WO2011067281A1 - Metallisierung mit hoher leistungsverträglichkeit und hoher elektrischer leitfähigkeit - Google Patents

Metallisierung mit hoher leistungsverträglichkeit und hoher elektrischer leitfähigkeit Download PDF

Info

Publication number
WO2011067281A1
WO2011067281A1 PCT/EP2010/068628 EP2010068628W WO2011067281A1 WO 2011067281 A1 WO2011067281 A1 WO 2011067281A1 EP 2010068628 W EP2010068628 W EP 2010068628W WO 2011067281 A1 WO2011067281 A1 WO 2011067281A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallization
layer
upper layer
substrate
metallization according
Prior art date
Application number
PCT/EP2010/068628
Other languages
English (en)
French (fr)
Inventor
Charles Binninger
Ulrich Knauer
Helmut Zottl
Werner Ruile
Tomasz Jewula
Rudolf Nüssl
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to JP2012541486A priority Critical patent/JP5878127B2/ja
Priority to KR1020127015150A priority patent/KR101761955B1/ko
Priority to US13/509,181 priority patent/US9173305B2/en
Priority to CN201080054640.0A priority patent/CN102763492B/zh
Publication of WO2011067281A1 publication Critical patent/WO2011067281A1/de
Priority to US14/867,759 priority patent/US9728705B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • H05K1/0265High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board characterized by the lay-out of or details of the printed conductors, e.g. reinforced conductors, redundant conductors, conductors having different cross-sections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/046Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer
    • H05K3/048Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer using a lift-off resist pattern or a release layer pattern

