WO2011142262A1 - 大気接合用ろう材、接合体、および、集電材料 - Google Patents

大気接合用ろう材、接合体、および、集電材料 Download PDF

Info

Publication number
WO2011142262A1
WO2011142262A1 PCT/JP2011/060251 JP2011060251W WO2011142262A1 WO 2011142262 A1 WO2011142262 A1 WO 2011142262A1 JP 2011060251 W JP2011060251 W JP 2011060251W WO 2011142262 A1 WO2011142262 A1 WO 2011142262A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing material
bonding
brazing
sample
atmosphere
Prior art date
Application number
PCT/JP2011/060251
Other languages
English (en)
French (fr)
Inventor
雄一郎 山内
慎二 斎藤
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN201180023852.7A priority Critical patent/CN102883853B/zh
Priority to US13/642,770 priority patent/US20130040226A1/en
Priority to DE112011101640T priority patent/DE112011101640T5/de
Priority to KR1020127031608A priority patent/KR101454983B1/ko
Publication of WO2011142262A1 publication Critical patent/WO2011142262A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12896Ag-base component

Definitions

  • the present invention relates to a brazing material for air bonding, a joined body joined by using the brazing material, and a current collecting material, and more particularly to improvement of a technique for lowering the melting point of a brazing material for air bonding.
  • a joined body of metal members, a joined body of ceramic members, and a joined body of a ceramic member and a metal member are obtained by brazing.
  • the joining method is actively researched.
  • An active metal brazing method is usually used as a method for joining a ceramic member and a metal member.
  • an active element such as Ti or Zr
  • an active element such as Ti or Zr
  • the brazing material is heated in a vacuum to form a reaction layer on the surface of the ceramic member.
  • This improves the wettability and adhesion of the brazing material.
  • TiN is generated in the first layer on the ceramic member side of the reaction layer, and when carbide is used, TiC is formed, and TiO is formed when the oxide is used.
  • the active metal brazing method requires heating in a vacuum or in an inert gas atmosphere, which increases equipment costs and requires air supply / exhaust, so continuous production cannot be performed. . For this reason, manufacturing cost increases.
  • a member that cannot be exposed in a vacuum and an active atmosphere or a member that cannot be held at a high temperature may be used. In this case, a manufacturing process is restricted.
  • it is required to establish an air brazing technique capable of obtaining a good joined body in a relatively low temperature region not only in the manufacturing cost can be reduced, but also in an air atmosphere. Yes.
  • a flux brazing method which is a general method for brazing in the air.
  • a good bonded body is obtained by applying a flux to the bonding surface of the base material to obtain a reducing atmosphere at the bonded portion by the flux and blocking oxygen entry.
  • a flux having a melting point lower than 780 ° C. which is the melting point of BAg-8 is used as the brazing material, and the flux is melted before the brazing material.
  • a good joined body is obtained by activating the joint surface and preventing oxidation of the brazing material.
  • bonding is usually performed by local heating using a torch or the like, and this method is effective for point bonding and line bonding, but is not suitable for surface bonding.
  • the ceramic member may be broken by a thermal stress generated by local heating, which is not suitable for manufacturing a bonded body having a ceramic member.
  • many of the fluxes themselves and their residues have a function of corroding metals, and in this case, a flux residue removal step is additionally required after joining.
  • Patent Document 1 a reactive air brazing method (for example, Patent Document 1) as an air brazing technique that does not require flux.
  • a reactive air brazing method for example, Patent Document 1
  • the base materials are joined to the atmosphere by brazing.
  • the main component of the brazing material is a noble metal component such as Ag, the flux is not necessary for brazing, and as a result, the above-mentioned problem due to the flux can be solved.
  • Patent Document 2 proposes a brazing material made of an Ag—Ge—Si alloy.
  • the Ag—Ge—Si brazing material of Patent Document 2 is difficult to obtain a good joined body because the brazing material itself oxidizes when heated to the joining temperature. From the viewpoint of productivity and quality improvement, it is required to provide a bonded body having good airtightness and bonding strength in the air without using a flux. It was difficult due to problems.
  • Another object of the present invention is to provide a bonded body and a current collecting material that can have bonding strength.
  • the brazing filler metal for air bonding of the present invention contains Ag (silver) and B (boron) as essential components, and Ag is in the range of 50% to less than 92% by volume ratio, and B is in the range of more than 8% and 50% or less. And the total of these is adjusted to 100% including inevitable impurities.
  • Ag and B are essential components.
  • Ag is a main component that is not easily oxidized even when melted in the atmosphere, and B is a low-melting-point material that oxidizes at about 300 ° C. or higher and has a relatively low melting point (about 577 ° C.).
  • the volume ratio of these essential components is such that Ag is in the range of 50% or more and less than 92%, B is in the range of more than 8% and 50% or less, and the total is adjusted to 100% including inevitable impurities.
  • the base material is oxidized even when brazing is performed in the air. Therefore, flux is not necessary. In this case, oxidation of the brazing material itself can also be prevented.
  • the melting point of the brazing material can be lowered, and the joining temperature can be set to a melting point of Ag (about 961 ° C.) or lower.
  • the bonding temperature is lower than that of the conventional Ag-based brazing filler metal, when the metal member is used as the base material, it is possible to suppress oxidation of the base material and prevent deterioration on the metal member side. can do.
  • the joining temperature is low as described above, it is possible to reduce thermal stress due to a difference in thermal expansion coefficient between the two members.
  • the air brazing filler metal of the present invention can have various configurations.
  • joined bodies according to various purposes can be obtained by adding various elements as dispersing agents and active elements to the two components which are essential elements.
  • Ge germanium
  • Al aluminum
  • Si silicon
  • V vanadium
  • Mo molecular weight
  • W tungsten
  • Mn manganese
  • Ti titanium
  • Zr zirconium
  • the added element means all elements contained in the oxide.
  • Ge oxide can be deposited on the ceramic by adding Ge. Since Ge has an action as an active metal, the wettability is improved. be able to. Further, for example, by adding Zr, ZrO 2 having a vapor pressure lower than that of B 2 O 3 is generated, so that durability can be improved.
  • At least one selected from Si (silicon), Ca (calcium), Ti (titanium), Zr (zirconium), nitrides, carbides, and hydrides thereof is added, and B and the above It is possible to use a mode in which the total volume ratio of the added elements is in the range of more than 8% and 50% or less, and the total is adjusted to 100% including inevitable impurities.
