WO2011145570A1 - 尿素水温度センサの妥当性診断システム - Google Patents

尿素水温度センサの妥当性診断システム Download PDF

Info

Publication number
WO2011145570A1
WO2011145570A1 PCT/JP2011/061208 JP2011061208W WO2011145570A1 WO 2011145570 A1 WO2011145570 A1 WO 2011145570A1 JP 2011061208 W JP2011061208 W JP 2011061208W WO 2011145570 A1 WO2011145570 A1 WO 2011145570A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea water
temperature sensor
urea
temperature
validity
Prior art date
Application number
PCT/JP2011/061208
Other languages
English (en)
French (fr)
Inventor
弘隆 高橋
美則 浜口
正志 水谷
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP11783504.1A priority Critical patent/EP2573344B1/en
Priority to US13/697,925 priority patent/US8973421B2/en
Priority to CN201180024556.9A priority patent/CN102892989B/zh
Publication of WO2011145570A1 publication Critical patent/WO2011145570A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/12Parameters used for exhaust control or diagnosing said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a validity diagnosis system for a urea water temperature sensor for diagnosing a failure of a urea water temperature sensor that measures the temperature of urea water stored in a urea tank.
  • An SCR system using an SCR (Selective Catalytic Reduction) device has been developed as an exhaust gas purification system for purifying NO x in exhaust gas of a diesel engine.
  • This SCR system supplies urea water upstream of the exhaust gas of the SCR, generates ammonia by the heat of the exhaust gas, and reduces and purifies NO x on the SCR catalyst by this ammonia (for example, patent) Reference 1).
  • the temperature of the urea water stored in the urea tank is measured by a urea water temperature sensor provided in the urea tank. Thereby, freezing of urea water is detected, and thawing control is performed as necessary.
  • the SCR system is equipped with a urea water temperature sensor validity diagnosis system for diagnosing a urea water temperature sensor failure.
  • This validity diagnosis system diagnoses the failure of the urea water temperature sensor by comparing the temperature of the urea water measured by the urea water temperature sensor with the outside air temperature. Specifically, immediately after the engine is started, the temperature of the urea water is compared with the outside air temperature, and when these temperature differences are larger than a preset threshold value, the urea water temperature sensor is diagnosed as a failure. Since the outside air temperature to be compared does not have a temperature sensor that directly measures the outside air temperature (not provided for economic reasons), for example, an intake manifold temperature or a MAF temperature sensor provided in a MAF (Mass Air Flow) sensor. Is used as the outside air temperature.
  • the engine is diagnosed immediately after the engine is started, it is considered that the temperature of the urea water in the urea tank and the outside air temperature are substantially the same, and whether there is a large deviation between these temperatures. This is because a failure of the urea water temperature sensor can be diagnosed by looking.
  • the urea water temperature sensor is erroneously diagnosed even though the urea water temperature sensor has not failed.
  • the temperature of urea water in the urea tank rises, and depending on the replenished amount, urea water measured by a urea water temperature sensor
  • the temperature difference between the temperature of the water and the outside air temperature becomes large, and the urea water temperature sensor is erroneously diagnosed as malfunctioning.
  • an object of the present invention is to provide a validity diagnostic system for a urea water temperature sensor that can prevent erroneous diagnosis when urea water is replenished in a urea tank.
  • the present invention was devised to achieve the above object, and the invention of claim 1 compares the temperature of urea water measured by a urea water temperature sensor provided in the urea tank with the outside air temperature.
  • the validity diagnosis system for a urea water temperature sensor having a validity diagnosis unit for diagnosing a failure of the urea water temperature sensor the urea water level measured by the urea water level sensor provided in the urea tank is immediately before the key is turned off.
  • the validity diagnosis unit In the storage unit, after the key is turned on, a level difference between the urea water level stored in the storage unit and the current urea water level is obtained, and when the level difference is equal to or less than a preset threshold value, the validity diagnosis unit This is a urea water temperature sensor validity diagnosis system having a urea water level condition determination unit that permits diagnosis by temperature comparison.
  • an SCR system 100 includes an SCR device 103 provided in an exhaust pipe 102 of an engine E, and a dosing valve (urea that injects urea water upstream of the SCR device 103 (upstream of exhaust gas).
  • a dosing valve urea that injects urea water upstream of the SCR device 103 (upstream of exhaust gas).
  • injection device, dosing module 104, urea tank 105 for storing urea water, supply module 106 for supplying urea water stored in urea tank 105 to dosing valve 104, dosing valve 104, supply module 106, etc.
  • DCU Dosing Control Unit
  • a DOC (Diesel Oxidation Catalyst) 107, a DPF (Diesel Particulate Filter) 108, and an SCR device 103 are sequentially arranged from the upstream side to the downstream side of the exhaust gas.
  • the DOC 107 is for oxidizing NO in the exhaust gas exhausted from the engine E into NO 2 and controlling the ratio of NO and NO 2 in the exhaust gas to increase the denitration efficiency in the SCR device 103.
  • the DPF 108 is for collecting PM (Particulate Matter) in the exhaust gas.
  • a dosing valve 104 is provided in the exhaust pipe 102 on the upstream side of the SCR device 103.
