WO2010072067A1 - 全息投影实时三维显示***及方法 - Google Patents

全息投影实时三维显示***及方法 Download PDF

Info

Publication number
WO2010072067A1
WO2010072067A1 PCT/CN2009/072499 CN2009072499W WO2010072067A1 WO 2010072067 A1 WO2010072067 A1 WO 2010072067A1 CN 2009072499 W CN2009072499 W CN 2009072499W WO 2010072067 A1 WO2010072067 A1 WO 2010072067A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial
holographic
dimensional
projection
image
Prior art date
Application number
PCT/CN2009/072499
Other languages
English (en)
French (fr)
Inventor
范诚
蔡志森
江朝川
Original Assignee
深圳市泛彩溢实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市泛彩溢实业有限公司 filed Critical 深圳市泛彩溢实业有限公司
Priority to CN2009801004825A priority Critical patent/CN101855600B/zh
Priority to US13/141,490 priority patent/US8890932B2/en
Priority to JP2011542651A priority patent/JP5676472B2/ja
Priority to EP09834020A priority patent/EP2372469A4/en
Publication of WO2010072067A1 publication Critical patent/WO2010072067A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/0276Replicating a master hologram without interference recording
    • G03H2001/0288Replicating a master hologram without interference recording by electroforming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2224/00Writing means other than actinic light wave
    • G03H2224/02Mechanical means, e.g. diamond tool

Definitions

  • the present invention relates to a real-time three-dimensional display system realized by holographic projection, comprising a real-time three-dimensional image acquisition device, a projection device and a display screen, and a real-time three-dimensional display method, a real-time three-dimensional image acquisition method, a projection display method, and a display screen production method .
  • holography marks the birth of a new human visual medium that can naturally transmit and display visual information in three dimensions. However, they are far from the color real-time holographic three-dimensional visual space moving display. Pulse holography, combined holographic stereograms, and rainbow holography have spawned the holographic printing and packaging industry that is now popular in the world. Its core is to provide anti-counterfeiting characterization for anti-counterfeiting and fidelity of documents and brand safety. Digital holographic printing technology brings a more reasonable approach than traditional computer-generated hologram (CGH) technology, replacing the cumbersome calculations and coding with a more efficient holographic recording method, thereby overcoming the purpose of restoring amplitude and phase. The output is difficult. But digital holography is still limited to printing display holograms.
  • CGH computer-generated hologram
  • the present invention is to realize a true three-dimensional display that human beings have long dreamed of, and proposes a holographic projection real-time three-dimensional display system and method.
  • the present invention provides a color real-time holographic three-dimensional display system, comprising: a color real-time holographic three-dimensional image information photographic acquisition device, a real-time holographic image information projection reduction device and a holographic function screen;
  • the photographing and collecting device comprises M*N color two-dimensional image capturing units C ⁇ for performing M*N spatial spectral sampling ingestion on the object S to be displayed in three dimensions, each sampling point.
  • the information collected by each image capturing unit is equivalent to the spatial spectrum view 1 corresponding to the body pixel, to obtain the M*N array sampling spatial spectrum image information of the object 0;
  • the M*N color two-dimensional image capturing devices C ⁇ are arranged on the spatial spectrum surface S according to a predetermined spatial sampling angle, and their respective imaging optical axes are anchored at the same reference point R of the space corresponding to the object 0;
  • Each camera unit focuses on the visible surface of the object 0 in the corresponding spatial spectrum direction to obtain a clear view of the direction.
  • the projection reduction device comprises a plurality of color two-dimensional image projection units ⁇ for simultaneously Projecting the corresponding array sampling view image 1 at the acquired individual pixels to the corresponding anchoring relationship P R corresponding to the original object 0 along the corresponding anchoring relationship image at the time of acquisition, and Each of the reference planes
  • the projective pattern of the view image coincides with the spatial spectral projective pattern of the original object 0 in the direction;
  • the M*N color two-dimensional image projecting device follows and ingests the spatial spectrum surface S on the corresponding surface S' of the reduction space And the same spatial sampling angle is arranged, and the imaging optical axis of each projection device is anchored at the reference point R at the corresponding point R′ of the reduction space;
  • M, N, m, n are natural numbers, and at least one of M and N is greater than 2;
  • the holographic function screen is placed on the reference surface P R for spatially broadening the input information corresponding to the spatial sampling angle of the input image information of the view image information 1 of each single spatial spectrum, and broadening to the output space of each view 1
  • the spectral distributions are connected to each other without overlapping coverage to ensure that the digital holographic spatial spectrum of the recovered three-dimensional spatial information is continuously and completely restored, that is, corresponding to each of the volume pixels H ik on the holographic function screen,
  • the widened angle of the spatially unidirectional input light is exactly the spatial sampling angle ⁇ , thereby obtaining a holographic three-dimensional display for the purpose of restoring a complex wavefront.
  • the invention also includes the following preferred technical features:
  • the imaging device and the projection-reduction device of the projection device are in one-to-one correspondence, and the image information collected by each camera unit can be directly or indirectly transmitted to the corresponding projection unit by using any digital image transmission format without
  • the specific image information is essentially encoded and reorganized.
  • a color real-time holographic three-dimensional display method comprising: a photographic acquisition process of color real-time holographic three-dimensional image information, a projection reduction process of real-time holographic image information, and a limited broadening process of a holographic function screen; the photographic acquisition process includes the following steps : Using the color 2D image capturing unit C ⁇ , the object 0 to be displayed in three dimensions is subjected to M*N spatial spectral sampling ingestion on any spatial spectral surface S, and each sampling point corresponds to one of the objects 0 The body pixel H ⁇ , the information collected by each image capturing unit is equivalent to the spatial spectrum view 1 corresponding to the body pixel, to obtain M*N array sampling spatial spectrum image information of the object 0; the M*N colors
  • the two-dimensional image pickup device is arranged on the spatial spectral surface S according to a predetermined spatial sampling angle, and its respective imaging optical axis is anchored at the same reference point R of the space corresponding to the object 0; each of the imaging units
  • the projection reduction process comprises the following steps: using the ⁇ * ⁇ color two-dimensional image projection unit , ⁇ , respectively, respectively, the corresponding array sampling view image 1 at the acquired ⁇ * ⁇ individual pixels along the anchor corresponding to the acquisition time
  • the relationship projection is imaged onto a reference plane P R in the reduction space corresponding to the original object 0, and the projection pattern of each projection view image on the reference surface is coincident with the spatial spectrum projection pattern of the original object 0 in the direction;
  • the ⁇ * ⁇ color two-dimensional image projection device is arranged on the corresponding surface S′ of the reduction space on the corresponding surface S′ of the reduction space according to the same spatial sampling angle as that at the time of ingestion, and the imaging optical axis of each projection device is anchored At the reference point R at the corresponding point R' of the reduction space;
  • M, N, m, n are natural numbers, and at least one of M and N is greater than 2;
  • the limited widening process of the holographic function screen comprises the steps of: placing the holographic function screen on the reference plane P R , so as to correspond to the spatial sampling angle of the input information of the view image information 1 carried by each single spatial spectrum
  • the spatial spectrum is broadened and broadened to the output spatial spectrum distribution of each view 1 but not overlapped to ensure that the digital holographic spatial spectrum of the restored three-dimensional spatial information is continuously and completely restored, ⁇ : corresponding to the hologram
  • the widened angle of the spatially unidirectional input light is exactly the spatial sampling angle ⁇ , thereby obtaining a holographic three-dimensional display for the purpose of restoring the complex wavefront.
  • the acquisition process and the projection-projection unit of the projection restoration process are in one-to-one correspondence, and the image information collected by each photography unit can be directly or indirectly transmitted to the corresponding projection unit by using any digital image transmission format without
  • the specific image information is essentially encoded and reorganized.
  • each camera-projection unit also performs corresponding time synchronization and color brightness calibration to ensure real-time reproduction fidelity of input and output information.
  • the projection array can be arranged on any surface or curve of space according to actual conditions to realize color real-time holographic three-dimensional display in any manner, and the restored three-dimensional space can be the enlargement or reduction of the original three-dimensional space.
  • the reference surface 126 can be any curved surface to meet a variety of color real-time holographic three-dimensional display requirements; the projection units present clear and identifiable specific image information on the reference surface P R and have completed their respective corresponding Necessary graphic distortion correction.
  • the spatial spectral spatial sampling angle or the spatial sampling density of the system has a reciprocal ⁇ / ⁇ , which determines the ability of the system to recover clear and identifiable information in the three-dimensional space, that is, the distance from the reference plane P R is Where ⁇ , the holographic function screen can output a real or virtual image spot that is comparable in size to the planar pixel size of the spatial spectral input image on the screen.
  • each of the photographic-projection units including the angle of view, resolution, brightness, contrast, color gradation, and color saturation, can be applied to the basic standards of conventional two-dimensional image display.
  • each of the photographic-projection units is: 1) a view image processed by each photographic-projection unit, representing a space determined by the connection between the anchor point R (R') and the sampling point (S' ⁇ ) Geometric projection of the three-dimensional object 0 in the spectral direction, BP: the image plane is the normal plane of each photographic-projection direction; 2) each view image has no rotation in the image plane along the imaging optical axis direction of each photographic-projection unit.
  • Corresponding graphic distortion and focus adjustment are performed on the spatial spectrum view information processed by each photography-projection unit.
  • the effect of the present invention is to realize holographic real-time three-dimensional display.
  • Figure 1 is a schematic diagram of photon discrete energy distribution and wave function
  • FIG. 2 is a schematic diagram of a position vector r and a propagation vector k
  • Figure 3 is a schematic diagram of the vector variable integration trajectory
  • Figure 4 is a schematic diagram showing the expression of a point source radiation wave function
  • Figure 5 is a time spectrum composition of electromagnetic radiation
  • Figure 6 is a time spectrum comparison of sunlight and tungsten lamps
  • Figure 7 is a schematic diagram of the wave function at a point ( X Q, yQ, ) in space;
  • Figure 8 is a schematic diagram of the Lippmann color photography principle
  • Figure 9 is a schematic view of the isophase plane and hologram of the object 0;
  • Figure 10 is a schematic diagram showing the imaging of an isophase plane of a two-dimensional discrete energy distribution and a 4f system
  • Figure 11 is a schematic view of pinhole imaging
  • Figure 12 is a schematic diagram of a body pixel definition
  • Figure 13 is a schematic diagram of spatial spectrum definition
  • Figure 14 is a schematic diagram of the use of spatial spectral language on two closed surfaces to process the visual information we are facing.
  • Figure 15 is a schematic view of three perspective modes
  • Figure 16 is a schematic diagram of an object space, a spatial spectrum, and an observation space
  • Figure 17 is a schematic diagram of a plane spatial spectrum
  • Figure 18 is a schematic diagram of a body pixel
  • Figure 19 is a schematic diagram of spatial spectrum acquisition
  • Figure 20 is a schematic diagram of spatial three-dimensional information restoration
  • Figure 21 is a schematic view of the M*N point light sources seen by the human eye
  • Figure 22 is a schematic diagram of a discrete spatial spectrum on a volume pixel
  • Figure 23 is a schematic diagram of a spatially wide-angle uniform widened output (single spatial spectral input);
  • Figure 24 is a schematic diagram of a spatially wide-angle uniform widened output (M*N spatial spectral input);
  • 25 is a schematic diagram of a function screen projection output
  • Figure 26 is a schematic diagram of horizontal parallax projection output
  • Figure 27 is a schematic diagram showing the relationship between single spectrum and full spectrum broadening
  • Figure 281 is a schematic diagram of the basic principle of digital speckle generation
  • Figure 282 is a schematic diagram of the basic principle of directional digital speckle generation
  • FIG. 283 is a schematic diagram of a method and apparatus for fabricating a digital speckle hologram according to an embodiment of the present invention
  • FIG. 29 is a schematic diagram of a function screen for fabricating a holographic lens method
  • FIG. 291 is a schematic diagram showing an optical structure of a holographic lens projection screen according to an embodiment of the present invention
  • FIG. 292 is a schematic diagram of a holographic lens information recording principle according to an embodiment of the present invention
  • FIG. 293 is a schematic diagram of a basic manufacturing process of a method for fabricating a holographic projection screen according to an embodiment of the present invention
  • FIG. 294 is a schematic diagram of a specific manufacturing process of a method for fabricating a holographic projection screen according to an embodiment of the present invention
  • Figure 31 is a schematic view of an experimental system of the present invention.
  • Figure 32 is a schematic diagram of a spatial spectrum sampling device in an experimental system
  • Figure 33 is a schematic view of a projection device in an experimental system
  • Figure 34 is a photograph of the function screen taken from different observation angles in the experimental system
  • Figure 35 is a schematic diagram of the surface spatial spectrum sampling
  • Figure 36 is a schematic view showing the reduction of the curved reference surface
  • Figure 37 is a schematic diagram of spatial sampling of a 360 degree inward cylindrical surface
  • Figure 38 is a schematic diagram showing the spatial information reduction of the 360 degree column inward
  • Figure 39 is a schematic diagram of a 360 degree outward cylindrical spatial spectrum sampling
  • Figure 40 is a schematic diagram of 360 degree outward viewing spatial information reduction
  • Figure 41 is a schematic diagram of a 360 degree sickle spatial spectrum acquisition
  • Figure 42 is a schematic diagram of spatial information restoration of a 360 degree platform
  • Figure 43 is a schematic diagram showing the spatial relationship between the object to be restored and the reference point
  • Figure 44 is a schematic view of the inward anchoring
  • Figure 45 is a schematic view of the outward anchorage
  • Figure 46 is a schematic diagram showing the relationship of spatial reduction ratio
  • Figure 47 is a schematic diagram of geometric optical imaging
  • Figure 48 is a schematic view of an anchoring method
  • Figure 49 is a schematic diagram of trapezoidal correction
  • Fig. 50 is a schematic view showing a method of selecting a curved reference surface.
  • the four-dimensional Fourier transform of the wave function is defined as:
  • f(x, y, z, t) fff fF(k x , k y , k z , v )exp[j2 (k x x+k y y+k z z + vt)]dk x dk y dk z Dv (3)
  • the photon discrete energy probability distribution is defined as:
  • the integral of the vector variable function means the linear superposition of the function relative to its vector variable at various points in the space, including the amplitude and phase of the vector variable; in other words, along an arbitrary closed surface that surrounds the origin and is represented by a vector variable Scanned.
  • equations (1) through (8) are photon discrete energy probability distributions / (yz, purely mathematical processing of quaternary complex functions, but from there are rich physical meanings.
  • (1) to (3) time and The frequency from - ⁇ to + ⁇ seems to be a bit unreasonable, because the negative time and frequency are unreasonable, but the corresponding vector expressions (4) to (6) become physically more due to the integral from 0 to + ⁇ .
  • the basic concepts and processing methods of one-dimensional signals, two-dimensional images and even three-dimensional holography in modern information technology can be derived or traced back to these formulas by these formulas.
  • equations (5), (6), (7), and (8) can be written in one-dimensional form:
  • spectroscopy in traditional spectroscopy can thus be defined as the distribution of irradiance (average energy per unit area per unit time) with the frequency of light vibration.
  • Figure 6 is a comparison of the distribution of sunlight and tungsten.
  • f(xo, Yo, z 0 , t 0 ) fff fF(k x , k y , k z , v )exp[j2 I (k x Xo+k y yo+k z z 0 + vt 0 )]dk x dkydk z dv (16)
  • Equation (16) means that object 0 is at the time ⁇ 0 (3 ⁇ 4, yo, z3 ⁇ 4) or /
  • the energy contribution of 3 ⁇ 4 is a series of monochromatic plane waves with different vibration frequencies along different propagation directions / superposition at this point, which will be clearly reflected in the vector representation (19) of (16), at this time / is a size and direction
  • the vector variables are all changing, and / 3 ⁇ 4 may be contained inside the object.
  • Equations (1), (2), (3), and (4) can be simplified to:
  • f (x, y, z) ff fF (k 0x, k 0 y, k 0z) exp [ ⁇ 2 (k 0x x + k 0 y + k 0z z)] dk 0x dk 0y dk 0z (22)
  • phase of the so-called homo-phase photon probability is along the normal direction of each point on the surface of the object.