  • the added element means all elements contained in nitrides, carbides, and hydrides.
  • the airtightness of the joined body obtained becomes favorable. Further, for example, by adding Zr, ZrO 2 having a vapor pressure lower than that of B 2 O 3 is generated, so that durability can be improved.
  • the brazing filler metal for air bonding of the present invention can have a low melting point as described above, and can have a melting point of 650 ° C. or higher and 850 ° C. or lower, for example, in the air.
  • the joined body of the present invention can be obtained by joining using the above brazing material for atmospheric joining. That is, the joined body of the present invention is characterized in that it consists of metal members joined together using the brazing material for atmospheric joining, ceramic members, or a metal member and a ceramic member, and has gas sealing properties. To do.
  • Various structures can be used for the joined body of the present invention.
  • the joined body can be used for a fuel cell or a solid oxide fuel cell.
  • the current collecting material of the present invention is composed of metal members joined using the above brazing material for atmospheric bonding, ceramic members, or metal members and ceramic members, and has electrical conductivity. .
  • Various configurations can be used for the current collecting material of the present invention.
  • the current collecting material can be used for a fuel cell or a solid oxide fuel cell.
  • the brazing material for air bonding of the present invention it is possible to prevent oxidation of the brazing material itself as well as eliminating the need for flux even in bonding in the air.
  • B which is a low melting point material, as an essential component, it is possible to obtain effects such as the ability to lower the melting point of the brazing material.
  • the joined body or current collecting material of the present invention it is obtained by using the brazing material for air bonding of the present invention, and can have good airtightness and bonding strength.
  • FIG. 4 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of the main part of a bonding test piece according to Sample 1 shown in FIG. 3. It is a cross-sectional electron microscope figure (x30 time) of the joining test piece obtained by joining using the brazing material which concerns on the sample 2 of this invention.
  • FIG. 4 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of the main part of a bonding test piece according to Sample 1 shown in FIG. 3. It is a cross-sectional electron microscope figure (x30 time) of the joining test piece obtained by joining using the brazing material which concerns on the sample 2 of this invention.
  • FIG. 6 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of a main part of a bonding test piece according to Sample 2 shown in FIG. 5. It is a cross-sectional electron microscope figure of the joining test piece obtained by joining using the brazing material which concerns on the sample 3 of this invention.
  • 7A and 7B show the element distribution analysis results of the bonding test piece according to the sample 3 shown in FIG. 7, where (A) is Ag, (B) is Ge, (C) is B, (D) is Zr, and (E) is O distribution. It is a figure showing an analysis result.
  • FIG. 7A and 7B show the element distribution analysis results of the bonding test piece according to the sample 3 shown in FIG. 7, where (A) is Ag, (B) is Ge, (C) is B, (D) is Zr, and (E) is O distribution. It is a figure showing an analysis result.
  • FIG. 4 is a cross-sectional electron micrograph ( ⁇ 500 times) of a joining test piece obtained by joining using a brazing material according to Samples 4A to 4C of the present invention
  • A is Sample 4A in which the joining conditions are 650 ° C./1 hr.
  • B is a cross-sectional electron micrograph of a bonded test piece in the case of sample 4B in which the bonding conditions are 750 ° C./1 hr
  • (C) is the sample 4C in the case of sample 4C where the bonding conditions are 850 ° C./1 hr.
  • It is a cross-sectional electron microscope figure (x500 times) of the joining test piece obtained by joining using the brazing material which concerns on the sample 6 of this invention.
  • 2 is a cross-sectional electron micrograph ( ⁇ 300 times) of a bonding test piece obtained by bonding using a brazing filler metal according to Comparative Sample 1.
  • FIG. 1 is a cross-sectional electron micrograph ( ⁇ 300 times) of
  • a bonded specimen was prepared as a sample according to the present invention using a brazing material for atmospheric bonding within the scope of the present invention.
  • the joining body test piece was produced as a comparative sample using the brazing material for atmospheric joining outside the scope of the present invention.
  • a leak test was performed on all the specimens, and a joint portion was observed on some of the specimens.
  • the brazing material for air bonding that can be used for the preparation of the sample of the present invention contains Ag and B as essential components, and Ag is in the range of 50% to less than 92% by volume ratio. Is within the range of more than 8% and not more than 50%, and the brazing material is adjusted so that the total of these is 100% including inevitable impurities.
  • the brazing material is added so that the total volume ratio of B and the added element is in the range of more than 8% and 50% or less, and the total of these is 100% including inevitable impurities.
  • Ag and B are contained as essential components, and at least one selected from Si, Ca, Ti, Zr, nitrides, carbides, and hydrides thereof is added, and B and the above are added.
  • the brazing material is adjusted so that the total volume ratio of the elements is in the range of more than 8% and 50% or less, and the total of these elements is 100% including inevitable impurities.
  • Examples of the form of the brazing material for air bonding that can be used in the sample preparation of the present invention include, for example, a form in which a metal mixed powder is pasted with an organic solvent, an organic binder, etc., various forms such as an alloy powder paste, foil, sol-gel, etc. There is no particular limitation.
  • Examples of the metal member material that can be used in the sample preparation of the present invention include ferritic stainless steel, stainless steel, heat resistant stainless steel, FeCrAl alloy, FeCrSi alloy, Ni-based heat resistant alloy, and the like. Absent.
  • Examples of the material of the ceramic member used in the sample preparation of the present invention include yttria-stabilized zirconia and oxide ceramics such as zirconia, alumina, magnesia, steatite, mullite, titania, silica, and sialon, and are particularly limited. It is not something.
  • a mixed metal powder having a composition within the scope of the present invention shown in Table 1 was mixed with an organic binder to form a paste.
  • a metal member according to each sample of the present invention a cylindrical member having an outer diameter of 14 mm and an inner diameter of 8 mm of ZMG232L (manufactured by Hitachi Metals), which is a ferritic alloy, was used.
  • ZMG232L manufactured by Hitachi Metals