  • the dosing valve 104 has a structure in which an injection hole is provided in a cylinder filled with high-pressure urea water, and a valve body that closes the injection hole is attached to the plunger, and the valve is pulled up by energizing the coil to raise the plunger. The body is separated from the nozzle and the urea water is injected. When energization of the coil is stopped, the plunger is pulled down by the internal spring force and the valve body closes the injection port, so that the urea water injection is stopped.
  • the exhaust pipe 102 on the upstream side of the dosing valve 104 is provided with an exhaust temperature sensor 109 that measures the temperature of the exhaust gas at the inlet of the SCR device 103 (SCR inlet temperature).
  • An upstream NO x sensor 110 that detects the NO x concentration on the upstream side of the SCR device 103 is provided upstream of the SCR device 103 (here, upstream of the exhaust temperature sensor 109).
  • a downstream side NO x sensor 111 that detects the NO x concentration on the downstream side of the SCR device 103 is provided on the downstream side.
  • the supply module 106 includes an SM pump 112 that pumps urea water, an SM temperature sensor 113 that measures the temperature of the supply module 106 (temperature of urea water flowing through the supply module 106), and the pressure of urea water in the supply module 106 (
  • the urea water pressure sensor 114 for measuring the discharge pressure of the SM pump 112 and the urea water flow path are switched to supply urea water from the urea tank 105 to the dosing valve 104 or within the dosing valve 104.
  • a reverting valve 115 for switching whether to return the urea water to the urea tank 105.
  • the reverting valve 115 when the reverting valve 115 is ON, the urea water from the urea tank 105 is supplied to the dosing valve 104, and when the reverting valve 115 is OFF, the urea water in the dosing valve 104 is supplied to the urea tank 105. I tried to return it.
  • the supply module 106 uses the SM pump 112 to supply the urea water in the urea tank 105 to a liquid supply line (suction line) 116. And the excess urea water is returned to the urea tank 105 through a recovery line (back line) 118.
  • the urea tank 105 is provided with an SCR sensor 119.
  • the SCR sensor 119 includes a level sensor 120 that measures the level (level) of urea water in the urea tank 105, a temperature sensor 121 that measures the temperature of urea water in the urea tank 105, and a sensor in the urea tank 105. And a quality sensor 122 for measuring the quality of the urea water.
  • the quality sensor 122 detects the quality of the urea water in the urea tank 105 by detecting, for example, the concentration of urea water and whether or not a different mixture is mixed in the urea water from the propagation speed and electrical conductivity of the ultrasonic waves. To do.
  • a cooling line 123 for circulating cooling water for cooling the engine E is connected to the urea tank 105 and the supply module 106.
  • the cooling line 123 is configured to exchange heat between the cooling water passing through the urea tank 105 and flowing through the cooling line 123 and the urea water in the urea tank 105.
  • the cooling line 123 passes through the supply module 106 and exchanges heat between the cooling water flowing through the cooling line 123 and the urea water in the supply module 106.
  • the cooling line 123 is provided with a tank heater valve (coolant valve) 124 for switching whether or not to supply cooling water to the urea tank 105 and the supply module 106. Although the cooling line 123 is also connected to the dosing valve 104, the dosing valve 104 is configured to be supplied with cooling water regardless of whether the tank heater valve 124 is opened or closed. 1, the cooling line 123 is disposed along the liquid feeding line 116, the pressure feeding line 117, and the recovery line 118 through which the urea water passes.
  • FIG. 2 shows an input / output configuration diagram of the DCU 126.
  • the DCU126 upstream-side NO x sensor 110, the downstream-side NO x sensor 111, SCR sensor 119 (the level sensor 120, temperature sensor 121, the quality sensor 122), the exhaust gas temperature sensor 109, the supply module 106
  • the SM temperature sensor 113, the urea water pressure sensor 114, and an input signal line from an ECM (Engine Control Module) 125 that controls the engine E are connected. From the ECM 125, signals of outside air temperature and engine parameters (engine speed, etc.) are input.
  • the DCU126, tank heater valve 124, SM pump 112 and reverting valve 115 of the supply module 106, the dosing valve 104, the heater of the upstream-side NO x sensor 110, the output signal to the heater, the downstream-side NO x sensor 111 The lines are connected. Note that the input / output of signals between the DCU 126 and each member may be input / output via individual signal lines or input / output via a CAN (Controller Area Network).
  • CAN Controller Area Network
  • DCU126 includes a signal of the engine parameters from ECM125, based on the exhaust gas temperature from the exhaust temperature sensor 109, thereby estimating the amount of the NO x in the exhaust gas, the amount of the NO x in the exhaust gas estimated is adapted to determine the urea water injected from the dosing valve 104 based on, further, when injected with urea water was determined by dosing valve 104, controls the dosing valve 104 based on the detection value of the upstream-side NO x sensor 110 Thus, the amount of urea water injected from the dosing valve 104 is adjusted.
  • the temperature of the urea water stored in the urea tank 105 is measured by the urea water temperature sensor (the temperature sensor 121 provided in the SCR sensor 119 in this embodiment), and the freezing of the urea water is detected. In some cases, decompression control is performed as necessary. If the temperature sensor 121 as the urea water temperature sensor fails, the temperature of the urea water cannot be measured. Therefore, the SCR system 100 has a urea water temperature sensor validity diagnosis system (hereinafter simply referred to as validity) for diagnosing the failure of the temperature sensor 121. A diagnostic system).