Definitions

  • the invention relates to metallization with high power resistance and high electrical conductivity for stromtra ⁇ ing structures and methods for their preparation.
  • the invention particularly relates to metallizations for current-carrying structures for working with acoustic waves components.
  • Metallizations for operating with acoustic waves components from which, for example, bus bars, the bus bars are formed with associated electrode fingers or reflector structures on a piezoelectric substrate, are particularly preferred performance firmly extracts ⁇ Stalten.
  • Bulk acoustic wave (BAW) or surface acoustic wave (SAW) propagation within a solid or on its surface; their frequencies are in the GHz range.
  • SAW surface acoustic wave
  • To take the current-carrying (electrode) structures which high-frequency electrical signals into acoustic waves or reverse acoustic waves into electrical radio frequency signals umwan ⁇ spindles have thus withstand the one hand, the electrical currents and at the other ⁇ hand, the mechanical deformation due to the acoustic waves, without damage.
  • an electrode structure is arranged on monocrystalline lithium tantalate or lithium niobate.
  • the electrode structure comprises a first layer of titanium.
  • a second layer deposited thereon comprises aluminum.
  • the second layer comprises two ⁇ 1 1 1> domains.
  • Methods for producing the electrode layers relate to the epitaxial growth of the layer comprising aluminum.
  • the growth of a layer deposited on a substrate is said to be epitaxial when the orientation of the atoms of the layer is oriented to the orientation of the atoms of the substrate.
  • a general problem with epitaxial growth is to provide a suitable surface. Because the nature of the surface of the substrate - as cut ⁇ interface between substrate and coating - influences the Ord ⁇ voltage of the atoms of the deposited layer significantly. Usually, substrates are therefore pretreated by annealing or by etching. Between the pre-treatment and the actual deposition process, the surface of the substrate must no longer be contaminated with impurities. The use of the lift-off technique when depositing
  • Electrode structures on substrates are problematic when it comes to a particularly "clean" substrate surface, because in the first step a resist layer is applied to the optionally pretreated substrate surface, in further process steps this lacquer layer is then partially exposed and the exposed areas removed in a further process step. at the formerly be ⁇ exposed areas, the substrate surface is now back free. But these had now both the varnish layer and with the solvent, which removed the exposed resist ⁇ layer, contact. The substrate surface is therefore contaminated.
  • etching method is based on applying the electrode material over a large area to the given ⁇ pretreated substrate surface and to obtain the electrode structures by etching away the unwanted coverage areas of the electrode material: überflüs ⁇ siges electrode material is removed.
  • Object of the present invention is to provide a Metallisie ⁇ tion for current-carrying structures, which is performance-resistant, which has high electrical conductivities ⁇ and which is compatible with both etching and lift-off method.
  • the invention provides a metallization for current-carrying structures, which may find application in electrical components, wherein the metallization is disposed on a substrate.
  • the metallization comprises a base and an upper layer arranged thereon.
  • the base comprises a lower layer, which is arranged above or directly on the substrate surface ⁇ .
  • the lower layer comprises titanium as a main component or a titanium compound.
  • the base further comprises an upper layer, which is arranged above or di ⁇ rectly on the lower layer and as Hauptbe ⁇ constituent copper comprises.
  • the upper layer is arranged directly on the upper layer and comprises aluminum as its main component.
  • ⁇ sene, structured, highly-textured electrode structure has a very high electrical conductivity and high mechanical strength ⁇ African performance. It is particularly advantageous that such an electrode structure can be structured both by means of etching processes and by means of a lift-off process. The possible contamination of the substrate during the lift-off process does not hinder the formation of a highly textured layer. Such electrode structures can therefore be manufactured in high quality and with high reproducibility in a simple manner.
  • the out-of-plane texture of an electrode produced in this way or its upper layer can be a ⁇ 1 1 1> texture.
  • Such a texture is distinguished in that its ⁇ 1 1 1> direction - that is to say the spatial diagonal of the cubic face-centered unit cell - coincides with the surface normal of the substrate.
  • the in-plane texture is also aligned with the texture predefined by the substrate surface.
  • the pedestal serves primarily to provide the upper layer with a defined, ie atomically as uniform as possible, surface on which the upper layer is provided then - as epitaxially as possible - can grow up.
  • the upper layer in turn is intended to carry primarily electrical currents.
  • the base comprises a middle one
  • the middle layer comprises a Ele ⁇ ment, which is more noble than aluminum, that has a higher (on hydrogen normalized) standard electrode potential.
  • the bottom layer of the socket is thinner than the top layer of the socket.
  • the lower layer is a titanium layer in question.
  • a titanium layer or a layer comprising titanium is preferably thicker than about 2 nm and thinner than about 20 nm. If the lower layer is too thin, there is a risk that the effect of good texturing is eliminated. A too thick lower layer leads to increased Rau ⁇ ability and also in deteriorated texture.
  • the top layer is thinner than the top layer.
  • An object of the upper layer can transmit "surface information" to the upper layer to be sailed ⁇ hen, therein. Therefore, a relatively thin upper layer is be ⁇ vorzugt.
  • the electrical current carrying substantially the upper layer which, therefore, also preferably a lower having electrical resistivity than the base.
  • each individual layer of the base can have a higher conductivity ⁇ ness than the upper layer.
  • the upper layer then has the lower resistance due to its thickness.
  • a relatively thick top layer is advantageous.
  • An advantageous upper layer, eg made of Cu, is between 1 and 30 nm thick Cu comprehensive upper layer is also a highly textured, AI comprehensive layer not sufficiently powerful.
  • the middle layer is thinner than the lower layer or thinner than the upper layer.
  • the material cost for the middle layer, wel ⁇ che expensive Ag may include reduced; the separation time is shortened.
  • a relatively thin middle layer a good texture is obtained.
  • a preferred thickness of the middle layer for an optimal texture, z. B. a middle layer of Ag, is between 0.5 nm and 10 nm.
  • the lower layer comprises nitrogen atoms.
  • TiN is provided as the material of the lower layer.
  • the middle layer comprises gold, silver, platinum or palladium.
  • a metallization comprises a base of a lower layer comprising as a main component is titanium or a titanium compound, of an upper layer with the main component of copper and of a central layer comprising silver , In this case, the middle layer is arranged between the lower layer and the upper layer.
  • a metallization, whose upper layer is arranged on such a base, has a particularly high power resistance.
  • the top layer has a ⁇ 1 1 1> texture.
  • the ⁇ 1 1 1> direction is the direction of the spatial diagonals of the unit cell of the upper layer. This direction agrees with the direction of the surface normals of the sub- strats.
  • the ⁇ 1 1 1> direction runs vertically through densest possible packed layers of aluminum atoms.
  • a metallization according to the invention has not only an in-plane texture (the atoms of the electrode are oriented in the directions parallel to the substrate surface) but also an out-of-plane texture (the atoms of the electrode are normal in one direction Substratoberflä ⁇ che aligned).
  • the top layer of the metallization has a twin or a single texture.
  • the atoms of the upper layer are aligned in hexagonally arranged atomic layers.
  • a single texture has a higher degree of order than a twin texture.
  • the twin texture differs from the simple texture in that two of the possible orientations of different atomic layers are realized. In the single texture, a given relative orientation of adjacent atomic layers to each other is maintained by all layers.
  • a piezoelectric layer is disposed between the substrate and the lower layer of the metallization.
  • the substrate itself is piezoelectric.
  • Such a substrate or the piezoelectric layer may comprise, for example, lithium tantalate or lithium niobate.
  • Such a device may be a bulk acoustic wave device.
  • a metallization according to the invention is used in a device working with surface acoustic waves.
  • the use of Me ⁇ metallization in a working surface acoustic wave duplexer is possible.
  • a method according to the invention for producing such a metallization comprises the steps
  • a metallization according to the invention also has a high performance strength and a good electrical conductivity when WOR applied to a substrate with ⁇ means of a lift-off technique to is, opens up in the manufacture of components corresponding metallization now more freedom.
  • a method for producing a metallization according to the invention may comprise the steps
  • the patterning of the photoresist can thereby producing ei ⁇ ner known.
  • Negative structure represent.
  • FIG. 1 shows a cross section through a structured metallization arranged on a substrate
  • FIG. 2 shows a cross section through a structured metallization arranged on a substrate, which is arranged on a piezoelectric layer on the substrate surface,
  • FIG. 2 shows a micrograph of the in-plane texturing of a conventional metallization arranged on a substrate by means of a lift-off technique
  • FIG. 3b shows a microscope image of the in-plane texturing of a metallization according to the invention, which is shown in FIG Lift-off technique was applied to a substrate.
  • FIG. 1 shows the cross-section of a metallization M with an upper layer TL, which is arranged on a base.
  • the base includes an upper layer UL and a lower layer BL.
  • the base of upper layer UL and lower layer BL is angeord ⁇ net on the surface of a substrate S.
  • the metallization consisting of upper layer TL and Sokel UL, BL, for example, the metallization for the
  • FIG. 1 shows the cross section through such an electrode finger.
  • FIG. 2 shows a cross section through a further embodiment of the metallization M.
  • the metallization M comprises an upper layer TL on a pedestal.
  • the base is formed by an upper layer UL, a lower layer BL and, as a further part, by a middle layer ML.
  • a piezoelectric layer PL is arranged between the Sub ⁇ strat S and the lower layer BL of the metallization M.
  • corresponding electrodes formed from the metallization convert electrical high-frequency signals into acoustic waves (BAW or SAW) or vice versa acoustic waves into electrical high-frequency signals.
  • Acoustic surface waves propagate on the surface of a substrate.
  • the substrate In order to be able to induce surface acoustic waves on the surface of the substrate, the substrate must interact with the electric field distribution between electrode fingers of different polarity. If the substrate is piezoelectric, the electrical high-frequency alternating fields can directly excite surface acoustic waves in the substrate. If the substrate is not piezoelectric, a piezoelectric layer PL is required at least on the surface of the substrate S between the substrate and metallization M ⁇ tion.
  • FIG. 3a shows a micrograph of a non-or hardly bes ⁇ case scenario, structured electrode surface, which was measured by a lift-off method on a substrate angeord ⁇ net and patterned.
  • FIG. 3b shows a microscope image of a highly textured metallization according to the invention, which was likewise produced on a substrate by means of lift-off processes.
  • the threefold symmetry of the texturing, which corresponds to a hexagonal mesh, can be clearly recognized.
  • a metallization according to the invention is not limited to one of the described embodiments. Variations which, for example, further layers or plies umfas ⁇ sen or the layers or plies comprise further elements, illustrate embodiments of the present invention as well.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Es wird eine Metallisierung insbesondere für mit akustischen Wellen arbeitende Bauelemente angegeben, welche eine hohe Leistungsfestigkeit und eine hohe elektrische Leitfähigkeit aufweist. Dazu umfasst die Metallisierung einen Sockel mit einer unteren Schicht (BL), welche Titan umfasst und einer oberen Schicht (UL), welche Kupfer umfasst. Eine auf dem Sockel angeordnete obere Lage (TL) der Metallisierung umfasst Aluminium.

