりにビニル芳香族モノマー単位を含まないビニル共重合体を用いた場合(比較例2)および本発明にかかる芳香族ビニル共重合体を用いなかった場合(比較例6)には、24時間の静置により黒鉛粒子は沈降し、得られた分散液は透明な上澄み液と黒鉛粒子とに分離し、分散安定性に劣ったものであった(それぞれ(図1中の(B)、(C)))。
 <黒鉛粒子の光学顕微鏡による観察>
 実施例および比較例で得られた黒鉛粒子分散液を光学顕微鏡(400倍)により観察した。図2A~2Gには、それぞれ実施例4~6および比較例5~8で得られた黒鉛粒子分散液の光学顕微鏡写真を示す。
 図2A~2Cに示した結果から明らかなように、黒鉛粒子と本発明にかかる芳香族ビニル共重合体とを混合した場合(実施例4~6)には、黒鉛粒子が微細化されていることが確認された。また、このような黒鉛粒子の微細化は、実施例1~3で得られた分散液においても観察された。
 一方、図2D~2Gに示した結果から明らかなように、本発明にかかる芳香族ビニル共重合体の代わりにビニル芳香族モノマー単位を含まないビニル共重合体を用いた場合(比較例5)、本発明にかかる芳香族ビニル共重合体を用いなかった場合(比較例6)、本発明にかかる芳香族ビニル共重合体の代わりにN,N-ジメチルメタクリルアミド単独重合体を用いた場合(比較例7)および本発明にかかるビニル芳香族モノマー単位の代わりにフェニルマレイミド単位を共重合体に導入した場合(比較例8)には、粉砕が不十分な塊状の黒鉛粒子が形成していることがわかった。また、このような塊状の黒鉛粒子は、比較例1~4で得られた分散液においても観察された。
 <黒鉛粒子の走査型電子顕微鏡による観察>
 実施例および比較例で得られた黒鉛粒子分散液から黒鉛粒子を採取し、走査型電子顕微鏡(SEM)により観察した。図3A~3Cには、それぞれ実施例4~6で得られた黒鉛粒子分散液から採取した黒鉛粒子のSEM写真を示す。また、図3Dには、原料である黒鉛粒子のSEM写真を示す。
 図3A~3Dに示した結果から明らかなように、原料の塊状の黒鉛粒子を本発明にかかる芳香族ビニル共重合体と混合した場合(実施例4~6)には、黒鉛粒子は板状に微細化されることがわかった。また、実施例1~3で得られた分散液においても黒鉛粒子は板状に微細化されることが確認された。このような板状の黒鉛粒子の長さ、幅および厚さを測定した結果を表1に示す。一方、比較例1~8で得られた黒鉛粒子分散液から採取した黒鉛粒子の形状は不定形の塊状であった。
Figure JPOXMLDOC01-appb-T000001
 (実施例7)
 スチレン(ST)の量を1.82g、N,N-ジメチルメタクリルアミド(DMMAA)の量を0.18gに変更した以外は実施例1と同様にして0.82gのST-DMMAA(91:9)ランダム共重合体(Mn=58000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMMAA(91:9)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例8)
 スチレン(ST)の量を1.88g、N,N-ジメチルメタクリルアミド(DMMAA)の量を0.12gに変更した以外は実施例1と同様にして0.53gのST-DMMAA(94:6)ランダム共重合体(Mn=70000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMMAA(94:6)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例9)
 N,N-ジメチルメタクリルアミドの代わりにN-フェニルマレイミド(PM)0.66gを用い、スチレン(ST)の量を1.34gに変更した以外は実施例1と同様にして0.77gのST-PM(67:33)ランダム共重合体(Mn=62000)を得た。前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-PM(67:33)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。
 (実施例10)
 スチレン(ST)の量を1.66g、N-フェニルマレイミド(PM)の量を0.34gに変更した以外は実施例9と同様にして0.92gのST-PM(83:17)ランダム共重合体(Mn=48000)を得た。前記ST-PM(67:33)ランダム共重合体の代わりに、このST-PM(83:17)ランダム共重合体20mgを用いた以外は実施例9と同様にして黒鉛粒子分散液を得た。
 (実施例11)
 スチレン(ST)の量を1.82g、N-フェニルマレイミド(PM)の量を0.18gに変更した以外は実施例9と同様にして0.66gのST-PM(91:9)ランダム共重合体(Mn=58000)を得た。前記ST-PM(67:33)ランダム共重合体の代わりに、このST-PM(91:9)ランダム共重合体20mgを用いた以外は実施例9と同様にして黒鉛粒子分散液を得た。
 (実施例12)
 スチレン(ST)の量を1.88g、N-フェニルマレイミド(PM)の量を0.12gに変更した以外は実施例9と同様にして0.77gのST-PM(94:6)ランダム共重合体(Mn=52000)を得た。前記ST-PM(67:33)ランダム共重合体の代わりに、このST-PM(94:6)ランダム共重合体20mgを用いた以外は実施例9と同様にして黒鉛粒子分散液を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例11で得られた黒鉛粒子分散液を静置し、一定時間ごとに分散液100μlを採取し、3.5mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果、24時間静置しても吸光度はほぼ一定であり、得られた分散液は分散安定性に優れたものであることが確認された。
 また、実施例2~4および実施例7~12で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して4mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を図4に示す。
 図4に示した結果から明らかなように、スチレンモノマー単位の含有量が多くなるにつれて吸光度が高くなり、分散安定性が向上することがわかった。これは、スチレンモノマー単位の含有量が多くなるにつれて黒鉛粒子が微細化されやすくなるためと推察される。
 (実施例13)
 N-フェニルマレイミドの代わりに1-ビニルイミダゾール(VI)0.18gを用いた以外は実施例11と同様にして0.37gのST-VI(91:9)ランダム共重合体(Mn=18000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-VI(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (実施例14)
 N-フェニルマレイミドの代わりに4-ビニルピリジン(4VP)0.18gを用いた以外は実施例11と同様にして0.82gのST-4VP(91:9)ランダム共重合体(Mn=48000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-4VP(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (実施例15)
 N-フェニルマレイミドの代わりにN,N-ジメチルアミノエチルメタクリレート(DMAEMA)0.18gを用いた以外は実施例11と同様にして0.88gのST-DMAEMA(91:9)ランダム共重合体(Mn=52000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-DMAEMA(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (実施例16)
 N-フェニルマレイミドの代わりにメチルメタクリレート(MMA)0.18gを用いた以外は実施例11と同様にして0.79gのST-MMA(91:9)ランダム共重合体(Mn=54000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-MMA(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (実施例17)