  • the distance is an integer of ⁇
  • those points without normals are connected by a circular arc whose center is the center of the point, and its radius is also an integer multiple of J 0 .
  • the discrete energy distribution / W emitted by an object defined by illuminance / 0) and its corresponding spatial distribution can be expressed in (25) to (28), and its complexity and fineness are difficult to calculate and Measured, but when we simply introduce the monochromatic plane wave R of the same vibration frequency 0 and the vibration direction called the reference light propagating in the / R direction in Fig. 9, the wavefront of the object can be holographically holographically Record.
  • the complex energy distribution P(r) composed of a series of sections formed by a series of sections formed by a series of sections formed by the intersection of a series of distances of 0 and a wavefront of the object to be studied represented by (21) in Fig. 9 can be expressed as :
  • (31) When (31) is recorded in an appropriate manner, it is called hologram 11 of object 0.
  • the wavefront of the object to be studied that is, the superposition of the corresponding monochromatic plane waves emitted by each point on the object expressed by (29), that is, as described in FIG.
  • the equipotential surface of the object O thereby directly recovering the illuminance / (V ⁇ and its corresponding spatial distribution f(r 0 )) describing the object 0.
  • FIG. 10 is an isometric description of this case, where O' is composed of information 0x , / 0y J of different spatial frequencies, and this information comes from
  • the object 0 acquired by the imaging system acts as a series of monochromatic plane waves in different directions produced by the angular spectrum (grating) / 0xy .
  • Time spectrum of light has the same meaning as the spectrum in modern spectroscopy, and thus can be defined as the distribution function J of the electromagnetic wave radiation intensity with its vibration frequency, and can also be understood as the frequency component constituting the electromagnetic radiation.
  • J the distribution function of the electromagnetic wave radiation intensity with its vibration frequency
  • this radiation intensity can be regarded as the power of its source. .
  • the intensity of the radiation corresponds to the appearance of the color, i.e., the spectral color shown in Table 1 with respect to each of the vibration frequencies.
  • Color is not a characteristic of light itself. It is a concrete manifestation of the electrochemical sensing system of the eyes, nerves and brain.
  • a laser that continuously adjusts the power or energy output as the vibration frequency of the light changes, we can still restore the natural color by superimposing the three primary colors, and there are already many alternative primary color lasers.
  • the colors we can identify in nature are a resolvable time spectrum distribution rather than the spectral color given in Table 1, which is more abundant than the spectral color reflected by Lippmann color photography.
  • the three primary colors have been used to restore the color of this colorful world for a long time, which has brought about a revolution in image display from black and white to color, and also provides us with a simple way to restore the true color of the three-dimensional world, that is, using red,
  • the superposition of green or blue primary color lasers or more single spectral colors replaces the integrals of equations (1) to (8), which is also the current research content of color holography.
  • Table 1 Color and frequency comparison table
  • the spatial spectrum of the light can be defined as a distribution function of the intensity of the electromagnetic wave with its spatial propagation direction, that is, a Poynting Vector distribution function of light/(7, which can also be understood as a luminescent object in space.
  • the view of the object gradually reveals more and more detail until the human eye receives all the light passing through the pinhole and sees the complete object.
  • the principle of pinhole imaging is derived from the basic law of geometric optics, that is, the theory of linear propagation of light.
  • the introduction of lenses in camera and camera imaging is only to make the imaging process easier by collecting more light through its concentrating characteristics.
  • Realized by reality which brings the concept of object and image and the imaging formula based on the same basic principle; here, the pinhole is replaced by the lens center point, and more light passes through the lens aperture and its front and back focus limits. Participated in imaging.
  • the imaging process of the lens is three-dimensional, the actual output of the image is still reluctantly limited to the two-dimensional intensity distribution of the corresponding image surface, combined with three
  • the primary colors constitute high-quality color photographs and even today's high-resolution digital images. It can be said that the display of all the image information we have acquired from nature to date is just a spatial spectrum that we can feel about the world.
  • equations (5) to (8) provide us with two basic expressions of nature using photons, the most subtle manifestation of nature, and also provide us with wave-particle duality of light. The inner connection of this eternal theme.
  • Equations (5) and (6) provide us with a description of the natural particle language or spatiotemporal language, in which the discrete energy probability distribution at a point in time and space is composed of many different states of photons in the same direction.
  • the superposition of the monochrome plane wave / ⁇ / , v)exp[j2n(-k ⁇ r +vt)] is shown in Fig. 12.
  • Equations (7) and (8) provide us with a natural wave language or spectrum language in which discrete energy probability distributions from the same direction of the object /( c, v) are made up of numerous body pixels close to the object Oxd is superimposed by different locations in space.
  • these body pixels H represented by f(r, t) exp [-j2n (-k ⁇ r + ⁇ ⁇ ( ⁇ emit photons of the same state along the same direction of space, constitute an object in The two-dimensional irradiance pattern ⁇ ( ⁇ ⁇ ) in this direction.
  • This irradiance pattern is the 7(Spatial Spectrum) of the natural object we defined, which is realized by the pinhole imaging process shown in Figure 12, and
  • the development of modern information technology has improved into a digital form of high-definition two-dimensional color images.
  • both inward and outward visual information can be acquired and recovered by M*N independent photographic-projection devices placed on the S1 or S2 surface in an array and anchored at the same reference point R.
  • the so-called anchor is the intersection of the imaging optical axes of the individual independent photographic-projection devices.
  • Irradiance is currently the only measurable parameter of electromagnetic radiation, especially in the visible range. It is the only form of light: the light intensity of various photon states.
  • object 0 consists of all the spatial representations of nature. It can be the earth, the moon, the sun, or any other celestial body or even the entire universe. They radiate electromagnetic energy actively or passively; it can also be any artificial light source or other.
  • the Italian architect Filippo Brunelleschi invented the perspective.
  • S encloses object 0 and defines S as the spatial spectral plane of object 0, since the complete spatial spectrum of the object is contained in the view of 0 reflected by each point P on S.
  • S can be a plane, a cylindrical surface, a spherical surface or any other shape of the surface, which can be used as a sampling surface for collecting the corresponding spatial spectrum.
  • S Similar to the ordinary lens imaging process, we define S as the object space and S as the observation space as shown in Fig. 16.
  • the observation space becomes a so-called image space.
  • the corresponding spatial spectrum of object 0 forms an image of its corresponding view in the observation space, and an image image is presented on the imaging surface when the imaging system is introduced.
  • the purpose of the imaging system is to actually obtain a photo of the view, because it can collect more light than the pinhole, and the pinhole becomes the aperture diaphragm of the system, no matter how large the numerical aperture system is used.
  • the result of the final view is only a view photo of the system focusing on the corresponding plane of the object, the resolution of which depends on the inherent Airy Disc of the imaging system. It is still only a single spatial spectrum representation in a certain direction of the object under study, and its three-dimensional nature is indirectly faulted as a different focus of the imaging system in the same direction.
  • the single spatial spectrum acquired at each point P on the S plane can ultimately be represented by a high quality image caused by the imaging system focusing on a fixed point inside the object O.
  • This is a two-dimensional discrete energy distribution determined by Ai Lie, and we will now demonstrate that the full spatial spectrum of the acquired object O can be used to recover the three-dimensional display of the object information.
  • the virtual pinhole can be sampled as a spatial spectrum of the object being studied.
  • the size can be determined by the resolution of the corresponding detector (eg human eye).
  • the pinhole is a white spot radiation source.
  • each body pixel is a point of view of object O.
  • the "glass window” can be any shape, any surface, or even any surface with a certain thickness that intersects the object, and is not just a thin plane at a certain distance from the object; in this invisible, invisible “glass window” "Only, the effect of the body pixel on the object space is equivalent to a "black hole” and the observation space is equivalent to a "new radiation source", which carries the perspective information of the object 0 being studied.
  • the volume pixel can be regarded as the spatial sampling information of the discrete energy distribution of the photon emitted by the object O. It exists anywhere in the entire space. Although it is invisible and intangible, it is a reality; this is very similar to the famous one.
  • the displacement current density assumed in Maxwell's equation is precisely the assumption that mathematically deduces and describes the objective existence of electromagnetic waves.
  • the energy information gathered on the body pixels is technically expressed in the form of spatial distribution of the same form in two different ways: 1) The spatial distribution of the light intensity directly projected by the respective pixels on the object to be studied detected on the photosensitive material or component constitutes a photograph of the object.
  • the object is sampled by time spectrum (only a single time spectrum is reacted by the object or the object is illuminated by a laser with sufficient temporal coherence)
  • the spatial spectrum of the reference light is In addition to the spatial spectrum of all objects contributing to the body pixel, when the energy distribution on the body pixel is recorded by the appropriate photosensitive material or component, a Fourier transform hologram of the corresponding view of the object is formed. . This is also the basic unit of today's holographic data storage and digital holographic printing technology.
  • holography is the first practical technique to recover three-dimensional spatial information in the form of a complete spatial spectrum using coherent interference of light waves; digital holography digitally holographically prints the process Out of each individual holographic pixel.
  • the information that nature provides to humans is itself four-dimensional or holographic, consisting of a time spectrum and a spatial spectrum produced by photon sampling.
  • the photon discrete energy distribution in the universe is holographically represented by its wave function or probability amplitude through its complete spatial and temporal spectrum, and its specific representation of the body pixel is holographically received and perceived by humans through the human brain.
  • Holography uses a single time spectrum (laser) to technically achieve a representation of the energy distribution of a complete spatial spectrum (convolution of pinhole imaging on the spatial spectrum), namely: a hologram.
  • the real-time three-dimensional display of digital holography in the embodiment of the present invention will effectively combine modern electronic civilization with future photon wisdom, and open the door of civilization from e-IT (electronic information technology) to p-IT (optical information technology) to make humans Standing on the starting line of the next-generation civil marathon competition, it is characterized by: spatial or vector holographic processing of optical information (Bushington), rather than time- or scalar one-dimensional processing of optical pulse signals that have survived unprecedented success in the last century. .
  • the holographic three-dimensional display system and method includes photographic acquisition of spatial three-dimensional information, projection restoration, and limited broadening with a special holographic function screen when the projection is restored.
  • Fig. 17 we divide the glazing into M*N (M ⁇ l, N ⁇ l) small unit aliquots, which is equivalent to spatial spectrum sampling of the object O on the spectral surface S, as shown in Fig. 19.
  • M*N M ⁇ l, N ⁇ l
  • the spectral surface S is not necessarily a plane, it depends on the means and expression of the final three-dimensional information.
  • the center point S mn of each unit represents the spatial spectrum sample of the object O on the spectral surface S, which corresponds to a view l mn of the object O, according to the invention, which can be composed of M*N digital cameras of the same parameters
  • the corresponding position of S mn on the spectral surface S is obtained by focusing on the same point R on the object 0, and the focus point R is named as a spatial reference point.
  • the number of M and N determines the three-dimensional
  • the degree of fidelity of spatial restoration, for traditional holography, the number of M and N is surprisingly large, close to single-photon quantum sampling, so that the spatial spectrum on the spectral surface S is almost continuously and evenly distributed, thus maximally realistically restoring objects.
  • the pixels P mnjk of the M*N digital photos are split and recombined to form another spatial coding pattern capable of reflecting the original information on the spectrum, so that the pixel can be printed point by point.
  • the patterned Fourier transform hologram constitutes the corresponding digital holographic display.
  • When 1, N>2, it corresponds to the horizontal parallax (HPO) stereo imaging technique in the following embodiments.
  • each of the projection views l mn may be an enlarged or reduced image of the original object 0, and the reference plane P R is not necessarily a plane, and also depends on The means of restoration and expression of the final three-dimensional information.
  • the distribution of the light information on the reference plane P R is equivalent to the restoration of the information recovered by the M*N spatial spectra of the original object O by the spectral surface S, and the specific process is represented by equations (5), (6) (7), (8) evolved in the discrete Fourier transform.
  • the discrete process mainly consists of two parts: one is the view digitization process involved in the spatial spectrum sampling of the original object 0, which is represented by the number of planar pixels of each view digital imaging J*K, the most typical one is 1024*768; Second, the number of spatial spectra required to recover the spatial three-dimensional information of the original object 0, that is, the M*N described herein.
  • the reference plane P R is decomposed into J*K individual pixels H jk , which are the same size as the planar pixels P mnjk of each spatial spectrum view of the original object O and completely overlap under ideal conditions.
  • the projector of M * N any of a single projector l mn will show the object corresponding to the spatial spectrum complete and clear view direction, i.e. the conventional two-dimensional display plane All features, because the spatial spectrum corresponding to each planar pixel is converted from a single-direction small spatial angle input to a uniform scattering large spatial angular output, so that the output spatial spectral broadening of each planar pixel overlaps with each other, forming a relatively large spatial observation range. As shown in Figure 23.
  • a function display screen proposed by the present invention is placed on the P R , the function is to scatter the M*N point light sources with object information seen in 1) into the units occupied by each projector.
  • the area A mn is completely connected (or only slightly overlapped) so that the information of the M*N spatial views is connected to a uniform light background on the spectrum, as shown in Fig. 25, the output spatial spectrum of each body pixel H jk Consistent with digital holographic printing, it can realize the restoration of perfect three-dimensional spatial information of full parallax, and its reproduction fidelity depends on the spatial spectral sampling density determined by M*N.
  • the angular resolution of the human eye is about 1.5 * 10-4 radians, which means that the face of the photonic sampling of nature, each one of us each eye is like a space probe spectrum, in body
  • the above-mentioned naked eye resolution is used to focus and look at any point.
  • the spatial sampling angle is 0 mn >>0 E
  • the final standard for clear display is that the size of the volume pixel ⁇ is the same as the planar pixel of each single spatial spectral projection image located on the reference surface holographic function screen.
  • each point on the function screen can be reasonably considered to transmit its single spatial spectrum information within the sampling space angle of 0 mn , so that other information leaving the function screen will be treated as having a size of ⁇ .
  • the spot size of ⁇ where ⁇ is the distance before or after leaving the function screen.
  • Table 2 gives us a clear-cut result that helps us design any holographic 3D display project.
  • the strict basis in the table is the size of the body pixel, which can be magnified several times in practical applications.
  • the present invention provides a color real-time holographic three-dimensional display system, comprising: a photographic acquisition device for color real-time holographic three-dimensional image information, a projection reduction device for real-time holographic image information, and a holographic function screen; the photographic collection device includes ⁇ * ⁇
  • the color two-dimensional image capturing unit C ⁇ is configured to perform M*N spatial spectral sampling ingestion on the arbitrary spatial spectral surface S of the object 0 to be displayed in three dimensions, each sampling point corresponding to one volume H of the object 0 ⁇ , the information collected by each image capturing unit is equivalent to the spatial spectrum view 1 corresponding to the body pixel, to obtain M*N array sampling spatial spectrum image information of the object 0; the M*N color two-dimensional images
  • the ingesting devices C ⁇ are arranged on the spatial spectral surface S according to a predetermined spatial sampling angle, and their respective imaging optical axes are anchored at the same reference point R of the space corresponding to the object 0; each of the imaging
  • the projection restoration device comprises a color two-dimensional image projection unit , ⁇ , which is used for simultaneously The ⁇ * ⁇ array of individual pixels at the corresponding sampling view along a captured image corresponding to an anchor relation to the projected image of the original object corresponding to 0 in a reduction of the space reference surface P R, and the reference plane
  • the projective pattern of each of the projected view images coincides with the spatial spectral projective pattern of the original object 0 in the direction
  • the M*N color two-dimensional image projecting device is on the corresponding surface S' of the restored space on the spatial spectral surface S Arranging according to the same spatial sampling angle as when ingesting, and anchoring the imaging optical axis of each projection device to the reference point R at the corresponding point R' of the reduction space;
  • M, N, m, n are natural numbers, and at least one of M and N is greater than 2;
  • the holographic function screen is placed on the reference surface P R for spatially broadening the input information corresponding to the spatial sampling angle of the input information of the view image information Imn carried by each single spatial spectrum, and broadening to the output space of each view 1
  • the spectral distributions are connected to each other without overlapping coverage to ensure that the digital holographic spatial spectrum of the restored three-dimensional spatial information is continuously and completely restored, that is, corresponding to each volume pixel H jk on the holographic function screen, the space list
  • the widened angle of the directional input light is exactly the spatial sampling angle ⁇ , thereby obtaining a holographic three-dimensional display for the purpose of restoring the complex wavefront.
