WO2011078137A1 - 合わせガラスとその製造方法 - Google Patents

合わせガラスとその製造方法 Download PDF

Info

Publication number
WO2011078137A1
WO2011078137A1 PCT/JP2010/072938 JP2010072938W WO2011078137A1 WO 2011078137 A1 WO2011078137 A1 WO 2011078137A1 JP 2010072938 W JP2010072938 W JP 2010072938W WO 2011078137 A1 WO2011078137 A1 WO 2011078137A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
shrinkage rate
heat shrinkage
laminated glass
heat
Prior art date
Application number
PCT/JP2010/072938
Other languages
English (en)
French (fr)
Inventor
有一 日野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011547550A priority Critical patent/JPWO2011078137A1/ja
Priority to CN2010800591961A priority patent/CN102666422A/zh
Priority to BR112012017326A priority patent/BR112012017326A2/pt
Publication of WO2011078137A1 publication Critical patent/WO2011078137A1/ja
Priority to US13/531,855 priority patent/US8357451B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10871Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31627Next to aldehyde or ketone condensation product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31627Next to aldehyde or ketone condensation product
    • Y10T428/3163Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]

Definitions

  • the present invention relates to a laminated glass having a heat ray reflective film and a method for producing the same, and more particularly to a laminated glass in which wrinkles and deformation of the heat ray reflective film are suppressed and a method for producing the same.
  • a laminated glass used for a windshield of a vehicle or the like in which a pair of glass substrates is laminated via a heat ray reflective film sandwiched between a pair of adhesive layers.
  • Such laminated glass is obtained by, for example, stacking a glass substrate, an adhesive film, a heat ray reflective film, an adhesive film, and a glass substrate in this order, and cutting and removing the adhesive film and the heat ray reflective film protruding from the ends of the pair of glass substrates. It is manufactured by heating and pressurizing the whole.
  • the heat ray reflective film is obtained by alternately laminating oxide layers and metal layers on, for example, a polyester film produced by a stretching method.
  • a resin film produced by a stretching method stress due to stretching exists as residual stress.
  • the residual stress causes heat shrinkage by heating and pressurization when producing the laminated glass, and wrinkles and the like are generated in the heat ray reflective film including the glass.
  • a resin film having a specific heat shrinkage rate is used as a base material for suppressing generation of wrinkles or the like in a heat ray reflective film.
  • the heat shrinkage rate of the resin film is anisotropic, and the heat shrinkage rate of the adhesive film is also anisotropic, simply by defining the heat shrinkage rate of the resin film, The occurrence of wrinkles and deformation cannot be sufficiently suppressed.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a laminated glass in which the occurrence of wrinkles and deformation in the heat ray reflective film is suppressed. Moreover, this invention aims at providing the manufacturing method of the laminated glass by which generation
  • the laminated glass of the present invention is a laminated glass in which a first glass substrate, a first adhesive layer, a heat ray reflective film, a second adhesive layer, and a second glass substrate are laminated in this order, and the heat ray reflective
  • the film is a resin film having a heat shrinkage rate of 0.5% or more and 3% or less in a direction where the heat shrinkage rate is maximum, and a heat shrinkage rate of 0.1% or more and 2% or less in a direction perpendicular to the direction;
  • Including a heat ray reflective film formed on the resin file, the first adhesive layer and the second adhesive layer have a thermal shrinkage rate in a direction in which the thermal shrinkage rate is maximized in a range of 0.5% to 3%,
  • a polyvinyl butyral film having a thermal shrinkage rate in a direction perpendicular to the direction of ⁇ 2.5% or more and ⁇ 0.5% or less, and a direction in which the thermal shrinkage rate of the resin film is maximized, and a heat
  • the direction of maximum shrinkage is Interlink wherein the are.
  • the heat shrinkage rate of the resin film is that when held at 150 ° C. for 30 minutes
  • the heat shrinkage rate of the polyvinyl butyral film is that when held at 60 ° C. for 30 minutes.
  • the method for producing a laminated glass according to the present invention includes an intermediate production process for obtaining an intermediate by superimposing first and second polyvinyl butyral films on both sides of a heat ray reflective film and heating and pressurizing, and both sides of the intermediate.
  • a laminated glass manufacturing method comprising: a first and second glass substrates being stacked and heated and pressed to obtain a laminated glass; wherein the heat ray reflective film has a maximum heat shrinkage rate.
  • the first and second polyvinyl butyral films have a heat shrinkage rate in the direction orthogonal to the direction of 0.5% or more and 3% or less in the direction in which the heat shrinkage rate is maximum. -2.5% or more and -0.5% or less, and in the intermediate production process, the direction in which the heat shrinkage rate of the resin film is maximized and the heat shrinkage rates of the first and second polyvinyl butyral films.
  • the heat ray reflective film and the first and second polyvinyl butyral films are overlapped so that the direction in which the angle is maximum is orthogonal.
  • the heat shrinkage rate of the resin film is that when held at 150 ° C. for 30 minutes
  • the heat shrinkage rate of the polyvinyl butyral film is that when held at 60 ° C. for 30 minutes.
  • the first glass substrate, the first polyvinyl butyral film, the heat ray reflective film, the second polyvinyl butyral film, and the second glass substrate are superposed in this order.
  • a method for producing a laminated glass comprising a laminating step for obtaining an uncompressed laminated glass and a crimping step for obtaining a laminated glass by heating and pressurizing the uncompressed laminated glass, wherein the heat ray reflective film has a maximum heat shrinkage rate.
  • the first and second polyvinyl butyral films including a heat ray reflective film have a heat shrinkage rate of 0.5% or more and 3% or less in the direction in which the heat shrinkage rate is maximized.
  • the heat shrinkage rate in the direction perpendicular to the direction is ⁇ 2.5% or more and ⁇ 0.5% or less, and in the laminating step, the direction in which the heat shrinkage rate of the resin film is maximized, and the first and second The heat-reflective film and the first and second polyvinyl butyral films are overlapped so that the direction of thermal shrinkage of the polyvinyl butyral film is orthogonal to each other.
  • the thermal shrinkage rate of the resin film is when held at 150 ° C. for 30 minutes
  • the thermal shrinkage rate of the polyvinyl butyral film is when held at 60 ° C. for 30 minutes.
  • the heat shrinkage rate of the resin film and the polyvinyl butyral film in which the heat shrinkage rate in the direction in which the heat shrinkage rate is maximum and the direction orthogonal thereto are within a specific range are maximized.
  • a laminated glass in which the occurrence of wrinkles and deformation in the heat ray reflective film is suppressed can be produced.
  • FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the heat ray reflective film shown in FIG.
  • FIG. 3 is an explanatory view showing a method for measuring the thermal shrinkage rate of the resin film.
  • FIG. 4 is an explanatory view showing a method for measuring the thermal shrinkage rate of the polyvinyl butyral film.
  • FIG. 1 is a cross-sectional view showing an example of a laminated glass 1 of the present invention.
  • the laminated glass 1 of the present invention is obtained by laminating a first glass substrate 2, a first adhesive layer 3, a heat ray reflective film 4, a second adhesive layer 5, and a second glass substrate 6 in this order. .
  • the first and second adhesive layers 3 and 5 are made of polyvinyl butyral film (hereinafter referred to as PVB film).
  • the heat ray reflective film 4 is obtained by forming a heat ray reflective film 42 on a resin film 41 as a base material as shown in FIG.
  • the heat ray reflective film 42 is formed by, for example, alternately stacking (2n + 1) layers of oxide layers 43 and metal layers 44 (where n is an integer of 1 or more and 4 or less).
  • n 1, that is, the total number of layers of the oxide layer 43 and the metal layer 44 is three.
  • a protective layer may be formed on the heat ray reflective film 42.
  • the heat shrinkage rate of the direction in which the heat shrinkage rate of the resin film 41 is the maximum is 0.5% or more and 3% or less, and the heat shrinkage rate in the direction orthogonal to the direction is 0.1%.
  • the thermal shrinkage rate in the direction in which the PVB film has the maximum thermal shrinkage rate is 0.5% or more and 3% or less, and the thermal shrinkage rate in the direction perpendicular to the direction is ⁇ 2.5% or more. -0.5% or less.
  • the heat shrinkage rate of the resin film 41 is that when it is held at 150 ° C. for 30 minutes
  • the heat shrinkage rate of the PVB film is that when it is held at 60 ° C. for 30 minutes (the same applies hereinafter).
  • the direction where the heat shrinkage rate of the resin film 41 becomes the maximum and the direction where the heat shrinkage rate of the PVB film which comprises the 1st, 2nd contact bonding layers 3 and 5 becomes the maximum. And are orthogonal to each other.
  • the direction in which the heat shrinkage rate is maximum is defined as the maximum shrinkage direction
  • the direction orthogonal to the direction is defined as the orthogonal direction.
  • the resin film 41 that becomes the base material of the heat ray reflective film 4 and the PVB film that becomes the first and second adhesive layers 3 and 5 are manufactured by stretching these constituent materials into a film shape.
  • the stress due to stretching exists as residual stress
  • heat shrinkage occurs by heating and pressurizing when producing laminated glass by this residual stress
  • the heat ray reflective film 4 including this is shrunk
  • heat shrinkage tends to occur, and wrinkles and deformations are likely to occur in the heat ray reflective film 4.
  • the resin film 41 and the PVB film are usually moved and processed in a fixed direction while maintaining the film forming direction and the like, and are laminated as they are to form a laminated glass. Accordingly, the film forming direction of the resin film 41 and the PVB film, that is, the maximum shrinkage direction is easily overlapped, and the heat ray reflective film 4 is likely to be wrinkled or deformed synergistically.
  • the resin film 41 and the PVB film are arranged so that their maximum shrinkage directions are orthogonal to each other, so that the mutual maximum shrinkage directions are different from each other, and wrinkles or deformations in the heat ray reflective film 4 occur.