Description

Beschreibung
Metallisierung mit hoher Leistungsverträglichkeit und hoher elektrischer Leitfähigkeit
Die Erfindung betrifft Metallisierungen mit hoher Leistungsfestigkeit und hoher elektrischer Leitfähigkeit für stromtra¬ gende Strukturen sowie Verfahren zu ihrer Herstellung. Die Erfindung betrifft insbesondere Metallisierungen für strom- tragende Strukturen für mit akustischem Wellen arbeitende Bauelemente .
Metallisierungen für mit akustischen Wellen arbeitende Bauelemente, aus welchen beispielsweise Stromsammeischienen, mit den Stromsammeischienen verbundene Elektrodenfinger oder Reflektorstrukturen auf einem piezoelektrischen Substrat ausgebildet sind, sind bevorzugt besonders leistungsfest auszuge¬ stalten . Akustische Volumenwellen (BAW = bulk acoustic wave) oder akustische Oberflächenwellen (SAW = surface acoustic wave) breiten sich innerhalb eines Festkörpers oder an seiner Oberfläche aus; ihre Frequenzen liegen im GHz Bereich. Die stromtragenden (Elektroden-) Strukturen, welche elektrische Hochfrequenzsignale in akustische Wellen oder umgekehrte akustische Wellen in elektrische Hochfrequenzsignale umwan¬ deln, haben also einerseits die elektrischen Ströme und ande¬ rerseits die mechanische Verformung durch die akustischen Wellen auszuhalten, ohne Schaden zu nehmen.
Aus der US-Patentschrift US 7,605,524 B2 sind Elektroden¬ strukturen für mit akustischen Oberflächenwellen (SAW) arbei- tende Bauelemente bekannt. In einer Ausgestaltung ist eine Elektrodenstruktur auf einkristallinem Lithiumtantalat oder Lithiumniobat angeordnet. Die Elektrodenstruktur umfasst eine erste Schicht aus Titan. Eine zweite, darauf abgeschiedene Schicht umfasst Aluminium. Die zweite Schicht umfasst zwei <1 1 1> Domänen. Methoden zur Herstellung der Elektrodenschichten betreffen das epitaktische Aufwachsen der Aluminium umfassenden Schicht. Eine hochtexturierte, Aluminium
umfassende Schicht weist eine gute, d.h. hohe, elektrische Leitfähigkeitswerte und eine hohe Leistungsfestigkeit auf.
Das Wachstum einer auf einem Substrat abgeschiedenen Schicht heißt epitaktisch, wenn die Ausrichtung der Atome der Schicht sich an der Ausrichtung der Atome des Substrats orientiert. Ein generelles Problem bei epitaktischem Wachstum besteht darin, eine geeignete Oberfläche bereit zu stellen. Denn die Beschaffenheit der Oberfläche des Substrats - als Schnitt¬ stelle zwischen Substrat und Schicht - beeinflusst die Ord¬ nung der Atome der abgeschiedenen Schicht maßgeblich. Übli- cherweise werden Substrate deshalb durch Tempern oder durch Anätzen vorbehandelt. Zwischen der Vorbehandlung und dem eigentlichen Abscheideprozess darf die Oberfläche des Substrats nicht mehr mit Verunreinigungen kontaminiert werden. Die Verwendung der Lift-off-Technik beim Abscheiden von
Elektrodenstrukturen auf Substrate ist problematisch, wenn es auf eine besonders „saubere" Substratoberfläche ankommt. Denn auf die gegebenenfalls vorbehandelte Substratoberfläche wird im ersten Schritt eine Lackschicht (resist layer) aufge- bracht. In weiteren Verfahrensschritten wird diese Lackschicht dann teilweise belichtet und die belichteten Bereiche in einem weiteren Prozessschritt entfernt. An den ehemals be¬ lichteten Stellen liegt die Substratoberfläche nun wieder frei. Diese hatte aber inzwischen sowohl mit der Lackschicht als auch mit dem Lösemittel, welches die belichtete Lack¬ schicht entfernte, Kontakt. Die Substratoberfläche ist also kontaminiert .
Ein epitaktisches Aufwachsen von Elektrodenschichten mittels der Lift-off Technik schien bisher schlecht möglich.
Ein anderes Verfahren, das so genannte Ätzverfahren, beruht darauf, das Elektrodenmaterial großflächig auf die gegebenen¬ falls vorbehandelte Substratoberfläche aufzubringen und die Elektrodenstrukturen durch Wegätzen der unerwünschten Bedeckungsbereiche des Elektrodenmaterials zu erhalten: überflüs¬ siges Elektrodenmaterial wird abgetragen.
Aufgabe der vorliegenden Erfindung ist es, eine Metallisie¬ rung für stromtragende Strukturen anzugeben, welche leistungsfest ist, welche hohe elektrische Leitfähigkeiten auf¬ weist und welche sowohl mit Ätzverfahren als auch mit Lift- off-Verfahren kompatibel ist.
Diese Aufgabe wird durch eine Metallisierung nach Anspruch 1 bzw. durch die beanspruchten Verfahren zur Herstellung gelöst.
Die Erfindung gibt eine Metallisierung für stromtragende Strukturen an, welche in elektrischen Bauelementen Anwendung finden können, wobei die Metallisierung auf einem Substrat angeordnet ist. Die Metallisierung umfasst einen Sockel und eine darauf angeordnete obere Lage. Der Sockel umfasst eine untere Schicht, die oberhalb oder direkt auf der Substrat¬ oberfläche angeordnet ist. Die untere Schicht umfasst als Hauptbestandteil Titan oder eine Titanverbindung. Der Sockel umfasst weiterhin eine obere Schicht, die oberhalb oder di¬ rekt auf der unteren Schicht angeordnet ist und als Hauptbe¬ standteil Kupfer umfasst. Die obere Lage ist direkt auf der oberen Schicht angeordnet und umfasst als Hauptbestandteil Aluminium.
Die Erfinder haben herausgefunden, dass - entgegen der generellen Meinung - hochtexturierte stromtragende Strukturen auf einem Substrat aufgewachsen und dabei mittels eines Lift-off- Verfahrens strukturiert werden können. Eine derart aufgewach¬ sene, strukturierte, hochtexturierte Elektrodenstruktur weist eine sehr hohe elektrische Leitfähigkeit und eine hohe mecha¬ nische Leistungsfestigkeit auf. Besonders vorteilhaft ist, dass eine solche Elektrodenstruktur sowohl mittels Ätzverfah- ren als auch mittels Lift-off-Verfahren strukturiert werden kann. Die mögliche Kontamination des Substrats beim Lift-off- Verfahren behindert das Ausbilden einer hochtexturierten Schicht also nicht. Derartige Elektrodenstrukturen können da¬ her in hoher Qualität und mit hoher Reproduzierbarkeit auf eine einfache Weise hergestellt werden.