 N-フェニルマレイミドの代わりにヒドロキシエチルメタクリレート(HEMA)0.18gを用いた以外は実施例11と同様にして0.83gのST-HEMA(91:9)ランダム共重合体(Mn=77000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-HEMA(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (実施例18)
 N-フェニルマレイミドの代わりに2-ビニルピリジン(2VP)0.18gを用いた以外は実施例11と同様にして0.95gのST-2VP(91:9)ランダム共重合体(Mn=89000)を得た。前記ST-PM(91:9)ランダム共重合体の代わりに、このST-2VP(91:9)ランダム共重合体20mgを用いた以外は実施例11と同様にして黒鉛粒子分散液を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例7、実施例11および実施例13~18で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して3.5mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を図5に示す。
 図5に示した結果から明らかなように、いずれのランダム共重合体を用いた場合においても、分散液は高い吸光度を示し、黒鉛粒子が微細化されて高度に分散していることが確認された。
 (実施例19)
 ST-PM(91:9)ランダム共重合体の添加量を1mg、2mg、5mg、10mgに変更した以外は実施例11と同様にして黒鉛粒子分散液を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例11、実施例19および比較例6で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して3.5mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を図6に示す。
 図6に示した結果から明らかなように、ST-PM(91:9)ランダム共重合体を添加することによって吸光度が高くなり、黒鉛粒子が微細化されて分散安定性が向上することがわかった。また、ST-PM(91:9)ランダム共重合体の添加量が増大するにつれて吸光度が高くなる傾向にあった。
 (実施例20)
 ウレア-過酸化水素包接錯体の添加量を1mg、2mg、10mg、20mg、40mgに変更した以外は実施例11と同様にして黒鉛粒子分散液を得た。
 (比較例9)
 ウレア-過酸化水素包接錯体の添加量を添加しなかった以外は実施例11と同様にして黒鉛粒子分散液を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例11、実施例20および比較例9で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して3.5mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を図7に示す。
 図7に示した結果から明らかなように、ウレア-過酸化水素包接錯体を添加することによって吸光度が高くなり、黒鉛粒子が微細化されて分散安定性が向上することがわかった。
 (実施例21)
 N,N-ジメチルホルムアミド(DMF)の代わりに、クロロホルム、クロロベンゼン、ジクロロベンゼンまたはN-メチルピロリドン(NMP)を2ml混合した以外は実施例4と同様にして黒鉛粒子分散液(ST-DMMAA(80:20)ランダム共重合体添加)を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例4および実施例21で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して、それぞれ使用した溶媒を3.5ml添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、溶媒としてクロロホルム、クロロベンゼン、ジクロロベンゼンまたはNMPを用いた場合にも、DMFを用いた場合と同程度の吸光度を示し、優れた分散安定性を有する黒鉛粒子分散液が得られた。
 (実施例22)
 N,N-ジメチルホルムアミド(DMF)の代わりに、ジクロロメタン、トルエン、ジオキサン、プロパノール、γ-ピコリン、アセトニトリルまたはジメチルスルホキシド(DMSO)を2ml混合した以外は実施例11と同様にして黒鉛粒子分散液(ST-PM(91:9)ランダム共重合体添加)を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例11および実施例22で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して、それぞれ使用した溶媒を3.5ml添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果から明らかなように、溶媒としてジクロロメタン、トルエン、ジオキサン、プロパノールまたはアセトニトリルを用いた場合には、DMFを用いた場合に比べて吸光度は若干低下したが、黒鉛粒子の分散安定性は十分なものであった。また、γ-ピコリンまたはDMSOを用いた場合には、DMFを用いた場合と同程度の吸光度を示し、優れた分散安定性を有する黒鉛粒子分散液が得られた。
 (実施例23)
 前記ST-2VP(91:9)ランダム共重合体の代わりに、スチレン-2-ビニルピリジンブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=48000、2-ビニルピリジン(2VP)ブロックのMn=46000、以下、「ST-2VP(48K/46K)ブロック共重合体」と略す。)20mgを用いた以外は実施例18と同様にして黒鉛粒子分散液を得た。
 (実施例24)
 前記ST-2VP(91:9)ランダム共重合体の代わりに、スチレン-2-ビニルピリジンブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=57000、2-ビニルピリジン(2VP)ブロックのMn=57000、以下、「ST-2VP(57K/57K)ブロック共重合体」と略す。)20mgを用いた以外は実施例18と同様にして黒鉛粒子分散液を得た。
 (実施例25)
 前記ST-2VP(91:9)ランダム共重合体の代わりに、スチレン-2-ビニルピリジンブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=102000、2-ビニルピリジン(2VP)ブロックのMn=97000、以下、「ST-2VP(102K/97K)ブロック共重合体」と略す。)20mgを用いた以外は実施例18と同様にして黒鉛粒子分散液を得た。
 (実施例26)
 前記ST-MMA(91:9)ランダム共重合体の代わりに、スチレン-メチルメタクリレートブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=5000、メチルメタクリレート(MMA)ブロックのMn=5000、以下、「ST-MMA(5K/5K)ブロック共重合体」と略す。)20mgを用いた以外は実施例16と同様にして黒鉛粒子分散液を得た。
 (実施例27)
 前記ST-MMA(91:9)ランダム共重合体の代わりに、スチレン-メチルメタクリレートブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=48000、メチルメタクリレート(MMA)ブロックのMn=46000、以下、「ST-MMA(48K/46K)ブロック共重合体」と略す。)20mgを用いた以外は実施例16と同様にして黒鉛粒子分散液を得た。
 (実施例28)
 前記ST-MMA(91:9)ランダム共重合体の代わりに、スチレン-メチルメタクリレートブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=85000、メチルメタクリレート(MMA)ブロックのMn=91000、以下、「ST-MMA(85K/91K)ブロック共重合体」と略す。)20mgを用いた以外は実施例16と同様にして黒鉛粒子分散液を得た。
 (実施例29)
 前記ST-MMA(91:9)ランダム共重合体の代わりに、スチレン-メチルメタクリレートブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=170000、メチルメタクリレート(MMA)ブロックのMn=168000、以下、「ST-MMA(170K/168K)ブロック共重合体」と略す。)20mgを用いた以外は実施例16と同様にして黒鉛粒子分散液を得た。
