WO2011145567A1 - Scr解凍制御システム - Google Patents

Scr解凍制御システム Download PDF

Info

Publication number
WO2011145567A1
WO2011145567A1 PCT/JP2011/061205 JP2011061205W WO2011145567A1 WO 2011145567 A1 WO2011145567 A1 WO 2011145567A1 JP 2011061205 W JP2011061205 W JP 2011061205W WO 2011145567 A1 WO2011145567 A1 WO 2011145567A1
Authority
WO
WIPO (PCT)
Prior art keywords
thawing
scr
supply module
pressure
urea water
Prior art date
Application number
PCT/JP2011/061205
Other languages
English (en)
French (fr)
Inventor
正信 嶺澤
圭一 飯田
豪一 赤星
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP11783501.7A priority Critical patent/EP2573341B1/en
Priority to CN201180024475.9A priority patent/CN102947562B/zh
Priority to US13/697,928 priority patent/US8959890B2/en
Publication of WO2011145567A1 publication Critical patent/WO2011145567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0421Methods of control or diagnosing using an increment counter when a predetermined event occurs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an SCR thawing control system for thawing frozen urea water.
  • An SCR system using an SCR (Selective Catalytic Reduction) device has been developed as an exhaust gas purification system for purifying NO x in exhaust gas of a diesel engine.
  • This SCR system supplies urea water upstream of the exhaust gas of the SCR, generates ammonia by the heat of the exhaust gas, and reduces and purifies NO x on the SCR catalyst by this ammonia (for example, patent) Reference 1).
  • the SCR system is equipped with an SCR thawing control system for performing thawing control for supplying engine cooling water to a urea water supply system during chilling and thawing frozen urea water.
  • the conventional SCR thawing control system is connected to the tank temperature in the urea tank that stores urea water, the temperature in the urea pipe between the urea tank and the dosing valve that injects urea water upstream of the SCR device, and connected to the urea pipe
  • any one of the SM temperatures in the supplied module is lower than a preset threshold value, it is determined that the urea water is frozen and the thawing control is performed. Since there is usually no sensor for detecting the temperature in the urea pipe, the outside air temperature is regarded as the temperature in the urea pipe.
  • the SM pump of the supply module is operated to fill the urea pipe into the urea pipe.
  • the pressure is maintained at a constant value, and urea water is injected from the dosing valve (preparation so that urea water can be injected from the dosing valve).
  • the tank temperature and SM temperature are detected by the temperature sensors provided inside the tank and the supply module, respectively, even if the detected value exceeds the threshold value, the part away from the temperature sensor (supply module) And the urea pipe connection part) may not be thawed sufficiently, and the urea water in that part may remain frozen.
  • the pressure does not increase due to the frozen material, or the pressure becomes high.
  • the pump will operate at maximum output (empty operation). At this time, ice particles and non-thawable urea water flow into the pump and become a load on the pump. If the pressure is high, there is a possibility of pump failure (failure due to abnormally high pressure).
  • the failure of decompression cannot be detected, and if the time until it is determined to be a failure is shortened, the failure is warned by an abnormal signal only when the decompression is not sufficient ( There was a problem). Moreover, if the time until the failure is determined is increased, the pump will fail. The service life will be shortened even if it does not break down.
  • an object of the present invention is to provide an SCR thawing control system capable of distinguishing between failure and failure of thawing and preventing failure of the SM pump.
  • the present invention has been devised to achieve the above object, and the invention according to claim 1 is characterized in that when the urea water of the selective catalytic reduction apparatus is frozen, the urea water is thawed and the supply of the supply module after thawing.
  • the SCR thawing control system in which the module pump is operated to inject from the dosing valve, when the supply module pump is operated, the pressure in the supply module is detected, and when the pressure does not reach a certain value,
  • An SCR thawing control system comprising a thawing control unit for stopping the operation of a module pump.
  • the thawing control unit detects an outside air temperature when the pressure in the supply module does not reach a certain value, and operates the supply module pump when the detected outside air temperature is lower than a predetermined temperature.
  • the thawing control unit stops the operation of the supply module pump and continues thawing the urea water, and detects the pressure in the supply module again when thawing is continued for a certain period of time.
  • the invention of claim 4 is the SCR thawing control system according to claim 3, wherein the thawing control unit warns of a failure when detecting that the pressure in the supply module does not reach a constant value a predetermined number of times.
  • the failure of thawing and the failure can be distinguished, and the failure of the SM pump can also be prevented.
  • an SCR system 100 includes an SCR device 103 provided in an exhaust pipe 102 of an engine E, and a dosing valve (urea that injects urea water upstream of the SCR device 103 (upstream of exhaust gas).
  • a dosing valve urea that injects urea water upstream of the SCR device 103 (upstream of exhaust gas).
  • injection device, dosing module 104, urea tank 105 for storing urea water, supply module 106 for supplying urea water stored in urea tank 105 to dosing valve 104, dosing valve 104, supply module 106, etc.
  • DCU Dosing Control Unit
  • a DOC (Diesel Oxidation Catalyst) 107, a DPF (Diesel Particulate Filter) 108, and an SCR device 103 are sequentially arranged from the upstream side to the downstream side of the exhaust gas.
  • the DOC 107 is for oxidizing NO in the exhaust gas exhausted from the engine E into NO 2 and controlling the ratio of NO and NO 2 in the exhaust gas to increase the denitration efficiency in the SCR device 103.
  • the DPF 108 is for collecting PM (Particulate Matter) in the exhaust gas.
  • a dosing valve 104 is provided in the exhaust pipe 102 on the upstream side of the SCR device 103.
  • the dosing valve 104 has a structure in which an injection hole is provided in a cylinder filled with high-pressure urea water, and a valve body that closes the injection hole is attached to the plunger, and the valve is pulled up by energizing the coil to raise the plunger. The body is separated from the nozzle and the urea water is injected. When energization of the coil is stopped, the plunger is pulled down by the internal spring force and the valve body closes the injection port, so that the urea water injection is stopped.
  • the exhaust pipe 102 on the upstream side of the dosing valve 104 is provided with an exhaust temperature sensor 109 that measures the temperature of the exhaust gas at the inlet of the SCR device 103 (SCR inlet temperature).
  • An upstream NO x sensor 110 that detects the NO x concentration on the upstream side of the SCR device 103 is provided upstream of the SCR device 103 (here, upstream of the exhaust temperature sensor 109).