  • validity a urea water temperature sensor validity diagnosis system
  • the validity diagnosis system 129 has a validity diagnosis unit 127 that diagnoses a failure of the temperature sensor 121 by comparing the temperature of the urea water measured by the temperature sensor 121 with the outside air temperature.
  • the validity diagnosis unit 127 is mounted on the DCU 126.
  • the validity diagnosis unit 127 has no abnormality related to the outside air temperature that is data (CAN data) sent from the ECM 125 via the CAN, there is no abnormality related to the level sensor 120 that measures the level of urea water, the temperature sensor After confirming that there is no circuit abnormality 121, it is determined whether or not the engine has just started based on the battery voltage, which is a variable of the DCU 126, and the elapsed time measured by the engine run timer.
  • the engine run timer measures the elapsed time since the engine started. For example, the engine run timer determines that the engine has started when the engine speed exceeds a preset rotation speed (rpm) and starts counting, and the engine rotation speed is set to the preset rotation speed (rpm) ⁇ predetermined The count is reset when the rotation speed becomes less than (for example, 25 rpm).
  • the intake manifold temperature or the MAF temperature measured by the MAF temperature sensor provided in the MAF sensor is outside. Use as temperature.
  • the validity diagnosis unit 127 determines that it is immediately after the engine is started, it compares the temperature of the urea water obtained by the temperature sensor 121 with the outside air temperature, and when it is determined that it is not immediately after the engine is started. The failure of the temperature sensor 121 is not diagnosed.
  • the validity diagnosis unit 127 is configured to diagnose the temperature sensor 121 as a failure when the temperature difference is larger than a preset threshold value as a result of comparing the temperature of the urea water with the outside air temperature.
  • the validity diagnosis system 129 is configured to diagnose the failure of the temperature sensor 121 in this way. However, if the diagnosis is permitted only under the condition of immediately after the engine is started, for example, a room or the like at a low outside temperature When the warm urea water stored in the tank is replenished, the temperature of the urea water in the urea tank 105 rises, and depending on the replenished amount, the temperature of the urea water measured by the temperature sensor 121 and the outside air temperature The difference becomes large and a problem arises that the temperature sensor 121 is erroneously diagnosed as malfunctioning.
  • the present inventors implemented a urea water level condition determination unit 128 that permits the diagnosis by the validity diagnosis unit 127 based on the urea water level in the urea tank 105 in the validity diagnosis system 129.
  • the urea water level condition determination unit 128 sets the urea water level measured by the urea water level sensor provided in the urea tank 105 (level sensor 120 provided in the SCR sensor 119 in the present embodiment) to the key OFF ( Immediately before ignition off; vehicle stop) is stored in the storage unit 130, and after the key is turned on (ignition on; vehicle start), the level difference between the urea water level stored in the storage unit 130 and the current urea water level is obtained. When the difference is equal to or less than a preset threshold value, the validity diagnosis unit 127 allows diagnosis by temperature comparison.
  • the reason for storing in the storage unit 130 immediately before the key is OFF is that the SCR sensor 119 is turned OFF by the key OFF, and thereafter the urea water level cannot be measured.
  • the storage unit 130 is made of a rewritable medium such as an EEPROM.
  • FIG. 4 shows a flowchart summarizing the operation of the urea water level condition determination unit 128.
  • the urea water level condition determination unit 128 stores the current urea water level in the urea tank 105 measured by the level sensor 120 of the SCR sensor 119 after the key is turned on and the storage unit 130 immediately before the key is turned off. The stored urea water level is compared to determine whether or not these level differences are equal to or less than a preset threshold value (step 401). When the urea water level is not stored in the storage unit 130 such as at the time of the first diagnosis, the urea water level condition determination unit 128 ends the operation without permitting the diagnosis by the validity diagnosis unit 127.
  • the urea water level condition determination unit 128 ends the operation without permitting the diagnosis by the validity diagnosis unit 127, and the level difference is set.
  • the urea water level condition determination unit 128 permits the diagnosis by the validity diagnosis unit 127 (step 402).
  • the urea water level condition determination unit 128 permits the diagnosis of the urea water temperature sensor only when the urea water level in the urea tank 105 is not substantially changed.
  • the validity diagnosis unit 127 provided in the validity diagnosis system 129 first has no abnormality related to the outside air temperature, which is CAN data, there is no abnormality related to the level sensor 120 for measuring the level of urea water, and the temperature sensor It is confirmed that there is no circuit abnormality 121 (step 500), and when any abnormality is found, the diagnosis is terminated.
  • the validity diagnosis unit 127 determines whether or not the battery voltage, which is a variable included in the DCU 126, is within a preset range (step 501).
  • step 501 When it is determined in step 501 that the battery voltage is outside the preset range, the validity diagnosis unit 127 terminates the process without performing the diagnosis of the temperature sensor 121.
  • the validity diagnosis unit 127 determines whether the elapsed time measured by the engine run timer is within the preset range. (Step 502).
  • step 502 When it is determined in step 502 that the elapsed time measured by the engine run timer is outside the preset range, the validity diagnosis unit 127 ends the process without performing the diagnosis of the temperature sensor 121.
  • the urea water level condition determination unit 128 sets the urea water level according to the flowchart shown in FIG. It is determined whether or not the diagnosis permission condition (urea water level condition) is satisfied (step 503).
  • the validity diagnosis unit 127 establishes the urea water level condition and the urea water level condition established by the temperature sensor 121.