  • the PVB film has a negative heat shrinkage rate in the orthogonal direction, for example, the direction orthogonal to the film forming direction, that is, the so-called TD direction, and is likely to thermally expand, so by matching this with the maximum shrink direction of the resin film 41, The heat shrinkage of the resin film 41 can be positively suppressed, and the occurrence of wrinkles and deformation in the heat ray reflective film 4 can be suppressed.
  • the resin film 41 and each PVB film preferably have their maximum shrinking directions completely orthogonal to each other, but the angle deviation of each PVB film from the completely orthogonal state is within ⁇ 5 °. It only has to be. If the deviation of the angle of each PVB film is within ⁇ 5 °, the heat shrinkage of the resin film 41 can be appropriately corrected by the thermal expansion of the PVB film, and the occurrence of wrinkles or deformation in the heat ray reflective film 4 Can be suppressed.
  • the adhesive layers 3 and 5 are made of a PVB film.
  • the film forming direction is generally the maximum shrinking direction
  • the heat shrinkage rate in the film forming direction is 0.5% or more and 3% or less
  • the heat shrinkage rate in the direction perpendicular to the film forming direction is ⁇ 2.5%. More than -0.5% or less.
  • the thermal contraction rate in the direction in which the PVB film has the maximum thermal contraction rate is preferably 1.5% or more and 2.5% or less, and more preferably 1.8% or more and 2.4% or less.
  • the thermal contraction rate in the direction orthogonal to the direction in which the PVB film has the maximum thermal contraction rate is preferably ⁇ 2.0% or more and ⁇ 0.7% or less, and ⁇ 1.5% or more and ⁇ 0.9% or less. It is more preferable that
  • the thermal shrinkage rate in the orthogonal direction of the PVB film is ⁇ 2.5% or more and ⁇ 0.5% or less, that is, it is thermally expanded to some extent, this should be matched with the maximum shrinkage direction of the resin film 41.
  • the thermal contraction of the resin film 41 can be positively suppressed, and the occurrence of wrinkles and deformation in the heat ray reflective film 4 can be suppressed.
  • the heat shrinkage rate in the maximum shrinkage direction of the resin film 41 is 0.5% or more and 3% or less, and the heat shrinkage rate in the orthogonal direction is 0.1% or more and 2% or less.
  • the heat shrinkage rate in the maximum shrinkage direction is less than 0.5% or the heat shrinkage rate in the orthogonal direction is less than 0.1%, the heat shrinkage when used in combination with the PVB film is not sufficient.
  • the second glass substrates 2 and 6 are curved, there is a possibility that the second glass substrates 2 and 6 cannot be properly brought into close contact with the curvature.
  • the heat shrinkage rate in the direction in which the heat shrinkage rate of the resin film 41 is maximized is preferably 0.5% or more and 1.5% or less, and more preferably 0.7% or more and 1.3% or less.
  • the thermal contraction rate in the direction orthogonal to the direction in which the thermal contraction rate of the resin film 41 is maximized is preferably 0.1% or more and 1% or less, and preferably 0.2% or more and 0.6% or less. More preferred.
  • the thermal shrinkage rate in the maximum shrinkage direction of the resin film 41 exceeds 3%, or when the thermal shrinkage rate in the orthogonal direction exceeds 2%, the thermal shrinkage is excessively large even when used in combination with the PVB film. Thus, wrinkles and deformation may occur in the heat ray reflective film 4.
  • the heat shrinkage rate in the direction in which the heat shrinkage rate of the resin film 41 is maximum is 0.5% or more and 1.5% or less
  • the heat shrinkage rate in the direction perpendicular to the direction is 0.1% or more and 1% or less
  • the thermal shrinkage rate in the direction in which the PVB film has the maximum thermal shrinkage rate is 1.5% or more and 2.5% or less
  • the thermal shrinkage rate in the direction perpendicular to the direction is ⁇ 1. .5% or more and -0.5% or less
  • the thermal shrinkage rate of the resin film 41 is the one when it is held at 150 ° C. for 30 minutes as described above, and the thermal shrinkage rate of the PVB film is the one when it is held at 60 ° C. for 30 minutes.
  • the heat treatment for measuring the heat shrinkage rate is performed in a state of being suspended in a heating oven (no load state).
  • the heat shrinkage rate is calculated by the following formula (1), where L 1 is the length before heat treatment and L 2 is the length after heat treatment.
  • the lengths L 1 and L 2 are the lengths in the maximum shrinkage direction or the orthogonal direction in the resin film 41 or the PVB film.
  • Thermal contraction rate ((L 1 ⁇ L 2 ) / L 1 ) ⁇ 100 [%] (1)
  • the thermal contraction rate can be obtained as follows. First, as for the thermal shrinkage rate of the resin film 41, a strip-shaped test piece 51 as shown in FIG. 3 is cut out from the resin film 41 along the maximum shrinkage direction or the orthogonal direction.
  • the test piece 51 has a length of 150 mm and a width of 20 mm, for example.
  • a pair of reference lines 52 and 53 are written on the test piece 51 with an interval of about 100 mm in the longitudinal direction, and the length L between the reference lines 52 and 53 is measured. This length L corresponds to L 1 in the above formula (1).
  • the test piece 51 is suspended vertically in a hot air circulating oven, heated to 150 ° C. and held for 30 minutes, naturally cooled to room temperature and held for 60 minutes, and then the length L is measured again.
  • This length L corresponds to L 2 in the above formula (1).
  • the thermal contraction rate can be calculated by substituting the obtained length L (L 1 , L 2 ) into the above formula (1).
  • the heat shrinkage rate obtained for this film forming direction can be set as the above-described heat shrinkage rate in the maximum shrinking direction.
  • the thermal contraction rate obtained in the direction orthogonal to the film forming direction can be set as the thermal contraction rate in the orthogonal direction described above.
  • the rectangular test piece 61 as shown in FIG. 4 is cut out from a PVB film.
  • the pair of opposing sides is set along the maximum contraction direction, and the other pair of opposing sides is set along the orthogonal direction.
  • the test piece 61 is, for example, 110 mm ⁇ 110 mm.
  • a pair of reference lines 62 and 63 are entered with an interval of about 100 mm between one opposing side, and a length La between the reference lines 62 and 63 is measured, and between the other opposing sides.
  • a pair of reference lines 64 and 65 are entered with an interval of about 100 mm, and a length Lb between the reference lines 64 and 65 is measured.
  • the lengths La and Lb at this time correspond to L 1 in the above formula (1), respectively.
  • a test piece 61 is placed on a glass plate in a hot air circulation oven, heated to 60 ° C. and held for 30 minutes, naturally cooled to room temperature and held for 60 minutes, and then the lengths La and Lb are measured.
  • the lengths La and Lb at this time correspond to L 2 in the above formula (1), respectively.
  • the thermal contraction rate can be calculated by substituting the lengths La (L 1 , L 2 ) and Lb (L 1 , L 2 ) obtained for each direction into the above formula (1) individually. .
  • the film forming direction since the film forming direction usually corresponds to the maximum shrinkage direction, if the film forming direction is known in advance, the heat shrinkage rate obtained for this film forming direction is the heat shrinkage in the maximum shrinkage direction described above. Further, for the same reason, the thermal contraction rate obtained in the direction orthogonal to the film forming direction can be set as the thermal contraction rate in the orthogonal direction described above.
  • the resin film 41 is not particularly limited as long as the thermal contraction rate in each direction falls within a predetermined range.
  • polycarbonate polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate. (PEN), polyimide, polyether sulfone, polyarylate, nylon, cycloolefin polymer, and the like.
  • the thickness of the resin film 41 is not necessarily limited, but is generally preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less, and most preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the PVB film is not particularly limited as long as the thermal contraction rate in each direction is within a specific range, but generally a film having a thickness of 50 ⁇ m or more and 1000 ⁇ m or less is used, preferably a thickness of 500 ⁇ m. The thing of 900 micrometers or less is used above. Moreover, in the adhesive layers 3 and 5, the material of the PVB film may be the same or different.
  • the oxide layer 43 in the heat ray reflective film 42 generally has a refractive index of 1.7 or more and 2.6 or less, particularly 1.8 or more and 2.6 or less.
  • bismuth oxide, tin oxide, zinc oxide A layer mainly containing a metal oxide such as tantalum oxide, niobium oxide, tungsten oxide, titanium oxide, zirconium oxide, or indium oxide, or a layer containing a mixture thereof is preferable.
  • a layer containing zinc oxide as a main component or a layer containing indium oxide as a main component is preferable.
  • the layer mainly composed of zinc oxide contains an oxide layer of zinc oxide alone or at least one element selected from tin, aluminum, chromium, titanium, silicon, boron, magnesium, indium and gallium.
  • a layer mainly composed of zinc oxide can be used, and a layer mainly composed of indium oxide can be a layer mainly composed of indium oxide containing tin.
  • zinc oxide or zinc oxide, or tin, aluminum, chromium, titanium, silicon, boron, magnesium, indium and gallium are selected from the point that the metal layer 44 can be formed stably and with high crystallinity.
  • a layer composed mainly of zinc oxide containing more than one element, particularly zinc oxide containing aluminum and / or titanium is preferable.
  • Each oxide layer 43 may be a single layer or multiple layers.
  • the metal layer 44 is composed mainly of silver and is composed of only silver or an alloy composed mainly of silver. Constituent components other than silver in the metal layer 44 are, for example, palladium, gold, copper, and the like. The total content of these constituent components other than silver is 0.3 atomic percent or more and 10 atomic percent or less.
  • each oxide layer 43 and the metal layer 44 varies depending on the total number of layers and the constituent materials of each layer.
  • each oxide layer 43 is 5 nm to 100 nm
  • each metal layer 44 is 5 nm to 20 nm
  • all The total thickness of the oxide layer 43 and the metal layer 44 is 50 nm to 400 nm, more preferably 150 nm to 300 nm.
  • the heat ray reflective film 42 may be composed of a high refractive index layer and a low refractive index layer instead of the oxide layer 43 and the metal layer 44.