 (実施例30)
 前記ST-MMA(91:9)ランダム共重合体の代わりに、スチレン-ポリエチレンオキシドブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=9500、ポリエチレンオキシド(PEO)ブロックのMn=9500、以下、「ST-PEO(9.5K/9.5K)ブロック共重合体」と略す。)20mgを用いた以外は実施例16と同様にして黒鉛粒子分散液を得た。
 (実施例31)
 前記ST-PEO(9.5K/9.5K)ブロック共重合体の代わりに、スチレン-ポリエチレンオキシドブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=37000、ポリエチレンオキシド(PEO)ブロックのMn=6500、以下、「ST-PEO(37K/6.5K)ブロック共重合体」と略す。)20mgを用いた以外は実施例30と同様にして黒鉛粒子分散液を得た。
 (実施例32)
 前記ST-PEO(9.5K/9.5K)ブロック共重合体の代わりに、スチレン-ポリエチレンオキシドブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=40000、ポリエチレンオキシド(PEO)ブロックのMn=42000、以下、「ST-PEO(40K/42K)ブロック共重合体」と略す。)20mgを用いた以外は実施例30と同様にして黒鉛粒子分散液を得た。
 (実施例33)
 前記ST-PEO(9.5K/9.5K)ブロック共重合体の代わりに、スチレン-ポリエチレンオキシドブロック共重合体(Polymer Source社製、スチレン(ST)ブロックのMn=58600、ポリエチレンオキシド(PEO)ブロックのMn=71000、以下、「ST-PEO(58.6K/71K)ブロック共重合体」と略す。)20mgを用いた以外は実施例30と同様にして黒鉛粒子分散液を得た。
 <分散液中の黒鉛粒子の分散安定性>
 実施例16、実施例18および実施例23~33で得られた黒鉛粒子分散液を24時間静置した後、この分散液100μlに対して3.5mlのDMFを添加して希釈し、光路長1cmのセルを用いて波長500nmにおける吸光度を測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示した結果から明らかなように、いずれのブロック共重合体を用いた場合においても、分散液は高い吸光度を示し、黒鉛粒子が微細化されて高度に分散していることが確認された。特に、ビニル芳香族モノマー以外のビニルモノマーとしてメチルメタクリレートを用いた場合には、実施例16のランダム共重合体に比べて実施例26~29のブロック共重合体を添加することによって、吸光度はより高い値を示し、黒鉛粒子がより微細化されて更に高度に分散していることがわかった。
 <黒鉛粒子の表面分析>
 実施例11で得られた黒鉛粒子分散液(ST-PM(91:9)ランダム共重合体添加)および比較例6で得られた黒鉛粒子分散液(共重合体無添加)をそれぞれインジウム箔上に塗布して乾燥させ、黒鉛粒子塗膜を作製した。これらの黒鉛粒子塗膜について飛行時間型二次イオン質量分析(TOF-SIMS、正イオン:m/z 0-250)を行い、黒鉛粒子塗膜の表面に存在する分子を分析した。図8の下段にはST-PM(91:9)ランダム共重合体添加した場合、中段には共重合体無添加の場合の分析結果を示す。なお、図8の上段は、キャスト法により形成したST-PM(91:9)ランダム共重合体の塗膜のTOF-SIMS測定結果を示す。
 また、得られた黒鉛粒子塗膜についてX線光電子分光(XPS)測定を行なったところ、塗膜表面近傍(表面から深さ10nmの領域)の炭素原子に水酸基が結合していることが確認された。さらに、前記塗膜表面近傍の炭素量および酸素量を測定し、炭素と酸素との原子比を求めた。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 図8に示した結果から明らかなように、比較例6で得られた黒鉛粒子分散液から形成した黒鉛粒子塗膜の表面には共重合体は観察されなかった。一方、実施例11で得られた黒鉛粒子分散液から形成した黒鉛粒子塗膜の表面にはST-PM(91:9)ランダム共重合体が吸着していることがわかった。
 また、図8の下段に示したST-PM(91:9)ランダム共重合体のフラグメントパターンから明らかなように、前記共重合体成分のうち、ビニル芳香族モノマー単位を多く含有する共重合体成分が微細化黒鉛粒子の表面に吸着しやすいことがわかった。
 表5に示した結果から明らかなように、黒鉛粒子の表面に存在する炭素と酸素の原子比は、原料である黒鉛粒子においては炭素原子100に対して酸素原子が約2であるのに対して、ウレア-過酸化水素包接錯体で処理した黒鉛粒子(比較例6)においては炭素原子100に対して酸素原子が約3であり、前記過酸化水素化物での処理によって黒鉛粒子表面に水酸基が導入されたことがわかった。一方、本発明にかかる芳香族ビニル共重合体の存在下で、ウレア-過酸化水素包接錯体で処理した微細化黒鉛粒子(実施例11)においては炭素原子100に対して酸素原子が約1に低下した。このことから、本発明にかかる芳香族ビニル共重合体は板状黒鉛粒子表面の水酸基に吸着して被覆していることが確認された。
 以上の結果から、本発明にかかる芳香族ビニル共重合体が板状黒鉛粒子に吸着して表面を被覆することによって、黒鉛粒子が微細化され、各種溶媒に高度に分散させることが可能になったと推察される。
 <導電性>
 実施例1で得られた黒鉛粒子分散液(ST-DMMAA(35:65)ランダム共重合体添加)をガラス板上に塗布して乾燥させ、黒鉛粒子塗膜を作製した。この塗膜の表面の任意の2点間(距離:1cm)の電気抵抗をテスターを用いて室温で測定したところ、10Ωであった。
 また、特開2009-242209号公報に記載の方法により、表面酸化グラファイト材料をカチオン性有機化合物で処理して有機化グラファイト材料を調製し、これをクロロホルムに分散させた。この分散液を用いて上記と同様にして有機化グラファイト塗膜を作製した。この有機化グラファイト塗膜の表面を必要に応じてヒドラジンで処理した後、所定の温度で加熱処理した。このようにして作製した加熱処理を施したヒドラジン未処理の有機化グラファイト塗膜およびヒドラジン処理と加熱処理を施した有機化グラファイト塗膜のそれぞれについて、上記と同様にして塗膜表面の電気抵抗を測定した。図9には加熱処理温度と電気抵抗との関係を示す。
 前記黒鉛粒子塗膜の電気抵抗値(10Ω)と図9に示した結果から明らかなように、本発明の微細化黒鉛粒子(実施例1)からなる塗膜の電気抵抗は、表面酸化グラファイト材料を有機化した材料からなる塗膜にヒドラジン処理や加熱処理を施して電気抵抗を低下させた場合と比較しても著しく小さく、本発明の微細化黒鉛粒子は導電性に非常に優れたものであることが確認された。
 <吸収スペクトル>
 実施例1で得られた黒鉛粒子分散液(ST-DMMAA(35:65)ランダム共重合体添加)を石英ガラス板上に塗布して乾燥させ、厚さ0.1μmの黒鉛粒子塗膜を作製した。この塗膜の吸収スペクトルを波長300~800nmの範囲について測定した。その結果を図10に示す。
 また、特開2009-242209号公報に記載の方法により、表面酸化グラファイト材料をカチオン性有機化合物で処理して有機化グラファイト材料を調製し、これをクロロホルムに分散させた。この分散液を用いて上記と同様にして厚さ1μmの有機化グラファイト塗膜を作製した。この有機化グラファイト塗膜の吸収スペクトルを上記と同様にして測定した。その結果を図10に示す。
 図10に示した結果から明らかなように、有機化グラファイト塗膜は500nm以上の長波長領域において吸光度が著しく低下した。このことから、有機化グラファイト塗膜中のグラファイト層には多くの欠陥が存在していると推察される。一方、本発明の微細化黒鉛粒子からなる塗膜(実施例1)は500nm以上の長波長領域においても吸光度の低下が小さく、黒鉛粒子塗膜中の欠陥は比較的少ないと考えられる。
 <ラマンスペクトル>
 実施例1で得られた黒鉛粒子分散液(ST-DMMAA(35:65)ランダム共重合体添加)を石英ガラス板上にキャストして乾燥させ、厚さ0.1μmの黒鉛粒子塗膜を作製した。この塗膜のラマンスペクトルを測定した。その結果を図11の中段に示す。なお、図11の上段には、原料黒鉛粒子のラマンスペクトルを示す。