  • FIG. 27 is a single spatial spectrum of the discrete spatial spectrum information input after the holographic function screen.
  • the full spatial spectral output relationship is the intent.
  • the holographic function screen has a regularly distributed fine space structure, such that the input light incident in various directions on the holographic function screen has a corresponding full-spectrum spatial broadening output, and the spatial widening angle is to restore a specific space.
  • the spatial sampling angle required for three-dimensional information is " mn .
  • the holographic function screen corresponds to each view In which has a limited widening angle ⁇ ⁇ in the horizontal direction, so that the horizontal direction is evenly arranged.
  • the output spatial spectral distribution is fully fully coupled to each other, and the vertical scattering angle w m is similar to a conventional projection display screen, which is a considerable angle, that is: the holographic functional screen is a limited widening in the horizontal direction.
  • Vertically oriented diffuser screen As shown in FIG.
  • C mn and P mn can also be expressed as C n , Pno
  • the present invention further provides the following methods of making a holographic function screen. Below we give several principles and production schemes for this holographic function screen.
  • the basic principle is to obtain the scattering space angle of the corresponding parameters by using the parameter control of the size and distribution of the speckle particles generated by the laser irradiation diffuse scatterer, which can be obtained by adding a clear aperture of a reasonable shape and size during the manufacturing process.
  • the aperture angle formed by the clear aperture and the holographic function screen is about mn /2.
  • Figures 281-283 illustrate one embodiment of manufacturing a functional screen using the directional speckle method.
  • the basic principle of digital speckle generation is: a laser source 1-20 with a center wavelength of ⁇ and a bandwidth of ⁇ ⁇ , irradiated on a diffuser of size ⁇ u * ⁇ V, diffuser
  • the characteristic optical unevenness is Id, and the diffuse element size Au * A v .
  • the observed speckle pattern is:
  • the method for fabricating the digital speckle hologram of the present invention comprises the steps of:
  • First set including laser light source 1-10, lens 1-31, 1-32, 1-33, shutter 1_40, diffuse screen 1-50, diaphragm assembly 1-60, dry plate 1-70 and dry plate platform
  • the optical imaging system 1 of 1-80 the lens 1-31 is disposed between the laser light source 1-10 and the shutter 1-40, and the lens 1-32 is disposed in sequence outside the shutter 1-40, and the diffuse screen 1-50 is disposed.
  • the aperture assembly 1-60, the lens 1-33, the dry plate 1-70 and the dry plate platform 1_80, the dry plate 1-70 is fixed on the dry plate platform 1-80;
  • the light-passing aperture of the light spot is an elongated strip having an opening angle of ⁇ ⁇ /2 for the dry plate.
  • the light-passing aperture for controlling the light spot is an elongated strip whose width is the opening angle of the dry plate.
  • the size of the spots 1-25 is obtained by adjusting the distance between the lenses 1-31, 1-32.
  • This embodiment also sets the servo system 1-2.
  • the moving dry plate platform 1-80 is driven by the microcomputer platform 1-100 in the servo system 1-2; the rotating aperture assembly 1-60 is The shutter unit driver 1-96 of the servo system 1-2 is driven by the microcomputer 1-100; the shutter 1-40 is controlled by the shutter system 1-94 of the servo system 1-2 by the microcomputer 1- The control is driven by the 100 control; the firmware control software in the microcomputer 1-100, the form and arrangement of the speckle are controlled by software.
  • the iris assembly driver 1-96 rotates the diaphragm assembly 1-60, the long ⁇ 1-61 and the circle ⁇ 1-63 are rotated, respectively.
  • the required spatial spectral broadening angle " mn depends on the opening angle of the projection head relative to the angle of the human eye during the restoration, and the required aperture of the functional screen can be obtained by controlling the aperture " mn /2" of the generated spot. Corner " mn .
  • the disadvantage of this method is that it can only qualitatively reflect the angular distribution of the scattering space of the produced screen, and can not express its spatial spectrum broadening strictly, but it is more than enough for the application of the actual stage of the embodiment of the present invention.
  • Figures 291-294 illustrate an example of fabricating the functional directional scattering screen using a holographic lens method:
  • the fabrication system of the present embodiment includes a computer 2-1, a laser 2-2, a photographic shutter 2-3, The beam splitter 2-4, the photoresist plate 2-5, the lenses 2-61, 2-62, the aperture 2_7, the spatial filter 2_8, and the plane mirrors 2-91, 2-92.
  • the laser 2-2 emits a laser beam, and the laser beam is split into two paths through the beam splitter 2-4, one path acquires the object light of the lens 2-61, and the other path serves as a reference light, and the object light and the reference light are reflected at an angle.
  • a spatial filter 2-8 is disposed in the optical path of the object light and the reference light, and the spatial filter 2-8 includes a beam expander 2-81 and a pinhole 2-82, and the beam expander 2-81 is placed at the front end of the pinhole 2-82, and the two spatial filters 2_8 respectively perform corresponding filtering processing on the object light and the reference light.
  • the photographic shutter 2-3 is placed at the front end of the laser beam, and the exposure of the object light and the reference light on the photoresist plate 2-5 is controlled.
  • the computer 2-1 controls the opening and closing of the photographic shutter 2-3, the exposure amount, and the photoresist.
  • the movement of the plates 2-5 coordinates the opening and closing of the photo shutter 2-3 and the movement of the photoresist plates 2-5.
  • the light path is as follows:
  • Laser 2-2 Photo Shutter 2-3 ⁇ Beamsplitter 2-4 ⁇ Planar Mirror 2-92 - Spatial Filter 2_8 ⁇ Lens 2-61 ⁇ Optical 2-7 ⁇ Lens 2-62 ⁇ Photoresist 2_5.
  • the reference light path is as follows:
  • the object light 0 is focused by the lens L to the focus 0', and the aperture of the lens L is D.
  • the focal length is f.
  • the holographic recording material H is placed in the vicinity of the focus 0' from the focus 0' at a distance f', the spot light spot diameter on H is d, and the reference light R is incident on the recording hologram at the incident angle A, thus recording the hologram phase
  • its field of view ⁇ is the same as lens L
  • the holographic material H is translated in the y direction, and the translation distance is the aperture d of the holographic lens, and sequentially exposed, and a holographic lens array H, that is, a holographic screen, is obtained, and the minimum resolution distance is the size d of the holographic lens.
  • the holographic lens information is recorded on the resist plate 2-5 by exposure of the object light and the reference light thereon.
  • thermoplastic material is molded by the master to obtain a screen body with information on the hologram lens array.
  • the specific manufacturing process of this embodiment is as follows:
  • the laser beam emitted by the laser 2-2 is split into two paths through the beam splitter 2-4, and the lens is obtained one by one.
  • 2-61 The object light, the other path as the reference light, the object light and the reference light are incident on the photoresist plate 2-5 at an angle ;
  • the computer 1 can control the exposure time, the exposure amount, and the like of the photographic shutter 2-3, and at the same time, the computer 2-1 controls the photoresist.
  • the computer 2-1 controls the photoresist plate 2-5 to move to the next position, and then performs exposure, and thus cycles, uniformly recording a plurality of holograms on the photoresist plate 2-5.
  • the information of the lens forms a holographic projection screen, wherein the light-passing aperture for controlling the light beam to the photoresist plate is an elongated shape whose width is ⁇ ⁇ with respect to the photoresist plate.
  • the metallized sheet of the exposed photoresist sheet is subjected to electroforming and imposition to produce a holographic lens array master.
  • the master is used to mold thermoplastic materials, and the thermoplastic material is made of transparent material.
  • the thermoplastic material can be polyester (PET: Polyester) or polyvinyl chloride (PVC: Polyrinyl Chloride) polycarbonate (PC:
  • Polycarbonate or BOAP Biaxial Oriented Polypropylene, etc., the material can be molded into a hard plate type or a film type.
  • the protective layer is coated on the holographic lens array of the molded thermoplastic material, and the protective layer may be a transparent or translucent dielectric protective layer, such as zinc sulfide ZnS or silicon dioxide SiO 2 , or a metal reflective material protective layer.
  • thermoplastic material such as aluminum plating, copper, etc.
  • the spatial spectral broadening angle can be adjusted by adjusting the aperture size and the opening angle " mn " formed on the screen to adjust the spatial divergence angle of the generated holographic lens.
  • the method has the advantages that the spatial diffusion angle distribution of the produced screen can be precisely controlled, and the disadvantage is that the oblique incident projection is difficult to overcome the color distortion caused by the dispersion, and the distortion phenomenon has little effect on the horizontal parallax holographic projection display.
  • Another outstanding advantage of the method is its transparent imaging features, such that its image display is suspended in the air, thereby providing a more three-dimensional display of appeal.
  • the fabrication of the coaxial directional diffractive holographic function screen is actually equivalent to the fabrication of a coaxial diffraction Fourier transform hologram embossed holographic mother board having a very high diffraction efficiency, which hologram just appears on the spectrum surface for each A uniform light intensity distribution over the cell area A mn occupied by the projector.
  • the Fourier transform hologram can be obtained by calculating the holographic theory and the existing electron beam exposure or diamond precision numerical control engraving output process.
  • the functional type diffusing screen can be effectively produced;
  • the size of the microlens determines the sharpness of the three-dimensional display, and the divergence angle w mn depends on the projector e) Moa stripe broadening principle and scheme
  • the screens can be overlapped, with the same two The moire fringe formed by the output discrete spatial spectral pattern satisfies the full spatial spectral output requirement.
  • Figure 32 is a spatial spectrum acquisition device in which the resolution of each camera is 480 * 640 pixels. They are anchored and focused on the same reference point R in the space taken by each camera. The signals collected by the cameras are directly connected to their corresponding projectors by ordinary AV signal lines, and the resulting projection array is shown in the photo of FIG.
  • the resolution of the image projected by each projector is 480*640 pixels, and these images are properly calibrated and corrected at the reference surface! ⁇ Strict anchor overlap on the plane, and place a piece of our homemade strip speckle holographic function screen on the plane, the size is 48cm * 64cm.
  • Figure 34 shows a photograph of the function screen taken at two different viewing angles.
  • a real person is in the three-dimensional space to be restored.
  • the final optical information on the reference plane 126 is very similar to the real image obtained by the original object through an imaging system with a large aperture (here about 2 m), but it is a huge 4f system specially formed by the unique optoelectronic architecture.
  • Space 30 horizontal sampling spatial spectra are required to express the strict reduction of optical information.
  • the quality of the final 3D display is much better than the quality of a single 480*640 pixel projected image, as each volume contains up to 30 times more information and is also brighter.
  • there are no additional defects just like you are watching a real-time performance in a real space. When the first sight was seen, everyone was shocked at the scene.
  • Surface trajectory spatial spectrum sampling and restoration Figure 35 and Figure 36 show a sketch of the spatial spectrum we acquired and restored on the surface.
  • This spatial information sampling and recovery method can be applied to the production of full-spectrum movies and TV programs, as well as the three-dimensional upgrade of all existing IT display methods; it can also be used for real-time three-dimensional information of any image, such as medical imaging, remote sensing telemetry, aerial photography, etc. Reconstruction and display; Of course, it can also be used to create a variety of special virtual spaces, bringing the virtual reality of the network into real life and confusing and interacting with it.
  • the embodiments of the present invention treat the light we perceive as an objective reality of the natural discrete energy probability distribution.
  • the wave function of the discrete energy probability distribution of the photon or the four-dimensional Fourier transform of the probability amplitude By describing the wave function of the discrete energy probability distribution of the photon or the four-dimensional Fourier transform of the probability amplitude, a new description of the light-time spectrum and spatial spectrum is proposed: the concept of spatial frequency in the current imaging system is extended to nature itself.
  • the spatial spectrum is provided, and the concept of recording and reproducing complex wavefront (amplitude and phase) in holography is extended to restore the time spectrum and spatial spectrum inherent in nature itself.
  • the physical essence of the embodiment of the present invention is a digital holographic display based on the traditional holographic theory, and the fundamental difference from the existing digital holographic printing technology is to effectively avoid the high information redundancy used by holography for restoring three-dimensional spatial information.
  • the coherent optical means of the degree by using the corresponding M*N discrete spatial spectrum sampling and broadening of the complete spatial spectrum of the object 0 to be studied, using the latest achievements of modern digital information technology, the spatial spectrum sampling can be perfectly restored. Spatial three-dimensional information, which enables real-time holographic display, effective solidification time and space. Principles and methods for anchors in embodiments of the present invention
  • the reference point R(R') is the coordinate origin that determines the three-dimensional space O(O') we want to restore. Once selected, we completely determine the three-dimensional spatial information 0(0') we want to restore.
  • the spatial correspondence between the reference points R(R'), that is, the discrete spatial spectrum of the three-dimensional spatial information O(O') to be restored in each sampling direction of the space corresponding to the reference point R(R') is completely determined.
  • the anchorage center, the angle between the adjacent two discrete spatial spectral directions is the spatial sampling angle (D mn ) shown in Figure 27.
  • a panoramic view of the three-dimensional spatial information O(O') to be restored can be acquired.
  • the reference point R is selected within the three-dimensional spatial information O(O') to be restored;
  • BP Inwardly observed as shown in Fig. 44, all the photographic-projection units are anchored inward at the reference point R.
  • the spatial amplification factor M s is equal to the ratio of the spatial spectrum reduction distance d' mn to the spatial spectrum acquisition distance d mn .
  • ⁇ : Ms d' m n/d mn ; R and R' in the figure are the reference points corresponding to the original three-dimensional space 0 and the restored three-dimensional space O', respectively.
  • the reference point R is selected, and the spatial spectrum corresponding expression view information of the three-dimensional spatial information 0 to be restored in each direction of the space corresponding to the reference point R has been determined; It is clear and efficient to collect the view expression information l mn corresponding to the discrete spatial spectrum of the three-dimensional space 0 to be restored in each sampling direction.
  • each view 1 ⁇ is the three-dimensional space 0 to be restored
  • the corresponding spatial spectrum direction (m, n) is a part of the field of view angle 6 mn in the upper view, and the center point of the adjacent two views corresponds to the spatial sampling angle of the original three-dimensional space 0 (D mn anchors to the spatial reference point) R corresponds to point information R mn .
  • the corresponding projection unit P mn can be projected onto the restoration spatial reference plane P R according to its respective acquisition direction (forward or reverse), and restored.
  • the reference plane P R may be an arbitrary curved surface, but on this curved surface, the light intensity distribution of the clear projective pattern of the original three-dimensional space 0 corresponding to the view information in the corresponding spatial spectral direction (m, n) is included. This requires that the image projected by each projection unit ⁇ has a sharp distortion on the reference plane P R , and the necessary distortion correction of the image is required to be along the spatial spectrum direction of the original three-dimensional space 0 (m, n ) The view projection on P R matches.
  • the reference plane P R can actually be regarded as a hologram that completely restores the spatial spectrum information required to restore the three-dimensional space 0.
  • This hologram faithfully reflects the original space with the reference point R as the origin of the restoration space O'. 0
  • the intensity of the clear projective pattern intensity of the view information corresponding to the corresponding spatial spectrum direction (m, n), and the discrete spatial spectrum information is completely expressed in the digital holographic display mode under the action of the holographic function screen.
  • Fig. 47 shows the geometric optical imaging of the special opto-electric hybrid processing system constructed by the simulation of Fig. 31. It can be seen that ⁇ 0 and ⁇ 0 in the figure correspond to a certain point on the corresponding surface of the strict object image, and the holographic function screen is placed on the reference surface P R as a strict image plane; 0 +1 and 1 +1 correspond to objects or images At a certain point in front of the plane, and satisfying the lens imaging relationship, 1 +1 is a real image for the reference plane P R ; 0 ⁇ and 1 ⁇ correspond to a point after the object or image plane, and satisfy the lens imaging relationship, For the face P R , 1 ⁇ is a virtual image.
  • the spatial sampling angle (D mn is the spatial distribution of the cone ray of the solid cone angle, and it is exactly the number of distributions by the distribution
  • the basic unit of the original spatial light information sampling constitutes the holographic expression of the space we want to recover.