  • a stabilized zirconia plate, a magnesia plate, an aluminum nitride plate, an alumina plate, or a silicon carbide plate was used as the ceramic member according to each sample of the present invention. In this case, the size of each plate was set to 20 mm ⁇ 20 mm.
  • a mixed metal powder having a composition outside the range of the present invention shown in Table 1 and mixed with an organic binder to form a paste is used.
  • a stabilized zirconia plate was used as the ceramic member.
  • the ratio shown before the element indicates the content ratio (volume ratio) of the element.
  • a paste-like air bonding brazing material was applied to one end face of a metal member, a ceramic member was placed on the applied surface, and the bonding conditions (temperature and time) shown in Table 1 in the atmosphere were used. By heating, the joining test piece which concerns on each sample and a comparative sample was produced.
  • FIG. 1 is a schematic diagram showing the configuration of the produced joint test piece 10.
  • Reference numeral 11 denotes a metal member that is a cylindrical member
  • reference numeral 11A denotes an opening of the metal member
  • reference numeral 12 denotes a ceramic member
  • reference numeral 13 denotes a bonding layer.
  • FIG. 2 is a schematic diagram of an observation cross-section of a joint including the joint layer 13 (a perspective view showing a side cross-sectional configuration in the arrow direction 1A of FIG. 1).
  • FIG. 3 is a cross-sectional electron micrograph ( ⁇ 30 times) of the bonding test piece of sample 1
  • FIG. 4 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of the main part of the bonding test piece of sample 1 shown in FIG. ).
  • B powder hereinafter referred to as “B powder”, reference numeral 14
  • melted Ag hereinafter referred to as “melted Ag”, reference numeral 15
  • FIG. 5 is a cross-sectional electron micrograph ( ⁇ 30 times) of the bonding test piece of sample 1
  • FIG. 6 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of the main part of the bonding test piece of sample 2 shown in FIG. ).
  • B powder (symbol 14) and molten Ag (symbol 15) were observed in the bonding layer 13, no unmelted Ag and voids existed, and the brazing material for atmospheric bonding was melted. It was confirmed.
  • FIG. 7 is a cross-sectional electron micrograph of a joint specimen of Sample 3.
  • FIG. 8 shows the element distribution analysis results of the bonding test piece shown in FIG. 7, where (A) is Ag, (B) is Ge, (C) is B, (D) is Zr, and (E) is O distribution. It is a figure showing an analysis result.
  • the area shown in FIG. 7 corresponds to the area shown in FIGS. 8A to 8E.
  • FIG. 8 shows that the abundance of the element increases as it approaches red, and the abundance of the element decreases as it approaches blue.
  • FIGS. 8 (B) and 8 (E) a large amount of Ge oxide was precipitated in the bonding specimen of Sample 3.
  • an oxide of Ge can be precipitated.
  • FIG. 9A is a cross-sectional electron micrograph ( ⁇ 500 times) of the bonding test piece of sample 4A
  • FIG. 9B is a cross-sectional electron micrograph ( ⁇ 500 time) of the bonding test piece of sample 4B
  • (C) is a cross-sectional electron micrograph ( ⁇ 500 times) of a bonding test piece of Sample 4C.
  • the bonding layer 13 has no unmelted Ag and voids, and is a brazing material for atmospheric bonding. Melted. Thereby, it was confirmed that the brazing material for air bonding having a composition within the range of the present invention has a melting point of 650 ° C. or higher and 850 ° C. or lower.
  • brazing material in the case of sample 5A, a brazing material having a composition of Ag-3% Ge-17% B-6% Al by volume ratio was used, and in the case of sample 5B, Ag-3% Ge-17% by volume ratio.
  • sample 5C a brazing material having a composition of B-6% Si was used.
  • a brazing material having a composition of Ag-3% Ge-17% B and 16% SiO 2 was used.
  • a brazing material having a composition of Ag-3% Ge-17% B-3% ZrH 2 by volume ratio was used.
  • a brazing material having a composition of Ag-3% Ge-17% B-3% V by volume is used, and in the case of Sample 5F, Ag-3% Ge-17% B-2% by volume
  • a brazing material having a composition of Ag-3% Ge-17% B-1% W is used, and in the case of sample 5H, a volume ratio of Ag- A brazing material having a composition of 3% Ge-17% B-3% WO 3 was used.
  • a brazing material having a composition of Ag-3% Ge-17% B-4% TiH 2 by volume ratio was used.
  • a brazing material having a composition of Ag-3% Ge-17% B-5% SiC by volume was used.
  • FIG. 10 is an enlarged cross-sectional electron micrograph ( ⁇ 500 times) of the main part of the bonding test piece of Sample 1.
  • B powder reference numeral 14
  • molten Ag reference numeral 15
  • (G) Comparative sample 1 As shown in Table 1, in the production of the joint specimen of Comparative Sample 1, a stabilized zirconia plate was used as the ceramic member 12, a brazing material having a composition of Ag-18% Ge in volume ratio, and a heating temperature of 850 was used. Brazing set at ° C. was performed for 1 hr. In the helium leak test of the joint specimen of Comparative Sample 1, as shown in Table 1, a leak was observed. This confirmed that the brazing filler metal for air bonding did not melt.
  • FIG. 11 is an enlarged cross-sectional electron micrograph ( ⁇ 300 magnification) of the main part of the bonded specimen of Comparative Sample 1.
  • granular unmelted Ag reference numeral 16
  • voids reference numeral 17
  • I confirmed that I did not. From the above, it was confirmed that the Ag—Ge brazing material has a melting point higher than 850 ° C. and does not have a low melting point.
  • (H) Comparative sample 2 As shown in Table 1, in the production of the joint specimen of Comparative Sample 2, a stabilized zirconia plate was used as the ceramic member 12, a brazing material having a composition of Ge-68% B by volume ratio, and a heating temperature of 850. Brazing set at ° C. was performed for 1 hr. In the helium leak test of the joint specimen of Comparative Sample 2, as shown in Table 1, a leak was observed. This confirmed that the brazing filler metal for air bonding did not melt. As a result, it was confirmed that the Ge—B brazing filler metal had a melting point higher than 850 ° C. and no low melting point.
  • Comparative sample 3 In the production of the joint specimen of Comparative Sample 3, as shown in Table 1, a stabilized zirconia plate was used as the ceramic member 12, and a brazing material having a composition of Ag-4% Ge-8% B by volume was used. Brazing at a heating temperature set to 850 ° C. was performed for 1 hr. In the helium leak test of the joint specimen of Comparative Sample 3, as shown in Table 1, a leak was observed. This confirmed that the brazing filler metal for air bonding did not melt. From a comparison between Comparative Sample 3 and Samples 1 to 9, it was confirmed that the addition amount of B is preferably more than 8%.
  • the composition ratio of the brazing filler for air bonding the lower limit value of the B addition amount needs to be more than 8% by volume as described above, and the upper limit value of the B addition amount is the volume ratio. It was confirmed that it was necessary to be 50% or less. As for the upper limit, if the amount of B added exceeds 50% by volume, the main component is B, so that the desired bonding strength, vapor pressure, and melting point cannot be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Fuel Cell (AREA)