Die out-of-plane Textur einer derart hergestellten Elektrode beziehungsweise deren obere Lage kann eine <1 1 1> Textur sein. Eine solche Textur ist dadurch ausgezeichnet, dass ihre <1 1 1> Richtung - das heißt die Raumdiagonale der kubisch flächenzentrierten Einheitszelle - mit der Flächennormalen des Substrates zusammen fällt. Auch die in-plane-Textur ist nach der von der Substratoberfläche vorgegeben Textur ausgerichtet .
Der Sockel dient in erster Linie dazu, der oberen Lage eine definierte, d.h. atomar möglichst gleichmäßig ausgebildete, Oberfläche zur Verfügung zu stellen, auf der die obere Lage dann - möglichst epitaktisch - aufwachsen kann. Die obere Lage wiederum ist dafür vorgesehen, in erster Linie elektrische Ströme zu tragen. In einer Ausgestaltung umfasst der Sockel eine mittlere
Schicht, die zwischen der unteren Schicht und der oberen Schicht angeordnet ist. Die mittlere Schicht umfasst ein Ele¬ ment, welches edler als Aluminium ist, d.h. ein höheres (auf Wasserstoff normiertes) Standardelektrodenpotenzial aufweist.
In einer Ausgestaltung ist die untere Schicht des Sockels dünner als die obere Schicht des Sockels. Als untere Schicht kommt eine Titanschicht in Frage. Eine Titanschicht oder eine Titan umfassende Schicht ist vorzugsweise dicker als etwa 2 nm und dünner als etwa 20 nm. Ist die untere Lage zu dünn, besteht die Gefahr, dass der Effekt der guten Texturierung entfällt. Eine zu dicke untere Schicht führt zu erhöhter Rau¬ higkeit und ebenfalls zu verschlechterter Textur. In einer Ausgestaltung ist die obere Schicht dünner als die obere Lage. Eine Aufgabe der oberen Schicht kann darin gese¬ hen werden, die „Oberflächeninformation" an die obere Lage zu übermitteln. Deshalb ist eine relativ dünne obere Schicht be¬ vorzugt. Den elektrischen Strom trägt im Wesentlichen die obere Lage, welche deshalb auch bevorzugt einen niedrigeren elektrischen Widerstand als der Sockel aufweist. Trotzdem kann jede einzelne Schicht des Sockels eine höhere Leitfähig¬ keit als die obere Lage aufweisen. Die obere Lage hat dann den niedrigeren Widerstand aufgrund ihrer Dicke. Je nach zu tragendem Strom und, bei mit akustischen Wellen arbeitenden Bauelementen je nach gewünschter Massebelegung, ist eine relativ dicke obere Lage vorteilhaft. Eine vorteilhafte obere Lage, z. B. aus Cu, ist zwischen 1 und 30 nm dick. Ohne eine Cu umfassende obere Schicht ist auch eine hochtexturierte, AI umfassende Lage nicht ausreichend leistungsfest.
In einer weiteren Ausgestaltung ist die mittlere Schicht dün- ner als die untere Schicht oder dünner als die obere Schicht. Somit sind die Materialkosten für die mittlere Schicht, wel¬ che teures Ag umfassen kann, verringert; die Abscheidedauer ist verkürzt. Trotz einer relativ dünnen mittleren Schicht wird eine gute Textur erhalten. Eine für eine optimale Textur bevorzugte Dicke der mittleren Lage, z. B. einer mittleren Lage aus Ag, liegt zwischen 0,5 nm und 10 nm.
In einer weiteren Ausgestaltung umfasst die untere Schicht Stickstoffatome . Insbesondere TiN ist als Material der unte- ren Schicht vorgesehen.
In einer Ausgestaltung umfasst die mittlere Schicht Gold, Silber, Platin oder Palladium. In einer Ausgestaltung besteht die mittlere Schicht aus Sil¬ ber. Eine solche Metallisierung umfasst also einen Sockel aus einer unteren Schicht, die als Hauptbestandteil Titan oder eine Titanverbindung umfasst, aus einer oberen Schicht mit dem Hauptbestandteil Kupfer und aus einer mittleren Schicht, die Silber umfasst. Dabei ist die mittlere Schicht zwischen der unteren Schicht und der oberen Schicht angeordnet. Eine Metallisierung, deren obere Lage auf einem derartigen Sockel angeordnet ist, hat eine besonders hohe Leistungsfestigkeit. In einer Ausführungsform weist die obere Lage eine <1 1 1> Textur auf. Die <1 1 1> Richtung ist dabei die Richtung der Raumdiagonalen der Einheitszelle der oberen Lage. Diese Richtung stimmt mit der Richtung der Flächennormalen des Sub- strats überein. Aluminium liegt im Allgemeinen in der so genannten hexagonal dichtesten Packung (hcp = hexagonal close- packed) vor. Diese entspricht einem kubisch flächenzentrierten Raumgitter. Die <1 1 1> Richtung verläuft dabei senkrecht durch dichtest möglich gepackte Lagen aus Aluminiumatomen.
Diese Lagen - senkrecht zur <1 1 1> Richtung - bilden ein he- xagonales Netz. Eine erfindungsgemäße Metallisierung weist also nicht nur eine in-plane-Textur (die Atome der Elektrode sind in den Richtungen parallel zur Substratoberfläche ausge- richtet) sondern auch eine out-of-plane-Textur (die Atome der Elektrode sind in einer Richtung normal zur Substratoberflä¬ che ausgerichtet) auf.
In einer Ausführungsform weist die obere Lage der Metallisie- rung eine Zwillings- oder eine Einfachtextur auf. Wie oben schon erwähnt, sind die Atome der oberen Lage in hexagonal angeordneten Atomlagen ausgerichtet. Eine Einfachtextur weist einen höheren Ordnungsgrad als eine Zwillingstextur auf. Die Zwillingstextur unterscheidet sich von der Einfachtextur da- durch, dass von den in Frage kommenden Ausrichtungen verschiedener Atomlagen zueinander zwei verwirklicht sind. Bei der Einfachtextur wird eine vorgegebene relative Ausrichtung von benachbarten Atomlagen zueinander von allen Lagen eingehalten .