  • the reference point position and the camera parameters can be conveniently selected by using various 3D softwares, thereby obtaining a corresponding spatial spectrum view satisfying various types of three-dimensional space display. Mn .
  • the original spatial reference point R is selected, and the M*N spatial spectral sampling points S mn are selected according to the law that the spatial sampling angle is o1 ⁇ 2 n , and the entrance center of each photography unit C mn is S mn overlap, and such that the optical axis a mn of each photographic image forming unit C mn reference point R in the spatial spectrum on the sampling points S mn connection, i.e.: R reference point in the two-dimensional image photographing unit C mn collected 1 ⁇ corresponds to the center of the view of the image.
  • the overall system device consisting of M*N photographic units C mn fixed according to 1) can be used for the inward anchor spatial spectrum acquisition of its corresponding three-dimensional spatial information; if each photographic unit C mn is The imaging optical axis is rotated 180 degrees, and the device can also be used for the outward anchor spatial spectrum acquisition of its corresponding three-dimensional spatial information.
  • the projection system can be restored by the spatial spectrum formed by the M*N projection units P mn , and the three-dimensional space is restored and displayed holographically.
  • the following is the anchor method of the M*N projection units P mn .
  • the overall system device consisting of M*N projection units P mn fixed according to 1) can be used for inward anchor spatial spectrum restoration of its corresponding three-dimensional spatial information; if each projection unit P mn is The imaging optical axis is rotated 180 degrees, and the device can also be used for the outward anchor spatial spectrum restoration of its corresponding three-dimensional spatial information.
  • the restored reference plane can be a plane, and the front projection image plane of a certain spatial spectrum view l mn is selected, as shown in FIG.
  • the view projection of the other projection units on the P R has a trapezoidal distortion that needs to be corrected compared to the original three-dimensional space projection in the spatial spectrum view in the direction, because the projection point No longer infinitely distant. This is especially important for the situation described in Figures 41 and 42.
  • the selection of the curved reference surface for each of the cases listed in Figures 35 to 40 is intended to be the envelope of the clear imaging surface of each of the reduced spatial spectral views.
  • This objective is based on the following two facts: a) As shown in Figure 50, the sampling angle is 0 ⁇ .
  • Each of the reduced projection units can find a clear projection image i mn of the view at the divergence angle e mn on the plane of the envelope surface in the case of a positive projection ; of course, if the oblique incidence projection is unavoidable, the trapezoidal distortion correction must be performed;
  • the original projection unit P mn must have sufficient clear projected depth of field to satisfy the clear spatial spectral view projection on the envelope surface consistent with the original spatial spectral representation.
  • the invention uses the distinguishable information carried by the photon--the two-dimensional image as a basic clue, and defines the body pixel and the spatial spectrum by the four-dimensional Fourier transform of the wave function objectively describing the discrete energy distribution of the photon.
  • the objectively existing new concept of physics, and the physical essence of the two-dimensional image is the geometric projection of the space in the three-dimensional space physically realized by the body pixel, namely: the physical representation of the spatial spectrum.
  • the purpose of color real-time holographic three-dimensional display is perfectly realized; the corresponding keyword is to carry out the continuous spatial spectrum of the three-dimensional spatial information to be restored: discrete sampling, clear restoration and complete display;
  • the corresponding effective measures are: synchronous anchoring, calibration correction and limited broadening.
  • the invention utilizes the rich software and hardware resources developed by the modern digital image information technology to realize the real-time digital realization of the wavefront recording and reproduction brilliant thought in the traditional holography.
  • the spatial information of the three-dimensional display is sampled by a two-dimensional image array (M*N; at least one of M and N is greater than 2), and the array image information array is arrayed.
  • the function of the holographic function screen is to restore the complex spatial wavefront to be expressed by the array image sampling, thereby obtaining a perfect holographic three-dimensional display for the purpose of restoring complex wavefronts.
  • the invention enables us to use the image information as a spatial spectrum of nature, and perform digital vector processing on the body pixels to recover the three-dimensional reality information.
  • the invention enables us to re-examine holography in the "spectral domain category" by utilizing modern information technology to enrich software and hardware resources to get rid of the inherent high information redundancy characteristics of traditional holography, and the main point is to utilize reasonable spatial spectrum sampling through holography.
  • the corresponding body pixels on the function display restore the three-dimensional display of nature.
  • the present invention can utilize the M*N set of camera-projection system to comb the messy light composed of the spatial spectrum and organize it in an orderly manner by the body pixel, we can realize the real-time holographic display by using the holographic function display screen, where the hologram is realized.
  • the idea can be achieved by simply accumulating the existing IT results of the M*N channel.
  • This means that holography will usher in a new stage of development in the near future, namely: the ultimate dream of human three-dimensional communication in the process of integrating the existing information technology industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Description

说 明 书 全息投影实时三维显示***及方法 技术领域
本发明涉及一种利用全息投影实现的实时三维显示***, 包括实时三维图像 的采集装置、 投影装置和显示屏, 以及实时三维显示方法、 实时三维图像的采集 方法、 投影显示方法和显示屏制作方法。
背景技术
本发明以全文引用的方式并入中国发明专利 ZL200410022193.7"数字散斑全 息图的制作方法和装置", 以及中国发明专利 ZL200510022425.3"—种全息投影屏 及其制作方法、 ***及应用"。
从上世纪初开始, 科学家们从未停止过寻找合理的方法来解决"三维成像"的难 题。尽管上世纪中期立体电影院和透镜板立体相片的实际应用标志着某种突破, 人类 仍然还远离有效实现直观传递与显示大自然三维信息一视觉空间搬移的超级梦想。这 些现有技术共同的致命缺点就是虚假的立体感(比如在电影院中无论观众如何移动其 看到的图像是完全一样的)、 以牺牲对成像质量的分辨率要求来换取对三维现实的有 限主观感受, 以及其复杂的工艺实现途径, 有些还需要繁琐的特殊观看眼镜。
全息术的发明标志着一种崭新的人类视觉媒介的诞生,它可以用三维的方式自然 地传递与显示视觉信息。但它们距离彩色实时全息三维视觉空间搬移显示还有很大差 距。脉冲全息术、 组合全息立体图、彩虹全息术催生了目前已风靡世界的全息印刷与 包装产业,其核心是针对文件与品牌安全的防伪保真提供防伪表征。数码全息打印技 术带来了一种比传统计算机制作全息图(CGH )技术更合理的方法, 以更有效率的全 息记录方式替代了繁琐计算与编码,从而克服了以恢复振幅和位相为目的的输出困难 问题。 但数码全息至今仍被限制在打印显示全息图上。
有关实时三维显示, 在全息术发明前后都有大量方案被提出, 然而, 由于对这个 问题的主观视觉处理方式以及缺乏合理的理论支持与实验条件,这些方案均未得到进 一步发展。