  • the total number of the high refractive index layer and the low refractive index layer is 3 or more
  • the thickness of the high refractive index layer is 70 nm or more and 150 nm or less
  • the thickness of the low refractive index layer is 100 nm or more and 200 nm or less.
  • the high refractive index layer is, for example, a dielectric having a refractive index (refractive index at a wavelength of 550 nm, the same shall apply hereinafter) of 1.9 or more, preferably 1.9 or more and 2.5 or less.
  • a refractive index refractive index at a wavelength of 550 nm, the same shall apply hereinafter
  • tantalum oxide Refractive index: 2.0 to 2.2
  • titanium oxide reffractive index: 2.2 to 2.5
  • zirconium oxide refractive index: 1.9 to 2.0
  • hafnium oxide reffractive index: 1 .95-2.15) and the like, and at least one selected from high refractive index materials.
  • the low refractive index layer is, for example, a dielectric having a refractive index of 1.5 or less, preferably 1.2 or more and 1.5 or less, specifically silicon oxide (refractive index: 1.44 to 1.4). 48) and at least one selected from low refractive index materials such as magnesium fluoride (refractive index: 1.35 to 1.41).
  • the first glass substrate 2 and the second glass substrate 6 can be organic transparent plates such as a polycarbonate plate and a polymethyl methacrylate plate in addition to a general inorganic transparent glass plate.
  • the type of glass plate is not necessarily limited as long as it is used for vehicles and the like, but it is preferable to use a float glass plate formed by a float process.
  • the thickness of the glass plate can be appropriately selected, but is usually about 1.8 to 2.5 mm.
  • the glass plate may be provided with a coating that imparts a water repellent function, a hydrophilic function, an antifogging function, and the like.
  • the laminated glass 1 of the present invention is applied to vehicles such as automobiles, railways and ships, and is particularly preferably applied to automobiles. Since the laminated glass 1 of this invention has suppressed generation
  • the manufacturing method of the 1st laminated glass 1 of this invention is the intermediate body manufacturing process which makes an intermediate body by superimposing the 1st, 2nd PVB film on both surfaces of the heat ray reflective film 4, and heat-pressing, and this intermediate
  • the manufacturing method of the 2nd laminated glass 1 of this invention is the 1st glass substrate 2, the 1st PVB film, the heat ray reflective film 4, the 2nd PVB film, and the 2nd glass substrate 6 in this order. It is characterized by comprising a laminating step for superposing laminated unbonded laminated glass and a crimping step for forming laminated glass 1 by heating and pressing the unbonded laminated glass.
  • the first and second glass substrates 2 and 6 are pressure-bonded thereto.
  • the laminated glass 1 may be used, or, as in the second manufacturing method, all the components of the laminated glass 1 are simply overlapped to form an unbonded laminated glass, and then the unbonded laminated glass is pressure-bonded to the laminated glass. It may be 1.
  • the resin film 41 having a heat shrinkage rate in the maximum shrinkage direction of 0.5% or more and 3% or less and a heat shrinkage rate in the orthogonal direction of 0.1% or more and 2% or less As the heat ray reflective film 4, the resin film 41 having a heat shrinkage rate in the maximum shrinkage direction of 0.5% or more and 3% or less and a heat shrinkage rate in the orthogonal direction of 0.1% or more and 2% or less.
  • a film having a heat ray reflective film 42 formed thereon is used, and as the first and second PVB films, the heat shrinkage rate in the maximum shrinkage direction is 0.5% or more and 3% or less, and the heat shrinkage rate in the orthogonal direction is ⁇ 2 .5% or more and -0.5% or less is used.
  • the resin film 41 is superposed so that the maximum shrinkage direction of the resin film 41 is orthogonal to the maximum shrinkage direction of the first and second PVB films.
  • the resin film 41 and the PVB film whose thermal shrinkage rates in the maximum shrinkage direction and the orthogonal direction are within a specific range, are overlapped so that the maximum shrinkage directions are perpendicular to each other,
  • the laminated glass 1 in which the occurrence of wrinkles and deformation in the reflective film 4 is suppressed can be manufactured.
  • the heat ray reflective film 4 and the PVB film used for the production of the laminated glass 1 those described above can be used. Further, in the intermediate production process in the first production method or the lamination process in the second production method, the heat ray reflective film 4 (resin film 41) and the PVB film are overlapped so that the maximum shrinkage directions are orthogonal to each other. For example, the direction of the film formation direction etc. discharged from the film forming machine is kept for one of them, and the direction is changed 90 ° from the direction of the film formation direction discharged from the film forming machine for the other. It can be easily done by switching and superimposing.
  • the heat ray reflective film 4 and the first and second PVB films are superposed, for example, at a temperature of about 40 to 80 ° C. and a pressure of about 0.1 to 1
  • An intermediate can be produced by heating and pressurizing under a condition of 0.0 MPa.
  • the intermediate body and the first and second glass substrates 2 and 6 are placed in a vacuum bag such as a rubber bag, and the pressure is about 1 to 100 kPa. (More preferably, it is 1 to 36 kPa)
  • Pre-pressing is carried out by heating to about 70 to 120 ° C. (more preferably 70 to 110 ° C.) while deaeration, and further, the temperature is 120 to 150 ° C. and pressure in an autoclave.
  • Laminated glass 1 can be produced by heating and pressing at about 0.98 to 1.47 MPa.
  • the non-crimped laminated glass is put in a vacuum bag such as a rubber bag so that the pressure is about 1 to 100 kPa (more preferably 1 to 36 kPa).
  • Pre-compression is performed by heating to about 70 to 120 ° C. (more preferably 70 to 110 ° C.) while degassing, and further heated and pressurized at a temperature of about 120 to 150 ° C. and a pressure of about 0.98 to 1.47 MPa in an autoclave.
  • the laminated glass 1 can be manufactured by performing this pressure bonding.
  • Example 1 As a PET film, the heat shrinkage rate in the maximum shrinkage direction (film forming direction (MD direction)) is 1.0%, and the heat shrinkage rate in the orthogonal direction (direction perpendicular to the film forming direction (TD direction)) is 0.4%. (Made by Toyobo Co., Ltd., trade name: A4100, thickness 50 ⁇ m) was prepared.
  • the heat shrinkage rate in the maximum shrinkage direction and the orthogonal direction of the PET film here is an average of the heat shrinkage rates in the maximum shrinkage direction or the orthogonal direction of the three PET films obtained by the measurement method.
  • a heat ray reflective film is formed by alternately laminating seven oxide layers and four metal layers (oxide layer: four layers, metal layer: three layers) by magnetron sputtering. Further, a protective film was formed to obtain a heat ray reflective film.
  • 0.1 Pa was introduced while introducing a mixed gas in which 5% by volume of oxygen gas was mixed with argon gas using a target prepared by sintering zinc oxide added with 10% by mass of titanium oxide on a PET film.
  • Pulse sputtering with a frequency of 20 kHz, a power density of 3.8 W / cm 2 , and an inversion pulse width of 5 ⁇ sec was performed to form a 35 nm-thick first oxide layer made of zinc and titanium oxide.
  • first oxide layer while introducing argon gas using a silver alloy target mainly composed of silver added with 0.25% by mass of gold, a frequency of 20 kHz at a pressure of 0.1 Pa and a power density of 2. Pulse sputtering of 5 W / cm 2 and inversion pulse width of 5 ⁇ sec was performed to form a first metal layer made of silver and gold and having a thickness of 10 nm.
  • a mixture of 5% by volume of oxygen gas in argon gas using a gallium, indium, and tin oxide target (trade name: GIT target, manufactured by AGC Ceramics) on the fourth oxide layer While introducing the gas, pulse sputtering with a frequency of 20 kHz, a power density of 2.5 W / cm 2 and an inversion pulse width of 5 ⁇ sec was performed at a pressure of 0.1 Pa to form a protective layer having a thickness of 5 nm to obtain a heat ray reflective film .
  • the first and second PVB films have a thickness of 0.78 mm, a thermal shrinkage rate of 2.2% in the maximum shrinkage direction (film molding direction (MD direction)), and an orthogonal direction (perpendicular to the film molding direction).
  • Direction (TD direction)) having a thermal shrinkage rate of -1.2% (manufactured by Sekisui Chemical Co., Ltd.).
  • the thermal contraction rate of the maximum shrinkage direction and orthogonal direction of a PVB film here averages the thermal contraction rate of the maximum shrinkage direction or orthogonal direction about the three PVB films calculated
  • Comparative Example 1 When producing a non-press-bonded laminated glass, it was laminated in the same manner as in Example 1 except that the maximum shrinkage direction of the PET film and the maximum shrinkage direction of the first and second PVB films were overlapped. Glass was produced.
  • Example 3 As a PET film, the heat shrinkage rate in the maximum shrinkage direction (film forming direction (MD direction)) is 4.6%, and the heat shrinkage rate in the orthogonal direction (direction perpendicular to the film forming direction (TD direction)) is 3.0%.
  • a laminated glass was produced in the same manner as in Example 1 except that the product (made by Toyobo Co., Ltd., trade name: soft shine, thickness 50 ⁇ m) was used.
  • Example 1 the laminated glass of Example 1 and Comparative Examples 1 to 3 was subjected to a high temperature and high humidity test in which it was put into a high temperature and high humidity tank at 80 ° C. and a relative humidity of 95% for 500 hours. Observed with an optical microscope. The results are shown in Table 1.
  • the heat shrinkage rate of the resin film and the polyvinyl butyral film in which the heat shrinkage rate in the direction in which the heat shrinkage rate is maximum and the direction orthogonal thereto are within a specific range are maximized.
  • SYMBOLS 1 Laminated glass, 2 ... 1st glass substrate, 3 ... 1st contact bonding layer, 4 ... Heat ray reflective film, 5 ... 2nd contact bonding layer, 6 ... 2nd glass substrate, 41 ... Resin film, 42 ... Heat ray reflective film, 43 ... oxide layer, 44 ... metal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、第1のガラス基板、第1の接着層、熱線反射フィルム、第2の接着層、および第2のガラス基板がこの順に積層された合わせガラスであって、前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、前記第1の接着層および第2の接着層は、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下のポリビニルブチラールフィルムからなり、かつ前記樹脂フィルムの熱収縮率が最大となる方向と、前記ポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交していることを特徴とする合わせガラスに関する:但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。