In einer Ausführungsform ist zwischen dem Substrat und der unteren Schicht der Metallisierung eine piezoelektrische Schicht angeordnet. In einer alternativen Ausführungsform ist das Substrat selbst piezoelektrisch. Ein solches Substrat oder die piezoelektrische Schicht kann beispielsweise Li- thiumtantalat oder Lithiumniobat umfassen. In mit akustischen Wellen arbeitenden Bauelementen wandeln Elektrodenstrukturen durch den piezoelektrischen Effekt elektrische Hochfrequenzsignale in akustische Wellen und um¬ gekehrt akustische Wellen in elektrische Hochfrequenzsignale um. Aufgrund der eingangs erwähnten zweifachen Belastung (einer mechanischen und einer elektrischen) , ist eine erfindungsgemäße Metallisierung mit ihrer hohen Leistungsfestig¬ keit in einem mit akustischen Wellen arbeitenden Bauelement besonders geeignet und zur Verwendung in einem mit akusti- sehen Wellen arbeitenden Bauelement vorgesehen.
Ein solches Bauelement kann ein mit akustischen Volumenwellen arbeitendes Bauelement sein. In einer alternativen Ausführungsform findet eine erfindungsgemäße Metallisierung jedoch in einem mit akustischen Oberflächenwellen arbeitenden Bauelement Verwendung. Insbesondere ist die Verwendung der Me¬ tallisierung in einem mit akustischen Oberflächenwellen arbeitenden Duplexer möglich. Ein erfindungsgemäßes Verfahren zur Herstellung einer derartigen Metallisierung umfasst die Schritte
- Bereitstellen eines Substrates,
- Aufbringen der Metallisierung unter Verwendung einer Liftoff-Technik.
Da es sich herausgestellt hat, dass eine erfindungsgemäße Metallisierung auch dann eine hohe Leistungsfestigkeit und eine gute elektrische Leitfähigkeit aufweist, wenn sie mit¬ tels einer Lift-off-Technik auf ein Substrat aufgebracht wor- den ist, eröffnen sich bei der Herstellung von Bauelementen mit entsprechender Metallisierung nun mehr Freiheiten. Insbesondere kann ein Verfahren zur Herstellung einer erfindungsgemäßen Metallisierung die Schritte
- Reinigen der Substratoberfläche,
- Aufbringen von Fotolack auf die Substratoberfläche,
- Strukturieren des Fotolacks,
- Aufbringen der Metallisierung auf die freiliegenden Oberflächen von Substrat und Fotolack,
- Abheben des Fotolacks samt direkt darüber aufgebrachter Be reiche der Metallisierung
umfassen .
Das Strukturieren des Fotolacks kann dabei die Erzeugung ei¬ ner sog. Negativstruktur darstellen.
Im Folgenden wird die Erfindung anhand von Ausführungsbei¬ spielen und zugehörigen schematischen Figuren näher erläutert. Es zeigt:
Figur 1 einen Querschnitt durch eine auf einem Substrat angeordnete strukturierte Metallisierung,
Figur 2 einen Querschnitt durch eine auf einem Substrat angeordnete strukturierte Metallisierung, die auf einer piezoelektrischen Schicht auf der Substratoberfläche angeordnet ist,
Figur eine Mikroskopaufnahme der in-plane-Texturierung einer gewöhnlichen, mittels Lift-off-Technik auf ein Substrat angeordneten Metallisierung,
Figur 3b eine Mikroskopaufnahme der in-plane-Texturierung einer erfindungsgemäßen Metallisierung, welche in Lift-off-Technik auf ein Substrat aufgebracht wurde .
Figur 1 zeigt den Querschnitt einer Metallisierung M mit ei- ner oberen Lage TL, welche auf einem Sockel angeordnet ist. Der Sockel umfasst eine obere Schicht UL sowie eine untere Schicht BL . Der Sockel aus oberer Schicht UL und unterer Schicht BL ist auf der Oberfläche eines Substrats S angeord¬ net. Die Metallisierung, bestehend aus oberer Lage TL und So- ekel UL, BL kann beispielsweise die Metallisierung für die
Elektrodenfinger eines SAW-Bauelements darstellen. Dann zeigt Figur 1 den Querschnitt durch einen solchen Elektrodenfinger.
Figur 2 zeigt einen Querschnitt durch eine weitere Ausführung der Metallisierung M. Die Metallisierung M umfasst eine obere Lage TL auf einem Sockel. Der Sockel ist durch eine obere Schicht UL, eine untere Schicht BL und, als weiteren Teil, durch eine mittlere Schicht ML gebildet. Zwischen dem Sub¬ strat S und der unteren Schicht BL der Metallisierung M ist eine piezoelektrische Schicht PL angeordnet.
Findet die Metallisierung M in einem mit akustischen Wellen arbeitenden Bauelement Verwendung, so wandeln entsprechende aus der Metallisierung geformte Elektroden elektrische Hoch- frequenzsignale in akustische Wellen (BAW oder SAW) oder um¬ gekehrt akustische Wellen in elektrische Hochfrequenzsignale um.
Akustischen Oberflächenwellen breiten sich an der Oberfläche eines Substrats aus. Damit akustische Oberflächenwellen an der Oberfläche des Substrats induziert werden können, muss das Substrat mit der elektrischen Feldverteilung zwischen Elektrodenfingern unterschiedlicher Polarität Wechsel wirken. Ist das Substrat piezoelektrisch, so können die elektrischen Hochfrequenzwechselfelder direkt akustische Oberflächenwellen im Substrat anregen. Ist das Substrat nicht piezoelektrisch, so wird zumindest eine piezoelektrische Schicht PL auf der Oberfläche des Substrats S zwischen Substrat und Metallisie¬ rung M benötigt.
Figur 3a zeigt eine Mikroskopaufnahme einer nicht oder bes¬ tenfalls kaum strukturierten Elektrodenoberfläche, welche mittels eines Lift-off-Verfahrens auf einem Substrat angeord¬ net und strukturiert wurde. Im Gegensatz dazu zeigt Figur 3b eine Mikroskopaufnahme einer erfindungsgemäßen und hochtextu- rierten Metallisierung, welche ebenfalls mittels Lift-off- Verfahren auf einem Substrat erzeugt wurde. Deutlich zu er- kennen ist die einem hexagonalen Netz entsprechende dreizäh- lige Symmetrie der Texturierung .
Eine erfindungsgemäße Metallisierung ist nicht auf eine der beschriebenen Ausführungsbeispiele beschränkt. Variationen, welche zum Beispiel noch weitere Schichten oder Lagen umfas¬ sen oder deren Schichten oder Lagen noch weitere Elemente umfassen, stellen ebenso erfindungsgemäße Ausführungsbeispiele dar .
Bezugs zeichenliste :
BL : untere Schicht
M: Metallisierung
ML: mittlere Schicht
PL: piezoelektrische Schicht
S: Substrat
TL: obere Lage
UL : obere Schicht