最近, 随着电视信息技术的进步及空间光调制器(SLM) 的妙用, 三维全息电视 的方案被提出用于实时三维显示,然而如电影或电视节目一样, 这些方法均是利用视 觉时间暂留效应将空间三维信息分时扫描输出实现三维显示,而非严格意义上的全息 地展现电视信息的真实全息电视。 还有许多方法提出直接再现 SLM上电写入的全息 图实现三维实时显示, 以及增大视角、 实现彩色显示等技术, 由于受到现有 SLM空 间带宽积的限制, 这些方法都明显远离实际应用, 而该空间带宽积的提高却又最终受 限于表现电子芯片集成能力的所谓摩尔定律。 最近在 Nature, Vol. 451/7 February 上所发表的文章"^ 4 updatable holographic three dimensional display",看 起来似乎给出了全息电视的曙光, 但这种新全息材料的实际应用却仍难以想象。
实际上, 大自然本来就以真三维的形式展现给我们人类。二维图像信息只能让我 们了解到事物的某个侧面, 从而极大程度地限制了人们对事物本质的全面认识。遗憾 的是, 我们虽然居住在这个三维世界中, 人类科技却无奈地只能用二维的方式来表现 它, 如: 像片、 电影、 或电视节目, 构成了 20世纪留给我们的有效传递人类视觉信 息的主要媒介。能否将按照一定规律所采集的上述海量图像信息, 以真三维的方式重 新解释并加以显示,从而还原其所要表达的真实三维世界呢? 怎样才能实现对上述海 量图像信息的三维重构及显示呢? 二维图像与三维显示究竟有着怎样的科学关联呢? 这些问题是 21世纪的科技发展所留给人们的必然思考。
发明内容
本发明就是为了实现人类长期以来梦寐以求的真三维显示, 提出一种全息投 影实时三维显示***及方法。
为此, 本发明提出一种彩色实时全息三维显示***, 包括: 彩色实时全息三维 图像信息的摄影采集装置、 实时全息图像信息的投影还原装置及全息功能屏;
所述摄影采集装置包括 M*N个彩色二维图像摄取单元 C^,用于对所要三维显 示的物体 0在其任意空间谱面 S上进行 M*N个空间谱抽样摄取, 每个抽样点 对 应于物体 0的一个体像素 H^,各图像摄取单元 所采集到的信息相当于该体像素 所对应的空间谱视图 1 , 以获取物体 0的 M*N个阵列抽样空间谱图像信息; 所 述 M*N个彩色二维图像摄取装置 C^在空间谱面 S上按照预定的空间抽样角 排 列, 且将其各自的成像光轴锚碇在物体 0所对应空间的同一参照点 R上; 每一个摄 像单元均聚焦在所对应空间谱方向的物体 0的可视表面以获得该方向的清晰视图 I 所述投影还原装置包括 Μ*Ν个彩色二维图像投影单元 Ρ^, 用于分别同时将所 采集的 Μ*Ν个体像素 处的相应阵列抽样视图图像 1 沿与采集时相应的锚碇关 系投影成像到与原物体 0相对应的还原空间中某个参照面 PR上, 并使在该参照面上 各个投影视图图像的射影图案与原物体 0 在该方向的空间谱射影图案一致; 所述 M*N个彩色二维图像投影装置 在所述空间谱面 S在还原空间的对应面 S'上按照 与摄取时相同的空间抽样角 排列, 且将各投影装置 的成像光轴锚碇在所述参 照点 R在还原空间的对应点 R '上;
其中, M、 N、 m、 n为自然数, 且 M和 N中至少有一个大于 2;
所述全息功能屏放置在所述参照面 PR上, 用于对各单一空间谱所承载视图图像 信息 1 的输入信息作与空间抽样角 相应的空间谱展宽, 展宽到各视图 1 的输 出空间谱分布相互衔接却又不至于重叠覆盖,以确保所恢复三维空间信息的数码全息 空间谱被连续完整地还原输出, 即: 对应于该全息功能屏上的每个体像素 Hik来说, 空间单方向输入光线的展宽角正好是所述的空间抽样角 ω^, 从而获得以恢复复杂波 前为目的的全息三维显示。
本发明还包括如下优选技术特征:
采集装置和投影还原装置的各摄影-投影单元一一对应, 每个摄影单元所采集到 的图像信息可以用任意数字图像传输格式直接或间接地传递给与其相对应的投影单 元, 而无需对该具体图像信息做本质上的编码和重组。
一种彩色实时全息三维显示方法, 其特征是包括: 彩色实时全息三维图像信息 的摄影采集过程、实时全息图像信息的投影还原过程及全息功能屏的有限展宽过程; 所述摄影采集过程包括如下步骤: 利用 Μ*Ν个彩色二维图像摄取单元 C^, 对所要三维显示的物体 0在其任意空间谱面 S上进行 M*N个空间谱抽样摄取,每个 抽样点 对应于物体 0的一个体像素 H^,各图像摄取单元 所采集到的信息相 当于该体像素 所对应的空间谱视图 1 , 以获取物体 0的 M*N个阵列抽样空间 谱图像信息; 所述 M*N个彩色二维图像摄取装置 在空间谱面 S上按照预定的空 间抽样角 排列,且将其各自的成像光轴锚碇在物体 0所对应空间的同一参照点 R 上; 每一个摄像单元均聚焦在所对应空间谱方向的物体 0 的可视表面以获得该方向 的清晰视图 1
所述投影还原过程包括如下步骤: 利用 Μ*Ν个彩色二维图像投影单元 Ρ^, 分 别同时将所采集的 Μ*Ν个体像素 处的相应阵列抽样视图图像 1 沿与采集时相 应的锚碇关系投影成像到与原物体 0相对应的还原空间中某个参照面 PR上, 并使在 该参照面上各个投影视图图像 的射影图案与原物体 0在该方向的空间谱射影图 案一致; 所述 Μ*Ν个彩色二维图像投影装置 在所述空间谱面 S在还原空间的对 应面 S'上按照与摄取时相同的空间抽样角 排列,且将各投影装置 的成像光轴 锚碇在所述参照点 R在还原空间的对应点 R '上;
其中, M、 N、 m、 n为自然数, 且 M和 N中至少有一个大于 2;
所述全息功能屏的有限展宽过程包括如下步骤:将所述全息功能屏放置在所述参 照面 PR上,从而对各单一空间谱所承载视图图像信息 1 的输入信息作与空间抽样角 相应的空间谱展宽, 展宽到各视图 1 的输出空间谱分布相互衔接却又不至于重 叠覆盖, 以确保所恢复三维空间信息的数码全息空间谱被连续完整地还原输出, 艮卩: 对应于该全息功能屏上的每个体像素 Hjk来说, 空间单方向输入光线的展宽角正好是 所述的空间抽样角 ω^, 从而获得以恢复复杂波前为目的的全息三维显示。
采集过程和投影还原过程的各摄影-投影单元一一对应, 每个摄影单元所采集到 的图像信息可以用任意数字图像传输格式直接或间接地传递给与其相对应的投影单 元, 而无需对该具体图像信息做本质上的编码和重组。
各摄影-投影单元除空间位置校准外,还要进行相应的时间同步和色彩亮度校准, 以确保输入输出信息的实时还原逼真度。 所述投影阵列均可根据实际情况排列在空间任意曲面或曲线上,以实现任意方式 的彩色实时全息三维显示, 其所恢复的三维空间可以是原三维空间的放大或縮小。
所述参照面 1¾可以是任何曲面以满足各式各样的彩色实时全息三维显示需求;所 述各投影单元在该参照面 PR上呈现出清晰可辨的具体图像信息且已完成各自相应的 必要图形畸变校正。
所述的空间谱空间抽样角 或该***的空间采样密度其倒数 Ι/ω^, 决定了 该***能够恢复三维空间清晰可辨信息的能力, 即: 在离开所述参照面 PR的距离为 ΔΖ的地方, 由所述全息功能屏能够输出一个实像或虚像光斑, 该光斑大小与在该屏 幕上各空间谱输入图像的平面像素大小相当。
所述各摄影-投影单元成像质量, 包括视场角、 分辨率、 亮度、 对比度、 色阶与 色彩饱和度等, 可套用现有普通二维图像显示的基本标准。
所述各摄影 -投影单元的锚碇原则是: 1 ) 各摄影-投影单元所涉及处理的视图图 像, 代表锚碇点 R (R' ) 与采样点 ( S'^) 连线所决定的空间谱方向上该三维物 体 0的几何投影, BP : 图像平面是各摄影-投影方向的法平面; 2)各视图图像在该图 像平面内沿各摄影-投影单元的成像光轴方向无旋转。
对各摄影 -投影单元所处理的空间谱视图信息作相应的图形畸变及聚焦调整。 本发明的效果是实现了全息实时三维显示。
附图说明
图 1是光子离散能量分布与波函数示意图;
图 2是位置矢量 r与传播矢量 k示意图;
图 3是矢量变量积分轨迹示意图;
图 4是点源辐射波函数表达示意图;
图 5是电磁辐射的时间谱构成;
图 6是太阳光与钨灯的时间谱比较;
图 7是空间中某一点 (XQ,yQ, ) 处波函数示意图;
图 8是李普曼彩色照相原理示意图;
图 9是物体 0的等相位面及全息图示意图;
图 10是二维离散能量分布的等相位面及 4f***成像示意图;
图 11是针孔成像示意图;
图 12是体像素定义示意图; 图 13是空间谱定义示意图;
图 14是利用两个封闭曲面上的空间谱语言来处理我们所面对的大自然视觉信息 的示意图。
图 15是三种透视方式示意图;
图 16是物空间、 空间谱面、 观察空间示意图;
图 17是平面空间谱面示意图;
图 18是体像素示意图;
图 19是空间谱采集示意图;
图 20是空间三维信息还原示意图;
图 21是人眼看到 M*N个点光源示意图;
图 22是体像素上离散空间谱示意图;
图 23是空间谱大角度均匀展宽输出示意图 (单空间谱输入);
图 24是空间谱大角度均匀展宽输出示意图 (M*N空间谱输入);
图 25是功能屏投影输出示意图;
图 26是水平视差投影输出示意图;
图 27是单谱与全谱展宽关系示意图;
图 28是定向散斑法制作功能屏示意图;
图 281是数字散斑产生基本原理示意图;
图 282是定向数字散斑产生基本原理示意图;
图 283是本发明实施例数字散斑全息图的制作方法和装置的示意图; 图 29是全息透镜法制作功能屏示意图;
图 291是本发明实施例全息透镜投影屏的制作***光学结构示意图; 图 292为本发明实施例全息透镜信息记录原理示意图;
图 293为本发明实施例全息投影屏的制作方法基本制作流程示意图; 图 294为本发明实施例全息投影屏的制作方法具体制作流程示意图 图 30是还原逼真度示意图;
图 31是本发明一个实验***示意图;
图 32是实验***中空间谱采样装置示意图; 图 33是实验***中投影装置示意图;
图 34是实验***中从不同观察角度所拍摄到的该功能屏幕上的照片; 图 35是曲面空间谱抽样示意图;
图 36是曲面参照面还原示意图;
图 37是 360度向内柱面空间谱抽样示意图;
图 38是 360度柱面向内观察空间信息还原示意图;
图 39是 360度向外柱面空间谱抽样示意图;
图 40是 360度向外观察空间信息还原示意图;
图 41是 360度穹状空间谱采集示意图;
图 42是 360度平台空间信息还原示意图;
图 43是所要还原的物体与参照点空间关系示意图;
图 44是向内锚碇情况示意图;
图 45是向外锚碇情况示意图;
图 46是空间还原比例关系示意图;
图 47是几何光学成像示意图;
图 48是锚碇方法示意图;
图 49是梯形矫正示意图;
图 50是曲面参照面选定方法示意图。
具体实施方式
下面通过具体的实施例并结合附图对发明进一步详细的描述。
由于本发明实施例是基于新的理论发现而做出的,在实施方式描述之前,先介绍 与本发明实施例相关的理论。
一. 波函数的四维傅里叶变换 光是由光子构成的, 每一个光子都具有其最小的电磁辐射能量 f =h 其中 h 是普朗克常数 ?=6.62^ ίΓ34 J * s, 是波长为 =c /^的该光子的振动频率, c是 光速在真空中恒定常数为 c=2.997 924 58 X:W 8 m/s。 该光子相应的动量为 p =hk, 其中 / 是传播矢量且 / ="//^。 所有这些与狭义相对论吻合, 在此粒子的质量、 能量 和动量的关系为 f =[(cp)2+(mc2)21/2。 对光子来说 m=0故 f =cp。 现在让我们考虑一个三维物体 O, 它可以是自然界任意反光物体的一部分,也可 以是电磁辐射光源本身。 假设该物体被置于某三维坐标系 y, z_j的原点附近, 且尺 寸在 Zlx, Ay, Z内, 则在 ί时刻各种不同状态的大量光子将从该物体上发射出来, 形成包围该物体的光子离散能量几率分布 y, z, t), 从而使该物体表现为我们所能 感知的现实世界,如图 1所示。
该光子离散能量几率分布的波函数或几率幅被定义为一复变函数 f(x, y, z, t),且: l(x, y, z, t)=f*f= I f(x, y, z, t) \ 2 (1)
该波函数的四维傅里叶变换被定义为:
F(kx, ky, kz, v ) =/ f f ff(x, y, z, t)exp[-j2 i(kxx+kyy+kzz + vt)]dxdydzdt (2)
其逆变换为:
f(x, y, z, t) =f f f fF(kx, ky, kz, v )exp[j2 (kxx+kyy+kzz + vt)]dkxdkydkzd v (3)
同时有光子离散能量几率分布被定义为:
l(kx, ky, kz, v)=F*F= I F(kx, ky, kz, v) I 2 (4) 其中 kx, / y,和/ z被称为空间频率, 是光子传播矢量/相对于 X, y,和 z方向的分量,
v R
Figure imgf000009_0001
虽然 (1) 到 (4) 时间和频率从 _∞到+∞积分似乎有点离谱, 因为时间和频率为 负数是不可理喻的, 但我们可以改用矢量表达, 使积分从 0到+∞而在物理上变得更 加合理。
如果我们以矢量表达形式重写 (1) (2) (3) 和 (4), 我们可得到:
在时空域:
l(r, t)=f*f= I f(r, t) I 2 (5)
f( r, t) = f fF(k , v )exp[j2 i(-k- r + vt)]dkdv (6) o 在频谱域:
Figure imgf000010_0001
F(k, v ) =/ ff( r, t)exp[-j2 i(-k ' r + vt)]d rdt
其中厂是三维空间的位置矢量, r2=x2+y2+z2, x=rcos a , y=rcos β , z=rcos γ; k 是光子的传播矢量,有
Figure imgf000010_0002
cos r; β, Y j是矢量对应于直角坐标系 x, y, z轴的方向角, 有: cos2 «3 + cos2 + cos2 r=1; 且/, r= xx+ yy+ zz, 如图 2所示。 k' / "前面的负号表示光子是从物体向 外发射而并非从外向内汇聚成物体,因此空间中任何光子的位相总是落后于物体表面 光子的初位相。 从 0到 +∞对某矢量变量函数的积分意味着该函数相对于其矢量变量 在整个空间各个点上的线性叠加,包括该矢量变量的振幅和位相; 换句话说就是沿任 意封闭曲面, 该曲面包围原点并由矢量变量扫描而成。对同一方向矢量变量的积分体 现在时空坐标 (?, 和与之相对应的频率坐标 (7c, V J中另外两个标量变量 ί和 上, 以 确保积分为该四维函数的线性叠加, 如图 3所示。
很明显, 公式 (1) 到 (8) 是光子离散能量几率分布 /( yz, 四元复杂函数的 纯数学处理, 然而从中却包含着丰富的物理意义。 虽然 (1) 到 (3) 时间和频率从- ∞到+∞积分似乎有点离谱, 因为时间和频率为负数是不可理喻的, 但其相应的矢量 表达 (4) 到 (6) 由于积分从 0到+∞而在物理上变得更加合理。 实际上现代信息科 技中一维信号、二维图像乃至三维全息的基本概念和处理方法都可由这些公式导出或 追溯回这些公式。我们把上述四维付里叶变换理论分以下几种情况进行具体化后,就 可以推导出一些我们原来熟悉的现有理论:
1. 球面波和一维傅里叶变换对: 如果我们考虑物体为一点辐射源, 在所有空间 方向上都具有不同能量状态的光子, 即在 =0时亥1」 ^= = ∑→0, 如图 4所示我 们有:
f(r, 0)=[f(0,0)/r]exp[j2 π (k ή] (9) 这是一个波长为 ="//典型球面波复振幅的标准表达, 沿时空坐标 , y, z, 或^ t) 中的所有方向传播。 在时刻 ί我们有波函数表达为:
f (r, t)= [f(0,t)/r] exp(j2 ik r)exp(-j2 I vt) (10)
= [f(0,t)/ct]exp{-j2 JI vt[1-(k r/vt)]}
= f(0, t)/ct
=f'(t) (10)' 其中 r=c ί, / ^(1/Λ )(C t)=(c /A)t= vt , 从而使函数 f (r, t)自然变成 f' W只与时间有 关。 这样公式 (5)、 (6)、 (7) 和 (8) 可被写成一维形式:
l(t)=f*f= I f'(t) I 2= I f(0,t) /r (11)
F'( v J = ff'( t)exp (-β i vt) dt (12) l(v)= '= I F'( W (13)
f'(t) = fF'( )exp Q2 I vt) d (14)
这便是用于通信理论中时间信号处理的传统一维傅里叶变换对,其电磁辐射谱或 光谱如图 5所示,其中的可见光波段非常狭窄。传统光谱学中光谱的概念可由此定义 为辐照度 (单位时间单位面积内的平均能量)随光振动频率的分布。 这也相似于我们正 在观察太阳、 月亮、 或更加遥远的星星, 以及无线电或电视发射塔的情况。
传统光谱学中光谱的概念可由此定义为辐照度 (单位时间单位面积内的平均能量) 随光振动频率的分布。 图 6便是对应于太阳光和钨灯这种分布的比较。
2. 针孔成像: 当我们考虑在某一时刻 ί=ίσ, 空间中某一点 x=xc,_ = ftz=zc的情 况下, (1) 到 (4) 可简化为:
I (xo, yo, zo, t0)=f*f= I f(x0, yo, z0,t0) (15)
f(xo, Yo, z0, t0) =f f f fF(kx, ky, kz, v )exp[j2 I (kxXo+kyyo+kzz0+ vt0)]dkxdkydkzd v (16)
I (kx y Mz , v )=F*F= I f(kx, ky, kz, v) (17)