Abstract

 低融点化を図ることにより、大気中でもフラックスを用いないで接合温度を低く設定することができる大気接合用ろう材、そのろう材を用いることにより接合され、良好な気密性や接合強度を有することができる接合体および集電材料を提供する。 大気接合用ろう材は、AgとBを必須成分とし、体積比でAgが50%以上92%未満の範囲内、Bが8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されている。Bは約300℃以上で酸化し、その酸化物の融点も比較的低い温度(約577℃)である低融点材料である。Bを必須成分として含有することにより、ろう材の低融点化を図ることができる。たとえば図4から判るように、接合試験片の接合層13には、B粉末(符号14)および溶融Ag(符号15)が観察され、大気接合用ろう材が溶融したことを確認した。 

Description

大気接合用ろう材、接合体、および、集電材料
 本発明は、大気接合用ろう材、そのろう材を用いることにより接合される接合体、および、集電材料に係り、特に、大気接合用ろう材の低融点化技術の改良に関する。
 金属部材同士の接合体、セラミックス部材同士の接合体、および、セラミックス部材と金属部材の接合体は、ろう付により得られる。近年、製品の高精度化や、高信頼化、高機能化等の要求が強くなっており、その要求に応える接合体としてセラミックスと金属の接合体が利用されており、その接合体を得るための接合方法が盛んに研究されている。
 セラミックス部材と金属部材の接合方法として、通常、活性金属ろう付法が用いられる。この手法では、セラミックス部材に対して活性である元素(TiやZr等)をろう材中に添加させ、そのろう材を真空中で加熱することにより、セラミックス部材表面に反応層を形成する。これにより、ろう材のぬれ性および密着性の向上を図る。たとえば、セラミックスとして窒化物を用いる場合には、反応層のセラミックス部材側第1層目にTiNが生じ、炭化物を用いる場合には、TiC、酸化物であればTiOが形成される。
 ところが、活性金属ろう付法は、真空または不活性ガス雰囲気中で加熱を行う必要があるため、設備コストが高くなり、しかも、大気の給排気が必要なため、連続的生産を行うことができない。このため、製造コストが増大する。また、半導体や医療分野では、真空および活性雰囲気での暴露が不可能な部材や高温での保持が不可能な部材が用いられる場合があり、この場合には、作製プロセスが制約を受ける。以上のような理由から、製造コストの低減を図ることができるのはもちろんのこと、大気雰囲気中でも、比較的低温領域で良好な接合体を得ることができる大気ろう付技術の確立が要求されている。
 大気ろう付技術としては、大気中でろう付を行う一般的な手法であるフラックスろう付法が挙げられる。この手法では、母材の接合面にフラックスを塗布し、フラックスにより接合部での還元雰囲気を得るとともに、酸素進入を遮断することにより、良好な接合体を得る。たとえばろう材としてAg系ろう材であるBAg-8を用いる場合、BAg-8の融点である780℃よりも低い融点を有するフラックスを用い、ろう材よりも先にフラックスを溶融させる。これにより、接合面の活性化およびろう材の酸化防止を図ることにより、良好な接合体を得る。
 ところが、フラックスろう付法では、通常、トーチ等を用いた局所加熱により接合が行われ、その手法は、点接合や線接合には有効であるが、面接合には適さない。また、セラミックス部材同士あるいはセラミックス部材と金属部材の接合に適用する場合、局所加熱で発生する熱応力によってセラミックス部材の破壊が生じる虞があり、セラミックス部材を有する接合体の作製にも適さない。さらに、フラックスの中にはそれ自体およびその残留物が金属を腐食させる作用を有するものが多く、この場合、接合後にフラックス残留物の除去工程が別途必要となる。
 そこで、フラックスを必要としない大気ろう付技術には、反応性大気ろう付法(Reactiver Air Brazing)を用いることが考えられる(たとえば特許文献1)。たとえば特許文献1の技術では、セラミックス部材と、大気中でAl酸化物層を形成する耐熱金属部材とを母材として用い、AgにCuOを添加したAg-Cu系ろう材を用いた反応性大気ろう付法によりそれら母材の大気接合を行う。この場合、ろう材の主成分がAg等の貴金属成分であるから、ろう付ではフラックスが不要となり、その結果、フラックスによる上記問題を解消することができる。
 ところが、特許文献1の技術では、接合温度がAgの融点(約961℃)より高温である必要があるため、母材である金属部材に著しい酸化が生じる虞がある。また、金属部材とセラミックス部材の接合では、接合温度が高くなるに従い、両部材の熱膨張係数差により生じる熱応力も増大してしまう。
 そこで、反応性大気ろう付法での接合温度を低くするために、Ag系ろう材の低融点化を図るために種々の材料が提案されている。たとえば特許文献2の技術は、Ag-Ge-Si系合金からなるろう材を提案している。
US2003/0132270A1 特開2008-202097号公報
 しかしながら、特許文献2のAg-Ge-Si系ろう材は、接合温度まで加熱した場合、ろう材自体の酸化が進行するため、良好な接合体を得ることが困難である。生産性と品質向上の観点から、大気中でも、フラックスを用いることなく、良好な気密性や接合強度を有する接合体を提供することが要求されているが、そのような接合体の提供は、上記問題により困難であった。
 したがって、本発明は、低融点化を図ることにより、大気中でもフラックスを用いないで接合温度を低く設定することができる大気接合用ろう材、そのろう材を用いることにより接合され、良好な気密性や接合強度を有することができる接合体および集電材料を提供することを目的としている。
 本発明の大気接合用ろう材は、Ag(銀)とB(ホウ素)を必須成分とし、体積比でAgが50%以上92%未満の範囲内、Bが8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されていることを特徴とする。
 本発明の大気接合用ろう材では、AgとBを必須成分としている。Agは、大気中で溶融した場合でも酸化されにくい主成分であり、Bは約300℃以上で酸化し、その酸化物の融点も比較的低い温度(約577℃)である低融点材料である。これら必須成分について体積比でAgが50%以上92%未満の範囲内、Bが8%超50%以下の範囲の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されているから、金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材とのろう付に上記大気接合用ろう材を適用する場合、ろう付を大気中で行うときでも、母材の酸化を防止することができるから、フラックスが不要となる。また、この場合、ろう材自体の酸化も防止することができる。
 さらに、低融点材料であるBを必須成分として含有することにより、ろう材の低融点化を図ることができ、接合温度をAgの融点(約961℃)以下に設定することができる。このように従来のAg系大気接合用ろう材と比較して接合温度が低いから、母材として金属部材を用いる場合、母材の酸化抑制等を図ることができ、金属部材側の変質を防止することができる。また、母材として金属部材とセラミックス部材を用いる場合、上記のように接合温度が低いから、両部材の熱膨張率差による熱応力を低減することができる。
 以上のことから、大気中でもフラックスを用いないろう付により、良好な気密性や接合強度を有する接合体を得ることができる。また、ろう付を大気中で行うことができ、真空処理が不要であるから、製造コストの低減を図ることができる。
 本発明の大気接合用ろう材は種々の構成を用いることができる。たとえば、必須元素である上記2成分に、分散材や活性元素として種々の元素を添加することにより、様々な目的に応じた接合体を得ることができる。
 たとえば、Ge(ゲルマニウム)、Al(アルミニウム)、Si(ケイ素)、V(バナジウム)、Mo(モリブデン)、W(タングステン)、Mn(マンガン)、Ti(チタン)、Zr(ジルコニウム)、および、これらの酸化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されている態様を用いることができる。この場合、添加された元素とは、酸化物の場合、それに含まれる全ての元素のことをいう。上記態様では、得られる接合体の気密性が良好となる。また、たとえば金属部材とセラミックス部材の接合体において、Geを添加することにより、セラミックス上にGe酸化物を析出させることができ、Geは活性金属としての作用を有するから、ぬれ性の向上を図ることができる。また、たとえばZrを添加させることにより、Bよりも蒸気圧が低いZrOが生成するから、耐久性の向上を図ることができる。
 また、Si(ケイ素)、Ca(カルシウム)、Ti(チタン)、Zr(ジルコニウム)、これらの窒化物、炭化物、および、水素化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されている態様を用いることができる。この場合、添加された元素とは、窒化物、炭化物、および、水素化物の場合、それに含まれる全ての元素のことをいう。上記態様では、得られる接合体の気密性が良好となる。また、たとえばZrを添加させることにより、Bよりも蒸気圧が低いZrOが生成するから、耐久性の向上を図ることができる。