 また、特開2009-242209号公報に記載の方法により、表面酸化グラファイト材料をカチオン性有機化合物で処理して有機化グラファイト材料を調製し、これをクロロホルムに分散させた。この分散液を用いて上記と同様にして厚さ1μmの有機化グラファイト塗膜を作製した。この有機化グラファイト塗膜のラマンスペクトルを測定した。その結果を図11の下段に示す。
 図11に示した結果から明らかなように、有機化グラファイト材料においては、原料黒鉛粒子ではほとんど観測されないDバンドのピークが観測され、グラファイトシート構造が破壊されていることがわかった。一方、本発明の微細化黒鉛粒子においては、Dバンドのピークがほとんど観測されず、欠陥がほとんど存在していないと考えられる。
 <微細化黒鉛粒子の厚さ測定>
 実施例1で得られた黒鉛粒子分散液(ST-DMMAA(35:65)ランダム共重合体添加)を1000rpmで遠心分離して粗大粒子を沈降させた後、上澄み液をマイカ基板上にキャストして乾燥させ、黒鉛粒子塗膜を作製した。この黒鉛粒子塗膜を、Super Sharp Tipを装着した走査型プローブ顕微鏡(デジタルインスツルメンツ社製「NanoScope V D3100」)を用いてタッピングモードで観察した。黒鉛粒子塗膜の表面SPM像を図12Aに示す。また、図12A中の直線で示した部分の断面形状を図12Bに示す。
 図12Bのグラフ中の凸部分は、微細化黒鉛粒子を構成する板状黒鉛粒子を表しており、その高さは、板状黒鉛粒子の厚さに相当する。図12Bに示した結果から明らかなように、板状黒鉛粒子の厚さは約0.34nmであり、これは、単層グラフェンの厚さに相当する。すなわち、実施例1で得られた黒鉛粒子分散液に含まれる微細化黒鉛粒子は、グラファイトシート1層分まで剥離された板状黒鉛粒子により構成されていることがわかった。
 (実施例34)
 <微細化黒鉛粒子の調製>
 スチレン(ST)18g、2-ビニルピリジン(2VP)2g、アゾビスイソブチロニトリル50mgおよびトルエン100mlを混合し、窒素雰囲気下、85℃で6時間重合反応を行なった。放冷後、クロロホルム-ヘキサンを用いて再沈殿により精製し、真空乾燥して3.3gのST-2VP(9:1)ランダム共重合体(Mn=25000)を得た。
 前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-2VP(9:1)ランダム共重合体20mgを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。この黒鉛粒子分散液を24時間静置した後、目視により観察したところ、黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった。また、得られた黒鉛粒子分散液をろ過し、ろ滓をDMFで洗浄した後、真空乾燥して微細化黒鉛粒子を回収した。この微細化黒鉛粒子を走査型電子顕微鏡(SEM)により観察したところ、長さが1~20μm、幅が1~20μm、厚さが10~50nmの板状に微細化されたものであることが確認された。
 <微細化黒鉛粒子のアルキル化>
 末端水酸基含有ポリオレフィン(出光興産(株)製「エポール(R)」)4.59g、トリフェニルホスフィン1.1gおよび四塩化炭素40mlを混合し、窒素雰囲気下、80℃で攪拌しながら12時間加熱還流し、末端塩素化ポリオレフィンを合成した。加熱還流後の溶液にエバポレーションを施した後、ヘキサンを用いて末端塩素化ポリオレフィンを抽出した。その後、シリカゲルクロマトグラフィー(ヘキサン溶媒)で精製して1.5gの末端塩素化ポリオレフィン(Mn=2000(カタログ値))を得た。
 次に、この末端塩素化ポリオレフィン20mg、前記微細化黒鉛粒子10mgおよびトルエン1mlを混合し、窒素雰囲気下、100℃で6時間攪拌した。得られた分散液をろ過し、ろ滓をトルエンで洗浄して末端塩素化ポリオレフィンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (実施例35)
 2-ビニルピリジンの代わりに2-ジメチルアミノエチルメタクリレート(DMAMA)0.2gを用い、スチレン(ST)の量を1.8g、アゾビスイソブチロニトリルの量を8mg、トルエンの量を10mlに変更した以外は実施例34と同様にして0.61gのST-DMAMA(9:1)ランダム共重合体(Mn=32000)を得た。
 前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-DMAMA(9:1)ランダム共重合体0.1gを用い、黒鉛粒子の量を1g、ウレア-過酸化水素包接錯体の量を1g、DMFの量を50mlに変更した以外は実施例1と同様にして黒鉛粒子分散液を得た。この黒鉛粒子分散液を24時間静置した後、目視により観察したところ、黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった。
 得られた黒鉛粒子分散液をろ過し、ろ滓をDMFで洗浄した後、真空乾燥して微細化黒鉛粒子を回収した。この微細化黒鉛粒子を走査型電子顕微鏡(SEM)により観察したところ、長さが1~20μm、幅が1~20μm、厚さが10~50nmの板状に微細化されたものであることが確認された。
 この微細化黒鉛粒子10mgを用いた以外は実施例34と同様にして末端塩素化ポリオレフィンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (実施例36)
 2-ジメチルアミノエチルメタクリレートの代わりに4-ビニルピリジン(4VP)0.2gを用い、トルエンの量を7.5mlに変更した以外は実施例35と同様にして0.73gのST-4VP(9:1)ランダム共重合体(Mn=18000)を得た。
 前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-4VP(9:1)ランダム共重合体0.1gを用いた以外は実施例1と同様にして黒鉛粒子分散液を得た。この黒鉛粒子分散液を24時間静置した後、目視により観察したところ、黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった。
 得られた黒鉛粒子分散液をろ過し、ろ滓をDMFで洗浄した後、真空乾燥して微細化黒鉛粒子を回収した。この微細化黒鉛粒子を走査型電子顕微鏡(SEM)により観察したところ、長さが1~20μm、幅が1~20μm、厚さが10~50nmの板状に微細化されたものであることが確認された。
 この微細化黒鉛粒子10mgを用いた以外は実施例34と同様にして末端塩素化ポリオレフィンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (実施例37)
 末端塩素化ポリオレフィンの代わりに塩素化ポリプロピレン(アルドリッチ社製、Mn=100000)20mgを用いた以外は実施例34と同様にして塩素化ポリプロピレンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (実施例38)
 末端塩素化ポリオレフィンの代わりに無水マレイン酸変性ポリプロピレン(Clariant社製「LICOCENE MA(R)」、粘度(140℃)=300mPa・s)20mgを用いた以外は実施例34と同様にして無水マレイン酸変性ポリプロピレンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (実施例39)
 黒鉛粒子(日本黒鉛工業(株)製「EXP-P」、粒子径100~600μm)12.5g、ウレア-過酸化水素包接錯体12.5g、実施例34と同様にして調製したST-2VP(9:1)ランダム共重合体1.25g、DMF500mlを混合し、湿式微粒化装置((株)スギノマシン製「スターバーストラボ」)を用いて、室温、シリンダー圧力200MPaの条件で10回湿式粉砕処理を行い、黒鉛粒子分散液を得た。この黒鉛粒子分散液を24時間静置した後、目視により観察したところ、黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった。
 得られた黒鉛粒子分散液をろ過し、ろ滓をDMFで洗浄した後、真空乾燥して微細化黒鉛粒子を回収した。この微細化黒鉛粒子を走査型電子顕微鏡(SEM)により観察したところ、長さが1~20μm、幅が1~20μm、厚さが10~50nmの板状に微細化されたものであることが確認された。