  • the lowest value of the outside air temperature measured within the predetermined time later is compared (step 504).
  • the minimum value of the outside air temperature measured within a predetermined time after the urea water level condition is satisfied is used to minimize the influence on the diagnosis result. In other words, when the car starts running during this diagnosis, the intake manifold temperature and MAF temperature as the outside air temperature may increase. In this case, the diagnosis result will be greatly affected. Can be eliminated.
  • step 504 When it is determined in step 504 that the temperature difference between the temperature of the urea water and the outside air temperature is equal to or less than a preset threshold value, the validity diagnosis unit 127 determines that the temperature sensor 121 is normal (step 505).
  • the validity diagnosis unit 127 determines that the temperature sensor 121 has failed (step 506). It should be noted that the failure determination may be performed for the first time when it is determined that the failure is repeated a plurality of times in succession.
  • the validity diagnosis system 129 of the present invention in order to determine whether or not the urea water level condition by the urea water level condition determination unit 128 is satisfied in addition to the diagnosis permission conditions of the conventional steps 501 and 502.
  • the diagnosis is not performed when urea water is replenished in the urea tank 105, and it is possible to prevent an erroneous diagnosis that is determined to be a failure even though the temperature sensor 121 has not failed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 尿素タンク内に尿素水が補充された場合の誤診断を防止することができる尿素水温度センサの妥当性診断システムを提供する。 尿素タンク105内に設けられた温度センサ121により測定された尿素水の温度を外気温と比較して、温度センサ121の故障を診断する妥当性診断部127を有する尿素水温度センサの妥当性診断システム129において、尿素タンク105内に設けられたレベルセンサ120により測定された尿素水レベルをキーOFF直前に記憶部130に記憶し、キーON後に、記憶部130に記憶された尿素水レベルと現在の尿素水レベルのレベル差を求め、このレベル差が予め設定した閾値以下のとき、妥当性診断部127で温度比較による診断を許可する尿素水レベル条件判断部128を有するものである。

Description

尿素水温度センサの妥当性診断システム
 本発明は、尿素タンク内に貯留された尿素水の温度を測定する尿素水温度センサの故障を診断する尿素水温度センサの妥当性診断システムに関するものである。
 ディーゼルエンジンの排気ガス中のNOxを浄化するための排ガス浄化システムとして、SCR(Selective Catalytic Reduction)装置を用いたSCRシステムが開発されている。
 このSCRシステムは、尿素水をSCRの排気ガス上流に供給し、排気ガスの熱でアンモニアを生成し、このアンモニアによって、SCR触媒上でNOxを還元して浄化するものである(例えば、特許文献1参照)。
 SCRシステムでは、尿素タンク内に貯留された尿素水の温度を尿素タンク内に設けられた尿素水温度センサにより測定している。これにより、尿素水の凍結を検出し、必要に応じて解凍制御を行っている。
 尿素水温度センサが故障すると尿素水の温度が測定できなくなるため、SCRシステムには尿素水温度センサの故障を診断する尿素水温度センサの妥当性診断システムが備えられている。
 この妥当性診断システムは、尿素水温度センサにより測定された尿素水の温度を外気温と比較して、尿素水温度センサの故障を診断する。具体的には、エンジン始動直後に、尿素水の温度を外気温と比較して、これらの温度差が予め設定した閾値より大きいとき尿素水温度センサを故障と診断する。比較対象の外気温は、外気温を直接測定する温度センサが無い(経済的な理由から設けられていない)ため、例えば、インテークマニホールド温度やMAF(Mass Air Flow)センサに設けられたMAF温度センサにより測定されるMAF温度を外気温として用いる。
 エンジン始動直後に診断をするのは、エンジン始動直後であれば、尿素タンク内の尿素水の温度と外気温とが略同一となっていると考えられ、これら温度に大きなズレがあるかどうかを見ることで尿素水温度センサの故障を診断できるからである。
特開2000-303826号公報
 しかしながら、従来の妥当性診断システムでは、尿素水温度センサが故障していないのにもかかわらず、故障と誤診断してしまう場合があった。例えば、低外気温時に部屋などに保存されていた暖かい尿素水が補充された場合、尿素タンク内の尿素水の温度が上昇し、補充された量によっては尿素水温度センサで測定される尿素水の温度と外気温との温度差が大きくなり、尿素水温度センサが故障していると誤診断してしまうと言う問題があった。