 本発明の大気接合用ろう材は、上記のように低融点化を図ることができ、たとえば大気中において650℃以上850℃以下の融点を有することができる。
 本発明の接合体は、上記大気接合用ろう材を用いた接合により得られる。すなわち、本発明の接合体は、上記大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材とからなるとともに、ガスシール性を有することを特徴とする。本発明の接合体は、種々の構成を用いることができる。たとえば、接合体は、燃料電池用あるいは固体酸化物型燃料電池用として使用することができる。
 本発明の集電材料は、上記大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材とからなるとともに、電気伝導性を有することを特徴とする。本発明の集電材料は、種々の構成を用いることができる。たとえば集電材料は、燃料電池用あるいは固体酸化物型燃料電池用として使用することができる。
 本発明の大気接合用ろう材によれば、大気中での接合でもフラックスが不要となるのはもちろんのこと、ろう材自体の酸化も防止することができる。また、低融点材料であるBを必須成分として含有することにより、ろう材の低融点化を図ることができる等の効果を得ることができる。本発明の接合体あるいは集電材料によれば、本発明の大気接合用ろう材を用いることにより得られ、良好な気密性や接合強度を有することができる。
本発明の実施例で作製した接合試験片の概略構成を表す斜視図である。 本発明の実施例で用いた断面観察用接合試験片を表し、図1の矢印方向1Aでの側断面構成を表す図である。 本発明の試料1に係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図(×30倍)である。 図3に示す試料1に係る接合試験片の要部の拡大断面電子顕微鏡図(×500倍)である。 本発明の試料2に係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図(×30倍)である。 図5に示す試料2に係る接合試験片の要部の拡大断面電子顕微鏡図(×500倍)である。 本発明の試料3に係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図である。 図7に示す試料3に係る接合試験片の元素分布分析結果を表し、(A)はAg、(B)はGe、(C)はB、(D)はZr、(E)はOの分布分析結果を表す図である。 本発明の試料4A~4Cに係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図(×500倍)であり、(A)は接合条件を650℃/1hrにした試料4Aの場合、(B)は接合条件を750℃/1hrにした試料4Bの場合、(C)は接合条件を850℃/1hrにした試料4Cの場合の接合試験片の断面電子顕微鏡図である。 本発明の試料6に係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図(×500倍)である。 比較試料1に係るろう材を用いた接合により得られた接合試験片の断面電子顕微鏡図(×300倍)である。
 10…接合試験片、11…金属部材、12…セラミックス部材、13…接合層、14…B粉末、15…溶融Ag、16…未溶融Ag、17…空孔
 以下、本発明について実施例を用いて説明する。実施例では、本発明範囲内の大気接合用ろう材を用いて、本発明に係る試料として接合体試験片を作製した。また、本発明範囲外の大気接合用ろう材を用いて、比較試料として接合体試験片を作製した。試料および比較試料の接合体試験片の評価では、全ての試験片についてリーク試験を行い、そのうちの一部の試験片について接合部観察を行った。
(1)試料および比較試料の作製
 本発明の試料作製に用いることができる大気接合用ろう材は、AgとBを必須成分とし、体積比でAgが50%以上92%未満の範囲内、Bが8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されているろう材である。
 具体的には、AgとBを必須成分として含有し、Ge、Al、Si、V、Mo、W、Mn、Ti、Zr、および、これらの酸化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されているろう材である。あるいは、AgとBを必須成分として含有し、Si、Ca、Ti、Zr、これらの窒化物、炭化物、および、水素化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されているろう材である。
 本発明の試料作製で用いることができる大気接合用ろう材の形態としては、たとえば金属混合粉末を有機溶剤や有機バインダー等によりペーストとした形態や、合金粉末ペーストや、箔、ゾルゲル等の各種形態が挙げられ、特に限定されるものではない。
 本発明の試料作製で用いることができる金属部材の材料としては、たとえばフェライト系ステンレスや、ステンレス、耐熱性ステンレス、FeCrAl合金、FeCrSi合金、Ni基耐熱合金等が挙げられ、特に限定されるものではない。本発明の試料作製で用いたセラミックス部材の材料としては、たとえばイットリア安定化ジルコニアや、ジルコニア、アルミナ、マグネシア、ステアタイト、ムライト、チタニア、シリカ、サイアロン等の酸化物セラミックスが挙げられ、特に限定されるものではない。
 実施例では、本発明の各試料に係る大気接合用ろう材としては、表1に示す本発明範囲内の組成を有する混合金属粉末を有機バインダーと混合してペースト状としたものを用いた。本発明の各試料に係る金属部材としては、フェライト系合金であるZMG232L(日立金属社製)の外径14mm、内径8mmの円筒部材を用いた。本発明の各試料に係るセラミック部材としては、表1に示すように、安定化ジルコニア板、マグネシア板、窒化アルミ板、アルミナ板、あるいは、炭化珪素板を用いた。この場合、各板のサイズは、20mm×20mmに設定した。
 各比較試料に係る大気接合用ろう材としては、表1に示す本発明範囲外の組成を有する混合金属粉末を有機バインダーと混合してペースト状としたものを用い、金属部材としては、本発明の各試料と同様な円筒部材を用い、セラミック部材としては、表1に示すように、安定化ジルコニア板を用いた。表1では、大気接合用ろう材の組成の記載について、元素の前に示される割合がその元素の含有割合(体積比)を示している。
 実施例では、ペースト状の大気接合用ろう材を金属部材の一方の端面に塗布し、その塗布面にセラミック部材を載置し、大気中にて表1に示す接合条件(温度・時間)で加熱することにより、各試料および比較試料に係る接合試験片を作製した。
 図1は、作製した接合試験片10の構成を表す模式図である。符号11は円筒部材である金属部材、符号11Aは金属部材の開口部、符号12はセラミックス部材、符号13は接合層である。図2は、接合層13を含む接合部の観察断面の模式図である(図1の矢印方向1Aでの側断面構成を表す斜視図である)。
Figure JPOXMLDOC01-appb-T000001
(2)試料および比較試料の評価
 接合試験片10について、金属部材11の開口面11Aを閉塞し、金属部材11内部を真空排気して、ヘリウムリーク試験を行った。ヘリウムリーク試験結果について、表1では、ヘリウムが検出されなかったものをリークなし、ヘリウムが検出されたものをリークありと表記している。また、試料1~4,6および比較試料1については、図2に示すように、接合試験片10を中央部で切断し、接合層13を含む接合部を観察した。以下では、各試料および各比較試料の評価結果について説明する。
(A)試料1
 本発明の試料1の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-18%Bの組成を有するろう材を用い、加熱温度を750℃に設定したろう付を1hr行った。試料1の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
 また、図3は、試料1の接合試験片の断面電子顕微鏡図(×30倍)、図4は、図3に示す試料1の接合試験片の要部の拡大断面電子顕微鏡図(×500倍)である。接合層13には、図4から判るように、Bの粉末(以下、B粉末、符号14)および溶融したAg(以下、溶融Ag、符号15)が観察され、溶融していないAg(以下、未溶融Ag)および空孔は存在しなく、大気接合用ろう材が溶融したことを確認した。
(B)試料2
 本発明の試料2の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-50%Bの組成を有するろう材を用い、加熱温度を750℃に設定したろう付を1hr行った。試料2の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
 また、図5は、試料1の接合試験片の断面電子顕微鏡図(×30倍)、図6は、図5に示す試料2の接合試験片の要部の拡大断面電子顕微鏡図(×500倍)である。接合層13には、図6から判るように、B粉末(符号14)および溶融Ag(符号15)が観察され、未溶融Agおよび空孔は存在しなく、大気接合用ろう材が溶融したことを確認した。