 この微細化黒鉛粒子10mgを用いた以外は実施例34と同様にして末端塩素化ポリオレフィンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
 (参考例1)
 2-ビニルピリジンの代わりにN-フェニルマレイミド(PM)4gを用い、スチレン(ST)の量を36g、アゾビスイソブチロニトリルの量を100mg、トルエンの量を50mlに変更した以外は実施例34と同様にして25.6gのST-PM(9:1)ランダム共重合体(Mn=37000)を得た。
 前記ST-DMMAA(35:65)ランダム共重合体の代わりに、このST-PM(9:1)ランダム共重合体0.7gを用い、黒鉛粒子の量を7g、ウレア-過酸化水素包接錯体の量を7g、DMFの量を300mlに変更した以外は実施例1と同様にして黒鉛粒子分散液を得た。この黒鉛粒子分散液を24時間静置した後、目視により観察したところ、黒鉛粒子は沈降せず、得られた分散液は分散安定性に優れたものであった。
 得られた黒鉛粒子分散液をろ過し、ろ滓をDMFで洗浄した後、真空乾燥して微細化黒鉛粒子を回収した。この微細化黒鉛粒子を走査型電子顕微鏡(SEM)により観察したところ、長さが1~20μm、幅が1~20μm、厚さが10~50nmの板状に微細化されたものであることが確認された。
 この微細化黒鉛粒子10mgを用いた以外は実施例34と同様にして末端塩素化ポリオレフィンで処理された微細化黒鉛粒子を得た。この微細化黒鉛粒子2mgをトルエンまたはヘキサン1mlに分散させ、調製直後および1日間放置した後の分散状態を目視により観察した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示した結果から明らかなように、アミノ基を有する芳香族ビニル共重合体を備える微細化黒鉛粒子を反応性部位を有するポリオレフィンで処理した場合(実施例34~39)、得られた微細化黒鉛粒子はトルエン分散安定性に優れたものであった。このことから、微細化黒鉛粒子中の芳香族ビニル共重合体にはポリオレフィン鎖が導入されていることが確認された。一方、アミノ基を有しない芳香族ビニル共重合体を備える微細化黒鉛粒子を反応性部位を有するポリオレフィンで処理した場合(参考例1)には、トルエン分散性やヘキサン分散性が認められなかった。これは、参考例1においては、微細化黒鉛粒子中の芳香族ビニル共重合体にアミノ基などの官能基が存在しないため、反応性部位を有するポリオレフィンとの反応が進行せず、前記芳香族ビニル共重合体にポリオレフィン鎖が導入されなかったためと推察される。
 また、2VP単位を含有する芳香族ビニル共重合体を備える微細化黒鉛粒子を末端塩素化ポリオレフィンで処理した場合(実施例34および実施例39)、得られた微細化黒鉛粒子はヘキサン分散安定性に優れたものであった。一方、DMAMA単位または4VP単位を含有する芳香族ビニル共重合体を備える微細化黒鉛粒子を末端塩素化ポリオレフィンで処理した場合(実施例35~36)には、調製直後の微細化黒鉛粒子は調製直後のヘキサン分散性には優れるものの、ヘキサン分散安定性は低下することがわかった。これは、2VP単位に比べて、DMAMA単位や4VP単位には末端塩素化ポリオレフィンが反応しにくく、ポリオレフィン鎖の導入量が低下し、且つ、末端塩素化ポリオレフィンが結合しても立体的な極性基を遮蔽する効果が少なかったためと推察される。また、2VP単位を含有する芳香族ビニル共重合体を備える微細化黒鉛粒子を塩素化ポリプロピレンまたは無水マレイン酸変性ポリプロピレンで処理した場合(実施例37~38)にも、調製直後の微細化黒鉛粒子は調製直後のヘキサン分散性には優れるものの、ヘキサン分散安定性は低下することがわかった。これは、前記塩素化ポリプロピレンや前記無水マレイン酸変性ポリプロピレンは、分子内部に官能基を有するものであり、分子末端に官能基を有する末端塩素化ポリオレフィンに比べて、2VP単位に対する反応性が低く、ポリオレフィン鎖の導入量が低下し、また、ポリプロピレン部位のタクティシティーが高く、溶解性が乏しいためと推察される。
 以上説明したように、本発明によれば、溶媒中や樹脂中に高度に分散させることが可能であり、しかも分散安定性に優れた微細化黒鉛粒子を得ることが可能となる。また、このような微細化黒鉛粒子を溶媒や樹脂に分散させることによって分散安定性に優れた分散体を容易に製造することが可能となる。さらに、本発明の微細化黒鉛粒子は、グラファイト構造が保持されており、黒鉛本来の特性(例えば、耐熱性、耐薬品性、機械的強度、熱伝導性、導電性、潤滑性)を損なっておらず、前記特性を樹脂に容易に付与することが可能となる。
 したがって、本発明の微細化黒鉛粒子は、耐熱性、耐薬品性、機械的強度、熱伝導性、導電性、潤滑性などを付与することが可能な充填材などとして有用である。

Claims (16)

  1.  板状黒鉛粒子と、該板状黒鉛粒子に吸着した、下記式(1):
    -(CH-CHX)-     (1)
    (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
    で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体とを備える微細化黒鉛粒子。
  2.  前記芳香族ビニル共重合体が、前記ビニル芳香族モノマー単位と、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルピリジン類、無水マレイン酸およびマレイミド類からなる群から選択される少なくとも1種のモノマーから誘導される他のモノマー単位とを備えるものである、請求項1に記載の微細化黒鉛粒子。
  3.  前記芳香族ビニル共重合体がブロック共重合体である、請求項1または2に記載の微細化黒鉛粒子。
  4.  前記板状黒鉛粒子の厚さが0.3~1000nmである、請求項1~3のうちのいずれか一項に記載の微細化黒鉛粒子。
  5.  前記板状黒鉛粒子の表面近傍の全炭素原子の50%以下の炭素原子に、水酸基、カルボキシル基およびエポキシ基からなる群から選択される少なくとも1種の官能基が結合している、請求項1~4のうちのいずれか一項に記載の微細化黒鉛粒子。
  6.  前記芳香族ビニル共重合体に結合した、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖からなる群から選択される少なくとも1種の炭化水素鎖をさらに備える請求項1~5のうちのいずれか一項に記載の微細化黒鉛粒子。
  7.  前記芳香族ビニル共重合体が官能基を有するものであり、
     前記炭化水素鎖は、前記官能基と反応する部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種が前記官能基と結合することにより形成されたものである、請求項6に記載の微細化黒鉛粒子。
  8.  前記官能基がアミノ基である、請求項7に記載の微細化黒鉛粒子。
  9.  前記官能基と反応する部位が、塩素原子、カルボキシル基およびカルボン酸無水物基からなる群から選択される少なくとも1種である、請求項7または8に記載の微細化黒鉛粒子。
  10.  溶媒と、該溶媒中に分散された請求項1~9のうちのいずれか一項に記載の微細化黒鉛粒子とを含有する黒鉛粒子分散液。
  11.  前記溶媒が疎水性溶媒であり、前記微細化黒鉛粒子が請求項6~9のうちのいずれか一項に記載の微細化黒鉛粒子である、請求項10に記載の黒鉛粒子分散液。
  12.  黒鉛粒子、下記式(1):
    -(CH-CHX)-     (1)
    (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
    で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体、過酸化水素化物、および溶媒を混合する混合工程と、
     前記混合工程で得られた混合物に粉砕処理を施す粉砕工程と、
    を含む微細化黒鉛粒子の製造方法。
  13.  前記過酸化水素化物が、カルボニル基を有する化合物と過酸化水素との錯体である、請求項12に記載の微細化黒鉛粒子の製造方法。
  14.  前記粉砕処理が超音波処理または湿式粉砕処理である、請求項12または13に記載の微細化黒鉛粒子の製造方法。
  15.  前記芳香族ビニル共重合体が官能基を有するものであり、