Description

合わせガラスとその製造方法
 本発明は、熱線反射フィルムを有する合わせガラスとその製造方法とに係り、特に熱線反射フィルムの皺や変形等が抑制された合わせガラスとその製造方法とに関する。
 従来、車両等のフロントガラスに使用する合わせガラスとして、熱線反射フィルムを一対の接着層で狭持したものを介して一対のガラス基板を積層したものが知られている。このような合わせガラスは、例えばガラス基板、接着フィルム、熱線反射フィルム、接着フィルム、ガラス基板をこの順に重ね合わせ、一対のガラス基板の端部からはみ出した接着フィルムや熱線反射フィルムを切断除去した後、全体を加熱加圧して一体化することにより製造されている。
 熱線反射フィルムは、例えば延伸法により製造されたポリエステルフィルム上に酸化物層と金属層とが交互に積層されたものである。しかしながら、延伸法により製造された樹脂フィルムについては、延伸による応力が残留応力として存在している。この残留応力により合わせガラスを製造する際の加熱加圧により熱収縮し、これを含む熱線反射フィルムに皺等を発生させる。
 熱線反射フィルムにおける皺等の発生を抑制するものとして、例えば熱線反射フィルムにおける基材となる樹脂フィルムの熱収縮率を特定の範囲内としたものが知られている(例えば、特許文献1参照)。
日本国特開2009-35438号公報
 熱線反射フィルムにおける皺等の発生を抑制するものとして、その基材に特定の熱収縮率を有する樹脂フィルムを用いることが知られている。しかしながら、樹脂フィルムの熱収縮率には異方性があり、また接着フィルムの熱収縮率にも異方性があることから、単に樹脂フィルムの熱収縮率を規定しただけでは、熱線反射フィルムにおける皺や変形等の発生を十分に抑制することはできない。
 本発明は、上記課題を解決するためになされたものであって、熱線反射フィルムにおける皺や変形等の発生が抑制された合わせガラスを提供することを目的としている。また、本発明は、熱線反射フィルムにおける皺や変形等の発生が抑制された合わせガラスの製造方法を提供することを目的としている。
 本発明の合わせガラスは、第1のガラス基板、第1の接着層、熱線反射フィルム、第2の接着層、および第2のガラス基板がこの順に積層された合わせガラスであって、前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂ファイル上に形成された熱線反射膜を含み、前記第1の接着層および第2の接着層は、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下のポリビニルブチラールフィルムからなり、前記樹脂フィルムの熱収縮率が最大となる方向と、前記ポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交していることを特徴とする。但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
 本発明の合わせガラスの製造方法は、熱線反射フィルムの両面に第1および第2のポリビニルブチラールフィルムを重ね合わせて加熱加圧することにより中間体を得る中間体製造工程と、前記中間体の両面に第1および第2のガラス基板を重ね合わせて加熱加圧することにより合わせガラスを得る圧着工程とを有する合わせガラスの製造方法であって、前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、前記第1および第2のポリビニルブチラールフィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下であり、前記中間体製造工程において、前記樹脂フィルムの熱収縮率が最大となる方向と、前記第1および第2のポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交するように、前記熱線反射フィルムと前記第1および第2のポリビニルブチラールフィルムとを重ね合わせることを特徴とする。但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
 また、本発明の他の合わせガラスの製造方法は、第1のガラス基板、第1のポリビニルブチラールフィルム、熱線反射フィルム、第2のポリビニルブチラールフィルム、および第2のガラス基板をこの順に重ね合わせて未圧着合わせガラスを得る積層工程と、前記未圧着合わせガラスを加熱加圧することにより合わせガラスを得る圧着工程とを有する合わせガラスの製造方法であって、前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、前記第1および第2のポリビニルブチラールフィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下であり、前記積層工程において、前記樹脂フィルムの熱収縮率が最大となる方向と、前記第1および第2のポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交するように、前記熱線反射フィルムと前記第1および第2のポリビニルブチラールフィルムとを重ね合わせることを特徴とする。但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
 本発明の合わせガラスによれば、熱収縮率が最大となる方向およびこれに直交する方向の熱収縮率が特定の範囲内にある樹脂フィルムとポリビニルブチラールフィルムとを互いの熱収縮率が最大となる方向が直交するように配置することで、熱線反射フィルムにおける皺や変形等の発生が抑制されたものとすることができる。
 また、本発明の合わせガラスの製造方法によれば、熱収縮率が最大となる方向およびこれに直交する方向の熱収縮率が特定の範囲内にある樹脂フィルムとポリビニルブチラールフィルムとを互いの熱収縮率が最大となる方向が直交するように重ね合わせることで、熱線反射フィルムにおける皺や変形等の発生が抑制された合わせガラスを製造することができる。
図1は、本発明の合わせガラスの一例を示す断面図である。 図2は、図1に示す熱線反射フィルムの一例を示す断面図である。 図3は、樹脂フィルムの熱収縮率の測定方法を示す説明図である。 図4は、ポリビニルブチラールフィルムの熱収縮率の測定方法を示す説明図である。
 以下、本発明について図面を参照して説明する。
 図1は、本発明の合わせガラス1の一例を示す断面図である。本発明の合わせガラス1は、第1のガラス基板2、第1の接着層3、熱線反射フィルム4、第2の接着層5、および第2のガラス基板6がこの順に積層されたものである。
 第1、第2の接着層3、5は、ポリビニルブチラールフィルム(以下、PVBフィルムという)からなるものである。また、熱線反射フィルム4は、図2に示すように基材となる樹脂フィルム41上に熱線反射膜42が形成されたものである。熱線反射膜42は、例えば酸化物層43と金属層44とが交互に(2n+1)層(但し、nは1以上4以下の整数)積層されたものである。なお、図2に示すものについてはn=1のもの、すなわち酸化物層43と金属層44との合計層数が3であるものを示している。また、図示しないが、熱線反射膜42上には保護層が形成されていてもよい。
 本発明の合わせガラス1については、樹脂フィルム41の熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、該方向に直交する方向の熱収縮率が0.1%以上2%以下であると共に、PVBフィルムの熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、該方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下であることを特徴としている。但し、樹脂フィルム41の熱収縮率は150℃で30分間保持したときのものであり、PVBフィルムの熱収縮率は60℃で30分間保持したときのものである(以下、同様)。
 また、本発明の合わせガラス1については、樹脂フィルム41の熱収縮率が最大となる方向と、第1、第2の接着層3、5を構成するPVBフィルムの熱収縮率が最大となる方向とが直交していることを特徴としている。なお、以下では、熱収縮率が最大となる方向のことを最大収縮方向とし、これに直交する方向のことを直交方向として説明する。
 一般に、熱線反射フィルム4の基材となる樹脂フィルム41や、第1、第2の接着層3、5となるPVBフィルムは、これらの構成材料をフィルム状に延伸することにより製造されている。しかしながら、延伸により製造されるものについては、延伸による応力が残留応力として存在しており、この残留応力により合わせガラスを製造する際の加熱加圧により熱収縮し、これを含む熱線反射フィルム4に皺や変形等を発生させる。特に、主たる延伸方向であるフィルム成形方向、いわゆるMD方向については熱収縮しやすく、熱線反射フィルム4に皺や変形等を発生させやすい。
 また、樹脂フィルム41やPVBフィルムは、通常、フィルム成形方向等の向きのまま一定の向きで移動や加工が行われ、そのまま重ね合わされて合わせガラスとされる。従って、樹脂フィルム41とPVBフィルムとのフィルム成形方向、すなわち最大収縮方向が一致して重ね合わされやすく、相乗的に熱線反射フィルム4に皺や変形等を発生させやすくなっている。
 本発明によれば、樹脂フィルム41とPVBフィルムとを互いの最大収縮方向が直交するように配置することで、互いの最大収縮方向を異なるものとし、熱線反射フィルム4における皺や変形等の発生を抑制することができる。特に、PVBフィルムは直交方向、例えばフィルム成形方向に直交する方向、いわゆるTD方向の熱収縮率が負となり、熱膨張しやすいことから、これを樹脂フィルム41の最大収縮方向に一致させることで、積極的に樹脂フィルム41の熱収縮を抑制し、熱線反射フィルム4における皺や変形等の発生を抑制することができる。
 なお、樹脂フィルム41と個々のPVBフィルムとは互いの最大収縮方向が完全に直交していることが好ましいが、完全な直交状態からの個々のPVBフィルムの角度のずれが±5°以内となっていればよい。個々のPVBフィルムの角度のずれが±5°以内であれば、樹脂フィルム41の熱収縮をPVBフィルムの熱膨張により適切に修正することができ、熱線反射フィルム4における皺や変形等の発生を抑制することができる。
 本発明については、透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性および遮音性等の諸性能のバランスにより優れることから、第1、第2の接着層3、5をPVBフィルムからなるものとしている。PVBフィルムについては、一般にフィルム成形方向が最大収縮方向となり、このフィルム成形方向の熱収縮率が0.5%以上3%以下、フィルム成形方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下となっている。PVBフィルムの熱収縮率が最大となる方向の熱収縮率は1.5%以上2.5%以下であることが好ましく、1.8%以上2.4%以下であることがより好ましい。PVBフィルムの熱収縮率が最大となる方向に直交する方向の熱収縮率は-2.0%以上-0.7%以下であることが好ましく、-1.5%以上-0.9%以下であることがより好ましい。