 そこで、本発明の目的は、尿素タンク内に尿素水が補充された場合の誤診断を防止することができる尿素水温度センサの妥当性診断システムを提供することにある。
 本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、尿素タンク内に設けられた尿素水温度センサにより測定された尿素水の温度を外気温と比較して、前記尿素水温度センサの故障を診断する妥当性診断部を有する尿素水温度センサの妥当性診断システムにおいて、尿素タンク内に設けられた尿素水レベルセンサにより測定された尿素水レベルをキーOFF直前に記憶部に記憶し、キーON後に、前記記憶部に記憶された尿素水レベルと現在の尿素水レベルのレベル差を求め、このレベル差が予め設定した閾値以下のとき、前記妥当性診断部で温度比較による診断を許可する尿素水レベル条件判断部を有する尿素水温度センサの妥当性診断システムである。
 本発明によれば、尿素タンク内に尿素水が補充された場合の誤診断を防止することができる。
本発明を適用するSCRシステムを示す概略図である。 DCUの入出力構成を示す図である。 本発明に係る尿素水レベル条件判断部の構成を示す図である。 本発明に係る尿素水レベル条件判断部の動作を示すフローチャートである。 本発明に係る尿素水温度センサの妥当性診断システムの動作を示すフローチャートである。
 以下、本発明の好適な実施の形態を添付図面にしたがって説明する。
 先ず、車両に搭載されるSCRシステムについて説明する。
 図1に示すように、SCRシステム100は、エンジンEの排気管102に設けられたSCR装置103と、SCR装置103の上流側(排気ガスの上流側)で尿素水を噴射するドージングバルブ(尿素噴射装置、ドージングモジュール)104と、尿素水を貯留する尿素タンク105と、尿素タンク105に貯留された尿素水をドージングバルブ104に供給するサプライモジュール106と、ドージングバルブ104やサプライモジュール106等を制御するDCU(Dosing Control Unit)126とを主に備える。
 エンジンEの排気管102には、排気ガスの上流側から下流側にかけて、DOC(Diesel Oxidation Catalyst)107、DPF(Diesel Particulate Filter)108、SCR装置103が順次配置される。DOC107は、エンジンEから排気される排気ガス中のNOを酸化してNO2とし、排気ガス中のNOとNO2の比率を制御してSCR装置103における脱硝効率を高めるためのものである。また、DPF108は、排気ガス中のPM(Particulate Matter)を捕集するためのものである。
 SCR装置103の上流側の排気管102には、ドージングバルブ104が設けられる。ドージングバルブ104は、高圧の尿素水が満たされたシリンダに噴口が設けられ、その噴口を塞ぐ弁体がプランジャに取り付けられた構造となっており、コイルに通電することによりプランジャを引き上げることで弁体を噴口から離間させて尿素水を噴射するようになっている。コイルへの通電を止めると、内部のバネ力によりプランジャが引き下げられて弁体が噴口を塞ぐので尿素水の噴射が停止される。
 ドージングバルブ104の上流側の排気管102には、SCR装置103の入口における排気ガスの温度(SCR入口温度)を測定する排気温度センサ109が設けられる。また、SCR装置103の上流側(ここでは排気温度センサ109の上流側)には、SCR装置103の上流側でのNOx濃度を検出する上流側NOxセンサ110が設けられ、SCR装置103の下流側には、SCR装置103の下流側でのNOx濃度を検出する下流側NOxセンサ111が設けられる。
 サプライモジュール106は、尿素水を圧送するSMポンプ112と、サプライモジュール106の温度(サプライモジュール106を流れる尿素水の温度)を測定するSM温度センサ113と、サプライモジュール106内における尿素水の圧力(SMポンプ112の吐出側の圧力)を測定する尿素水圧力センサ114と、尿素水の流路を切り替えることにより、尿素タンク105からの尿素水をドージングバルブ104に供給するか、あるいはドージングバルブ104内の尿素水を尿素タンク105に戻すかを切り替えるリバーティングバルブ115とを備えている。ここでは、リバーティングバルブ115がONのとき、尿素タンク105からの尿素水をドージングバルブ104に供給するようにし、リバーティングバルブ115がOFFのとき、ドージングバルブ104内の尿素水を尿素タンク105に戻すようにした。
 リバーティングバルブ115が尿素水をドージングバルブ104に供給するように切り替えられている場合、サプライモジュール106は、そのSMポンプ112にて、尿素タンク105内の尿素水を送液ライン(サクションライン)116を通して吸い上げ、圧送ライン(プレッシャーライン)117を通してドージングバルブ104に供給するようにされ、余剰の尿素水を、回収ライン(バックライン)118を通して尿素タンク105に戻すようにされる。
 尿素タンク105には、SCRセンサ119が設けられる。SCRセンサ119は、尿素タンク105内の尿素水の液面高さ(レベル)を測定するレベルセンサ120と、尿素タンク105内の尿素水の温度を測定する温度センサ121と、尿素タンク105内の尿素水の品質を測定する品質センサ122とを備えている。品質センサ122は、例えば、超音波の伝播速度や電気伝導度から、尿素水の濃度や尿素水に異種混合物が混合されているか否かを検出し、尿素タンク105内の尿素水の品質を検出するものである。
 尿素タンク105とサプライモジュール106には、エンジンEを冷却するための冷却水を循環する冷却ライン123が接続される。冷却ライン123は、尿素タンク105内を通り、冷却ライン123を流れる冷却水と尿素タンク105内の尿素水との間で熱交換するようにされる。同様に、冷却ライン123は、サプライモジュール106内を通り、冷却ライン123を流れる冷却水とサプライモジュール106内の尿素水との間で熱交換するようにされる。
 冷却ライン123には、尿素タンク105とサプライモジュール106に冷却水を供給するか否かを切り替えるタンクヒーターバルブ(クーラントバルブ)124が設けられる。なお、ドージングバルブ104にも冷却ライン123が接続されるが、ドージングバルブ104には、タンクヒーターバルブ124の開閉に拘わらず、冷却水が供給されるように構成されている。なお、図1では図を簡略化しており示されていないが、冷却ライン123は、尿素水が通る送液ライン116、圧送ライン117、回収ライン118に沿って配設される。
 図2に、DCU126の入出力構成図を示す。
 図2に示すように、DCU126には、上流側NOxセンサ110、下流側NOxセンサ111、SCRセンサ119(レベルセンサ120、温度センサ121、品質センサ122)、排気温度センサ109、サプライモジュール106のSM温度センサ113と尿素水圧力センサ114、およびエンジンEを制御するECM(Engine Control Module)125からの入力信号線が接続されている。ECM125からは、外気温、エンジンパラメータ(エンジン回転数など)の信号が入力される。