     前記粉砕工程で得られた微細化黒鉛粒子と、前記官能基と反応する部位を有する、アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種とを混合し、前記芳香族ビニル共重合体に、前記アルキル化合物、オリゴオレフィンおよびポリオレフィンから選択される少なくとも1種を結合させて、アルキル鎖、オリゴオレフィン鎖およびポリオレフィン鎖からなる群から選択される少なくとも1種を導入する炭化水素鎖導入工程をさらに含む請求項12~14のうちのいずれか一項に記載の微細化黒鉛粒子の製造方法。
  16.  前記官能基がアミノ基である、請求項15に記載の微細化黒鉛粒子の製造方法。
PCT/JP2011/063037 2010-06-07 2011-06-07 微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法 WO2011155486A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/702,548 US9096736B2 (en) 2010-06-07 2011-06-07 Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
CN201180028215.9A CN102933492B (zh) 2010-06-07 2011-06-07 微细化石墨粒子、含有该石墨粒子的石墨粒子分散液及微细化石墨粒子的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010129652 2010-06-07
JP2010-129652 2010-06-07
JP2011-101958 2011-04-28
JP2011101958 2011-04-28

Publications (1)

Publication Number Publication Date
WO2011155486A1 true WO2011155486A1 (ja) 2011-12-15

Family

ID=45098091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063037 WO2011155486A1 (ja) 2010-06-07 2011-06-07 微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法

Country Status (4)

Country Link
US (1) US9096736B2 (ja)
JP (1) JP5700294B2 (ja)
CN (1) CN102933492B (ja)
WO (1) WO2011155486A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237602A (ja) * 2012-05-16 2013-11-28 Hiroshi Kobayashi グラフェンの製造と製造方法、該グラフェンを接合したグラフェン接合体の製造と製造方法、および前記グラフェンないしは前記グラフェン接合体を用いた工業製品の製造と製造方法
US8735489B2 (en) 2011-12-06 2014-05-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
JP2016110953A (ja) * 2014-12-10 2016-06-20 株式会社豊田自動織機 黒鉛粒子組成物およびその製造方法、負極ならびに蓄電装置
JP2017088455A (ja) * 2015-11-12 2017-05-25 株式会社日本触媒 酸化黒鉛誘導体
JP2017088456A (ja) * 2015-11-12 2017-05-25 株式会社日本触媒 分散体
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2017537992A (ja) * 2014-12-12 2017-12-21 エルジー・ケム・リミテッド ブロック共重合体、およびこれを用いたグラフェンの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138596A1 (en) * 2013-03-08 2014-09-12 Garmor, Inc. Large scale oxidized graphene production for industrial applications
US8557916B1 (en) * 2013-04-30 2013-10-15 Alfaisal University Composition and method of making nanocomposite containing graphene sheets
US9334386B2 (en) * 2013-09-04 2016-05-10 Alfaisal University Antimicrobial polymer-graphene-silver nanocomposite
US10435533B2 (en) 2014-02-24 2019-10-08 Sekisui Chemical Co., Ltd. Carbon material, resin composite material, and method for producing said carbon material and resin composite material
JP6534835B2 (ja) * 2015-03-12 2019-06-26 株式会社豊田自動織機 負極活物質層及びその負極活物質層を具備する蓄電装置
US11067002B2 (en) 2016-12-06 2021-07-20 General Electric Company Gas turbine engine maintenance tool
US10364701B2 (en) 2016-12-06 2019-07-30 General Electric Company CMAS barrier coating for a gas turbine engine having a reactive material that reacts with a layer of environmental contaminant compositions and method of applying the same
WO2019012474A1 (en) * 2017-07-13 2019-01-17 Carbon Upcycling Technologies Inc. CHEMICAL METHOD FOR PRODUCING EXFOLIATED NANOPARTICLES
SG10202010783RA (en) 2019-11-06 2021-06-29 Gen Electric Restoration coating system and method
US20230287538A1 (en) * 2022-02-08 2023-09-14 Comstock Ip Holdings Llc Reactive phase separation of black mass from lithium-ion battery recycling and methods

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869788A (ja) 1981-10-22 1983-04-26 セントラル硝子株式会社 ポリマ−被覆フツ化黒鉛及びその製造方法
JPS58142942A (ja) * 1982-02-19 1983-08-25 Central Glass Co Ltd ポリマ−被覆フッ化黒鉛の製造方法
US4557974A (en) 1981-10-22 1985-12-10 Central Glass Company Limited Graphite fluoride coated with organic polymer and method of preparing same
JPS5996142A (ja) 1982-11-24 1984-06-02 Mitsubishi Petrochem Co Ltd 導電性樹脂組成物
JP2635752B2 (ja) 1989-01-31 1997-07-30 日立粉末冶金株式会社 黒鉛粉並びにこれを用いた潤滑剤および黒インキ
US6110994A (en) 1996-06-14 2000-08-29 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same
JPH10330108A (ja) 1997-05-30 1998-12-15 Nippon Kasei Chem Co Ltd 熱膨張性黒鉛