 PVBフィルムの直交方向の熱収縮率が-2.5%以上-0.5%以下であること、すなわちある程度熱膨張するものであることから、これを樹脂フィルム41の最大収縮方向に一致させることで、積極的に樹脂フィルム41の熱収縮を抑制し、熱線反射フィルム4における皺や変形等の発生を抑制することができる。
 一方、樹脂フィルム41の最大収縮方向の熱収縮率は0.5%以上3%以下、直交方向の熱収縮率は0.1%以上2%以下である。最大収縮方向の熱収縮率が0.5%未満、または直交方向の熱収縮率が0.1%未満である場合、PVBフィルムと合わせて用いたときの熱収縮が十分でなく、第1、第2のガラス基板2、6が湾曲しているとき、この湾曲に適切に密着させることができないおそれがある。樹脂フィルム41の熱収縮率が最大となる方向の熱収縮率は、0.5%以上1.5%以下であることが好ましく、0.7%以上1.3%以下であることがより好ましい。樹脂フィルム41の熱収縮率が最大となる方向に直交する方向の熱収縮率は、0.1%以上1%以下であることが好ましく、0.2%以上0.6%以下であることがより好ましい。
 また、樹脂フィルム41の最大収縮方向の熱収縮率が3%を超える場合、または直交方向の熱収縮率が2%を超える場合、PVBフィルムと合わせて用いたとしても熱収縮が過度に大きいものとなり、熱線反射フィルム4に皺や変形等が発生するおそれがある。
 熱収縮率のより好適な組み合わせとしては、例えば樹脂フィルム41の熱収縮率が最大となる方向の熱収縮率が0.5%以上1.5%以下、該方向に直交する方向の熱収縮率が0.1%以上1%以下、PVBフィルムの熱収縮率が最大となる方向の熱収縮率が1.5%以上2.5%以下、該方向に直交する方向の熱収縮率が-1.5%以上-0.5%以下である
 なお、樹脂フィルム41の熱収縮率は、上記したように150℃で30分間保持したときのものであり、PVBフィルムの熱収縮率は、60℃で30分間保持したときのものである。ここで、熱収縮率の測定のための熱処理は、いずれのものについても加熱用オーブンに宙吊りに浮かせた状態(無負荷状態)で行われるものである。また、熱収縮率は、熱処理前の長さをL、熱処理後の長さLとしたとき、下記式(1)により算出されるものである。ここで、長さL、Lは、樹脂フィルム41あるいはPVBフィルムにおける最大収縮方向または直交方向の長さである。
 熱収縮率=((L-L)/L)×100[%] ……(1)
 具体的には、以下のようにして熱収縮率を求めることができる。
 まず、樹脂フィルム41の熱収縮率については、樹脂フィルム41から最大収縮方向または直交方向に沿って、図3に示すような短冊状の試験片51を切り出す。試験片51は、例えば長さ150mm×幅20mmのものである。この試験片51には、長手方向に約100mmの間隔を空けて一対の基準線52、53を記入し、この基準線52、53間の長さLを測定する。この長さLは、上記式(1)のLに相当する。
 熱風循環式オーブン内に試験片51を垂直に吊り下げ、150℃まで昇温して30分間保持し、室温まで自然冷却して60分間保持した後、再び長さLを測定する。この長さLは、上記式(1)のLに相当する。そして、得られた長さL(L、L)を上記式(1)に代入することにより熱収縮率を算出することができる。
 通常、フィルム成形方向が最大収縮方向に該当することから、予めフィルム成形方向がわかっていれば、このフィルム成形方向について求められた熱収縮率を上記した最大収縮方向の熱収縮率とすることができ、また同様の理由からフィルム成形方向に直交する方向について求められた熱収縮率を上記した直交方向の熱収縮率とすることができる。
 一方、PVBフィルムの熱収縮率については、PVBフィルムから、図4に示すような矩形状の試験片61を切り出す。この際、一対の対向する辺が最大収縮方向に沿うように、また他の一対の対向する辺が直交方向に沿うようにする。試験片61は、例えば110mm×110mmのものである。そして、一方の対向する辺間に約100mmの間隔を空けて一対の基準線62、63を記入し、この基準線62、63間の長さLaを測定すると共に、他方の対向する辺間に約100mmの間隔を空けて一対の基準線64、65を記入し、この基準線64、65間の長さLbを測定する。このときの長さLa、Lbは、それぞれ上記式(1)のLに相当する。
 熱風循環式オーブン内のガラス板上に試験片61を配置し、60℃まで昇温して30分間保持し、室温まで自然冷却して60分間保持した後、長さLa、Lbを測定する。このときの長さLa、Lbは、それぞれ上記式(1)のLに相当する。そして、それぞれの方向について得られた長さLa(L、L)、Lb(L、L)を個々に上記式(1)に代入することにより熱収縮率を算出することができる。
 PVBフィルムについても、通常、フィルム成形方向が最大収縮方向に該当することから、予めフィルム成形方向がわかっていれば、このフィルム成形方向について求められた熱収縮率を上記した最大収縮方向の熱収縮率とすることができ、また同様の理由からフィルム成形方向に直交する方向について求められた熱収縮率を上記した直交方向の熱収縮率とすることができる。
 樹脂フィルム41については、各方向の熱収縮率が所定の範囲内となるものであれば特に限定されるものではなく、例えばポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ナイロン、シクロオレフィンポリマー等からなるものとすることができる。
 通常、比較的に高強度であり、合わせガラス1の製造時の損傷を抑制する観点から、ポリエチレンテレフタレート(PET)からなるものが用いられる。樹脂フィルム41の厚さは、必ずしも限定されるものではないものの、一般に5μm以上200μm以下であることが好ましく、20μm以上100μm以下であることがより好ましく、40μm以上60μm以下であることがもっとも好ましい。
 また、PVBフィルムについても、各方向の熱収縮率が特定範囲内となるものであれば特に限定されるものではないが、一般に厚さ50μm以上1000μm以下のものが用いられ、好ましくは厚さ500μm以上900μm以下のものが用いられる。また、接着層3、5において、PVBフィルムの材質は同じであっても異なっていてもよい。
 また、熱線反射膜42における酸化物層43は、一般に屈折率が1.7以上2.6以下、特に1.8以上2.6以下であればよく、例えば酸化ビスマス、酸化スズ、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化タングステン、酸化チタン、酸化ジルコニウム、酸化インジウム等の金属酸化物を主成分とする層、あるいはこれらの混合物を含む層であることが好ましい。特に、酸化亜鉛を主成分とする層、または酸化インジウムを主成分とする層であることが好ましい。酸化亜鉛を主成分とする層としては、酸化亜鉛単独の酸化物の層、またはスズ、アルミニウム、クロム、チタン、シリコン、ホウ素、マグネシウム、インジウムおよびガリウムから選ばれる少なくとも1種以上の元素を含有する酸化亜鉛を主成分とする層とすることができ、酸化インジウムを主成分とする層としてはスズを含有する酸化インジウムを主成分とする層とすることができる。
 これらの中でも、金属層44を安定的に、かつ高い結晶性を有しながら形成できる点から、酸化亜鉛、またはスズ、アルミニウム、クロム、チタン、シリコン、ホウ素、マグネシウム、インジウムおよびガリウムから選ばれる1種以上の元素を含有する酸化亜鉛からなるもの、特にアルミニウムおよび/またはチタンを含有する酸化亜鉛を主成分とする層であることが好ましい。なお、各酸化物層43は、単層であってもよいし、多層であってもよい。
 金属層44は、銀を主成分とするものであり、銀のみからなるもの、または銀を主成分とする合金からなるものである。金属層44における銀以外の構成成分は、例えばパラジウム、金、銅等であり、これら銀以外の構成成分の含有量は合計で0.3原子%以上10原子%以下である。
 酸化物層43や金属層44の厚さは、全体の層数や各層の構成材料によっても異なるが、例えば各酸化物層43は5nm以上100nm以下、各金属層44は5nm以上20nm以下、全ての酸化物層43と金属層44とを合わせた全体の層厚は50nm以上400nm以下、より好ましくは150nm以上300nm以下である。
 なお、熱線反射膜42としては、酸化物層43と金属層44とからなるものとする代わりに、高屈折率層と低屈折率層とからなるものとしてもよい。通常、高屈折率層と低屈折率層とを合計した層数は3以上であり、高屈折率層の厚さが70nm以上150nm以下、低屈折率層の厚さが100nm以上200nm以下である。
 高屈折率層としては、例えば屈折率(波長550nmでの屈折率、以下同様)が1.9以上、好ましくは1.9以上2.5以下の誘電体であり、具体的には酸化タンタル(屈折率:2.0~2.2)、酸化チタン(屈折率:2.2~2.5)、酸化ジルコニウム(屈折率:1.9~2.0)、および酸化ハフニウム(屈折率:1.95~2.15)等の高屈折率材料の中から選ばれる少なくとも1種からなるものが挙げられる。
 また、低屈折率層としては、例えば屈折率が1.5以下、好ましくは1.2以上1.5以下の誘電体であり、具体的には酸化シリコン(屈折率:1.44~1.48)、およびフッ化マグネシウム(屈折率:1.35~1.41)等の低屈折率材料の中から選ばれる少なくとも1種からなるものが挙げられる。
 第1のガラス基板2、第2のガラス基板6は、一般的な無機透明ガラス板の他、例えばポリカーボネート板やポリメチルメタクリレート板等の有機透明板とすることができる。
 ガラス板の種類としては、車輌用等として使用されているものであれば必ずしも限定されるものではないが、フロート法で成形されたフロートガラス板を用いることが好ましい。
 また、ガラス板の厚みは、適宜選択することができるが、通常は1.8~2.5mm程度である。さらに、ガラス板には、撥水機能、親水機能、防曇機能等を付与するコーティングが施されていてもよい。
 本発明の合わせガラス1は、自動車、鉄道、船舶等の車輌に適用され、特に自動車に好ましく適用される。本発明の合わせガラス1は、熱線反射フィルム4における皺や変形等の発生が抑制されているために、これらの用途に好適に用いることができる。
 次に、本発明の合わせガラス1の製造方法について説明する。
 本発明の第1の合わせガラス1の製造方法は、熱線反射フィルム4の両面に第1、第2のPVBフィルムを重ね合わせて加熱加圧することにより中間体とする中間体製造工程と、該中間体の両面に第1、第2のガラス基板2、6を重ね合わせて加熱加圧することにより合わせガラス1とする圧着工程とを有することを特徴とする。
 また、本発明の第2の合わせガラス1の製造方法は、第1のガラス基板2、第1のPVBフィルム、熱線反射フィルム4、第2のPVBフィルム、および第2のガラス基板6をこの順に重ね合わせて未圧着合わせガラスとする積層工程と、該未圧着合わせガラスを加熱加圧することにより合わせガラス1とする圧着工程とを有することを特徴とする。
 本発明では、第1の製造方法のように、熱線反射フィルム4と第1、第2のPVBフィルムとから中間体を製造した後、これに第1、第2のガラス基板2、6を圧着して合わせガラス1としてもよいし、また第2の製造方法のように、合わせガラス1の全構成物を単に重ね合わせて未圧着合わせガラスとした後、未圧着合わせガラスを圧着して合わせガラス1としてもよい。