 また、DCU126には、タンクヒーターバルブ124、サプライモジュール106のSMポンプ112とリバーティングバルブ115、ドージングバルブ104、上流側NOxセンサ110のヒータ、下流側NOxセンサ111のヒータ、への出力信号線が接続される。なお、DCU126と各部材との信号の入出力に関しては、個別の信号線を介した入出力、CAN(Controller Area Network)を介した入出力のどちらであってもよい。
 DCU126は、ECM125からのエンジンパラメータの信号と、排気温度センサ109からの排気ガス温度とを基に、排気ガス中のNOxの量を推定すると共に、推定した排気ガス中のNOxの量を基にドージングバルブ104から噴射する尿素水量を決定するようにされ、さらに、ドージングバルブ104にて決定した尿素水量で噴射したとき、上流側NOxセンサ110の検出値に基づいてドージングバルブ104を制御して、ドージングバルブ104から噴射する尿素水量を調整するようにされる。
 SCRシステム100では、尿素タンク105内に貯留された尿素水の温度を尿素水温度センサ(本実施の形態ではSCRセンサ119に設けられた温度センサ121)により測定し、尿素水の凍結を検出した場合に必要に応じて解凍制御を行うようにしている。尿素水温度センサとしての温度センサ121が故障すると尿素水の温度が測定できなくなるため、SCRシステム100には温度センサ121の故障を診断する尿素水温度センサの妥当性診断システム(以下、単に妥当性診断システムと言う)が備えられている。
 図3に示すように、妥当性診断システム129は、温度センサ121により測定された尿素水の温度を外気温と比較して、温度センサ121の故障を診断する妥当性診断部127を有する。この妥当性診断部127は、DCU126に実装される。
 妥当性診断部127は、CANを介してECM125から送られるデータ(CANデータ)である外気温関連の異常が無いこと、尿素水のレベルを測定するレベルセンサ120関連の異常が無いこと、温度センサ121の回路異常が無いこと、を確認した上で、DCU126に持っている変数であるバッテリ電圧と、エンジンランタイマーで測定した経過時間とによってエンジン始動直後であるか否かを判断するようにされる。
 ここで、エンジンランタイマーとは、エンジンが始動してからの経過時間を測定するものである。例えば、エンジンランタイマーは、エンジン回転数が予め設定した回転数(rpm)以上になったときにエンジン始動と判断してカウントを開始し、エンジン回転数が上記設定した回転数(rpm)-所定の回転数(例えば、25rpm)以下になったときにカウントをリセットするようにされる。
 なお、通常は外気温を直接測定する温度センサが無い(経済的な理由から設けられていない)ため、例えば、インテークマニホールド温度やMAFセンサに設けられたMAF温度センサにより測定されるMAF温度を外気温として用いる。
 また、妥当性診断部127は、エンジン始動直後であると判断した場合には、温度センサ121により得られた尿素水の温度を外気温と比較し、またエンジン始動直後でないと判断した場合には、温度センサ121の故障の診断は行わないようにされる。
 さらに、妥当性診断部127は、尿素水の温度を外気温と比較した結果、その温度差が予め設定した閾値より大きいとき、温度センサ121を故障と診断するようにされる。
 妥当性診断システム129は、このようにして温度センサ121の故障を診断するようにされるが、エンジン始動直後と言う条件だけで診断を許可していたのでは、例えば、低外気温時に部屋などに保存されていた暖かい尿素水が補充された場合、尿素タンク105内の尿素水の温度が上昇し、補充された量によっては温度センサ121で測定される尿素水の温度と外気温との温度差が大きくなり、温度センサ121が故障していると誤診断してしまうと言う問題が生じる。
 そこで、本発明者らは、妥当性診断システム129に、尿素タンク105内の尿素水レベルに基づいて妥当性診断部127による診断を許可する尿素水レベル条件判断部128を実装した。
 この尿素水レベル条件判断部128は、尿素タンク105内に設けられた尿素水レベルセンサ(本実施の形態ではSCRセンサ119に設けられたレベルセンサ120)により測定された尿素水レベルをキーOFF(イグニッションオフ;車両停止)直前に記憶部130に記憶し、キーON(イグニッションオン;車両始動)後に、記憶部130に記憶された尿素水レベルと現在の尿素水レベルのレベル差を求め、このレベル差が予め設定した閾値以下のとき、妥当性診断部127で温度比較による診断を許可するようにされる。キーOFF直前に記憶部130に記憶するのは、キーOFFによりSCRセンサ119がOFFとなってしまい、その後は尿素水レベルを測定することができないためである。また、記憶部130は、例えばEEPROMなど書き換え可能な媒体からなる。
 尿素水レベル条件判断部128の動作をまとめたフローチャートを図4に示す。
 図4に示すように、尿素水レベル条件判断部128は、キーON後にSCRセンサ119のレベルセンサ120により測定された尿素タンク105内の現在の尿素水レベルと、キーOFF直前に記憶部130に記憶された尿素水レベルとを比較して、これらのレベル差が予め設定した閾値以下であるか否かを判断する(ステップ401)。なお、初回診断時など記憶部130に尿素水レベルが記憶されていない場合には、尿素水レベル条件判断部128は妥当性診断部127による診断を許可すること無く動作を終了する。
 ステップ401にてレベル差が設定した閾値より大きいと判断されたときは、尿素水レベル条件判断部128は妥当性診断部127による診断を許可すること無く動作を終了し、また、レベル差が設定した閾値以下であると判断されたときは、尿素水レベル条件判断部128は妥当性診断部127による診断を許可する(ステップ402)。
 このような動作により、尿素水レベル条件判断部128は、尿素タンク105内の尿素水レベルがほぼ変化していない場合のみに尿素水温度センサの診断を許可する。
 この尿素水レベル条件判断部128を備えた尿素水温度センサの妥当性診断システム129の動作を図5により説明する。
 妥当性診断システム129に備えられた妥当性診断部127は、先ず、CANデータである外気温関連の異常が無いこと、尿素水のレベルを測定するレベルセンサ120関連の異常が無いこと、温度センサ121の回路異常が無いこと、を確認し(ステップ500)、いずれかに異常がある場合は診断を終了する。
 ステップ500にて各種異常が無いことを確認したら、妥当性診断部127は、DCU126に持っている変数であるバッテリ電圧が予め設定した範囲内であるか否かを判断する(ステップ501)。
 ステップ501にてバッテリ電圧が予め設定した範囲外であると判断されたときには、妥当性診断部127は温度センサ121の診断を行うこと無くプロセスを終了する。