  • a downstream side NO x sensor 111 that detects the NO x concentration on the downstream side of the SCR device 103 is provided on the downstream side.
  • the supply module 106 includes an SM pump 112 that pumps urea water, an SM temperature sensor 113 that measures the temperature of the supply module 106 (temperature of urea water flowing through the supply module 106), and the pressure of urea water in the supply module 106 (
  • the urea water pressure sensor 114 for measuring the discharge pressure of the SM pump 112 and the urea water flow path are switched to supply urea water from the urea tank 105 to the dosing valve 104 or within the dosing valve 104.
  • a reverting valve 115 for switching whether to return the urea water to the urea tank 105.
  • the reverting valve 115 when the reverting valve 115 is OFF, the urea water from the urea tank 105 is supplied to the dosing valve 104, and when the reverting valve 115 is ON, the urea water in the dosing valve 104 is supplied to the urea tank 105. I tried to return it.
  • the supply module 106 uses the SM pump 112 to supply the urea water in the urea tank 105 to a liquid supply line (suction line) 116. And the excess urea water is returned to the urea tank 105 through a recovery line (back line) 118.
  • the urea tank 105 is provided with an SCR sensor 119.
  • the SCR sensor 119 includes a level sensor 120 that measures the level (level) of urea water in the urea tank 105, a temperature sensor 121 that measures the temperature of urea water in the urea tank 105, and a sensor in the urea tank 105. And a quality sensor 122 for measuring the quality of the urea water.
  • the quality sensor 122 detects the quality of the urea water in the urea tank 105 by detecting, for example, the concentration of urea water and whether or not a different mixture is mixed in the urea water from the propagation speed and electrical conductivity of the ultrasonic waves. To do.
  • a cooling water line 123 that circulates cooling water (engine cooling water) for cooling the engine E is connected to the urea tank 105 and the supply module 106.
  • the cooling water line 123 passes through the urea tank 105, and heat is exchanged between the cooling water flowing through the cooling water line 123 and the urea water in the urea tank 105.
  • the cooling water line 123 passes through the supply module 106 so as to exchange heat between the cooling water flowing through the cooling water line 123 and the urea water in the supply module 106.
  • the cooling water line 123 is provided with a tank heater valve (coolant valve) 124 for switching whether or not to supply cooling water to the urea tank 105 and the supply module 106. Although the cooling water line 123 is also connected to the dosing valve 104, the dosing valve 104 is configured to be supplied with cooling water regardless of whether the tank heater valve 124 is opened or closed. 1, the cooling water line 123 is disposed along the liquid feed line 116, the pressure feed line 117, and the recovery line 118 through which the urea water passes.
  • FIG. 2 shows an input / output configuration diagram of the DCU 126.
  • the DCU126 upstream-side NO x sensor 110, the downstream-side NO x sensor 111, SCR sensor 119 (the level sensor 120, temperature sensor 121, the quality sensor 122), the exhaust gas temperature sensor 109, the supply module 106
  • the SM temperature sensor 113, the urea water pressure sensor 114, and an input signal line from an ECM (Engine Control Module) 125 that controls the engine E are connected. From the ECM 125, signals of outside air temperature and engine parameters (engine speed, etc.) are input.
  • the DCU126, tank heater valve 124, SM pump 112 and reverting valve 115 of the supply module 106, the dosing valve 104, the heater of the upstream-side NO x sensor 110, the output signal to the heater, the downstream-side NO x sensor 111 The lines are connected. Note that the input / output of signals between the DCU 126 and each member may be input / output via individual signal lines or input / output via a CAN (Controller Area Network).
  • CAN Controller Area Network
  • DCU126 includes a signal of the engine parameters from ECM125, based on the exhaust gas temperature from the exhaust temperature sensor 109, thereby estimating the amount of the NO x in the exhaust gas, the amount of the NO x in the exhaust gas estimated is adapted to determine the urea water injected from the dosing valve 104 based on, further, when injected with urea water was determined by dosing valve 104, controls the dosing valve 104 based on the detection value of the upstream-side NO x sensor 110 Thus, the amount of urea water injected from the dosing valve 104 is adjusted.
  • the SCR system 100 thaws the urea water and, after thawing, operates the SM pump 112 of the supply module 106 and injects it from the dosing valve 104 (prepared so that it can be injected from the dosing valve 104).
  • An SCR decompression control system 127 is provided.
  • the SCR thawing control system 127 detects the temperature of the urea water in the urea tank 105 (tank temperature) detected by the temperature sensor 121 of the SCR sensor 119, the temperature in the liquid feeding / pressure feeding / recovery lines 116, 117, 118 (from the ECM 125).
  • the outside air temperature to be sent is regarded as the temperature in the liquid feed / pressure feed / recovery line 116, 117, 118), and the temperature of the supply module 106 (SM temperature) detected by the SM temperature sensor 113 is referred to.
  • a threshold value for example, the melting point of urea water
  • the urea water is determined to be frozen
  • the tank heater valve 124 is turned on (open)
  • the cooling water from the engine E is passed through the cooling water line 123 to the urea tank 105, Supply to liquid feeding / pressure feeding / recovery lines 116, 117, 118 and supply module 106, and thaw frozen urea water.
  • a threshold value for example, the melting point of urea water
  • the SCR thawing control system 127 determines that the thawing is completed when the tank temperature and the SM temperature are equal to or higher than the threshold and the set time corresponding to the outside air temperature has elapsed, and operates the SM pump 112 of the supply module 106 to operate urea. Water is filled into the pressure feed line 117 (urea pipe) and the pressure detected by the urea water pressure sensor 114 is maintained at a constant value. When the pressure is maintained at a constant value, the thawing control is terminated. Thus, the SCR thawing control system 127 prepares the urea water to be injected from the dosing valve 104 (preparation so that the urea water can be injected from the dosing valve).
  • the SCR thawing control system 127 of the present invention detects the pressure in the supply module (pressure detected by the urea water pressure sensor 114) when the SM pump 112 is operated, and the pressure reaches a certain value. It is characterized by having a thawing control unit 128 that stops the operation of the SM pump 112 when it is not performed (when a constant value is not maintained).
  • the decompression control unit 128 is mounted on the DCU 126.
  • the pressure detected by the urea water pressure sensor 114 does not maintain a constant value, there are a high pressure abnormality and a low pressure abnormality.