F(kx,ky,kz, v)=f( x0, y0, zo, to) exp[-j2 JI (kxXo+kyyo+kzz0+ vt0)] (18)
这种情况如图 7所示与针孔成像过程相当,这时的波函数就好像在针孔处由(16) 所表达的狄拉克德尔塔函数 y-yo, z-z0, t-t0) f(x, y, z, t)。公式(18)是^ ¾ y0, z0,
W处的德尔塔函数傅里叶变换的典型表达, 德尔塔函数是在时空坐标中从 (Ό, 0, 0, 0) 到 (Xo, yo, zo, W的位移转变成为其频谱坐标中的位相漂移 exp[-j2 JJ (kxxo+kyyo+kzz0+ vt0)】。 公式 (16) 意味着物体 0在 ί0时刻对该点 (¾, yo, z¾)或 /¾的 能量贡献是一系列不同振动频率 的单色平面波沿不同的传播方向 /在该点的叠加, 这将从 (16) 的矢量表达 (19) 中清晰体现, 此时 / 是一大小和方向均在变化的矢 量变量, 且/ ¾有可能是包含在物体内部。
f(r0, t0)=f fF(k, v )exp[-j2 i(k' r0+ vt0)]d kdv
o
F(k, v)=f( r0, to) exp[-j2 i(-k' r0 + vt0)】
在图 7中被考察物体上的每一点 P所发出的光子, 只有沿 P与 (x0, yo, z¾)连线的 光子才能到达该被研究点从而为该点提供能量。 我们把这根连线当成 "一根光线", 它由不同能量状态或振动频率的光子所构成,但严格按空间同一方向传播。本发明中 我们把按同一空间方向传播的光子定义为光的空间谱 (其概念在下面详述), 图 8中 利用李普曼彩色照相原理通过针孔照相所形成的二维彩色相片便是其物质表现形式。 像片中的每一点都对应于一个干涉滤光器, 由物点和其镜像点通过平均波长 J a(P_j所 形成的干涉条纹组成。
3. 传统全息术: 当我们考虑单色光照明, 即 = 。时, 公式 (1)、 (2)、 (3) 和 (4) 可以简化为:
l(x, y, z)=f*f= I f(x, y, z) (21)
f(x, y, z) =f f fF(k0x, k0y, k0z)exp[}2 (k0xx+k0y+k0zz )]dk0xdk0ydk0z (22)
I (kox,,k0ykoz) =F*F= I F(kOX!,koyk0z) (23)
F(k0x, k0y, k0z) = f f ff(x, y, z)exp[-j2 i (k0xx+koyy+kozz )]dxdydz (24)
其矢量表达 (5)、 (6)、 (7) 和 (8) 可简化为: l(r)=f*f= I f(r) (25)
f( r) = fF(k0 )exp(j2 Jik0- r ) d k0 (26)
/ (k0) =F*F= I F(k0) (27)
F(k0 ) = ff( r)exp(-j2 Jik0- r) dr (28) o
这种情况如图 9所示类似于传统全息术中由波长为 0=" I 的激光照明物体。 由于 /0是一个仅有方向变化的常模矢量变量, 图 3中/ 的积分轨迹为一半径等于 k0 的封闭球面, 故 (26) 表示波函数 是由一系列传播矢量为 /0且沿空间所有方向 的单色平面波 F(k0 )exp(j2 Jiko' r ) 的叠加, k0J 0到+∞积分是因为 r可能位于物 体内部从而导致该处波函数是整个物体沿空间所有方向的各单色平面波的叠加; 而 (28)所表示的波函数 f( 的傅里叶变换 F(k0 ^!即波函数在空间某方向单色平面波的 分布也取决于图 3所示的该波函数在任意空间封闭曲面上的每一点 r对该方向的贡 献, /"从 0到+∞积分同样也是因为 r可能位于物体内部。 假设 r0是物体表面上的位 置矢量, 则 是物体表面发射光子的波函数, 有 /(?a) = | f(V^ I 2且与时间无关, 从而 f (7 ^也可被称为该物体的复振幅。 从该物体上发射出来的光波可以描述为拥有 同样位相光子的几率幅, 因为所有光子都来源于同一物体。在图 9中, 这些所谓同位 相光子几率幅的等位相面沿物体表面上每一点的法线方向向外扩展, 其距离是 ^的 整数, 那些没有法线的点则以该点为圆心的园弧连接, 其半径也是 J0的整数倍。
这些由公式(25)到 (28)所表达的所谓等位相面, 作为被研究物体客观现实而 存在, 与时间无关, 也可被称为该物体的复杂波前。这些等位相面上的每一点都有其 振幅 I f(r0) I /m 0和位相 2 0对应于物体表面的某一点 r0, 而:
f( r0) = fF(k0 )exp(j2 Jik0- r0) dk0 (29)
0
这是在 /¾处一系列单色平面波 F(k0)exp(j2 iko' r0 ^)的叠加, 而当沿物体表面法线方 向传播的时候, (29) 可写为:
f( r0) =F(k0n)exp(j2 Jik0n - r0 ) (30) 显然, (30)只是由 r0作为一点光源所发出的一系列单色平面波的一个分量,其中 k0n 为物体表面 处沿法线方向传播的单色平面波的传播矢量, 它决定了物体等位相面 的形成。
虽然由光照度 / 0)及其相应的空间分布所定义的物体所发出的离散能量分布 / W 可用 (25) 到 (28) 来表达, 且其复杂和精细程度是由当今科学和技术难以计算和 测量的, 但当我们在图 9中简单引入沿 /R方向传播的被称为参考光的相同振动频率 0与振动方向的单色平面波 R, 该物体的波前就可通过全息术而得以全息地记录。 图 9中一系列距离为 0的平行平面与(21 )所表达的被研究物体 0的波前相交形成 的一系列截面产生了的干涉条文所组成的复杂能量分布 P(r), 可表示为:
P(r)=(0 + R)(0 + R)
= \ 0 \ 2+ \ R \ 2+ 0 R+ OR (31) 当 (31) 以适当方式被记录时, 就被称为物体 0的全息图11。 当用原参考光 照明 H时, 就可完全恢复被研究物体 0的波前, 即 (29) 所表达的由物体上每一点所发 出的相应单色平面波的叠加, 也即图 9中所描述的物体 O的等相位面, 从而可直接 恢复描述物体 0的光照度 / (V^及其相应的空间分布 f( r0)。
4. 传统傅里叶光学: 当物体是由单色照明 ( = 0) 二维离散能量分布 l(x, y) 时, 公式 (16) 到 (18) 可写为: i(x, y)=f*f= I f(x, y) I (32)
f(x, y) =f / F(k0x, k0y )exp[j2 JI (k0x x+k0y y)]dk0x dk0y (33)
l(k0x, k0y)=F*F= I F(k。x, k0y) I 2 (34)
F(k0x, koy) =f ff(x, y)exp[-j2 JI (k0xx+k0yy )]dxdy (35)
它们与 4f 成像***结合便构成了傅里叶光学的基本内容, 清晰定义了物面、 谱面和 像面, 并引入了调制传递函数 (MTF)、 角谱/0xy、 空间频率 (k0x, oy 及空间滤波 等概念以提高成像***的成像质量。 图 10 是这种情况的等位相面描述, 其中像 O' 是由不同空间频率的信息 0x, /0y J所构成,这些信息来自于将成像***所采集的物 0 当成一系列由角谱 (光栅) /0xy所产生的不同方向的单色平面波。
二. 本发明所提出的光的时间谱和空间谱概念
1. 光的时间谱 光的时间谱与现代光谱学中的光谱具有同样的含义,从而可被定义为电磁波辐射 强度随其振动频率的分布函数 J, 也可理解为构成该电磁辐射的频率成份。 在作 为通讯载波的无线电波、微波、 乃至红外激光的光谱范围内, 由于其能量分布与空间 参数无关, 如公式 (11 ) - ( 14 ) 所示, 这个辐射强度可被当成其发射源的功率。
在可见光的狭窄谱段中, 该辐射强度对应于色彩的显现, 即: 表 1所示的相对于 各个振动频率的光谱色。色彩并不是光本身的特性, 它是眼睛、神经和大脑这一电化 学传感***的具体表现。虽然我们还没有发明出功率或能量输出随光的振动频率变化 而连续可调的激光器, 我们仍能通过三原色叠加而恢复自然色彩, 并且已存在多种可 供选择的三原色激光器。实际上,在大自然中我们所能鉴别的色彩是一个个可分辨的 时间谱分布而不是表 1所给出的光谱色,从而表现出比李普曼彩色照相所反映的光谱 色彩更加丰富。三原色被用于恢复这个缤纷世界的色彩已有很长时间, 从而带来了图 像显示从黑白到彩色的革命,同时也为我们提供了一个简单方法来恢复三维世界的真 彩色, 即利用红、 绿、 蓝三原色激光或更多单光谱色的叠加来替代公式 (1 ) 到 (8 ) 对 的积分, 这也是目前彩色全息术的研究内容。
表一: 色彩与频率对照表
TABLE 1, 4 A^proximaie Fr^uency mi Vac um Wavetagih Rm for i ariw€ m
Color Ay y II: nm )
780 -622 8 - 482 I; C n $11 520 - 610
Ora ge 4S2 - 5 3 492 ' 455
59? « 57? 5ΐ)3 52ΰ: : 455 -綱
2. 光的空间谱
本发明据所光的空间谱可定义为电磁波辐射强度随其空间传播方向的分布函数, 即: 光的玻印廷矢量(Poynting Vector)分布函数 /(7 , 也可以理解为某发光物体在 空间某个方向上的辐射强度投影分布, 即: 形象地表现为该物体的二维图像。让我们 返回公式 (5) 到 (8 ) 和图 7, 很容易领会到这样的结果: 离散能量几率分布 /(?, t) 的波函数或概率幅 f(r, 是一系列不同方向不同振动频率的单色平面波 F(k , V )exp[j2 Ji (-k ' r + WJj的叠加, 它们来自于被研究物体的表面上的某一点 P, 该物体具有辐射强度 Ι(ΓΡ) = I f(rP) I 2而/ ϊ/ _)是物体表面的复振幅,物体上的每一点 都对应于一个该点时间谱的平均波长 3^)。 为了更加便于理解, 我们可以用以下三 种方式来表达有关光的空间谱的相同含义:
( 1 ) 援引几何光学理论, 我们定义被研究物体的空间谱为其通过某一针孔的视 图, 它被表现为图 11所示的该物体的针孔成像。 在物空间, 针孔是一个黑洞, 永远 吸收着来自物体的光从而形成物体的像; 在像空间, 针孔是一个点光源, 它承载了物 体的时间谱信息。换句话说, 当我们在像空间观察针孔时, 如果我们改变观察方向就 可分辨出针孔上的光强 /(^ aJ变化, 该变化对应着物体上相应点的光强 /(?P_j及其固有 的平均波长 J a(P)。 当我们移近针孔时, 物体的视图逐渐显现出越来越多的细节直到 人眼接收到通过针孔的所有光线而看清楚完整物体。实际上,针孔成像原理来源于几 何光学的基本定律即光的直线传播理论, 照相机、摄像机成像中透镜的引入只是为了 通过其聚光特性收集到更多的光线而使成像过程更加容易地得以现实实现,从而带来 了物面和像面的概念以及依据同一基本原理所产生的成像公式; 在此,针孔被透镜中 心点所取代, 更多的光线通过透镜孔径与其前后焦点的限制参与了成像。虽然透镜的 成像过程是三维的,其成像的实际输出却仍然无奈地被限制在相应像面的二维光强分 布上, 结合三原色构成了高质量彩色照片乃至今天的高分辨率数字图像。 可以说, 迄 今为止对我们从自然界所获取的所有图像信息的显示,只不过是我们所能感受到这个 世界的一个空间谱而已。
( 2 ) 援引波动光学理论, 我们定义被研究物体的空间谱为沿同一空间方向传播 但由不同振动频率所构成的单色平面波的集合,它可被表示为沿该方向的成像***对 该物体的成像。实际上这只是空间谱的一个理论定义, 正如波动光学中的单色平面波 和几何光学中的针孔一样;全息术实验中的针孔就是单一空间谱和单一时间谱的细致 表现和验证, 它被用于"清洁"扩束器所放大的激光斑上的 "污点"。 由(32 )到(35 ) 及图 1 0所表达的傅里叶光学为我们提供了成像过程的精巧解释, 不过只牵涉到以某 一个频率振动的单色光, 而空间频率 0x , / 0y J正是其所对应的空间谱与沿成像方向
(这里是 Z方向) 空间谱的相交线的空间密度。
( 3) 援引在量子光学中, 我们定义被研究物体的空间谱为其沿同一方向发出的 不同能量状态的光子所形成的离散能量分布,它可被形象地表示为物体表面的光强在 数学上被平行透视到某个平面,可以被当作是具有不同能量状态 f的同一方向光子动 量状态 p的有效表述。
三 . 本发明所提出的体像素概念及其与空间谱的关系
实际上, 公式 (5 ) 到 (8 ) 为我们提供了利用光子这一大自然最精细的表现形式 对大自然本身的两种基本表述,同时也为我们提供了有关光的波粒二象性这一永恒主 题的内在联系。
1 . 公式 (5 )和 (6 )为我们提供了描述自然的粒子语言或时空语言, 在这种语言 里,时空中某一点的离散能量概率分布 由众多同样状态光子所构成的不同方向 上的单色平面波/^ / , v)exp[j2n(-k · r +vt)]的叠加所致, 如图 12所示。 该点被定义 为该自然物的 像 ( Aoxe/) 并为李普曼彩色照相术所证实 (这里讲的是体像素本 身的物理函意, 即: 图文所示体像素内在的能量分布规律, 已被著名的李普曼彩色照 相术所证实);在本发明中,各光线被视为物体上某一点的辐照度
Figure imgf000016_0001
所对应的单色平面波,从而在李普曼彩色照片上相关点处产生由干涉滤光器所导致的 色彩显现。 2. 公式 (7 )和 (8 )为我们提供了描述自然的波动语言或频谱语言, 在该语言中 来自物体同一方向上的离散能量概率分布 /( c, v) 由众多靠近物体的体像素 oxd 按空间不同位置叠加而成。如图 13所示,这些由 f(r, t) exp [-j2n (-k · r +\ ^所表示的 体像素 H( ^ 沿空间同一方向发射出各自相同状态的光子,构成了物体在该方向的二 维辐照度图案 Ρ(Λ η)。 该辐照度图案就是我们所定义的该自然物的 7^ (Spatial Spectrum ), 它由图 12所示的针孔成像过程得以实现, 并由现代信息科技改善发展成 为数码形式的高清二维彩色图像。
3. 当每个体像素的尺寸小到光子程度, 即对大自然的离散抽样满足光子的海森堡 测不准关系, 则空间谱仍然是严格由同一光子状态所构成的单色平面波。这个事实由 全息术所证实, 因为全息术中复杂物体光波波前是由一系列单色平面波的叠加所构 成, 而这些单色平面波以干涉条纹所获得的全息图的形式被记录与再现。
4. 如图 14所示, 我们可以利用两个封曲区面上的空间谱语言来处理我们所面对的 大自然视觉信息, 即:我们通过曲面 S 1上的体像素向内观看而通过 S2上的体像素向 外观看。同样,无论向内还是外的视觉信息都可通过以阵列形式安放在 S 1或 S2曲面 上且锚碇在同一参照点 R的 M*N个独立摄影-投影装置进行空间谱的采集与恢复。所 谓锚碇便是各个独立摄影-投影装置的成像光轴交汇与同一点。
四、 基于上述新概念本发明对光的新描述
辐照度是目前电磁辐射唯一可测量参数,尤其是在可见光范围内它是光的唯一表 现形式即: 各种光子状态的光强度。 我们已经定义了光的时间谱和空间谱, 它们分别 是对应于辐照度随光振动频率与光传播方向的分布函数: l( V)与 l(k); 现在我们利用 这个概念给出大自然因为有光而呈现的三维表现现实的具体解释,从而找出利用现代 科学技术而对其进行恢复的合理方法。
假设物体 0由大自然的所有空间表现形式所构成, 它可以是地球、 月亮、 太阳、 或任意其他天体乃至整个宇宙, 它们主动或被动地辐射着电磁能量; 它也可以是任意 人造光源或其它具有自发光现象的物质,或其它任意物质形态对其光各种光子状态的 照明所同时产生的 "新辐射源"或 "黑洞"效应的作用所制造出的我们所赖以生存的 世界。 从数学上讲, 追溯到十五世纪中期意大利建筑师菲利波.布朗勒斯奇 (Filippo Brunelleschi)对透视的发明, 如图 15所示有三种方式均可获得物体 0的透视图, 它 们由针孔和透镜得以物理实现,并在波动光学和傅里叶光学的指导下发展成为今天的 高质量数码相机。 物体 O上的每一点至少在一个方向上对应于其视图中的相应点, 在每个视图上显现的点对应于该视图方向上物体最前面的点。
假设另一封闭曲面 S包围着物体 0, 并定义 S为物体 0的空间谱面, 因为该物 体的完整空间谱都被包含在通过 S上的每个点 P所反映的 0的视图上。 理论上讲, S可以是平面、 圆柱面、 球面或其他任何形状的曲面, 可被我们用以作为采集相应空 间谱的抽样面。 类似于普通透镜成像过程, 我们定义 S内为物空间而 S外为观察空 间如图 1 6所示。 当我们考虑 S上的一点 P的时候, 观察空间变成了所谓的像空间, 在那里物体 0 的相应空间谱在观察空间中形成了其相应视图的像, 而当成像***被 引入的时候就在成像面上表现出一张图像照片。成像***的作用是为了实际地获得该 视图的照片, 因为它可以采集到比针孔更多的光线, 而此时的针孔变成了***的孔径 光栏, 从而无论用多大数值孔径的***去采集再多的物体信息,最终所获得视图的结 果只是***对焦到物体相应平面上的一张视图照片,其分辨率取决于该成像***固有 的爱里斑 (Airy Disc)。 它仍然只是所研究物体的某个方向上的单一空间谱表达, 其 三维特性间接断层地表现为成像***沿同一方向的不同对焦。 实际上, 在 S 面上的 每个点 P所采集到的单空间谱, 最终可由成像***对焦到物体 O内部的某一固定点 所导致的高质量图像所表现。这是一个由爱里斑所决定的二维离散能量分布, 我们现 在将论证可以利用所采集到的被研究物体 O 的完整空间谱来恢复该物体信息的三维 显示。