 いずれの製造方法についても、熱線反射フィルム4として、最大収縮方向の熱収縮率が0.5%以上3%以下、直交方向の熱収縮率が0.1%以上2%以下である樹脂フィルム41上に熱線反射膜42を形成したものを用いると共に、第1、第2のPVBフィルムとして、最大収縮方向の熱収縮率が0.5%以上3%以下、直交方向の熱収縮率が-2.5%以上-0.5%以下であるものを用いる。
 また、いずれの製造方法についても、熱線反射フィルム4と第1、第2のPVBフィルムとを重ね合わせる際(第1の製造方法における中間体製造工程、あるいは第2の製造方法における積層工程)、樹脂フィルム41の最大収縮方向と、第1、第2のPVBフィルムの最大収縮方向とが直交するように重ね合わせる。
 本発明の製造方法によれば、最大収縮方向および直交方向の熱収縮率が特定の範囲内にある樹脂フィルム41とPVBフィルムとを互いの最大収縮方向が直交するように重ね合わせることで、熱線反射フィルム4における皺や変形等の発生が抑制された合わせガラス1を製造することができる。
 合わせガラス1の製造に用いる熱線反射フィルム4やPVBフィルムとしては、既に説明したようなものとすることができる。また、第1の製造方法における中間体製造工程、あるいは第2の製造方法における積層工程において、熱線反射フィルム4(樹脂フィルム41)とPVBフィルムとを最大収縮方向が直交するように重ね合わせるには、例えば一方のものについてはフィルム成形機から排出されるフィルム成形方向等の向きのままとし、他方のものについてフィルム成形機から排出されるフィルム成形方向等の向きから90°向きを変えるように方向転換して重ね合わせることで容易に行うことができる。
 そして、第1の製造方法における中間体製造工程は、熱線反射フィルム4と第1、第2のPVBフィルムとを重ね合わせたものを、例えば温度約40~80℃、圧力約0.1~1.0MPaの条件で加熱加圧することにより中間体を製造することができる。
 また、第1の製造方法における圧着工程は、中間体と第1、第2のガラス基板2、6とを重ね合わせたものをゴムバッグのような真空バッグ中に入れ、圧力が約1~100kPa(より好ましくは1~36kPa)となるように脱気しつつ約70~120℃(より好ましくは70~110℃)に加熱することにより予備圧着し、さらにオートクレーブにて温度120~150℃、圧力約0.98~1.47MPaの加熱加圧を行うことにより合わせガラス1を製造することができる。
 一方、第2の製造方法における圧着工程についても、同様にして未圧着合わせガラスをゴムバッグのような真空バッグ中に入れ、圧力が約1~100kPa(より好ましくは1~36kPa)となるように脱気しつつ約70~120℃(より好ましくは70~110℃)に加熱することにより予備圧着し、さらにオートクレーブで温度約120~150℃、圧力約0.98~1.47MPaで加熱加圧することにより本圧着して合わせガラス1を製造することができる。
 以下、本発明について、実施例を参照してより詳細に説明する。
(実施例1)
 PETフィルムとして、最大収縮方向(フィルム成形方向(MD方向))の熱収縮率が1.0%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が0.4%のもの(東洋紡績株式会社製、商品名:A4100、厚さ50μm)を用意した。なお、ここでのPETフィルムの最大収縮方向および直交方向の熱収縮率は、上記測定方法により求めた3枚のPETフィルムについての最大収縮方向または直交方向の熱収縮率を平均したものである。
 このPETフィルム上に、以下に示すようにマグネトロンスパッタリング法により酸化物層と金属層とを交互に7層(酸化物層:4層、金属層:3層)積層して熱線反射膜を形成し、さらに保護膜を形成して熱線反射フィルムとした。
 まず、PETフィルム上に、酸化チタンを10質量%添加した酸化亜鉛を焼結して作製したターゲットを用いてアルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、亜鉛およびチタンの酸化物からなる厚さ35nmの第1の酸化物層を形成した。
 第1の酸化物層上に、金を0.25質量%添加した銀を主成分とする銀合金ターゲットを用いてアルゴンガスを導入しながら、0.1Paの圧力で周波数20kKz、電力密度2.5W/cm、反転パルス幅5μsecのパルススパッタを行い、銀および金からなる厚さ10nmの第1の金属層を形成した。
 第1の金属層上に、酸化チタンを10質量%添加した酸化亜鉛を焼結して作製したターゲットを用いてアルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、亜鉛およびチタンの酸化物からなる厚さ70nmの第2の酸化物層を形成した。
 第2の酸化物層上に、金を0.25質量%添加した銀を主成分とする銀合金ターゲットを用いてアルゴンガスを導入しながら、0.1Paの圧力で周波数20kKz、電力密度2.5W/cm、反転パルス幅5μsecのパルススパッタを行い、銀および金からなる厚さ12nmの第2の金属層を形成した。
 第2の金属層上に、酸化チタンを10質量%添加した酸化亜鉛を焼結して作製したターゲットを用いてアルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、亜鉛およびチタンの酸化物からなる厚さ70nmの第3の酸化物層を形成した。
 第3の酸化物層上に、金を0.25質量%添加した銀を主成分とする銀合金ターゲットを用いてアルゴンガスを導入しながら、0.1Paの圧力で周波数20kKz、電力密度2.5W/cm、反転パルス幅5μsecのパルススパッタを行い、銀および金からなる厚さ10nmの第3の金属層を形成した。
 第3の金属層上に、酸化チタンを10質量%添加した酸化亜鉛を焼結して作製したターゲットを用いてアルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、亜鉛およびチタンの酸化物からなる厚さ35nmの第4の酸化物層を形成した。
 さらに、第4の酸化物層上に、ガリウム、インジウム、およびスズの酸化物ターゲット(AGCセラミックス株式会社製、商品名:GITターゲット)を用いてアルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度2.5W/cm、反転パルス幅5μsecのパルススパッタを行い、厚さ5nmの保護層を形成して熱線反射フィルムを得た。
 次に、第1のガラス基板、第1のPVBフィルム、上記熱線反射フィルム、第2のPVBフィルム、第2のガラス基板を、この順に、かつPETフィルムの最大収縮方向と第1、第2のPVBフィルムの最大収縮方向とが直交する(つまり、第1のPVBフィルムと第2のPVBフィルムとの最大収縮方向が平行となる)ように重ね合わせて端部を仮止めして未圧着合わせガラスとした。
 ここで、第1、第2のPVBフィルムは、厚さ0.78mm、最大収縮方向(フィルム成形方向(MD方向))の熱収縮率が2.2%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が-1.2%のもの(積水化学工業株式会社製)とした。
 なお、ここでのPVBフィルムの最大収縮方向および直交方向の熱収縮率は、上記測定方法により求めた3枚のPVBフィルムについての最大収縮方向または直交方向の熱収縮率を平均したものである。
 そして、真空バッグに未圧着合わせガラスを入れ、圧力計の表示が100kPa以下となるように脱気した後120℃に加熱して予備圧着し、さらにオートクレーブにて温度135℃、圧力1.3MPaで60分間の加熱加圧を行い、最終的に冷却して合わせガラスとした。
(比較例1)
 未圧着合わせガラスを製造する際、PETフィルムの最大収縮方向と、第1、第2のPVBフィルムの最大収縮方向とが平行となるように重ね合わせたこと以外は実施例1と同様にして合わせガラスを製造した。
(比較例2)
 PETフィルムとして、最大収縮方向(フィルム成形方向(MD方向))の熱収縮率が4.6%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が3.0%のもの(東洋紡績株式会社製、商品名:ソフトシャイン、厚さ50μm)を用い、未圧着合わせガラスを製造する際、PETフィルムの最大収縮方向と、第1、第2のPVBフィルムの最大収縮方向とが平行となるように配置したこと以外は実施例1と同様にして合わせガラスを製造した。
(比較例3)
 PETフィルムとして、最大収縮方向(フィルム成形方向(MD方向))の熱収縮率が4.6%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が3.0%のもの(東洋紡績株式会社製、商品名:ソフトシャイン、厚さ50μm)を用いたこと以外は実施例1と同様にして合わせガラスを製造した。
 次に、実施例1、比較例1~3の合わせガラスについて、熱線反射フィルムにおける皺および変形の有無を観察した。皺については、100mm□について観察を行った。また、変形については、第1、第2のガラス基板の外形に対して熱線反射フィルムの外形が収縮するように変形したものを変形があるものとした。
 また、実施例1、比較例1~3の合わせガラスについて、80℃、相対湿度95%の高温高湿槽に500時間投入する高温高湿試験を行った後、熱線反射フィルムにおけるクラックの有無を光学顕微鏡により観察した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、所定の熱収縮率を有するPETフィルムとPVBフィルムとを最大収縮方向が直交するように配置した実施例1の合わせガラスについては、熱線反射フィルムにおける皺や変形の発生が抑制され、また高温高湿試験によるクラックの発生も抑制されることが認められた。
 一方、所定の熱収縮率を有するPETフィルムとPVBフィルムとを用いたものの、これらの最大収縮方向が平行となるように配置した比較例1の合わせガラスについては、熱線反射フィルムの全面に皺が発生することが認められ、また熱線反射フィルムが略菱形状に収縮するように変形することも認められた。
 また、熱収縮率が過度に大きいPETフィルムを用いた比較例2、3の合わせガラスについては、いずれも熱線反射フィルムに皺や、高温高湿試験によるクラックの発生が認められた。特に、PETフィルムとPVBフィルムとの最大収縮方向を平行とした比較例2の合わせガラスについては、熱線反射フィルムが略菱形状に収縮するように変形することが認められた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年12月24日出願の日本特許出願2009-292007に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の合わせガラスによれば、熱収縮率が最大となる方向およびこれに直交する方向の熱収縮率が特定の範囲内にある樹脂フィルムとポリビニルブチラールフィルムとを互いの熱収縮率が最大となる方向が直交するように配置することで、熱線反射フィルムにおける皺や変形等の発生が抑制されたものとすることができる。
 1…合わせガラス、2…第1のガラス基板、3…第1の接着層、4…熱線反射フィルム、5…第2の接着層、6…第2のガラス基板、41…樹脂フィルム、42…熱線反射膜、43…酸化物層、44…金属層