 また、ステップ501にてバッテリ電圧が予め設定した範囲内であると判断されたときには、妥当性診断部127はエンジンランタイマーで測定した経過時間が予め設定した範囲内であるか否かを判断する(ステップ502)。
 ステップ502にてエンジンランタイマーで測定した経過時間が予め設定した範囲外であると判断されたときには、妥当性診断部127は温度センサ121の診断を行うこと無くプロセスを終了する。
 また、ステップ502にてエンジンランタイマーで測定した経過時間が予め設定した範囲内であると判断されたときには、尿素水レベル条件判断部128によって図4に示したフローチャートに順って尿素水レベルに基づく診断許可条件(尿素水レベル条件)を満たしているか否かの判断を行う(ステップ503)。
 ステップ503にて尿素水レベル条件判断部128による尿素水レベル条件を満たしていると判断されたときには、妥当性診断部127は、温度センサ121により得られた尿素水の温度と尿素水レベル条件成立後の所定時間内に測定された外気温のうち最低値とを比較する(ステップ504)。ここで、尿素水レベル条件成立後の所定時間内に測定された外気温のうち最低値を用いるのは、診断結果への影響を最小限に抑えるためである。つまり、本診断中に自動車が走り出したときには、外気温としてのインテークマニホールド温度やMAF温度が上昇する可能性があり、この場合診断結果に大きな影響を与えてしまうが、最低値を用いることでこれらの影響を排除できる。
 ステップ504にて尿素水の温度と外気温との温度差が予め設定した閾値以下であると判断されたときには、妥当性診断部127は温度センサ121が正常であると判断する(ステップ505)。
 ステップ504にて尿素水の温度と外気温との温度差が予め設定した閾値より大きいと判断されたときには、妥当性診断部127は温度センサ121が故障していると判断する(ステップ506)。なお、故障の判断は、これらのステップを繰り返し、連続して複数回、故障と判断されたときに初めて行うようにしてもよい。
 このように、本発明の妥当性診断システム129では、従来のステップ501,502の診断許可条件に加えて、尿素水レベル条件判断部128による尿素水レベル条件を満たしているか否かを判断するため、尿素タンク105内に尿素水が補充された場合に診断を行わず、温度センサ121が故障していないのにもかかわらず、故障と判断する誤診断を防止することができる。
105 尿素タンク
120 レベルセンサ
121 温度センサ
127 妥当性診断部
128 尿素水レベル条件判断部
129 尿素水温度センサの妥当性診断システム
130 記憶部

Claims (1)

  1.  尿素タンク内に設けられた尿素水温度センサにより測定された尿素水の温度を外気温と比較して、前記尿素水温度センサの故障を診断する妥当性診断部を有する尿素水温度センサの妥当性診断システムにおいて、
     尿素タンク内に設けられた尿素水レベルセンサにより測定された尿素水レベルをキーOFF直前に記憶部に記憶し、キーON後に、前記記憶部に記憶された尿素水レベルと現在の尿素水レベルのレベル差を求め、このレベル差が予め設定した閾値以下のとき、前記妥当性診断部で温度比較による診断を許可する尿素水レベル条件判断部を有することを特徴とする尿素水温度センサの妥当性診断システム。
PCT/JP2011/061208 2010-05-17 2011-05-16 尿素水温度センサの妥当性診断システム WO2011145570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11783504.1A EP2573344B1 (en) 2010-05-17 2011-05-16 Validity diagnosis system for urea water temperature sensor
US13/697,925 US8973421B2 (en) 2010-05-17 2011-05-16 Competence diagnosis system for urea water temperature sensor
CN201180024556.9A CN102892989B (zh) 2010-05-17 2011-05-16 尿素水温度传感器的有效性诊断***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010113760A JP5786280B2 (ja) 2010-05-17 2010-05-17 尿素水温度センサの妥当性診断システム
JP2010-113760 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145570A1 true WO2011145570A1 (ja) 2011-11-24

Family

ID=44991673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061208 WO2011145570A1 (ja) 2010-05-17 2011-05-16 尿素水温度センサの妥当性診断システム

Country Status (5)

Country Link
US (1) US8973421B2 (ja)
EP (1) EP2573344B1 (ja)
JP (1) JP5786280B2 (ja)
CN (1) CN102892989B (ja)
WO (1) WO2011145570A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743471A1 (en) * 2012-12-17 2014-06-18 Deere & Company A reductant delivery system
US20180294523A1 (en) * 2015-06-09 2018-10-11 Seeo, Inc. Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294446B2 (ja) * 2008-02-08 2013-09-18 ボッシュ株式会社 温度センサの合理性診断装置及び合理性診断方法、並びに内燃機関の排気浄化装置
JP5573352B2 (ja) * 2010-05-17 2014-08-20 いすゞ自動車株式会社 尿素水温度センサの妥当性診断システム
US9816416B2 (en) 2013-06-10 2017-11-14 Bosch Corporation Control apparatus and control method for reducing agent supply apparatus
JP6100666B2 (ja) * 2013-10-07 2017-03-22 トヨタ自動車株式会社 エンジンの添加剤供給装置
JP6248789B2 (ja) 2014-05-08 2017-12-20 いすゞ自動車株式会社 排気浄化システム
US9664083B2 (en) * 2015-08-14 2017-05-30 Cummins Emission Solutions Inc. Virtual reductant level sensor