  • the case where the pressure does not increase even after a predetermined time has elapsed since the start of filling of the urea water is a low pressure abnormality, and the case where the pressure suddenly increases after the filling starts and exceeds a predetermined value is a high pressure abnormality. That is, the high pressure abnormality is detected at a relatively early stage after the filling of the urea water, and the low pressure abnormality is detected after a predetermined time has elapsed.
  • the urea water freezes at the connection portion between the liquid supply line 116 and the supply module 106 and the pressure detected by the urea water pressure sensor 114 does not increase.
  • the thawing control unit 128 detects the outside air temperature when the pressure detected by the urea water pressure sensor 114 does not maintain a constant value, and when the detected outside air temperature is low (for example, less than a threshold value (for example, the melting point of urea water)). ) Is configured to stop the operation of the SM pump 112.
  • the thawing control unit 128 stops the operation of the SM pump 112 and continues thawing the urea water.
  • the thawing control unit 128 detects the pressure in the supply module 106 again, and the pressure becomes a constant value. Configured to warn of failure when not reached.
  • the thawing control unit 128 is configured to warn of a failure when detecting that the pressure in the supply module 106 does not reach a certain value a predetermined number of times.
  • decompression control unit 128 Detailed operation of the decompression control unit 128 will be described together with the operation of the SCR decompression control system 127 with reference to FIG.
  • the SCR decompression control system 127 determines whether the decompression control conditions are satisfied after the key is turned on. Whether the thawing control condition is satisfied or not is determined based on the temperature of the urea water in the urea tank 105 (tank temperature) detected by the temperature sensor 121, the temperature in the liquid feed / pressure feed / recovery lines 116, 117, 118, SM Judgment is made based on whether any of the temperatures (SM temperature) of the supply module 106 detected by the temperature sensor 113 is less than a preset threshold value.
  • the SCR thawing control system 127 determines that the urea water is frozen when any of these temperatures is less than the threshold, turns on the tank heater valve 124, and supplies the cooling water from the engine E through the cooling water line 123 to the urea tank 105. Then, thawing control for supplying the solution / pressure feeding / recovery lines 116, 117, 118 to the supply module 106 and thawing the frozen urea water is started (step 301).
  • the SCR thawing control system 127 operates (ON) the SM pump 112, sucks the urea water in the urea tank 105 through the liquid feeding line 116, and presses the pressure line.
  • the pressure pump 117 is filled with urea water so as to be supplied to the dosing valve 104 through 117 (step 303), the pressure detected by the urea water pressure sensor 114 is increased, and the SM pump 112 is adjusted so that the pressure becomes a constant value.
  • the feedback control is performed (step 304).
  • completion of thawing is determined based on whether the tank temperature and SM temperature are equal to or higher than the threshold and a set time corresponding to the outside air temperature has elapsed.
  • step 305 when the pressure detected by the urea water pressure sensor 114 is maintained at a constant value (step 305), the SCR thawing control system 127 turns off the tank heater valve 124 to end the thawing control (step 305). Step 306). Thereby, the preparation for injecting urea water from the dosing valve 104 is completed, and the urea water can be injected (step 307).
  • the thawing control unit 128 stores how many times this process has been repeated, and the repetition. It is determined whether the number of times is less than a preset number of times set (step 308).
  • step 308 when the thawing control unit 128 determines that the number of repetitions is less than the specified number, it determines whether or not the outside air temperature is less than the threshold (step 309), and thawing fails when the outside air temperature is less than the threshold. Therefore, the operation of the SM pump 112 is stopped, the filling of the urea water into the pumping line 117 is stopped (step 310), and the thawing of the urea water is continued. On the other hand, when the outside air temperature is equal to or higher than the threshold value, it is considered that the urea water is sufficiently thawed and there is a possibility that some abnormality has occurred, so the thawing control unit 128 outputs an abnormal signal. A failure is warned (step 311).
  • the thawing control unit 128 determines completion of thawing (step 312). At this time, since the decompression completion condition used in step 302 is already satisfied, the completion of decompression cannot be determined under the same conditions. Therefore, the condition for completion of thawing in step 312 is determined by whether or not a preset time (fixed time) has elapsed since the operation of the SM pump 112 was stopped. A map may be prepared in advance so that the set time varies according to the number of repetitions and the detected pressure, and this map may be referred to.
  • step 308 When it is determined in step 308 that the number of repetitions is equal to or greater than the specified number, there is a possibility that some abnormality has occurred, so the decompression control unit 128 issues an abnormality signal and warns of a failure (step 313).
  • the SCR thawing control system 127 of the present invention when the SM pump 112 is operated, the pressure in the supply module 106 is detected, and when the pressure does not reach a certain value, the SM pump 112 Since the thawing control unit 128 is stopped, the thawing failure and the failure can be distinguished from each other, and it is possible to avoid outputting an abnormal signal even though no abnormality has occurred. Further, when the pressure does not reach a certain value, the operation of the SM pump 112 is stopped, so that the failure of the SM pump 112 can also be prevented.
  • the thawing control unit 128 continues the thawing of urea water for a certain period of time, and then activates the SM pump 112 again to detect the pressure in the supply module 106, and when the pressure does not reach a certain value, repeats these for a specified number of times. Therefore, the urea water frozen by retrying (continuing) thawing can be surely thawed.
  • the decompression control unit 128 warns of a failure, so that it can distinguish between decompression failure and abnormality and perform control accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 解凍の失敗と故障とを区別でき、SMポンプの故障をも防止することができるSCR解凍制御システムを提供する。 尿素水を貯留する尿素タンク105内、尿素タンク105と尿素水をSCR装置103の上流側で噴射するドージングバルブ104間の送液・圧送・回収ライン116,117,118内、送液・圧送・回収ライン116,117,118に接続されたサプライモジュール106内のいずれかの尿素水が凍結した際に、これら尿素水をエンジン冷却水で解凍し、解凍後にサプライモジュール106のSMポンプ112を作動させてドージングバルブ104から噴射するようにしたSCR解凍制御システム127において、SMポンプ112を作動させたときに、サプライモジュール106内における圧力を検出し、その圧力が一定値に達しないとき、SMポンプ112の作動を停止すると共に尿素水の解凍を継続する解凍制御部128を備えたものである。