Claims (11)

  1.  第1のガラス基板、第1の接着層、熱線反射フィルム、第2の接着層、および第2のガラス基板がこの順に積層された合わせガラスであって、
     前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、
     前記第1の接着層および第2の接着層は、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下のポリビニルブチラールフィルムからなり、かつ
     前記樹脂フィルムの熱収縮率が最大となる方向と、前記ポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交していることを特徴とする合わせガラス:
     但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
  2.  前記樹脂フィルムの厚さが5μm以上200μm以下である請求項1に記載の合わせガラス。
  3.  前記樹脂フィルムはポリエチレンテレフタレートからなるものである請求項1または2に記載の合わせガラス。
  4.  前記ポリビニルブチラールフィルムの厚さが50μm以上1000μm以下である請求項1、2または3に記載の合わせガラス。
  5.  熱線反射フィルムの両面に第1および第2のポリビニルブチラールフィルムを重ね合わせて加熱加圧することにより中間体を得る中間体製造工程と、
     前記中間体の両面に第1および第2のガラス基板を重ね合わせて加熱加圧することにより合わせガラスを得る圧着工程と
     を有する合わせガラスの製造方法であって、
     前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、
     前記第1および第2のポリビニルブチラールフィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下であり、かつ
     前記中間体製造工程において、前記樹脂フィルムの熱収縮率が最大となる方向と、前記第1および第2のポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交するように、前記熱線反射フィルムと前記第1および第2のポリビニルブチラールフィルムとを重ね合わせることを特徴とする合わせガラスの製造方法:
     但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
  6.  前記中間体製造工程における加熱加圧は、温度:40~80℃、圧力:0.1~1.0MPaの条件で行われる請求項5に記載の合わせガラスの製造方法。
  7.  前記圧着工程における加熱加圧は、温度:120~150℃、圧力:0.98~1.47MPaの条件で行われる請求項5または6に記載の合わせガラスの製造方法。
  8.  前記圧着工程において、圧力:1~100kPaとなるように脱気しつつ70~120℃に加熱する予備圧着をした後、加熱加圧を行う請求項5、6または7に記載の合わせガラスの製造方法。
  9.  第1のガラス基板、第1のポリビニルブチラールフィルム、熱線反射フィルム、第2のポリビニルブチラールフィルム、および第2のガラス基板をこの順に重ね合わせて未圧着合わせガラスを得る積層工程と、
     前記未圧着合わせガラスを加熱加圧することにより合わせガラスを得る圧着工程と
     を有する合わせガラスの製造方法であって、
     前記熱線反射フィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が0.1%以上2%以下である樹脂フィルムと、前記樹脂フィルム上に形成された熱線反射膜を含み、
     前記第1および第2のポリビニルブチラールフィルムは、熱収縮率が最大となる方向の熱収縮率が0.5%以上3%以下、前記方向に直交する方向の熱収縮率が-2.5%以上-0.5%以下であり、かつ
     前記積層工程において、前記樹脂フィルムの熱収縮率が最大となる方向と、前記第1および第2のポリビニルブチラールフィルムの熱収縮率が最大となる方向とが直交するように、前記熱線反射フィルムと前記第1および第2のポリビニルブチラールフィルムとを重ね合わせることを特徴とする合わせガラスの製造方法:
     但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものであり、前記ポリビニルブチラールフィルムの熱収縮率は60℃で30分間保持したときのものである。
  10.  前記圧着工程における加熱加圧は、温度:120~150℃、圧力:0.98~1.47MPaの条件で行われる請求項9に記載の合わせガラスの製造方法。
  11.  前記圧着工程において、圧力:1~100kPaとなるように脱気しつつ70~120℃に加熱する予備圧着をした後、加熱加圧を行う請求項9または10に記載の合わせガラスの製造方法。
PCT/JP2010/072938 2009-12-24 2010-12-20 合わせガラスとその製造方法 WO2011078137A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011547550A JPWO2011078137A1 (ja) 2009-12-24 2010-12-20 合わせガラスとその製造方法
CN2010800591961A CN102666422A (zh) 2009-12-24 2010-12-20 夹层玻璃及其制造方法
BR112012017326A BR112012017326A2 (pt) 2009-12-24 2010-12-20 vidro laminado e método para a sua produção
US13/531,855 US8357451B2 (en) 2009-12-24 2012-06-25 Laminated glass, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292007 2009-12-24
JP2009292007 2009-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/531,855 Continuation US8357451B2 (en) 2009-12-24 2012-06-25 Laminated glass, and method for producing same