(C)試料3
 本発明の試料2の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-16%Ge-16%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。試料2の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
 図7は、試料3の接合試験片の断面電子顕微鏡図である。図8は、図7に示す接合試験片の元素分布分析結果を表し、(A)はAg、(B)はGe、(C)はB、(D)はZr、(E)はOの分布分析結果を表す図である。図7に示される領域と図8(A)~(E)に示される領域は対応している。図8では、赤色に近づくに従い、その元素の存在量が多いことを示し、青色に近づくに従い、その元素の存在量が少ないことを示している。試料3の接合試験片では、図8(B),8(E)から判るように、Geの酸化物が多く析出していた。これにより、大気接合用ろう材の添加元素としてGeを用いると、Geの酸化物を析出させることができることを確認した。
(D)試料4A~4C
 本発明の試料4A~4Cの接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-3%Ge-40%Bの組成を有するろう材を用いた。接合条件について、表1に示すように、試料4Aの場合、加熱温度を650℃に設定したろう付を1hr行い、試料4Bの場合、加熱温度を750℃に設定したろう付を1hr行い、試料4Cの場合、加熱温度を850℃に設定したろう付を1hr行った。試料4A~4Cの接合試験片のヘリウムリーク試験では、いずれの接合試験片についても、表1に示すように、リークは観察されなかった。
 図9(A)は、試料4Aの接合試験片の断面電子顕微鏡図(×500倍)、図9(B)は、試料4Bの接合試験片の断面電子顕微鏡図(×500倍)、図9(C)は、試料4Cの接合試験片の断面電子顕微鏡図(×500倍)である。試料4A~4Cの接合試験片のいずれについても、接合層13には、図9(A)~9(C)から判るように、未溶融Agおよび空孔は存在しなく、大気接合用ろう材が溶融した。これにより、本発明範囲内の組成を有する大気接合用ろう材は、650℃以上850℃以下の融点を有することを確認した。
(E)試料5A~5J
 本発明の試料5A~5Jの接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、加熱温度を850℃に設定したろう付を1hr行った。
 ろう材について、試料5Aの場合、体積比でAg-3%Ge-17%B-6%Alの組成を有するろう材を用い、試料5Bの場合、体積比でAg-3%Ge-17%B-6%Siの組成を有するろう材を用い、試料5Cの場合、体積比でAg-3%Ge-17%B一6%Si0の組成を有するろう材を用い、試料5Dの場合、体積比でAg-3%Ge-17%B-3%ZrHの組成を有するろう材を用いた。
 試料5Eの場合、体積比でAg-3%Ge-17%B-3%Vの組成を有するろう材を用い、試料5Fの場合、体積比でAg-3%Ge-17%B-2%Moの組成を有するろう材を用い、試料5Gの場合、体積比でAg-3%Ge-17%B-1%Wの組成を有するろう材を用い、試料5Hの場合、体積比でAg-3%Ge-17%B-3%WOの組成を有するろう材を用い、試料5Iの場合、体積比でAg-3%Ge-17%B-4%TiHの組成を有するろう材を用い、試料5Jの場合、体積比でAg-3%Ge-17%B-5%SiCの組成を有するろう材を用いた。
 試料5A~5Jの接合試験片のヘリウムリーク試験では、いずれの接合試験片についても、表1に示すように、リークは観察されなかった。
(F)試料6
 本発明の試料6の接合試験片の作製では、表1に示すように、セラミックス部材12としてマグネシア板を用い、体積比でAg-3%Ge-40%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。試料6の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
 また、図10は、試料1の接合試験片の要部の拡大断面電子顕微鏡図(×500倍)である。接合層13には、図10から判るように、B粉末(符号14)および溶融Ag(符号15)が観察され、未溶融Agおよび空孔は存在しなく、大気接合用ろう材が溶融したことを確認した。
(F)試料7
 本発明の試料7の接合試験片の作製では、表1に示すように、セラミックス部材12として窒化アルミ板を用い、体積比でAg-3%Ge-40%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。試料7の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
(F)試料8
 本発明の試料8の接合試験片の作製では、表1に示すように、セラミックス部材12としてアルミナ板を用い、体積比でAg-3%Ge-40%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。試料8の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
(F)試料9
 本発明の試料9の接合試験片の作製では、表1に示すように、セラミックス部材12として炭化珪素板を用い、体積比でAg-3%Ge-40%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。試料9の接合試験片のヘリウムリーク試験では、表1に示すように、リークは観察されなかった。これにより、大気接合用ろう材が溶融したことを確認した。
(G)比較試料1
 比較試料1の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-18%Geの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。比較試料1の接合試験片のヘリウムリーク試験では、表1に示すように、リークが観察された。これにより、大気接合用ろう材が溶融しなかったことを確認した。
 また、図11は、比較試料1の接合試験片の要部の拡大断面電子顕微鏡図(×300倍)である。接合層13には、図11から判るように、粒状の未溶融Ag(符号16)が存在し、粒状の未溶融Ag間に空孔(符号17)が存在し、大気接合用ろう材が溶融しなかったことを確認した。以上のことから、Ag-Ge系ろう材は、850℃よりも融点が高く、低融点を有しないことを確認した。
(H)比較試料2
 比較試料2の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でGe-68%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。比較試料2の接合試験片のヘリウムリーク試験では、表1に示すように、リークが観察された。これにより、大気接合用ろう材が溶融しなかったことを確認した。これによりGe-B系ろう材は、850℃よりも融点が高く、低融点を有しないことを確認した。
(I)比較試料3
 比較試料3の接合試験片の作製では、表1に示すように、セラミックス部材12として安定化ジルコニア板を用い、体積比でAg-4%Ge-8%Bの組成を有するろう材を用い、加熱温度を850℃に設定したろう付を1hr行った。比較試料3の接合試験片のヘリウムリーク試験では、表1に示すように、リークが観察された。これにより、大気接合用ろう材が溶融しなかったことを確認した。比較試料3と試料1~9との比較から、Bの添加量は8%超であることが好適であることを確認した。
 以上の結果から、大気接合用ろう材の低融点化を図るためには、主成分であるAgにBの添加が必要不可欠であり、その組成比を本発明範囲内に設定する必要であることを確認した。具体的には、大気接合用ろう材の組成比について、Bの添加量の下限値は上記のように体積比で8%超である必要があり、Bの添加量の上限値は体積比で50%以下である必要があることを確認した。上限値について、Bの添加量が体積比で50%を超える場合、主成分がBとなるため、所望の接合強度、蒸気圧、融点を得ることができなくなるからである。
 以上のようなAg-B系低融点大気接合用ろう材には、他の元素を添加して、濡れ性や接合強度等の特性の向上を図ることができることを確認した。たとえば試料3の評価結果から判るように、金属部材とセラミックス部材の接合体において、Geを添加することにより、セラミックス上にGe酸化物を析出させることができることを確認した。また、必須元素である上記2成分に、Geに加えて、種々の金属や、酸化物、窒化物、炭化物、水素化物等を添加したが、そのようなAg-B系低融点大気接合用ろう材を用いることにより得られるいずれの接合体も、良好な気密性を得ることができることを確認した。このように必須元素である上記2成分に、分散材や活性元素として種々の元素を添加することができるから、様々な目的に応じた接合体を得ることができる可能性が示された。