Claims

Patentansprüche
1. Metallisierung (M) für stromtragende Strukturen in einem elektrischen Bauelement,
- angeordnet auf einem Substrat (S) ,
- mit einem Sockel und einer darauf angeordneten oberen Lage (TL) ,
wobei
- der Sockel eine untere Schicht (BL) umfasst, die oberhalb oder auf der Substratoberfläche angeordnet ist und als Hauptbestandteil Ti oder eine Titanverbindung umfasst,
- der Sockel eine obere Schicht (UL) umfasst, die
oberhalb oder direkt auf der unteren Schicht (BL)
angeordnet ist und als Hauptbestandteil Cu umfasst,
- die obere Lage (TL) direkt auf der oberen Schicht angeordnet ist und als Hauptbestandteil AI umfasst.
2. Metallisierung nach dem vorherigen Anspruch mit einer
mittleren Schicht (ML) im Sockel, die zwischen der unteren Schicht (BL) und der oberen Schicht (UL)
angeordnet ist und die ein Element umfasst, welches edler als AI ist.
3. Metallisierung nach einem der vorherigen Ansprüche, wobei die untere Schicht (BL) dünner als die obere Schicht (UL) ist .
4. Metallisierung nach einem der vorherigen Ansprüche, wobei die obere Schicht (UL) dünner als die obere Lage (TL) ist .
5. Metallisierung nach einem der vorherigen Ansprüche, wobei die mittlere Schicht (ML) dünner als die untere Schicht (BL) oder dünner als die obere Schicht (UL) ist.
6. Metallisierung nach einem der vorhergehenden Ansprüche, wobei die untere Schicht (BL) eine Dicke zwischen 2 nm und 20 nm, die mittlere Schicht (ML) eine Dicke zwischen 0,5 nm und 10 nm und die obere Schicht (UL) eine Dicke zwischen 1 nm und 30 nm aufweist.
7. Metallisierung nach einem der vorherigen Ansprüche, wobei die untere Schicht (BL) TiN umfasst.
8. Metallisierung nach einem der vorherigen Ansprüche, wobei die mittlere Schicht (ML) Ag, Au, Pt oder Pd umfasst.
9. Metallisierung nach einem der vorherigen Ansprüche, wobei die mittlere Schicht (ML) aus Ag besteht.
10. Metallisierung nach einem der vorherigen Ansprüche, wobei AI der Hauptbestandteil der oberen Lage (TL) ist und die obere Lage (TL) Cu, Mg, eine Al-Cu Legierung, eine Al-Mg Legierung oder eine Al-Cu-Mg Legierung umfasst.
11. Metallisierung nach einem der vorherigen Ansprüche, wobei die obere Lage (TL) eine <1 1 1> Textur aufweist.
12. Metallisierung nach einem der vorherigen Ansprüche, wobei die obere Lage (TL) eine Zwillings- oder eine
Einfachtextur aufweist.
13. Metallisierung nach einem der vorherigen Ansprüche, wobei zwischen dem Substrat (S) und der unteren Schicht (BL) eine piezoelektrische Schicht (PL) angeordnet ist.
14. Metallisierung nach einem der vorherigen Ansprüche, wobei das Substrat (S) piezoelektrisch ist.
15. Metallisierung nach einem der vorherigen Ansprüche, wobei das Substrat (S) oder die piezoelektrische Schicht (PL) LiTa03 oder LiNb03 umfasst.
16. Metallisierung nach einem der vorherigen Ansprüche, zur Verwendung in einem mit akustischen Wellen arbeitenden Bauelement .
17. Metallisierung nach einem der vorherigen Ansprüche, zur Verwendung in einem mit akustischen Oberflächenwellen arbeitenden Bauelement.
18. Metallisierung nach einem der vorherigen Ansprüche, zur Verwendung in einem mit akustischen Oberflächenwellen arbeitenden Duplexer.
19. Verfahren zur Herstellung einer Metallisierung nach einem der vorherigen Erzeugnisansprüche, umfassend die Schritte
- Bereitstellen eines Substrates (S) ,
- Aufbringen der Metallisierung unter Verwendung einer Lift-off-Technik.
20. Verfahren zur Herstellung einer Metallisierung nach dem vorherigen Anspruch, umfassend die Schritte
- Reinigen der Substratoberfläche,
- Aufbringen von Fotolack auf die Substratoberfläche, - Strukturieren des Fotolacks
- Aufbringen der Metallisierung auf die freiliegenden Oberflächen von Substrat (S) und Fotolack
- Abheben des Fotolacks samt direkt darüber aufgebrachte Bereichen der Metallisierung.
PCT/EP2010/068628 2009-12-02 2010-12-01 Metallisierung mit hoher leistungsverträglichkeit und hoher elektrischer leitfähigkeit WO2011067281A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012541486A JP5878127B2 (ja) 2009-12-02 2010-12-01 高い耐電力性及び高い導電性を有するメタライジング層
KR1020127015150A KR101761955B1 (ko) 2009-12-02 2010-12-01 높은 출력 호환성 및 높은 전기 전도도를 포함한 금속배선
US13/509,181 US9173305B2 (en) 2009-12-02 2010-12-01 Metallization having high power compatibility and high electrical conductivity
CN201080054640.0A CN102763492B (zh) 2009-12-02 2010-12-01 具有高电源兼容性和高导电性的金属化部
US14/867,759 US9728705B2 (en) 2009-12-02 2015-09-28 Metallization having high power compatibility and high electrical conductivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009056663.5 2009-12-02
DE102009056663.5A DE102009056663B4 (de) 2009-12-02 2009-12-02 Metallisierung mit hoher Leistungsverträglichkeit und hoher elektrischer Leitfähigkeit und Verfahren zur Herstellung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/509,181 A-371-Of-International US9173305B2 (en) 2009-12-02 2010-12-01 Metallization having high power compatibility and high electrical conductivity
US14/867,759 Division US9728705B2 (en) 2009-12-02 2015-09-28 Metallization having high power compatibility and high electrical conductivity