Publications (1)

Publication Number Publication Date
WO2011078137A1 true WO2011078137A1 (ja) 2011-06-30

Family

ID=44195664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072938 WO2011078137A1 (ja) 2009-12-24 2010-12-20 合わせガラスとその製造方法

Country Status (5)

Country Link
US (1) US8357451B2 (ja)
JP (1) JPWO2011078137A1 (ja)
CN (1) CN102666422A (ja)
BR (1) BR112012017326A2 (ja)
WO (1) WO2011078137A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156822A1 (ja) * 2013-03-29 2014-10-02 コニカミノルタ株式会社 合わせガラス
JP2014189479A (ja) * 2013-03-28 2014-10-06 Kuraray Co Ltd 太陽電池用封止材および合わせガラス用中間膜
WO2015056594A1 (ja) * 2013-10-18 2015-04-23 コニカミノルタ株式会社 赤外遮蔽フィルムおよび合わせガラス
WO2017090712A1 (ja) * 2015-11-27 2017-06-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2019026516A (ja) * 2017-07-31 2019-02-21 大日本印刷株式会社 合わせガラスの製造方法
WO2019167566A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 合わせガラス

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066472B2 (ja) * 2012-12-17 2017-01-25 信越石英株式会社 フランジ付き耐熱性ガラス筒体積み重ね構造体、フランジ付き耐熱性ガラス容器及びそれらの製造方法
JP5988867B2 (ja) * 2012-12-27 2016-09-07 リンテック株式会社 透明導電性フィルム
UA95157U (uk) * 2014-07-03 2014-12-10 Спосіб кріплення "pro nut"
KR102303305B1 (ko) * 2014-09-30 2021-09-16 세키스이가가쿠 고교가부시키가이샤 합판 유리용 중간막 및 합판 유리
EP3255019A4 (en) * 2015-02-05 2018-10-10 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, and laminated glass
AR103980A1 (es) * 2015-09-10 2017-06-21 Xsolutions S A Vidrio de seguridad y procedimiento para su obtención
AU2016329565A1 (en) * 2015-09-30 2018-03-15 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
JP6297238B1 (ja) * 2016-04-26 2018-03-20 京セラ株式会社 車両用表示装置
WO2019203142A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用ドアガラス
WO2019203141A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用フロントガラス
CN110588105B (zh) * 2019-09-11 2024-03-22 信义玻璃(天津)有限公司 增厚夹层玻璃及其制作方法
US11833783B2 (en) 2019-09-18 2023-12-05 Acr Ii Glass America Inc. Laminated glazing and methods of laminating a glazing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867441A (ja) * 1981-10-19 1983-04-22 帝人株式会社 積層体
JPS5981161A (ja) * 1982-11-01 1984-05-10 帝人株式会社 選択光透過性フイルム
JPS60225747A (ja) * 1984-04-25 1985-11-11 帝人株式会社 機能性フイルム
JP2009035438A (ja) * 2007-07-31 2009-02-19 Central Glass Co Ltd 赤外線反射合せガラス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3271844D1 (en) 1981-10-19 1986-07-31 Teijin Ltd Selectively light transmitting film and preformed laminar structure
US6797396B1 (en) * 2000-06-09 2004-09-28 3M Innovative Properties Company Wrinkle resistant infrared reflecting film and non-planar laminate articles made therefrom
CN101784498B (zh) 2007-07-31 2012-09-26 中央硝子株式会社 插塑料薄膜夹层玻璃
JP2013014440A (ja) 2009-11-04 2013-01-24 Asahi Glass Co Ltd 合わせガラスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867441A (ja) * 1981-10-19 1983-04-22 帝人株式会社 積層体
JPS5981161A (ja) * 1982-11-01 1984-05-10 帝人株式会社 選択光透過性フイルム
JPS60225747A (ja) * 1984-04-25 1985-11-11 帝人株式会社 機能性フイルム
JP2009035438A (ja) * 2007-07-31 2009-02-19 Central Glass Co Ltd 赤外線反射合せガラス

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189479A (ja) * 2013-03-28 2014-10-06 Kuraray Co Ltd 太陽電池用封止材および合わせガラス用中間膜
WO2014156822A1 (ja) * 2013-03-29 2014-10-02 コニカミノルタ株式会社 合わせガラス
JPWO2014156822A1 (ja) * 2013-03-29 2017-02-16 コニカミノルタ株式会社 合わせガラス
WO2015056594A1 (ja) * 2013-10-18 2015-04-23 コニカミノルタ株式会社 赤外遮蔽フィルムおよび合わせガラス
WO2017090712A1 (ja) * 2015-11-27 2017-06-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2019026516A (ja) * 2017-07-31 2019-02-21 大日本印刷株式会社 合わせガラスの製造方法
JP7147139B2 (ja) 2017-07-31 2022-10-05 大日本印刷株式会社 合わせガラスの製造方法
WO2019167566A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 合わせガラス
JPWO2019167566A1 (ja) * 2018-02-28 2020-12-03 富士フイルム株式会社 合わせガラス
JP7004796B2 (ja) 2018-02-28 2022-01-21 富士フイルム株式会社 合わせガラス

Also Published As

Publication number Publication date
BR112012017326A2 (pt) 2016-04-19
US8357451B2 (en) 2013-01-22
JPWO2011078137A1 (ja) 2013-05-09
CN102666422A (zh) 2012-09-12
US20120276374A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2011078137A1 (ja) 合わせガラスとその製造方法
KR101202861B1 (ko) 플라스틱 필름 삽입 적층 유리의 제조방법 및 플라스틱 필름 삽입 적층 유리
WO2009154060A1 (ja) プラスチックフィルム挿入合わせガラスの製造方法およびプラスチックフィルム挿入合わせガラス
EP2392551B1 (en) Use of a plastic film in a curved laminated glass
WO2012008587A1 (ja) 赤外線反射基板および合わせガラス
EP3081545B1 (en) Method for producing composite film
JP2016064965A (ja) 車両用合わせガラスの製造方法
JP2010013311A (ja) プラスチックフィルム挿入合わせガラスの製造方法およびプラスチックフィルム挿入合わせガラス
JP5948785B2 (ja) 合わせガラス
JP2009298661A (ja) プラスチックフィルム挿入合わせガラスの製造方法およびプラスチックフィルム挿入合わせガラス
JP5245316B2 (ja) プラスチックフィルム挿入合せガラスの製造方法
US5238743A (en) Thermoplastic sheet produced by multiple stretching steps at different temperatures
WO2011055685A1 (ja) 合わせガラスの製造方法
KR101300425B1 (ko) 근적외선 반사막 부착 플라스틱 필름 및 플라스틱 필름 삽입 적층 유리
JP2011144061A (ja) 合わせガラス
JP5515727B2 (ja) 導電フィルムの製造方法、および合わせガラス
JPH1143355A (ja) 合わせガラス用中間膜
JP2011195416A (ja) 合わせガラスの製造方法
JP5205847B2 (ja) プラスチックフィルム挿入合せガラス
CN210525994U (zh) 一种附有pc层的复合型玻璃
JP2000256043A (ja) 合わせガラス用中間膜および合わせガラス
JPS5867442A (ja) 積層体及びその製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059196.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547550

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5567/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017326

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10839367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012017326

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120622