CA2413146C (en) 2000-06-29 2007-08-21 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
US6596396B2 (en) 2000-08-09 2003-07-22 Mitsubishi Gas Chemical Company, Inc. Thin-film-like particles having skeleton constructed by carbons and isolated films
JP4798411B2 (ja) 2000-08-09 2011-10-19 三菱瓦斯化学株式会社 炭素からなる骨格を持つ薄膜状粒子の合成方法
JP2003012311A (ja) * 2001-06-29 2003-01-15 Kawasaki Steel Corp 高分子被覆炭素材料の製造方法、負極材料およびリチウムイオン二次電池
JP2003176116A (ja) 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ大型の薄膜状粒子
JP2003231098A (ja) * 2002-02-08 2003-08-19 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ薄膜状粒子を含む複合体およびその作製方法
JP4067317B2 (ja) 2002-02-27 2008-03-26 大阪瓦斯株式会社 導電性組成物およびその成形体
JP2003268245A (ja) 2002-03-18 2003-09-25 Osaka Gas Co Ltd 複合樹脂組成物およびその製造方法
US6927250B2 (en) 2002-08-15 2005-08-09 Advanced Energy Technology Inc. Graphite composites and methods of making such composites
JP2004134515A (ja) * 2002-10-09 2004-04-30 Yuka Denshi Co Ltd 電磁波シールド部品
DE60321047D1 (de) 2002-12-26 2008-06-26 Showa Denko Kk Kohlenstoffmaterial zur herstellung von elektrisch leitfähigen materialien sowie deren verwendung
JP4678152B2 (ja) 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 炭素からなる骨格を持つ薄膜状粒子の分散液
JP2005281448A (ja) 2004-03-29 2005-10-13 Asahi Kasei Chemicals Corp 樹脂組成物
JP2005320220A (ja) * 2004-05-11 2005-11-17 Takashi Sawaguchi ナノカーボン材料分散剤、ナノカーボン材料分散方法、及びナノカーボン材料分散液
JP4534094B2 (ja) 2004-07-12 2010-09-01 オンキヨー株式会社 スピーカー振動板およびその製造方法
JP2006111731A (ja) 2004-10-14 2006-04-27 Seiko Epson Corp 樹脂成形体の製造方法および樹脂成形体
JP2006144201A (ja) 2004-11-24 2006-06-08 Seiko Epson Corp 炭素複合体、炭素複合体の製造方法および樹脂成形体
JP2006233017A (ja) 2005-02-24 2006-09-07 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP5082845B2 (ja) * 2005-03-29 2012-11-28 日立金属株式会社 高熱伝導性黒鉛粒子分散型複合体及びその製造方法
JP5225558B2 (ja) 2005-05-26 2013-07-03 テクノポリマー株式会社 熱伝導性樹脂組成物及び成形品
JP4247208B2 (ja) 2005-06-23 2009-04-02 Tdk株式会社 有機高分子抵抗体架橋物、サーミスタ素子並びにサーミスタ素体及びサーミスタ素子の製造方法
US8110626B2 (en) 2005-09-27 2012-02-07 Advanced Polymerik PTY. Limited Dispersing agents in composites
US7914844B2 (en) 2005-11-18 2011-03-29 Northwestern University Stable dispersions of polymer-coated graphitic nanoplatelets
JP2007291346A (ja) 2006-03-31 2007-11-08 Toyoda Gosei Co Ltd 低電気伝導性高放熱性高分子材料及び成形体
JP2008179741A (ja) 2007-01-26 2008-08-07 Dai Ichi Kogyo Seiyaku Co Ltd 難燃性オレフィン系樹脂組成物
JP5386802B2 (ja) 2007-07-27 2014-01-15 中央電気工業株式会社 黒鉛質粉末とその製造方法
JP4945419B2 (ja) 2007-12-05 2012-06-06 憲幸 倉本 導電性組成物
US20090146112A1 (en) 2007-12-06 2009-06-11 Fujitsu Limited Composite material and method of producing the same
JP2009155628A (ja) 2007-12-06 2009-07-16 Fujitsu Ltd 炭素素材と樹脂とからなる複合材料およびその製造方法
JP5205947B2 (ja) 2007-12-12 2013-06-05 スターライト工業株式会社 樹脂炭素複合材料
CN102015529B (zh) 2008-02-28 2014-04-30 巴斯夫欧洲公司 纳米石墨片和组合物
JP5234325B2 (ja) 2008-03-31 2013-07-10 株式会社豊田中央研究所 有機化グラファイト材料の製造方法
JP5146371B2 (ja) 2008-07-11 2013-02-20 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
EP2328970B1 (en) * 2008-09-24 2013-11-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composition
KR101267272B1 (ko) 2008-12-30 2013-05-23 제일모직주식회사 수지 조성물
US7939167B2 (en) 2008-12-30 2011-05-10 Cheil Industries Inc. Resin composition
CN103038163B (zh) 2010-06-07 2016-01-20 丰田自动车株式会社 树脂复合材料
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US10047219B2 (en) 2010-06-16 2018-08-14 Sekisui Chemical Co., Ltd. Polyolefin-based resin composition
JP5641359B2 (ja) 2011-12-06 2014-12-17 株式会社豊田中央研究所 樹脂複合材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HISASHI KUROKAWA ET AL.: "Dispersion and Coating Film Characteristics of Graphite Particles Adsorbed with Polymers", ZAIRYO GIJUTSU, vol. 20, no. 4, July 2002 (2002-07-01), pages 165 - 172 *