Description

SCR解凍制御システム
 本発明は、凍結した尿素水を解凍するためのSCR解凍制御システムに関するものである。
 ディーゼルエンジンの排気ガス中のNOxを浄化するための排ガス浄化システムとして、SCR(Selective Catalytic Reduction)装置を用いたSCRシステムが開発されている。
 このSCRシステムは、尿素水をSCRの排気ガス上流に供給し、排気ガスの熱でアンモニアを生成し、このアンモニアによって、SCR触媒上でNOxを還元して浄化するものである(例えば、特許文献1参照)。
 ところが、尿素水は-10℃程度で凍結してしまうので、寒冷時には尿素水の供給ができなくなると言う問題がある。そのため、SCRシステムには、寒冷時にエンジン冷却水を尿素水の供給系に供給し、凍結した尿素水を解凍する解凍制御を行うためのSCR解凍制御システムが実装されている。
 従来のSCR解凍制御システムは、尿素水を貯留する尿素タンク内のタンク温度、尿素タンクと尿素水をSCR装置の上流側で噴射するドージングバルブとの間の尿素配管内の温度、尿素配管に接続されたサプライモジュール内のSM温度のいずれかが予め設定した閾値未満のときに尿素水が凍結したと判断して解凍制御を行う。なお、通常は尿素配管内の温度を検出するセンサはないため、外気温を尿素配管内の温度と見なす。
 そして、タンク温度、SM温度が閾値以上、且つ、外気温に応じた設定時間を経過したら解凍が完了したと判断し、サプライモジュールのSMポンプを作動させて尿素水を尿素配管内に充填すると共にその圧力を一定値に維持し、ドージングバルブから尿素水を噴射するように(ドージングバルブから尿素水を噴射可能なように準備)している。
特開2000-303826号公報
 しかし、タンク温度やSM温度は、それぞれタンク内部及びサプライモジュール内部に設けられた温度センサにより検出しているため、その検出値が閾値以上になっても、温度センサから離れている部分(サプライモジュールと尿素配管との接続部など)では解凍が十分でなく、その部分の尿素水が凍結したままとなっている場合がある。
 例えば、SMポンプの吸込側の尿素配管との接続部で尿素水が凍結したままとなっていると、凍結物で圧力が上昇しない、又は圧力が高圧となる。
 圧力が上昇しない場合、ポンプは最大出力で運転する(空運転)。このとき、氷粒や解凍できない尿素水がポンプに流れ込みポンプの負荷となる。また、高圧となる場合、ポンプ故障の可能性がある(異常高圧による故障)。
 このように、従来のSCR解凍制御システムでは、解凍の失敗を検出することができず、故障と判断するまでの時間を短くすると、解凍が十分でないだけで異常信号により故障を警告してしまう(システム停止)問題があった。また、故障と判断するまでの時間を長くすると、ポンプ故障してしまう。故障にならないまでも寿命が短くなってしまう。
 そこで、本発明の目的は、解凍の失敗と故障とを区別でき、SMポンプの故障をも防止することができるSCR解凍制御システムを提供することにある。
 本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、選択還元触媒装置の尿素水が凍結した際に、該尿素水を解凍し、解凍後にサプライモジュールのサプライモジュールポンプを作動させてドージングバルブから噴射するようにしたSCR解凍制御システムにおいて、サプライモジュールポンプを作動させたときに、サプライモジュール内における圧力を検出し、その圧力が一定値に達しないとき、サプライモジュールポンプの作動を停止する解凍制御部を備えたことを特徴とするSCR解凍制御システムである。
 請求項2の発明は、前記解凍制御部は、サプライモジュール内における圧力が一定値に達しないとき、外気温を検出し、検出した外気温が所定温度よりも低いときに、サプライモジュールポンプの作動を停止する請求項1に記載のSCR解凍制御システムである。
 請求項3の発明は、前記解凍制御部は、サプライモジュールポンプの作動を停止すると共に尿素水の解凍を継続し、一定時間解凍を継続した際に再度サプライモジュール内における圧力を検出し、その圧力が一定値に達しないときに故障を警告する請求項1又は2に記載のSCR解凍制御システムである。
 請求項4の発明は、前記解凍制御部は、サプライモジュール内の圧力が一定値に達しないことを規定回数検知したときに故障を警告する請求項3に記載のSCR解凍制御システムである。
 本発明によれば、解凍の失敗と故障とを区別でき、SMポンプの故障をも防止することができる。
本発明を適用するSCRシステムを示す概略図である。 DCUの入出力構成を示す図である。 本発明の一実施の形態に係るSCR解凍制御システムの動作を示すフローチャートである。
 以下、本発明の好適な実施の形態を添付図面にしたがって説明する。
 まず、車両に搭載されるSCRシステムについて説明する。
 図1に示すように、SCRシステム100は、エンジンEの排気管102に設けられたSCR装置103と、SCR装置103の上流側(排気ガスの上流側)で尿素水を噴射するドージングバルブ(尿素噴射装置、ドージングモジュール)104と、尿素水を貯留する尿素タンク105と、尿素タンク105に貯留された尿素水をドージングバルブ104に供給するサプライモジュール106と、ドージングバルブ104やサプライモジュール106等を制御するDCU(Dosing Control Unit)126とを主に備える。
 エンジンEの排気管102には、排気ガスの上流側から下流側にかけて、DOC(Diesel Oxidation Catalyst)107、DPF(Diesel Particulate Filter)108、SCR装置103が順次配置される。DOC107は、エンジンEから排気される排気ガス中のNOを酸化してNO2とし、排気ガス中のNOとNO2の比率を制御してSCR装置103における脱硝効率を高めるためのものである。また、DPF108は、排気ガス中のPM(Particulate Matter)を捕集するためのものである。
 SCR装置103の上流側の排気管102には、ドージングバルブ104が設けられる。ドージングバルブ104は、高圧の尿素水が満たされたシリンダに噴口が設けられ、その噴口を塞ぐ弁体がプランジャに取り付けられた構造となっており、コイルに通電することによりプランジャを引き上げることで弁体を噴口から離間さて尿素水を噴射するようになっている。コイルへの通電を止めると、内部のバネ力によりプランジャが引き下げられて弁体が噴口を塞ぐので尿素水の噴射が停止される。
 ドージングバルブ104の上流側の排気管102には、SCR装置103の入口における排気ガスの温度(SCR入口温度)を測定する排気温度センサ109が設けられる。また、SCR装置103の上流側(ここでは排気温度センサ109の上流側)には、SCR装置103の上流側でのNOx濃度を検出する上流側NOxセンサ110が設けられ、SCR装置103の下流側には、SCR装置103の下流側でのNOx濃度を検出する下流側NOxセンサ111が設けられる。