Claims (8)

  1.  AgとBを必須成分とし、体積比でAgが50%以上92%未満の範囲内、Bが8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されていることを特徴とする大気接合用ろう材。
  2.  Ge、Al、Si、V、Mo、W、Mn、Ti、Zr、および、これらの酸化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されていることを特徴とする請求項1に記載の大気接合用ろう材。
  3.  Si、Ca、Ti、Zr、これらの窒化物、炭化物、および、水素化物の中から選択された少なくとも1種以上が添加され、Bと前記添加された元素の体積比の合計が8%超50%以下の範囲内とし、これらの合計が不可避不純物を含めて100%となるように調整されていることを特徴とする請求項1に記載の大気接合用ろう材。
  4.  大気中において650℃以上850℃以下の融点を有することを特徴とする請求項1~3のいずれかに記載の大気接合用ろう材。
  5.  請求項1~4のいずれかに記載の大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材とからなるとともに、ガスシール性を有することを特徴とする接合体。
  6.  燃料電池用あるいは固体酸化物型燃料電池用として使用されることを特徴とする請求項5に記載の接合体。
  7.  請求項1~4のいずれかに記載の大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材とからなるとともに、電気伝導性を有することを特徴とする集電材料。
  8.  燃料電池用あるいは固体酸化物型燃料電池用として使用されることを特徴とする請求項7に記載の集電材料。
PCT/JP2011/060251 2010-05-13 2011-04-27 大気接合用ろう材、接合体、および、集電材料 WO2011142262A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180023852.7A CN102883853B (zh) 2010-05-13 2011-04-27 大气接合用钎料、接合体及集电材料
US13/642,770 US20130040226A1 (en) 2010-05-13 2011-04-27 Brazing material for bonding in atmosphere, bonded article, and current collecting material
DE112011101640T DE112011101640T5 (de) 2010-05-13 2011-04-27 Lötmaterial für das Fügen an der Atmosphäre, gefügter Artikel und Strom-sammelndes Material
KR1020127031608A KR101454983B1 (ko) 2010-05-13 2011-04-27 대기 접합용 납재, 접합체, 및, 집전재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010111157A JP5623783B2 (ja) 2010-05-13 2010-05-13 大気接合用ろう材、接合体、および、集電材料
JP2010-111157 2010-05-13

Publications (1)

Publication Number Publication Date
WO2011142262A1 true WO2011142262A1 (ja) 2011-11-17