SHUICHI SATO ET AL.: "Polymer Encapsulation of Exfoliated Graphite by Polymerization of Styrene in Water", POLYMER PREPRINTS, vol. 48, no. 2, 12 May 1999 (1999-05-12), JAPAN, pages 145 *
STANKOVICH S. ET AL.: "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J MATER CHEM, vol. 16, no. 2, 14 January 2006 (2006-01-14), pages 155 - 158 *
WISSERT R. ET AL.: "Graphene Nanocomposites Prepared From Blends of Polymer Latex with Chemically Reduced Graphite Oxide Dispersions", MACROMOL MATER ENG, vol. 295, no. 12, 10 December 2010 (2010-12-10), pages 1107 - 1115 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US8735489B2 (en) 2011-12-06 2014-05-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2013237602A (ja) * 2012-05-16 2013-11-28 Hiroshi Kobayashi グラフェンの製造と製造方法、該グラフェンを接合したグラフェン接合体の製造と製造方法、および前記グラフェンないしは前記グラフェン接合体を用いた工業製品の製造と製造方法
JP2016110953A (ja) * 2014-12-10 2016-06-20 株式会社豊田自動織機 黒鉛粒子組成物およびその製造方法、負極ならびに蓄電装置
JP2017537992A (ja) * 2014-12-12 2017-12-21 エルジー・ケム・リミテッド ブロック共重合体、およびこれを用いたグラフェンの製造方法
US10835886B2 (en) 2014-12-12 2020-11-17 Lg Chem, Ltd. Block copolymer, and method for preparing graphene using the same
US11192085B2 (en) 2014-12-12 2021-12-07 Lg Chem, Ltd. Block copolymer, and method for preparing graphene using same
JP2017088455A (ja) * 2015-11-12 2017-05-25 株式会社日本触媒 酸化黒鉛誘導体
JP2017088456A (ja) * 2015-11-12 2017-05-25 株式会社日本触媒 分散体

Also Published As

Publication number Publication date
US20130123415A1 (en) 2013-05-16
US9096736B2 (en) 2015-08-04
JP5700294B2 (ja) 2015-04-15
CN102933492A (zh) 2013-02-13
JP2012236753A (ja) 2012-12-06
CN102933492B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5700294B2 (ja) 微細化黒鉛粒子、それを含有する黒鉛粒子分散液、および微細化黒鉛粒子の製造方法
Carey et al. MXene polymer nanocomposites: a review
US8735489B2 (en) Resin composite material
Mohamadi et al. Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend
US9728294B2 (en) Resin composite material
Pu et al. Effect of surface functionalization of SiO2 particles on the interfacial and mechanical properties of PEN composite films
US20170225951A1 (en) Process for Exfoliation and Dispersion of Boron Nitride
Arzac et al. Comparison of the Emulsion Mixing and In Situ Polymerization Techniques for Synthesis of Water‐Borne Reduced Graphene Oxide/Polymer Composites: Advantages and Drawbacks
KR20130037329A (ko) 유기공액고분자를 이용한 그래핀 표면 개질 방법
TWI822331B (zh) 碳材料分散液及其使用
WO2017063026A1 (en) Dispersions
Mo et al. Synthesis and characterization of polyimide/multi‐walled carbon nanotube nanocomposites
Nutenki et al. Amphiphilic comb-like polymer-modified graphene oxide and its nanocomposite with polystyrene via emulsion polymerization
Cheng et al. Modification of multiwall carbon nanotubes via soap‐free emulsion polymerization of acrylonitrile
Liu et al. Click synthesis of graphene/poly (N-(2-hydroxypropyl) methacrylamide) nanocomposite via “grafting-onto” strategy at ambient temperature
JP5909053B2 (ja) 樹脂複合材料
JP5812415B2 (ja) 親水化グラファイト材料およびその製造方法
JP5800232B2 (ja) 黒鉛薄膜およびその製造方法
Ansón‐Casaos et al. Electrical conductivity and tensile properties of block‐copolymer‐wrapped single‐walled carbon nanotube/poly (methyl methacrylate) composites
JP7311945B2 (ja) 導電顔料ペースト
Shim et al. Influence of glycidyl methacrylate grafted multi-walled carbon nanotubes on viscoelastic behaviors of polypropylene nanocomposites
JP5637600B2 (ja) 樹脂複合材料
Lin et al. High-performance multi-functional graphene/hexagonal boron nitride/poly (ethylene oxide) nanocomposites through enhanced interfacial interaction by coordination
JP5900734B2 (ja) 樹脂複合材料およびその製造方法
JP7262068B1 (ja) カーボン材料分散液及びその使用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028215.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13702548

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11792443

Country of ref document: EP

Kind code of ref document: A1