DE102016225756A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Verfahren zur Diagnose eines Qualitätssignals, Steuergerät, Steuergerät-Programm und Steuergerät-Programmprodukt
DE202018104014U1 (de) * 2018-07-12 2018-10-17 Wema System As Temperatursensoreinheit und Harnstoffsensor
CN113217152B (zh) * 2021-06-21 2022-05-17 河北亚大汽车塑料制品有限公司 尿素管解冻喷射实验检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2009079584A (ja) * 2007-09-05 2009-04-16 Toyota Motor Corp 内燃機関の排気浄化装置
WO2009098805A1 (ja) * 2008-02-08 2009-08-13 Bosch Corporation 温度センサの合理性診断装置及び合理性診断方法、並びに内燃機関の排気浄化装置
JP2010180753A (ja) * 2009-02-04 2010-08-19 Denso Corp 排気浄化システムの異常診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363771B1 (en) * 1999-11-24 2002-04-02 Caterpillar Inc. Emissions diagnostic system
US8459013B2 (en) * 2008-12-30 2013-06-11 Daimler Trucks North America Llc Urea tank with closure member for vehicle exhaust system
US8495868B2 (en) * 2010-03-22 2013-07-30 Caterpillar Inc. Control strategy for heated fluid lines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2009079584A (ja) * 2007-09-05 2009-04-16 Toyota Motor Corp 内燃機関の排気浄化装置
WO2009098805A1 (ja) * 2008-02-08 2009-08-13 Bosch Corporation 温度センサの合理性診断装置及び合理性診断方法、並びに内燃機関の排気浄化装置
JP2010180753A (ja) * 2009-02-04 2010-08-19 Denso Corp 排気浄化システムの異常診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743471A1 (en) * 2012-12-17 2014-06-18 Deere & Company A reductant delivery system
US20180294523A1 (en) * 2015-06-09 2018-10-11 Seeo, Inc. Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes

Also Published As

Publication number Publication date
EP2573344A1 (en) 2013-03-27
CN102892989A (zh) 2013-01-23
EP2573344B1 (en) 2017-11-22
US20130055803A1 (en) 2013-03-07
CN102892989B (zh) 2016-10-12
JP5786280B2 (ja) 2015-09-30
US8973421B2 (en) 2015-03-10
EP2573344A4 (en) 2016-04-13
JP2011241740A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5786280B2 (ja) 尿素水温度センサの妥当性診断システム
JP5573352B2 (ja) 尿素水温度センサの妥当性診断システム
JP5533235B2 (ja) NOxセンサ診断装置及びSCRシステム
JP5789925B2 (ja) NOxセンサ診断装置及びSCRシステム
US8387366B2 (en) Reducing agent injection valve abnormality detection device and abnormality detection method, and internal combustion engine exhaust gas purification system
JP5482446B2 (ja) Scrシステム
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
US10301997B2 (en) Method for checking a temperature sensor in an SCR exhaust gas post-treatment system
JP6248789B2 (ja) 排気浄化システム
WO2011145567A1 (ja) Scr解凍制御システム
JP4737312B2 (ja) 排気浄化システムの異常診断装置及び排気浄化システム
JP2017082633A (ja) 診断装置
JP6064836B2 (ja) 尿素水添加弁の異常検出装置
JP2008163795A (ja) 内燃機関の排気浄化装置
JP5471832B2 (ja) Scrシステム
JP5871074B2 (ja) 内燃機関の添加剤供給装置
JP2011241722A (ja) 排ガス浄化システム
JP5589553B2 (ja) Scrシステム
JP5589552B2 (ja) Scrシステム
JP2021046815A (ja) 排気浄化システム及び車両
JP2019070350A (ja) 内燃機関の排気浄化装置の異常診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024556.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13697925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011783504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011783504

Country of ref document: EP