Publications (1)

Publication Number Publication Date
WO2011067281A1 true WO2011067281A1 (de) 2011-06-09

Family

ID=43504261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068628 WO2011067281A1 (de) 2009-12-02 2010-12-01 Metallisierung mit hoher leistungsverträglichkeit und hoher elektrischer leitfähigkeit

Country Status (6)

Country Link
US (2) US9173305B2 (de)
JP (2) JP5878127B2 (de)
KR (1) KR101761955B1 (de)
CN (2) CN102763492B (de)
DE (1) DE102009056663B4 (de)
WO (1) WO2011067281A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056663B4 (de) * 2009-12-02 2022-08-11 Tdk Electronics Ag Metallisierung mit hoher Leistungsverträglichkeit und hoher elektrischer Leitfähigkeit und Verfahren zur Herstellung
CN109660224B (zh) * 2018-12-18 2023-03-24 北方民族大学 滤波器用复合压电基片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171642A (en) * 1989-04-17 1992-12-15 International Business Machines Corporation Multilayered intermetallic connection for semiconductor devices
US20020074904A1 (en) * 2000-10-26 2002-06-20 Masanobu Watanabe Surface acoustic wave element
US20040083590A1 (en) * 2002-11-05 2004-05-06 Clarisay, Inc. Method for forming a multi-frequency surface acoustic wave device
US20050205999A1 (en) * 2003-08-30 2005-09-22 Visible Tech-Knowledgy, Inc. Method for pattern metalization of substrates
US7605524B2 (en) 2005-11-10 2009-10-20 Nihon Dempa Kogyo Co., Ltd. Surface acoustic wave device and method of manufacturing the same

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134460A (en) 1986-08-11 1992-07-28 International Business Machines Corporation Aluminum bump, reworkable bump, and titanium nitride structure for tab bonding
JPS6345826A (ja) 1986-08-11 1988-02-26 インターナショナル・ビジネス・マシーンズ・コーポレーシヨン 半導体集積回路装置の接続構造
JP2524129B2 (ja) * 1986-09-22 1996-08-14 京セラ株式会社 セラミツク配線基板
JP2545983B2 (ja) 1989-04-14 1996-10-23 株式会社村田製作所 弾性表面波装置
JP2936228B2 (ja) 1989-06-13 1999-08-23 株式会社村田製作所 弾性表面波フィルタ
JPH0473994A (ja) * 1990-07-16 1992-03-09 Kyocera Corp セラミック配線基板
JPH05199062A (ja) 1991-09-24 1993-08-06 Seiko Epson Corp 弾性表面波素子とその製造方法および弾性表面波素子用基板
JPH05183373A (ja) 1991-12-30 1993-07-23 Murata Mfg Co Ltd 弾性表面波素子の電極材料
JPH06132777A (ja) 1992-10-20 1994-05-13 Seiko Epson Corp 弾性表面波素子とその製造方法
JPH073994A (ja) 1993-06-18 1995-01-06 Ig Tech Res Inc 耐火パネル
JP3208977B2 (ja) 1993-12-02 2001-09-17 株式会社村田製作所 弾性表面波素子の電極形成方法
JPH07170145A (ja) 1993-12-15 1995-07-04 Seiko Epson Corp 弾性表面波素子とその製造方法
JPH0828272A (ja) 1994-07-18 1996-01-30 Nissan Motor Co Ltd 渦流室式ディーゼル機関の燃焼室
JPH08154030A (ja) 1994-11-25 1996-06-11 Murata Mfg Co Ltd 弾性表面波素子
JP3308749B2 (ja) 1995-01-27 2002-07-29 日本電気株式会社 弾性表面波装置の製造方法、および、これを用いて製造された弾性表面波装置
WO1999016168A1 (fr) 1997-09-22 1999-04-01 Tdk Corporation Appareil a ondes acoustiques de surface et procede de fabrication de cet appareil
DE19758195C2 (de) 1997-12-30 2000-05-18 Siemens Ag Oberflächenwellen- (SAW-)Bauelement auf insbesondere Lithiumtantalat- oder -niobat-Substrat
EP1041716B1 (de) * 1998-10-16 2006-07-12 Seiko Epson Corporation Akustische oberflächenwellenvorrichtung
JP3387060B2 (ja) 1999-05-31 2003-03-17 ティーディーケイ株式会社 弾性表面波装置
JP2002026685A (ja) 2000-07-07 2002-01-25 Murata Mfg Co Ltd 弾性表面波素子
JP3846221B2 (ja) 2000-07-14 2006-11-15 株式会社村田製作所 弾性表面波素子
JP3445971B2 (ja) 2000-12-14 2003-09-16 富士通株式会社 弾性表面波素子
JP3735550B2 (ja) 2001-09-21 2006-01-18 Tdk株式会社 弾性表面波装置およびその製造方法
JP2003258594A (ja) 2001-12-27 2003-09-12 Murata Mfg Co Ltd 弾性表面波素子およびその製造方法
TWI282660B (en) 2001-12-27 2007-06-11 Murata Manufacturing Co Surface acoustic wave device and manufacturing method therefor
DE10206369B4 (de) 2002-02-15 2012-12-27 Epcos Ag Elektrodenstruktur mit verbesserter Leistungsverträglichkeit und Verfahren zur Herstellung
DE10236003B4 (de) 2002-08-06 2013-12-24 Epcos Ag Verfahren zur Herstellung eines Bauelements mit leistungsverträglicher Elektrodenstruktur
JP4064208B2 (ja) * 2002-10-31 2008-03-19 アルプス電気株式会社 弾性表面波素子及びその製造方法
JP4096787B2 (ja) 2003-04-11 2008-06-04 株式会社村田製作所 弾性表面波素子の製造方法
JP4359535B2 (ja) 2004-02-06 2009-11-04 アルプス電気株式会社 弾性表面波素子
DE102004045181B4 (de) * 2004-09-17 2016-02-04 Epcos Ag SAW-Bauelement mit reduziertem Temperaturgang und Verfahren zur Herstellung
US7795788B2 (en) 2004-10-26 2010-09-14 Kyocera Corporation Surface acoustic wave element and communication device
DE102004058016B4 (de) * 2004-12-01 2014-10-09 Epcos Ag Mit akustischen Oberflächenwellen arbeitendes Bauelement mit hoher Bandbreite
JP2008235950A (ja) 2005-05-26 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置
JP4279271B2 (ja) 2005-06-01 2009-06-17 アルプス電気株式会社 弾性表面波素子及びその製造方法
EP2728750A1 (de) 2007-07-30 2014-05-07 Murata Manufacturing Co., Ltd. Elastische Wellenvorrichtung und Herstellungsverfahren dafür
DE112008002199B4 (de) 2007-08-14 2021-10-14 Avago Technologies International Sales Pte. Limited Verfahren zum Bilden einer Multilayer-Elektrode, welche unter einer piezoelektrischen Schicht liegt, und entsprechende Struktur
DE102009056663B4 (de) * 2009-12-02 2022-08-11 Tdk Electronics Ag Metallisierung mit hoher Leistungsverträglichkeit und hoher elektrischer Leitfähigkeit und Verfahren zur Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171642A (en) * 1989-04-17 1992-12-15 International Business Machines Corporation Multilayered intermetallic connection for semiconductor devices
US20020074904A1 (en) * 2000-10-26 2002-06-20 Masanobu Watanabe Surface acoustic wave element
US20040083590A1 (en) * 2002-11-05 2004-05-06 Clarisay, Inc. Method for forming a multi-frequency surface acoustic wave device
US20050205999A1 (en) * 2003-08-30 2005-09-22 Visible Tech-Knowledgy, Inc. Method for pattern metalization of substrates
US7605524B2 (en) 2005-11-10 2009-10-20 Nihon Dempa Kogyo Co., Ltd. Surface acoustic wave device and method of manufacturing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Aluminum Land Metallurgy with Copper on the Surface. November 1970.", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 13, no. 6, 1 November 1970 (1970-11-01), New York, US, pages 1735, XP002620572 *
ANONYMOUS: "Titanium Overlay on Metallurgy. October 1970.", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 13, no. 5, 1 October 1970 (1970-10-01), New York, US, pages 1124, XP002620573 *
DARROW D ET AL: "LOW-COST PATTERNED METALLIZATION TECHNIQUE FOR HIGH DENSITY MULTILAYER INTERCONNECT APPLICATIONS", PROCEEDINGS OF THE ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE. ORLANDO, JUNE 1 - 4, 1993; [PROCEEDINGS OF THE ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE], NEW YORK, IEEE, US, vol. CONF. 43, 1 June 1993 (1993-06-01), pages 544 - 549, XP000380052 *