 サプライモジュール106は、尿素水を圧送するSMポンプ112と、サプライモジュール106の温度(サプライモジュール106を流れる尿素水の温度)を測定するSM温度センサ113と、サプライモジュール106内における尿素水の圧力(SMポンプ112の吐出側の圧力)を測定する尿素水圧力センサ114と、尿素水の流路を切り替えることにより、尿素タンク105からの尿素水をドージングバルブ104に供給するか、あるいはドージングバルブ104内の尿素水を尿素タンク105に戻すかを切り替えるリバーティングバルブ115とを備えている。ここでは、リバーティングバルブ115がOFFのとき、尿素タンク105からの尿素水をドージングバルブ104に供給するようにし、リバーティングバルブ115がONのとき、ドージングバルブ104内の尿素水を尿素タンク105に戻すようにした。
 リバーティングバルブ115が尿素水をドージングバルブ104に供給するように切り替えられている場合、サプライモジュール106は、そのSMポンプ112にて、尿素タンク105内の尿素水を送液ライン(サクションライン)116を通して吸い上げ、圧送ライン(プレッシャーライン)117を通してドージングバルブ104に供給するようにされ、余剰の尿素水を、回収ライン(バックライン)118を通して尿素タンク105に戻すようにされる。
 尿素タンク105には、SCRセンサ119が設けられる。SCRセンサ119は、尿素タンク105内の尿素水の液面高さ(レベル)を測定するレベルセンサ120と、尿素タンク105内の尿素水の温度を測定する温度センサ121と、尿素タンク105内の尿素水の品質を測定する品質センサ122とを備えている。品質センサ122は、例えば、超音波の伝播速度や電気伝導度から、尿素水の濃度や尿素水に異種混合物が混合されているか否かを検出し、尿素タンク105内の尿素水の品質を検出するものである。
 尿素タンク105とサプライモジュール106には、エンジンEを冷却するための冷却水(エンジン冷却水)を循環する冷却水ライン123が接続される。冷却水ライン123は、尿素タンク105内を通り、冷却水ライン123を流れる冷却水と尿素タンク105内の尿素水との間で熱交換するようにされる。同様に、冷却水ライン123は、サプライモジュール106内を通り、冷却水ライン123を流れる冷却水とサプライモジュール106内の尿素水との間で熱交換するようにされる。
 冷却水ライン123には、尿素タンク105とサプライモジュール106に冷却水を供給するか否かを切り替えるタンクヒーターバルブ(クーラントバルブ)124が設けられる。なお、ドージングバルブ104にも冷却水ライン123が接続されるが、ドージングバルブ104には、タンクヒーターバルブ124の開閉に拘わらず、冷却水が供給されるように構成されている。なお、図1では図を簡略化しており示されていないが、冷却水ライン123は、尿素水が通る送液ライン116、圧送ライン117、回収ライン118に沿って配設される。
 図2に、DCU126の入出力構成図を示す。
 図2に示すように、DCU126には、上流側NOxセンサ110、下流側NOxセンサ111、SCRセンサ119(レベルセンサ120、温度センサ121、品質センサ122)、排気温度センサ109、サプライモジュール106のSM温度センサ113と尿素水圧力センサ114、及びエンジンEを制御するECM(Engine Control Module)125からの入力信号線が接続されている。ECM125からは、外気温、エンジンパラメータ(エンジン回転数など)の信号が入力される。
 また、DCU126には、タンクヒーターバルブ124、サプライモジュール106のSMポンプ112とリバーティングバルブ115、ドージングバルブ104、上流側NOxセンサ110のヒータ、下流側NOxセンサ111のヒータ、への出力信号線が接続される。なお、DCU126と各部材との信号の入出力に関しては、個別の信号線を介した入出力、CAN(Controller Area Network)を介した入出力のどちらであってもよい。
 DCU126は、ECM125からのエンジンパラメータの信号と、排気温度センサ109からの排気ガス温度とを基に、排気ガス中のNOxの量を推定すると共に、推定した排気ガス中のNOxの量を基にドージングバルブ104から噴射する尿素水量を決定するようにされ、さらに、ドージングバルブ104にて決定した尿素水量で噴射したとき、上流側NOxセンサ110の検出値に基づいてドージングバルブ104を制御して、ドージングバルブ104から噴射する尿素水量を調整するようにされる。
 SCRシステム100は、尿素水が凍結した際に、その尿素水を解凍し、解凍後にサプライモジュール106のSMポンプ112を作動させてドージングバルブ104から噴射(ドージングバルブ104から噴射可能なように準備)するようにしたSCR解凍制御システム127を備える。
 SCR解凍制御システム127は、SCRセンサ119の温度センサ121で検出された尿素タンク105内の尿素水の温度(タンク温度)、送液・圧送・回収ライン116,117,118内の温度(ECM125から送られる外気温を送液・圧送・回収ライン116,117,118内の温度と見なす)、SM温度センサ113で検出されたサプライモジュール106の温度(SM温度)を参照し、これら温度のいずれかが閾値(例えば、尿素水の融点)未満のときに尿素水が凍結したと判断し、タンクヒーターバルブ124をON(開)にし、エンジンEからの冷却水を冷却水ライン123を通じて尿素タンク105、送液・圧送・回収ライン116,117,118、サプライモジュール106に供給し、凍結した尿素水を解凍する解凍制御を開始する。
 そして、SCR解凍制御システム127は、タンク温度、SM温度が閾値以上、且つ、外気温に応じた設定時間を経過したら解凍が完了したと判断し、サプライモジュール106のSMポンプ112を作動させて尿素水を圧送ライン117(尿素配管)内に充填すると共に尿素水圧力センサ114で検出される圧力を一定値に維持し、その圧力が一定値に維持されたら解凍制御を終了する。これにより、SCR解凍制御システム127は、ドージングバルブ104から尿素水を噴射するように(ドージングバルブから尿素水を噴射可能なように準備)する。
 さて、本発明のSCR解凍制御システム127は、SMポンプ112を作動させたときに、サプライモジュール内における圧力(尿素水圧力センサ114で検出される圧力)を検出し、その圧力が一定値に達しないとき(一定値を維持しないとき)、SMポンプ112の作動を停止する解凍制御部128を備えたことを特徴とする。この解凍制御部128は、DCU126に実装されている。