Family

ID=44914318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060251 WO2011142262A1 (ja) 2010-05-13 2011-04-27 大気接合用ろう材、接合体、および、集電材料

Country Status (6)

Country Link
US (1) US20130040226A1 (ja)
JP (1) JP5623783B2 (ja)
KR (1) KR101454983B1 (ja)
CN (1) CN102883853B (ja)
DE (1) DE112011101640T5 (ja)
WO (1) WO2011142262A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645307B2 (ja) * 2010-12-09 2014-12-24 日本発條株式会社 大気接合用ろう材、接合体、および、集電材料
EP2644312B1 (en) 2012-03-28 2018-10-31 Alfa Laval Corporate AB A novel brazing concept
WO2014168704A1 (en) * 2013-04-11 2014-10-16 General Electric Company Method of brazing two parts of a dynamoelectric machine with a non self fluxing braze alloy in air atmosphere
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
US9472804B2 (en) 2014-11-18 2016-10-18 StoreDot Ltd. Anodes comprising germanium for lithium-ion devices
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
WO2017175230A1 (en) 2016-04-07 2017-10-12 StoreDot Ltd. Lithium-ion cells and anodes therefor
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
US10096859B2 (en) 2016-04-07 2018-10-09 StoreDot Ltd. Electrolytes with ionic liquid additives for lithium ion batteries
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles
CN117586042A (zh) * 2024-01-19 2024-02-23 成都飞机工业(集团)有限责任公司 一种陶瓷基复合材料的连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270094A (ja) * 1991-01-07 1992-09-25 Daido Steel Co Ltd ろう付用材料
JPH0924487A (ja) * 1995-07-11 1997-01-28 Kyocera Corp ロウ材及びこれを用いた半導体素子収納用パッケージ
JP2007518565A (ja) * 2004-11-18 2007-07-12 ミドルセックス シルバー カンパニー リミテッド 銀はんだ、あるいは鑞付け用合金とそれらの使用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600144A (en) * 1969-06-05 1971-08-17 Westinghouse Electric Corp Low melting point brazing alloy
US4396577A (en) * 1981-10-09 1983-08-02 General Electric Company Cobalt-palladium-silicon-boron brazing alloy
JPS5865597A (ja) * 1981-10-15 1983-04-19 Mitsubishi Metal Corp ろう付け部表面性状のすぐれたAg合金ろう材
JPS5918504A (ja) * 1982-07-22 1984-01-30 三菱電機株式会社 電気接点材料
US4447392A (en) * 1982-12-10 1984-05-08 Gte Products Corporation Ductile silver based brazing alloys containing a reactive metal and manganese or germanium or mixtures thereof
JPS60187647A (ja) * 1984-03-05 1985-09-25 Tanaka Kikinzoku Kogyo Kk 摺動接点材料
JPS635895A (ja) * 1986-06-26 1988-01-11 Showa Denko Kk 接着ペ−スト
BG49232A1 (en) * 1989-10-03 1991-09-16 Vissh Mashinno Elektrotekhnich Metalloceramic contact material
US6726877B1 (en) * 1993-11-15 2004-04-27 Anthony Phillip Eccles Silver alloy compositions
GB2408269B (en) * 2003-11-19 2006-02-22 Paul Gilbert Cole Silver solder or brazing alloys and their use
JP2008202097A (ja) 2007-02-20 2008-09-04 Japan Fine Ceramics Center 導電性シール材料及びガスシール構造を有する構造体
JP5268717B2 (ja) * 2009-03-10 2013-08-21 日本発條株式会社 大気接合用ろう材及び接合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270094A (ja) * 1991-01-07 1992-09-25 Daido Steel Co Ltd ろう付用材料
JPH0924487A (ja) * 1995-07-11 1997-01-28 Kyocera Corp ロウ材及びこれを用いた半導体素子収納用パッケージ
JP2007518565A (ja) * 2004-11-18 2007-07-12 ミドルセックス シルバー カンパニー リミテッド 銀はんだ、あるいは鑞付け用合金とそれらの使用

Also Published As

Publication number Publication date
JP2011235345A (ja) 2011-11-24
US20130040226A1 (en) 2013-02-14
CN102883853A (zh) 2013-01-16
KR20130016348A (ko) 2013-02-14
DE112011101640T5 (de) 2013-03-21
CN102883853B (zh) 2016-05-04
KR101454983B1 (ko) 2014-10-27
JP5623783B2 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5623783B2 (ja) 大気接合用ろう材、接合体、および、集電材料
JP5645307B2 (ja) 大気接合用ろう材、接合体、および、集電材料
US20190001445A1 (en) Braze compositions, and related devices
JP5204958B2 (ja) 接合体
WO2009135387A1 (zh) 陶瓷颗粒增强复合钎料
JP5268717B2 (ja) 大気接合用ろう材及び接合体
Wang et al. Interfacial microstructure and mechanical properties of SiC joints achieved by reactive air brazing using Ag-V2O5 filler
US8511535B1 (en) Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere
Wang et al. Brazing YSZ ceramics by a novel SiO2 nanoparticles modified Ag filler
JP2006327888A (ja) セラミックスと金属のろう付け構造体
KR20080055741A (ko) 활성 브레이징용 저열팽창 복합재료 및 세라믹/금속 간접합체 제조방법
Cao et al. A low-temperature sealing method for metal-supported oxide fuel cell applications: Ni–Sn transient liquid phase bonding
JPH07284989A (ja) 高温ろう付け用硬ろう
JP2012082095A (ja) 複数のセラミックス部材を相互に接合する方法
Zhuang et al. The effect of a carbon layer on the microstructural and mechanical properties of porous BN/Si3N4 ceramic brazed with a titanium-silicon filler
Do Nascimento et al. Brazing Al2O3 to sintered Fe-Ni-Co alloys
US20120225306A1 (en) Brazing process
Yoo et al. Microstructure and bond strength of Ni–Cr steel/Al2O3 joints brazed with Ag–Cu–Zr alloys containing Sn or Al
WO2021025106A1 (ja) セラミックス接合材
JP5449294B2 (ja) 大気接合用ろう材および接合体
Bobzin et al. Development of New Brazing Fillers and Process Variants for Reactive Air Brazing (RAB) of Electrochemical Devices
JP2001220253A (ja) 金属−セラミック接合体及びその製造方法
Bobzin et al. Brazing of Ceramics with Aluminum Based Filler Metals in Air

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023852.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13642770

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111016409

Country of ref document: DE

Ref document number: 112011101640

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127031608

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11780519

Country of ref document: EP

Kind code of ref document: A1