Also Published As

Publication number Publication date
DE102009056663B4 (de) 2022-08-11
US9728705B2 (en) 2017-08-08
JP2013513232A (ja) 2013-04-18
US20120280595A1 (en) 2012-11-08
US20160020378A1 (en) 2016-01-21
KR20120094489A (ko) 2012-08-24
KR101761955B1 (ko) 2017-07-26
CN102763492B (zh) 2016-04-13
JP6450669B2 (ja) 2019-01-09
CN105702660A (zh) 2016-06-22
JP5878127B2 (ja) 2016-03-08
JP2016040944A (ja) 2016-03-24
US9173305B2 (en) 2015-10-27
DE102009056663A1 (de) 2011-06-09
CN102763492A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
DE60306196T2 (de) Halterung für akustischen resonator, akustischer resonator und entsprechende integrierte schaltung
DE10163297B4 (de) Oberflächenwellenbauelement und Verfahren zum Herstellen desselben
WO2007059740A2 (de) Elektroakustisches bauelement
DE60131745T2 (de) Filtervorrichtung und verfahren zu deren herstellung
DE10206369B4 (de) Elektrodenstruktur mit verbesserter Leistungsverträglichkeit und Verfahren zur Herstellung
DE10302633B4 (de) SAW-Bauelement mit verbessertem Temperaturgang
DE102015114224A1 (de) Akustische Schichtvolumenresonatoren mit rückseitigen Durchkontaktierungen
WO2006058579A1 (de) Mit akustischen oberflächenwellen arbeitendes bauelement mit hoher bandbreite
DE10118408B4 (de) Verfahren zum Herstellen eines Oberflächenwellenbauelements
DE19839247A1 (de) Oberflächenwellenbauelement
DE102007012383B4 (de) Mit geführten akustischen Volumenwellen arbeitendes Bauelement
DE10316716A1 (de) Bauelement mit einer piezoelektrischen Funktionsschicht
DE112013002520B4 (de) Bauelement für elastische Wellen
DE102010048620B4 (de) Elektrode, mikroakustisches Bauelement und Herstellungsverfahren für eine Elektrode
DE102005009358B4 (de) Lötfähiger Kontakt und ein Verfahren zur Herstellung
WO2003043188A1 (de) Passivierter baw-resonator und baw-filter
DE69932316T2 (de) Akustische oberflächenwellenvorrichtung
WO2011067281A1 (de) Metallisierung mit hoher leistungsverträglichkeit und hoher elektrischer leitfähigkeit
DE102008062605B4 (de) Bauelement, welches mit akustischen Wellen arbeitet, und Verfahren zu dessen Herstellung
DE102008016613B4 (de) Verfahren zur Herstellung eines elektrischen Bauelements mit mindestens einer dielektrischen Schicht und ein elektrisches Bauelement mit mindestens einer dielektrischen Schicht
DE19910368A1 (de) Verfahren zur Herstellung eines piezoelektrischen Resonators
WO2008142081A2 (de) Bauelement mit mechanisch belastbarer anschlussfläche
DE112018005526T5 (de) Schallwellenvorrichtung und Verfahren zur Herstellung einer Schallwellenvorrichtung
DE10237507B4 (de) Verfahren zur Herstellung eines piezoelektrischen Schichtsystems
DE10246784B4 (de) Mit akustischen Wellen arbeitendes Bauelement mit geringer Einfügedämpfung und Verfahren zur Herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054640.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012541486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015150

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13509181

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10787400

Country of ref document: EP

Kind code of ref document: A1