 なお、尿素水圧力センサ114で検出される圧力が一定値を維持しない場合としては、高圧異常と低圧異常がある。尿素水の充填開始から所定時間が経過しても圧力が上昇しない場合が低圧異常であり、充填開始後に圧力が急上昇して所定の値を超えてしまった場合が高圧異常である。つまり、高圧異常は尿素水の充填を開始して比較的早い段階で検出され、低圧異常は所定時間経過後に検出される。
 高圧異常の例としては、回収ライン118とサプライモジュール106との接続部で尿素水が凍結し、尿素水圧力センサ114で検出される圧力が高圧となる場合が考えられる。また、低圧異常の例としては、送液ライン116とサプライモジュール106との接続部で尿素水が凍結し、尿素水圧力センサ114で検出される圧力が上昇しない場合が考えられる。
 解凍制御部128は、尿素水圧力センサ114で検出される圧力が一定値を維持しないとき、外気温を検出し、検出した外気温が低いとき(閾値(例えば、尿素水の融点)未満のとき)に、SMポンプ112の作動を停止するように構成される。
 また、解凍制御部128は、SMポンプ112の作動を停止すると共に尿素水の解凍を継続し、一定時間解凍を継続した際に再度サプライモジュール106内における圧力を検出し、その圧力が一定値に達しないときに故障を警告するように構成される。
 さらに、解凍制御部128は、サプライモジュール106内の圧力が一定値に達しないことを規定回数検知したときに故障を警告するように構成される。
 この解凍制御部128の詳細な動作をSCR解凍制御システム127の動作と共に図3を用いて説明する。
 SCR解凍制御システム127は、キーON後に解凍制御の条件を満たしているかを判断する。解凍制御の条件を満たしているか否かは、温度センサ121で検出された尿素タンク105内の尿素水の温度(タンク温度)、送液・圧送・回収ライン116,117,118内の温度、SM温度センサ113で検出されたサプライモジュール106の温度(SM温度)のいずれかが予め設定した閾値未満であるかどうかで判断する。なお、通常は送液・圧送・回収ライン116,117,118内の温度を検出するセンサはないため、ECM125から送られる外気温を送液・圧送・回収ライン116,117,118内の温度と見なす。
 SCR解凍制御システム127は、これら温度のいずれかが閾値未満のときに尿素水が凍結したと判断し、タンクヒーターバルブ124をONにし、エンジンEからの冷却水を冷却水ライン123を通じて尿素タンク105、送液・圧送・回収ライン116,117,118、サプライモジュール106に供給し、凍結した尿素水を解凍する解凍制御を開始する(ステップ301)。
 この解凍制御により尿素水の解凍が完了したとき(ステップ302)、SCR解凍制御システム127はSMポンプ112を作動(ON)させ、尿素タンク105内の尿素水を送液ライン116を通して吸い上げ、圧送ライン117を通してドージングバルブ104に供給するようにして圧送ライン117に尿素水を充填し(ステップ303)、尿素水圧力センサ114で検出される圧力を上昇させ、圧力が一定値となるようにSMポンプ112のフィードバック制御を行う(ステップ304)。ここで解凍の完了は、タンク温度、SM温度が閾値以上、且つ、外気温に応じた設定時間を経過したか否かで判断する。
 その後、SCR解凍制御システム127は尿素水圧力センサ114で検出される圧力が一定値を維持した状態となったら(ステップ305)、タンクヒーターバルブ124をOFF(閉)にして解凍制御を終了する(ステップ306)。これにより、ドージングバルブ104から尿素水を噴射する準備が完了し、尿素水の噴射が可能になる(ステップ307)。
 これに対して、ステップ305にて、尿素水圧力センサ114で検出される圧力が一定値を維持しないと判断したとき、解凍制御部128はこの処理が何回繰り返されたかを記憶し、その繰り返し回数が予め設定した規定回数未満かどうかを判断する(ステップ308)。
 ステップ308にて、解凍制御部128は繰り返し回数が規定回数未満であると判断したとき、外気温が閾値未満かどうかを判断し(ステップ309)、外気温が閾値未満のときに、解凍が失敗したと判断してSMポンプ112の作動を停止し、圧送ライン117内への尿素水の充填を停止する(ステップ310)と共に尿素水の解凍を継続する。逆に、外気温が閾値以上である場合には、尿素水の解凍は十分になされていると考えられ、何らかの異常が発生している可能性があるため、解凍制御部128は異常信号を出し、故障を警告する(ステップ311)。
 解凍を継続した場合には、解凍制御部128は解凍の完了を判断する(ステップ312)。このとき、ステップ302で用いた解凍完了の条件は、既に満たされているため、同じ条件で解凍の完了を判断することはできない。そこで、ステップ312の解凍完了の条件としては、SMポンプ112の作動を停止してから予め設定した時間(一定時間)が経過したかどうかで判断する。この設定時間は、繰り返し回数と検出した圧力に応じて可変するように予めマップを作製しておき、このマップを参照するようにしてもよい。例えば、十分に解凍が進捗するように、繰り返し回数の増加に従って設定時間が長くなるようにマップを作製する(高圧の場合はポンプ故障の確率が上がるため、低圧に比べて設定時間を長くする)。解凍完了後は、上述のステップ303,304,305,308,309,310を繰り返すことで、尿素水が十分に解凍される。
 ステップ308にて、繰り返し回数が規定回数以上であると判断したときには、何らかの異常が発生している可能性があるため、解凍制御部128は異常信号を出し、故障を警告する(ステップ313)。
 このように、本発明に係るSCR解凍制御システム127によれば、SMポンプ112を作動させたときに、サプライモジュール106内における圧力を検出し、その圧力が一定値に達しないとき、SMポンプ112の作動を停止する解凍制御部128を備えるため、解凍の失敗と故障とを区別でき、異常が発生していないにもかかわらず異常信号を出力するようなことを避けることができる。また、圧力が一定値に達しないとき、SMポンプ112の作動を停止するので、SMポンプ112の故障をも防止することができる。
 解凍制御部128は、一定時間尿素水の解凍を継続した後に、再度SMポンプ112を作動させ、サプライモジュール106内における圧力を検出し、その圧力が一定値に達しないとき、これらを規定回数繰り返すため、解凍をリトライ(継続)して凍結した尿素水を確実に解凍することができる。
 さらに、解凍制御部128は、この繰り返し回数が規定回数以上となったとき、故障を警告するため、解凍の失敗と異常とを区別し、それに応じた制御を行うことができる。
103 SCR装置
104 ドージングバルブ
105 尿素タンク
106 サプライモジュール
112 SMポンプ
116 送液ライン
117 圧送ライン
118 回収ライン
127 SCR解凍制御システム
128 解凍制御部

Claims (4)

  1.  選択還元触媒装置の尿素水が凍結した際に、該尿素水を解凍し、解凍後にサプライモジュールのサプライモジュールポンプを作動させてドージングバルブから噴射するようにしたSCR解凍制御システムにおいて、サプライモジュールポンプを作動させたときに、サプライモジュール内における圧力を検出し、その圧力が一定値に達しないとき、サプライモジュールポンプの作動を停止する解凍制御部を備えたことを特徴とするSCR解凍制御システム。
  2.  前記解凍制御部は、サプライモジュール内における圧力が一定値に達しないとき、外気温を検出し、検出した外気温が所定温度よりも低いときに、サプライモジュールポンプの作動を停止する請求項1に記載のSCR解凍制御システム。
  3.  前記解凍制御部は、サプライモジュールポンプの作動を停止すると共に尿素水の解凍を継続し、一定時間解凍を継続した際に再度サプライモジュール内における圧力を検出し、その圧力が一定値に達しないときに故障を警告する請求項1又は2に記載のSCR解凍制御システム。
  4.  前記解凍制御部は、サプライモジュール内の圧力が一定値に達しないことを規定回数検知したときに故障を警告する請求項3に記載のSCR解凍制御システム。
PCT/JP2011/061205 2010-05-17 2011-05-16 Scr解凍制御システム WO2011145567A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11783501.7A EP2573341B1 (en) 2010-05-17 2011-05-16 Scr thawing control system
CN201180024475.9A CN102947562B (zh) 2010-05-17 2011-05-16 选择催化还原解冻控制***
US13/697,928 US8959890B2 (en) 2010-05-17 2011-05-16 SCR thawing control system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010113748 2010-05-17
JP2010-113748 2010-05-17
JP2010119863A JP5671840B2 (ja) 2010-05-17 2010-05-25 Scr解凍制御システム
JP2010-119863 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011145567A1 true WO2011145567A1 (ja) 2011-11-24

Family

ID=44991670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061205 WO2011145567A1 (ja) 2010-05-17 2011-05-16 Scr解凍制御システム

Country Status (5)

Country Link
US (1) US8959890B2 (ja)
EP (1) EP2573341B1 (ja)
JP (1) JP5671840B2 (ja)
CN (1) CN102947562B (ja)
WO (1) WO2011145567A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808680A (zh) * 2012-07-27 2012-12-05 潍柴动力股份有限公司 一种scr***低温解冻的控制方法
WO2014013596A1 (ja) * 2012-07-19 2014-01-23 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
CN104965021A (zh) * 2015-07-24 2015-10-07 中国科学院重庆绿色智能技术研究院 一种燃煤烟气脱硝催化剂性能评价装置及方法
CN105026711A (zh) * 2013-01-28 2015-11-04 五十铃自动车株式会社 尿素scr用尿素水配管闭塞检测装置
EP2910748A4 (en) * 2012-08-13 2016-07-13 Toyota Motor Co Ltd ADDITIVE FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINES

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787090B2 (ja) * 2012-01-18 2015-09-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2894310B1 (en) 2012-08-10 2018-03-07 Toyota Jidosha Kabushiki Kaisha Additive supply device for internal combustion engines
JP6011332B2 (ja) * 2012-12-28 2016-10-19 いすゞ自動車株式会社 尿素scr用尿素水消費量診断装置
US9458746B2 (en) * 2013-03-01 2016-10-04 Cummins Emission Solutions Inc. Systems and techniques for heating urea injection systems
US9016043B2 (en) * 2013-03-14 2015-04-28 Tenneco Automotive Operating Company Inc. Exhaust treatment system with urea temperature rationality diagnostic
US20140325965A1 (en) * 2013-05-03 2014-11-06 Deere & Company Diesel exhaust fluid control system
DE102013226796B4 (de) * 2013-12-20 2018-04-05 Continental Automotive Gmbh Verfahren zum Überprüfen eines Temperatursensors in einem SCR-Abgasnachbehandlungssystem
US9188043B1 (en) 2014-04-24 2015-11-17 Fca Us Llc Techniques for thawing a reductant injector and reductant tank prior to an injection attempt
JP6365099B2 (ja) 2014-08-08 2018-08-01 いすゞ自動車株式会社 尿素水の温度管理システム及び尿素水の温度管理方法
US9664083B2 (en) * 2015-08-14 2017-05-30 Cummins Emission Solutions Inc. Virtual reductant level sensor
KR101619918B1 (ko) 2015-08-20 2016-05-11 한일튜브 주식회사 히팅튜브용 유체의 해동 성능 검사장치 및 이를 이용한 유체의 해동 성능 검사방법
GB2528601A (en) * 2015-10-16 2016-01-27 Gm Global Tech Operations Inc A method of managing a selective catalytic reduction system of a motor vehicle
EP3165736A1 (en) * 2015-11-03 2017-05-10 Plastic Omnium Advanced Innovation and Research Method for monitoring urea quality of an scr system
JP6540523B2 (ja) * 2016-01-22 2019-07-10 株式会社デンソー 異常判定装置
JP6729291B2 (ja) 2016-10-25 2020-07-22 いすゞ自動車株式会社 尿素水供給システム及びその制御方法
JP6693408B2 (ja) * 2016-12-22 2020-05-13 株式会社デンソー 尿素水撹拌制御装置
CN108518265B (zh) * 2018-03-29 2020-07-28 潍柴动力股份有限公司 判断尿素加热电磁阀机械失效的***及方法和汽车
JP6905963B2 (ja) * 2018-08-14 2021-07-21 日立建機株式会社 建設機械
DE102018216239A1 (de) * 2018-09-24 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen des Aggregatzustands einer gefriergefährdeten Flüssigkeit in einem Kraftfahrzeug
CN110284948B (zh) * 2019-06-29 2020-11-20 潍柴动力股份有限公司 一种scr***的控制方法
CN114607494A (zh) * 2022-03-04 2022-06-10 潍柴动力股份有限公司 一种监测尿素箱加热电磁阀故障的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2008248710A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd 還元剤添加システムの解凍判定装置及びエンジンの排気浄化装置
JP2009185685A (ja) * 2008-02-06 2009-08-20 Denso Corp 還元剤ポンプの異常検出装置及び還元剤吐出システム
WO2009112516A1 (en) * 2008-03-11 2009-09-17 Inergy Automotive Systems Research (Société Anonyme) Method for heating a scr system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917791B1 (fr) * 2007-06-20 2009-08-21 Inergy Automotive Systems Res Procede pour le demarrage d'une pompe.
JP4737463B2 (ja) * 2008-09-01 2011-08-03 三菱自動車工業株式会社 排気浄化装置
JP5041168B2 (ja) * 2008-09-01 2012-10-03 三菱自動車工業株式会社 排気浄化装置
US8234854B2 (en) * 2008-10-22 2012-08-07 Caterpillar Inc. System and method for heating a reducing agent associated with a reducing agent distribution system
DE102008043405B4 (de) * 2008-11-03 2022-02-24 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit einer Pumpe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2008248710A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd 還元剤添加システムの解凍判定装置及びエンジンの排気浄化装置
JP2009185685A (ja) * 2008-02-06 2009-08-20 Denso Corp 還元剤ポンプの異常検出装置及び還元剤吐出システム
WO2009112516A1 (en) * 2008-03-11 2009-09-17 Inergy Automotive Systems Research (Société Anonyme) Method for heating a scr system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573341A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013596A1 (ja) * 2012-07-19 2014-01-23 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP5915747B2 (ja) * 2012-07-19 2016-05-11 トヨタ自動車株式会社 内燃機関の添加剤供給装置
JPWO2014013596A1 (ja) * 2012-07-19 2016-06-30 トヨタ自動車株式会社 内燃機関の添加剤供給装置
CN102808680A (zh) * 2012-07-27 2012-12-05 潍柴动力股份有限公司 一种scr***低温解冻的控制方法
EP2910748A4 (en) * 2012-08-13 2016-07-13 Toyota Motor Co Ltd ADDITIVE FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINES
CN105026711A (zh) * 2013-01-28 2015-11-04 五十铃自动车株式会社 尿素scr用尿素水配管闭塞检测装置
EP2963259A4 (en) * 2013-01-28 2016-12-07 Isuzu Motors Ltd DEVICE FOR DETECTING WATER PIPE SINK / UREA FOR UREA SCR
CN104965021A (zh) * 2015-07-24 2015-10-07 中国科学院重庆绿色智能技术研究院 一种燃煤烟气脱硝催化剂性能评价装置及方法

Also Published As

Publication number Publication date
EP2573341B1 (en) 2017-07-05
CN102947562B (zh) 2015-03-25
US8959890B2 (en) 2015-02-24
JP5671840B2 (ja) 2015-02-18
JP2012002062A (ja) 2012-01-05
US20130061574A1 (en) 2013-03-14
EP2573341A1 (en) 2013-03-27
CN102947562A (zh) 2013-02-27
EP2573341A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2011145567A1 (ja) Scr解凍制御システム
JP5789925B2 (ja) NOxセンサ診断装置及びSCRシステム
JP5547815B2 (ja) 還元剤噴射弁の異常判定装置及び還元剤供給装置
JP5625475B2 (ja) 排ガス浄化システム
US9212582B2 (en) Exhaust gas purification system and method for controlling the same
WO2011148810A1 (ja) 復帰制御システム
JP4706627B2 (ja) エンジンの排気浄化装置
JP5786280B2 (ja) 尿素水温度センサの妥当性診断システム
EP2573343B1 (en) Competency diagnosis system for urea water temperature sensor
EP2578831A1 (en) Selective catalytic reduction apparatus
US9441521B2 (en) Method for removing foreign matter from a selective reduction catalyst system
JP2008163795A (ja) 内燃機関の排気浄化装置
JP2017129094A (ja) 異常判定装置
US20190211727A1 (en) Injection controller
JP5617342B2 (ja) Scrシステム
JP6810628B2 (ja) 還元剤噴射装置の異常診断装置及び異常診断方法
JP5589552B2 (ja) Scrシステム
JP2011241721A (ja) Scrシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024475.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13697928

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011783501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011783501

Country of ref document: EP