我们用一个简单试验来表达我们是怎样感受并恢复被研究物体 O的三维表现的。 为了简化分析并使过程更加容易理解, 我们假设上述的空间谱面 S 是一个平面, 就 像我们在观察空间中通过一面透明玻璃窗去看被研究物体, 如图 17所示。
假设我们在该虚拟玻璃窗上放置一虚拟针孔如图 18, 该虚拟针孔可被当成被研 究物体的空间谱抽样, 其大小可由相应的探测器(如: 人眼) 的分辨能力所决定, 我 们称其为被研究物体 0的"体像素",并为其起一个英文名叫" hoxel ",它是公式(6) 在该点处的具体物理表现, 即: 体像素的波函数为物体 O上面所发出的一系列单色 平面波的叠加。在观察空间我们只能辨别出针孔是一白光点辐射光源, 虽然该物体的 信息作为其视图通过针孔已被编码进去,仔细观察针孔, 我们发现该点光源的色彩和 亮度随着我们在观察空间中上下左右的移动而发生着变化, 即: 体像素的空间谱随空 间方向而改变, 它是公式 (8) 在该点处的具体物理表现。 如果我们以视频的速度移 动针孔对整个玻璃窗进行扫描,我们就会发现被研究物体以三维的形式展现在我们面 前,就好像我们直接打开玻璃窗, 而窗上蒙上了一层针孔般大小被我们称之为体像素 的格子, 它们对应于二维平面数码图像中的像素 (Pixel)。 换句话说, 我们可以通过 恢复玻璃窗上的每个体像素对应于其原来的空间谱表达,便可通过玻璃窗看到被研究 物体的三维表现, 在这里每个体像素与其同原物 O同样透视的方式和其视图相关联, 即: 体像素是物体 O的某个视点。 当然, "玻璃窗"可以是任意形状、 在任意地方、 甚至与物体相互交叉的具有一定厚度的任意曲面,而并非只是离物体一定距离的薄平 面; 在这个看不见、 摸不着的 "玻璃窗"上, 只有体像素对物空间的作用相当于一个 "黑洞"而对观察空间则相当于一个 "新辐射源", 它携带了被研究物体 0的透视信 息。 因此, 体像素可以被当作被研究物体 O所发出的光子离散能量分布的空间抽样 信息, 它存在于整个空间任意位置, 虽然看不见、 摸不着, 却是现实存在; 这非常类 似于著名的麦克斯韦方程中所假设的位移电流密度,正是这种假设从数学上推演并描 述了电磁波的客观存在。我们可以通过对空间中某个曲面上的空间谱采样与恢复来实 现体像素的物理表现从而恢复被研究物体 O的三维重构和显示。
聚集在体像素上的能量信息通过以下两种不同方式以同一种形态的物质空间分 布形式得以技术表达: 1 ) 在光敏材料或元器件上所探测到的被研究物体上各相应点通过该体像素所直 接投射出的光强空间分布, 构成了该物体的照片。
2) 如果物体被时间谱抽样 (只有单一时间谱被物体反应或物体被具有足够好时 间相干性的激光照明), 一旦在该体像素上引入参考光, 而该参考光的空间谱在对该 体像素有所贡献的所有该物体的空间谱之外,则当该体像素上的能量分布被适当的光 敏材料或元器件记录下来后,便形成了该物体相应视图的傅里叶变换全息图。这也是 今天全息数据存储和数码全息打印技术的基本单元。事实上, 如果用本发明的空间谱 理论来诠释, 则全息术是第一种利用光波的相干干涉, 以完整空间谱形式恢复三维空 间信息的实用技术; 而数码全息将该过程数字化全息地打印出各个独立的全息像素。
由此我们可以得出以下结论来描述光作为大自然信息的基本载体:
1 )大自然给人类所提供的信息本身就是四维的或全息的,它由光子抽样所产生的 时间谱和空间谱构成。宇宙中的光子离散能量分布由其波函数或概率幅通过其完整的 空间谱和时间谱全息地表现着,其具体表现形式体像素被人类通过人脑全息地接收并 感知着。
2) 摄影术 (李普曼彩色照相) 利用单一空间谱 (针孔相机) 从技术上实现了完 整时间谱 (彩色) 的能量分布物质表现形式, 即: 该宇宙某个方向视图的彩色照片; 构成了今天由电子信号一维处理方式所成就的二维图像显示文明根基。
3 ) 全息术利用单一时间谱 (激光) 从技术上实现了完整空间谱 (针孔成像在空 间谱面上的卷积) 的能量分布物质表现形式, 即: 全息图。
4) 本发明实施例的数码全息实时三维显示将有效结合现代电子文明与将来光子 智慧, 开启从 e-IT (电子信息技术)到 p-IT (光信息技术) 的文明交替之门, 使人类 站在冲刺下一代文明马拉松竞赛的起跑线上, 其特征是: 光信息(玻印廷矢量) 的空 间或矢量全息处理,而非停留在上世纪空前成功的光电脉冲信号的时间或标量一维处 理。
五、 本发明理论的实施-基于上述理论对空间谱的采集与还原
在介绍了本发明上述理论之后,下面对本发明的全息三维显示***和方法进行说 明。本全息三维显示***和方法包括空间三维信息的摄影采集、投影还原和在投影还 原时用特殊全息功能屏进行的有限展宽。
1、 空间三维信息的采集
在图 17中, 我们将玻璃窗分成 M*N (M≥l , N≥l ) 个小单元等份, 这相当于对 被研究物体 O在谱面 S上进行空间谱抽样, 如图 19所示; 当然, 谱面 S不一定是 平面, 它取决于最终三维信息的还原手段及表现方式。各个单元的中心点 Smn便代表 被研究物体 O在谱面 S上的空间谱抽样, 它对应于物体 O的一个视图 lmn, 根据本 发明,可以由 M*N个相同参数的数码摄像机在谱面 S上的 Smn相应位置对焦在物体 0 上的同一个点 R而获得, 该对焦点 R取名为空间参照点。 M与 N的数量决定了三维 空间还原的逼真程度, 对传统全息术来讲, M与 N的数量大得惊人, 接近单光子量子 抽样, 使得谱面 S 上的空间谱几乎是连续均匀分布, 从而最大限度地逼真还原了物 体 0所占据的三维空间。 对于数码打印全息术来说, 对这 M*N张数码照片的各个像 素 Pmnjk进行拆分重组而形成另一套能在谱面上反映其原始信息的空间编码图案, 便 能逐点打印该图案的傅里叶变换全息图, 构成相应的数码全息显示。 当 M=N=1时, 相 当于目前二维平面显示所对应的传统摄影摄像过程; 当 M=l、 N=2时, 相当于目前的 体视对摄影及双目立体成像技术; 当 M=l、 N〉2时, 相当于下述实施例中的水平视差 ( HPO) 立体成像技术。
2. 空间三维信息的还原
当把采集所获得的物体 0的 M*N个视图 lmn, 用 M*N个相同参数的数码投影机投 射到对应原物体 O的某个平面上, 且让各个视图投影的参照点 R在该平面重叠, 该 平面取名为参照面 PR, 如图 20所示; 当然, 各个投影视图 lmn可以是原物体 0的放 大或縮小像, 参照面 PR也不一定是平面, 同样取决于最终三维信息的还原手段及表 现方式。 在图 20中, 参考面 PR上的光信息分布相当于原物体 O被谱面 S上 M*N个 空间谱所恢复信息的还原, 其具体过程表现在由公式(5)、 (6)、 (7)、 ( 8 )所演变出 来的离散傅里叶变换中。 在这里, 离散过程主要包括两个部分: 一是对原物体 0 的 空间谱抽样中所牵涉到的视图数字化过程,其表现为各视图数字成像的平面像素数目 J*K, 目前最典型的为 1024*768; 二是恢复原物体 0的空间三维信息所需采集的空 间谱数量, 即这里所描述的 M*N。 当然, 还有一个离散过程是关于时间的, 这便是三 原色叠加所带来的色彩恢复。
将参考面 PR分解成 J*K个体像素 Hjk,与原物体 O各空间谱视图的平面像素 Pmnjk 大小相同且理想状况下完全重叠。 现在我们分析一下参考面 PR上光信息分布的基本 特征及物理现象表现:
1 ) 如果 上放置一个如图 17所示的透明 "玻璃窗", 透过该 "玻璃窗"人眼 所看到的将会是 M*N个带有物体信息的点光源,如图 21 ; 而这时 PR上每个体像素 Hjk 的空间谱被离散地分布在相应的 M*N个方向, 如图 22所示。 因此, 当 M*N的空间谱 抽样密度与各个数码投影视图的像素数目 J*K相当,便能直接恢复体像素为 J*K的三 维空间信息; 但就目前信息科技水平来说, M*N远远小于 J*K, 从而, 虽然 M*N个像 素数目为 J*K的视图信息都被完整地反映在 PR上, 但人眼所能同时接收的毕竟只有 M*N个原物 0的空间谱某一小部分, 它们构成了上述 M*N个带有物体信息的点光源。
2) 如果 PR上放置一个普通漫散射屏幕, 则 M*N个投影机中任何一个单独投影 lmn都会显示出对应于物体该空间谱方向的完整清晰视图, 即现有平面二维显示的所 有特征,因为每个平面像素所对应的空间谱从单方向小空间角输入转换为均匀散射大 空间角输出,使得各个平面像素的输出空间谱展宽相互重叠, 形成一个相当大的空间 观察范围, 如图 23所示。 若 M*N个投影机同时投影出相应 M*N个空间谱方向的清晰 视图, 由于各个视图在同一体像素 Hjk位置的平面像素 Hjk的光强并不一致, 相互叠 加后会出现一堆模糊不清的重叠影像, 如图 24所示。 因此, 现代数码图像显示技术 都是单空间谱输入,无论是电还是光, 而对该图像的每个独立像素来说都会有一个均 匀展宽的大观察角, 即: 同一空间谱信息的窄带输入宽带输出, 使得每个像素在所有 空间方向上保持同样的颜色和亮度。
3)如果 PR上放置一个本发明所提出的功能显示屏幕, 其作用是将 1 ) 中所看到 的 M*N个带有物体信息的点光源刚好散射为每个投影机所占据的单元面积 Amn,并完 全相连(或仅有少许重叠)使得 M*N个空间视图的信息在谱面上连成一片均匀光背景, 如图 25所示, 则每个体像素 Hjk的输出空间谱与数码全息打印一致, 故能实现全视 差完美三维空间信息的还原, 其还原逼真度取决于 M*N所决定的空间谱抽样密度。
4)当 M=l、 N >2, 且PR上放置一个水平展宽为抽样间距 Dmn的条形散射屏幕时, 便能获得一个水平视差 (HPO) 完美三维空间信息的还原,如图 26所示。
3. 本发明三维空间信息的还原逼真度
香农(Shannon )抽样定理为现代数码信息时代奠定了重要理论基础, 它与傅里 叶变换理论的有机结合便构成了现代数字信号通信及图像处理等信息科技最新成果 的丰富内容, 乃至数码全息。我们现在将讨论空间抽样角 对三维空间信息的还原 逼真度的影响。
1 ) 众所周知, 人眼睛的角分辨率为 1 .5*10— 4弧度左右, 这就意味着面对光子抽 样的大自然, 我们每个人的每只眼都像一个空间谱探测器,在体像素的海洋中以上述 裸眼叫分辨率肆意对焦并注视着任何一点。 换句话说, 如果 0 mn=0 E, 由裸眼可辨认 的所有全部三维空间信息将会被完美逼真地恢复,我们便能获得完美逼真的空间三维 信息重构。这看起来虽然还相当遥远,但本发明的基本思想结合现有纳米技术及材料 的研究将会是实现这一未来 IT终极目标的有效现实途径。
2) 如果空间抽样角 0 mn>>0 E, 而清晰显示的最终标准是体像素的尺寸 Δΐι与位 于参照面全息功能屏幕上的各单一空间谱投影图像的平面像素相同。如图 30所表示, 功能屏上的每一个点可被合理地认为是将其单一空间谱信息在抽样空间角 0 mn内发 射, 从而离开功能屏上的其它信息将被当作由大小为 ΔΖ*ωηηη的光斑构成, 这里 ΔΖ 是离开功能屏前或后的距离。 当 Δ1ι=ΔΖ*ωΐΜ1, 可认为其相应体像素尺寸逼真度的空 间恢复能力为:
2AZ=2Ah/romn (36) 表 2为我们给出了一目了然的结果, 可帮助我们设计任何全息三维显示工程。当 然表中的严格依据是体像素尺寸, 在实际应用中可被放大好几倍。
表 2: 0. 1 0. 2 0, 5 丄 1. 5 2
ω mil ijiid)
π /丄 0 0. 6 1 . 2 3. 0 6 9 12
π /20 1 . 2 2. 4 6 12 18 24
π /40 2. 4 4. 8 12 24 36 48
π /90 5. 7 1 1 . 4 28. 5 57 85. 5 1 14
π /180 1 1. 4 22. 8 57 1 14 171 228
π /360 22. 8 45.6 1 14 228 342 556
π /720 45. 6 92. 2 228 556 684 1 1 12
由此, 本发明提出一种彩色实时全息三维显示***, 包括: 彩色实时全息三维 图像信息的摄影采集装置、 实时全息图像信息的投影还原装置及全息功能屏; 所述摄影采集装置包括 Μ*Ν个彩色二维图像摄取单元 C^,用于对所要三维显 示的物体 0在其任意空间谱面 S上进行 M*N个空间谱抽样摄取, 每个抽样点 对 应于物体 0的一个体像素 H^,各图像摄取单元 所采集到的信息相当于该体像素 所对应的空间谱视图 1 , 以获取物体 0的 M*N个阵列抽样空间谱图像信息; 所 述 M*N个彩色二维图像摄取装置 C^在空间谱面 S上按照预定的空间抽样角 排 列, 且将其各自的成像光轴锚碇在物体 0所对应空间的同一参照点 R上; 每一个摄 像单元均聚焦在所对应空间谱方向的物体 0的可视表面以获得该方向的清晰视图 I 所述投影还原装置包括 Μ*Ν个彩色二维图像投影单元 Ρ^, 用于分别同时将所 采集的 Μ*Ν个体像素 处的相应阵列抽样视图图像 1 沿与采集时相应的锚碇关 系投影成像到与原物体 0相对应的还原空间中某个参照面 PR上, 并使在该参照面上 各个投影视图图像的射影图案与原物体 0 在该方向的空间谱射影图案一致; 所述 M*N个彩色二维图像投影装置 在所述空间谱面 S在还原空间的对应面 S'上按照 与摄取时相同的空间抽样角 排列, 且将各投影装置 的成像光轴锚碇在所述参 照点 R在还原空间的对应点 R '上;
其中, M、 N、 m、 n为自然数, 且 M和 N中至少有一个大于 2;
所述全息功能屏放置在所述参照面 PR上, 用于对各单一空间谱所承载视图图像 信息 Imn的输入信息作与空间抽样角 相应的空间谱展宽, 展宽到各视图 1 的输 出空间谱分布相互衔接却又不至于重叠覆盖,以确保所恢复三维空间信息的数码全息 空间谱被连续完整地还原输出, 即: 对应于该全息功能屏上的每个体像素 Hjk来说, 空间单方向输入光线的展宽角正好是所述的空间抽样角 ω^, 从而获得以恢复复杂波 前为目的的全息三维显示。 可以看到: 除了空间谱的阵列抽样与投影特征外,本发明的另一重要方面便是全 息功能屏幕的定向散射功能, 图 27是经全息功能屏幕后输入离散空间谱信息的单空 间谱及完整空间谱输出关系是意图。 所述全息功能屏具有规律性分布的微细空间结 构,所述分布使得入射到所述全息功能屏上各个方向的输入光线都会有一个相应的全 谱空间展宽输出, 其空间展宽角为恢复特定空间三维信息所必需的空间抽样角《mn
在一种实施例中, 前述的 M=1、 N〉2, 如图 26所示, 所述全息功能屏对应于 在水平方向有一有限展宽角 ω η, 使得水平方向上均匀排列的各视图 In的输出空间谱 分布完全充分地相互衔接, 而垂直方向的散射角 w m则类似于普通投影显示屏, 为一 相当大的角度, 即: 所述全息功能屏为一在水平方向上有限展宽的垂直定向散射屏。 如图 31所示, 其展示了本实施例的全息功能屏在彩色实时全息三维图像显示***的 一个实验例中的应用, 其中 M =1, N〉2, 即输出空间谱只在水平方向上进行有限展 宽, 此时 Cmn、 Pmn亦可表示为 Cn、 Pno
本发明进一步提供以下几种制作全息功能屏的方法。以下我们给出几种该全息功 能屏幕的原理及制作方案。
a)定向散斑法
利用中国发明专利 ZL200410022193.7 "数字散斑全息图的制作方法和装置", 有多种数字或非数字方法制作该全息功能屏作用的定向散射型模压全息母板。其基本 原理是利用激光照射漫散射体后所产生的散斑颗粒尺寸及分布的参数控制来获得相 应参数的散射空间角,这可以通过在制作过程中加入合理形状和大小的通光孔径而得 以实现, 如图 28所示, 通光孔径与全息功能屏所形成的空间角约为《mn/2。 对应于 图 26所示的水平视差全息投影显示来说, 图 28中的通光孔径为一长条形, 其宽度 对全息功能屏的张角为 w mn/2 (M=l时可表示为 ω η/2)。
图 281-283示出了用定向散斑法制造功能屏的一个实施例。
如图 281所示, 数字散斑产生的基本原理为: 一个中心波长为 λ, 带宽为 Δ λ的 激光光源 1-20,照射在大小为 δ u * δ V 的漫射体上,漫射体的特征光学不平整度为 Id,漫射元大小 Au * Av。 在相距 h的 xy平面内进行观察, 所观察到的散斑花样是:
(1)若 A A «ld , 散斑的对比度等于 1,
(2)散斑的大小为: δ χ= λ h/ δ u · (la)
δ y= λ h/ δ v (lb)
(3)散斑覆盖区域的大小为: Ax= A h/Au… (2a)
Ay= A h/Av… (2b)
(4)散斑辐射度图样的自相关函数,其形状如同漫射体上辐照度图样的傅里叶变 换。 从图 281 和公式(la) (lb)可以看出,若漫射体大小 S u« S v,则散斑图上, δ χ>> δ y,散斑为条形散斑即定向散斑。
如图 282所示: 如果光照射如图所示的散斑图,则其光线将沿垂直于散斑的方向 散射,即散射光具有方向选择性。
如图 283所示, 本发明数字散斑全息图的制作方法包括步骤:
① 、 首先设置包括激光光源 1-10、 透镜 1-31、 1-32、 1-33、 快门 1_40、 漫散 射屏 1-50、 光阑组件 1-60、 干板 1-70和干板平台 1-80的光学成像*** 1 ; 所述透 镜 1-31设置于激光光源 1-10和快门 1-40之间, 快门 1-40之外依次设置透镜 1-32, 漫散射屏 1-50、 光阑组件 1-60、 透镜 1-33、 干板 1-70和干板平台 1_80, 所述干板 1-70固定于干板平台 1-80之上;
② 、然后开启激光光源 1-10出射光束 1-20,光束通过位于透镜 1-31的焦点 1-24 上的快门 1-40然后散射, 再经透镜 1-32复又聚焦成光斑 1-25, 光斑 1_25在漫散射 屏 1-50上发生漫射, 漫射光经光阑组件 1-60和透镜 1-33之后,在干板 1-70上聚成 散斑 1-27成像,其中,控制产生光斑的通光孔径为一长条形,其宽度对干板的张角为 ω η/2其中, 控制产生光斑的通光孔径为一长条形, 其宽度对干板的张角为
Figure imgf000024_0001
③ 再多次移动干板平台 1-80, 转动光阑组件 1-60, 配合快门 1-40的开关, 使 干板 1-70上各个点都曝光成像。
所述光斑 1-25的大小由调节透镜 1-31、 1-32之间的距离获得。
本实施例还设置伺服*** 1-2。
优选地, 所述移动干板平台 1-80, 是由伺服*** 1-2中干板平台驱动器 1-98受 微计算机 1-100控制所驱动; 所述转动光阑组件 1-60, 是由伺服*** 1-2中光阑组 件驱动器 1-96受微计算机 1-100控制所驱动; 所述快门 1-40的开关, 是由伺服*** 1-2中快门驱动器 1-94受微计算机 1-100控制所驱动; 所述微计算机 1-100中固化 控制软件, 散斑的形态和排列规律是由软件控制的。 光阑组件驱动器 1-96转动光阑 组件 1-60时, 分别转动长阑 1-61和圆阑 1-63。
采用本方法时,所需的空间谱展宽角《mn取决于还原时投影头的中心间距相对人 眼的张角, 可通过控制产生光斑的孔径《mn/2, 从而得到功能屏的所需展宽角《mn。 本方法的缺点是只能定性地反映所制作屏幕的散射空间角分布,而不能严格定量 地表现其空间谱展宽, 但作为本发明实施例现实阶段的应用却已綽綽有余。
b) 全息透镜法
利用中国发明专利 ZL200510022425.3 "—种全息投影屏及其制作方法、***及 应用", 也有多种数字或非数字方法制作具有该全息功能屏作用的离轴式定向衍射型 模压全息母板。其基本原理是严格控制全息微透镜阵列制作过程中各个微小全息透镜 的空间扩散角严格为 w mn, 如图 29所示。 对应于图 26所示的水平视差全息投影显 示来说, 图 29中的通光孔径为一长条形, 其宽度对功能屏的张角为 w mn (M=l, 此 时可表示为 ω η)。
图 291-294示出一个用全息透镜法制作该功能型定向散射屏幕的例子: 根据图 291所示, 本实施例的制作***包括计算机 2-1、 激光器 2-2、 照相快门 2-3、 分束器 2-4、 光刻胶板 2-5、 透镜 2-61、 2-62, 光阑 2_7、 空间滤波器 2_8和平 面反射镜 2-91、 2-92。
激光器 2-2发出激光光束, 激光光束通过分束器 2-4分为两路, 一路获取透镜 2-61 的物光, 另一路作为参考光, 物光与参考光以一夹角汇射于光刻胶板 2-5上, 在物光与参考光的光路中均设置空间滤波器 2-8, 空间滤波器 2-8包括扩束镜 2-81 和针孔 2-82, 扩束镜 2-81置于针孔 2-82的前端, 两个空间滤波器 2_8分别对物光 和参考光进行相应的滤波处理。
照相快门 2-3置于激光光束前端, 控制物光和参考光在光刻胶板 2-5上的曝光, 计算机 2-1控制照相快门 2-3的开闭、 曝光量, 和光刻胶板 2-5的移动, 使照相快门 2-3的开闭和光刻胶板 2-5的移动相协调。
物光光路如下:
激光器 2-2→照相快门 2-3→分束器 2-4→平面反射镜 2-92—空间滤波器 2_8→ 透镜 2-61→光阑 2-7→透镜 2-62→光刻胶板 2_5。
参考光光路如下:
激光器 2-2→照相快门 2-3→分束器 2-4→平面反射镜 2-91—空间滤波器 2_8→ 光刻胶板 2-5。
如图 292所示,物光 0通过透镜 L聚焦于焦点 0' , 透镜 L的孔径为 D焦距为 f。 将全息记录材料 H置于焦点 0' 附近距焦点 0' 距离为 f ' 处, H上物光光斑直径为 d, 参改光 R以入射角 A射入记录全息图, 这样记录的全息图相象于孔径为 d, 焦距为 f ,再现角为 A的全息透镜, 其视场角 Θ与透镜 L相同, BP : 2tg9=D/f =d/f O 按照 图 43所示的光路, 沿 X和 y方向平移全息材料 H, 平移距离为全息透镜的孔径 d,顺 序曝光,则得到一全息透镜阵列 H即全息屏幕,其最小分辨距离为全息透镜的大小 d。
如图 291和图 293所示, 本发明的基本制作流程如下:
I ) 在光刻胶板 2-5上通过物光和参考光在其上的曝光, 记录全息透镜信息。
I I ) 对曝光后的光刻胶板金属化处理, 经电铸、 拼版产生全息透镜阵列母版。
I I I ) 采用该母版对热塑材料模压, 取得附设全息透镜阵列信息的屏幕体。 如图 291和图 294所示, 本实施例的具体制作流程如下:
1、 激光器 2-2发出的激光光束通过分束器 2-4分为两路, 一路获取透镜 2-61 的物光,另一路作为参考光,所述物光与参考光以一夹角汇射于光刻胶板 2-5上曝光 ;
2、 通过计算机 2-1控制照相快门 2-3的开闭和光刻胶板 2-5的移动, 使照相快 门 2-3的开闭和光刻胶板 2-5的移动相协调,在光刻胶板 2-5上均匀地记录多个全息 透镜的信息, 在本发明中, 计算机 1可以控制照相快门 2-3的曝光时间、 曝光量等, 同时,计算机 2-1控制光刻胶板 2-5在 X方向和 y方向的位移,例如计算机 2-1控制 精密步进电机的转动, 从而带动光刻胶板 2-5移动。
3、 每当在一个位置曝光后, 计算机 2-1控制光刻胶板 2-5移动至下一个位置, 再进行曝光, 如此循环, 在光刻胶板 2-5上均匀地记录多个全息透镜的信息, 形成全 息投影屏,其中控制光束至光刻胶板的通光孔径为一长条形, 其宽度对光刻胶板的张 角为 ω η
4、 对曝光后的光刻胶板金属化处理, 经电铸、 拼版产生全息透镜阵列母版。
5、 采用该母版对热塑材料模压, 热塑材料采用透明材料, 热塑材料可为聚酯 ( PET : Polyester ) , 聚氯乙烯 ( PVC : Polyrinyl Chloride ) 聚碳酸酯 ( PC :
Polycarbonate ) 或双向拉伸聚丙烯 (BOPP: Biaxial Oriented Polypropylene ) 等, 材料模压可呈硬板型或薄膜型。
6、 在模压后的热塑材料的全息透镜阵列上镀保护层, 保护层可采用透明或半透 明介质保护层, 如硫化锌 ZnS或二氧化硅 Si02等, 也可以采用金属反射材料保护层
(如镀铝、 铜等), 最后取得以热塑材料为基低材料的屏幕体, 该屏幕体上附设全息 透镜阵列信息。
采用此方法制作功能显示屏时,可通过调节光阑尺寸和其在屏上形成的张角《mn 来调节所产生全息透镜的空间发散角, 从而调节空间谱展宽角。
本方法的优点是可以精确控制所制作屏幕的空间扩散角分布, 缺点是斜入射投 影,难以克服由色散带来的颜色失真, 这种失真现象对水平视差全息投影显示来说影 响不大。本方法的另一突出优点是其透明成像特征, 使得其图像显示悬浮在空中, 从 而更具三维显示魅力。
C) 计算全息法
对该同轴式定向衍射型全息功能屏的制作实际上等效于制作一个衍射效率极高 的同轴傅里叶变换全息图模压全息母板,该全息图在谱面上刚好表现为每个投影机所 占据单元面积 Amn上的均匀光强分布。而该傅里叶变换全息图, 完全可以通过计算全 息理论及现有电子束曝光或金刚石精密数控雕刻输出工艺来获得。
d) 注塑成型微透镜法
只要通过曲率半径的改变设计一个空间发散角为 《mn的微透镜模具, 然后利用 注塑成型方法用其阵列模具复制出相应的塑料板微透镜阵列,便能有效地制作出该功 能型散射屏; 微透镜的大小决定了三维显示的清晰度, 而发散角 w mn取决于投影机 e) 莫阿条纹展宽法原理及方案
当 a),b),c),d)任何一种方式所制作的全息功能屏所具备的有限展宽功能不足以 衔接每个投影图像输出空间谱时, 可将该类屏幕重叠, 以期同样两套输出离散空间谱 图案所构成的莫阿条纹满足完整空间谱输出要求。
本发明的三维实时全息显示实验***
利用下述实验装置,我们论证了实时全息显示方案,在此我们只利用了全息思想, 但却有效避免了以往所不能回避的全息记录材料及干涉过程。
如图 31所示, 为了简化实验过程, 我们利用 30套摄影-投影装置排成直线阵列 以实现水平视差的实时三维现实。 图 32是空间谱采集装置, 图中各个摄影头的分辨 率为 480*640像素。 它们均被锚碇且对焦在各摄影头所拍摄空间中的同一参照点 R 上。 各摄像头所采集的信号用普通 AV信号线直接与其相对应的投影机相联接, 所构 成的投影阵列如图 33照片所示。 每个投影机所投影图像的分辨率均为 480*640个像 素, 并且这些图像通过适当校准和矫正, 在参照面!^平面上严格锚碇重叠, 而在该 平面上放置一块我们自制的条形散斑全息功能屏, 其尺寸为 48cm*64cm。
图 34给出了两组不同观察角度所拍摄到的该功能屏幕上的照片, 这里是一真人 正处在所要恢复的三维空间中。 在我们的实验中, 我们获得了 1 :1的清晰还原空间, 它明显穿越参照面, 前后约 50 cm的深度。 在参照面1¾上的最终光信息非常类似于 原物体通过一巨大孔径 (这里约为 2m) 的成像***所获得的实像, 但它却是通过该 独特光电架构所特殊形成的巨大 4f***对该空间 30个水平抽样空间谱所要表达光信 息的严格还原。最终三维显示的质量比单个 480*640像素投影图像的质量好得多, 因 为每个体像素内包含了高达 30倍的信息, 同样也更加明亮。 除了三维显示特点外并 无其它附加缺陷,就像你正在观看一个真实空间内的实时表演。当第一眼看到这个奇 迹时, 在场每个人都感到震惊。
本发明的应用-全息信息技术工程化
我们身处大自然,就像是在这个全息自然中的一个个独立的综合智能探测器,把 我们自己沉浸在它的体像素海洋之中;而每个体像素都可以被当作以我们各自思想作 为参照点的该大自然信息的傅里叶变换全息图,然而, 它却以光强度的空间分布这一 相同信息的物质表现形式表达了图像与全息这两种不同的视觉信息。因此, 我们期待 着通过按照图 14所描述的原则对空间谱的任意采集与恢复, 发展出一种崭新的全息 信息技术(HIT-Holographic Information Technology)工程, 以在本世纪不久的将来使 得全息信息技术时代成为现实。
以下是一些切实可行的联想方案。
1. 曲面轨迹空间谱抽样与还原 图 35与图 36给出了我们在曲面上采集和还原空间谱的草图。曲面的优点是可以 利用采样面积和密度获得相对大的空间信息范围。这种空间信息采样及恢复方式可适 用于全谱电影、 电视节目的制作以及现有 IT所有平面显示方式的三维升级; 也可用 于医学成像、遥感遥测、航空摄影等任意图像三维信息的实时三维重构和显示; 当然 也可用于营造各式各样的特殊虚拟空间,将网络的虚拟现实引入现实生活并与之混淆 且产生互动。
2. 360°向内柱面轨迹空间谱抽样与还原
这种三维空间信息的抽样与还原方式如图 37和 38所示。 类似于 360°组合全息 图, 它可以使人们在圆柱形参照面的暗示下,观察到位于该圆柱形中轴线附近的三维 空间信息恢复。这将诞生出一种新的全息显示工具, 它可使人们全方位地实时了解被 研究物体, 也可同现代显微技术相结合,使我们对微小物体的三维形貌有一个直观深 刻的认识。
3. 360°向外柱面轨迹空间谱抽样与还原
这种三维空间信息的抽样与还原方式如图 39和 40所示。这类似于目前的环幕电 影, 只要空间谱采集密度及还原展宽分布合理, 同样在圆柱形参照面的暗示下, 人们 可以在圆柱形内向外观察到所恢复的三维空间信息。这也将诞生出另一种新的全息显 示工具, 它可将人们置身于任何一个虚幻空间中而感受到它的现实存在, 从而在现实 的体像素作用下有效地还原历史和展望未来, 并在当代射电天文望远镜的辅助下,有 效地绘制出以地球为原点的宇宙空间星图。
4. 360°穹状轨迹空间谱抽样与还原
这种三维空间信息的抽样与还原方式如图 41和 42所示, 它与 2、 3的区别是其 投影恢复参照面为平面,并能够通过该参照面上各个体像素的有效空间谱展宽完整恢 复 360°穹状轨迹空间谱抽样所要表达的三维空间信息。 这也将是未来三维显示媒体 的主要表现方式之一即:将整场足球比赛的完整过程按比例縮小并将其摆在桌面上供 人欣赏。
总之,本发明实施例将我们所感受到的光作为大自然离散能量几率分布的客观现 实而进行处理。 通过对该光子离散能量几率分布的波函数或概率幅的四维傅里叶变 换, 提出了对光的新描述一 -时间谱和空间谱: 把目前成像***中空间频率的概念拓 展为大自然本身所具备的空间谱, 同时把全息术中复杂波前(振幅与位相)记录与再 现的概念拓展为恢复大自然本身所固有的时间谱和空间谱。本发明实施例的物理实质 是一种基于传统全息照相理论基础上的数码全息显示,与现有数码全息打印技术的根 本区别是有效避免了全息术为恢复三维空间信息所采用的高信息冗余度的相干光学 手段, 通过对被研究物体 0的完整空间谱进行相应合理的 M*N离散空间谱抽样及展 宽,利用现代数码信息科技的最新成果, 完美恢复了该空间谱抽样所能表现的空间三 维信息, 从而可以实现实时全息显示, 有效凝固时空。 本发明实施例中有关锚碇的原则及方法
一. 锚碇原则
1. 参照点 R ( R') 的选定原则
1) 如图 43所表示,参照点 R(R')是确定我们所要还原三维空间 O(O')的坐标原点, 一经选定便完全确定了我们所要还原三维空间信息 0(0')与参照点 R(R')之间的空间 对应关系, 即: 完全确定了由参考点 R(R')出发所对应空间各抽样方向上该所要还原 三维空间信息 O(O')的离散空间谱视图 l(l')mn; 这里 (m, n )是对应于图 19中所述任 意空间谱面上采集点 Smn的位置坐标, 而 lmn则相当于图 12和 13描述的所要还原三 维空间 0在 Smn处的体像素 Hmn所对应的空间谱表达视图; 该视图所表达的空间谱 方向便是参照点 R和采集点 Smn的直线连接方向使得参照点 R总是位于各个视图的 锚碇中心, 相邻两个离散空间谱方向的夹角便是图 27所示空间抽样角 (Dmn
2) 如图 44所示, 若各个摄影-投影单元 C(P)mn所固有的视场角或采样角 (记为 6mn), 可以采集到所要还原三维空间信息 O(O')的全景视图表达, 则参照点 R选定在 所要还原三维空间信息 O(O')内; BP : 图 44所表达的向内观察情况, 所有摄影 -投影 单元都向内锚碇在参照点 R。
3) 如图 45所示, 若各个摄影-投影单元所固有的视场角或采样角 6mn不足以采 集到所要还原三维空间信息 O(O')的全景视图表达, 而只能够采集到该全景视图表达 的一小部分, 则参照点 R(R')选定在所要还原三维空间信息 O(O')外; 即: 图 45所表 达的向外观察情况, 所有摄影-投影单元都向外锚碇在参照点 R。
4) 如图 46所示, 还原三维空间 O'与原三维空间 0的尺寸大小比例关系被称为 空间放大系数 Ms, 它等于空间谱还原距离 d'mn与空间谱采集距离 dmn的比值, 艮卩: Ms=d'mn/dmn; 图中 R与 R'分别为原三维空间 0与还原三维空间 O'所对应的参照点。
2. 空间谱信息 lmn的获取原则
1 )参照点 R—经选定, 由参考点 R出发所对应空间每个方向上该所要还原三维 空间信息 0的空间谱对应表达视图信息便已确定; 图 44所述各个摄影装置的作用便 是清晰有效地采集到所要还原三维空间 0在其各抽样方向上的离散空间谱所对应的 视图表达信息 lmn
2)在图 44和图 45中, 位于采集点 Smn的各摄影单元 Cmn具有其相应的景深和 视场角参数, 且被向内或向外锚碇在参照点 R上, 以获得各空间谱方向的清晰图像 息 lmn。
3) 对于向内锚碇情况, 如图 19所示, 在该所要还原三维空间 0中, 除参照点 R对应于各视图 lmn的同一个中心点位置外, 其它各点都会在其相应空间谱方向 (m, n) 的射影位置 (j, k) 上找到其各自对应的平面像素 Pmnjk
4)对于向外锚碇情况, 如图 45所示, 各视图 1^是该所要还原三维空间 0在其 相应空间谱方向 (m,n)上视图中视场角 6mn内的一部分, 相邻两个视图的中心点正 好对应于原三维空间 0上以空间抽样角 (Dmn锚碇于该空间参照点 R对应点信息 Rmn
3. 还原空间参照面PR的选定原则
1 )按照原则 2所采集的各空间谱视图信息 lmn,可用相应的投影单元 Pmn按照其 各自的采集方向(正向或逆向), 将该图像投影到还原空间参照面 PR上, 还原三维空 间 0在其相应空间谱方向 (m,n) 上所对应的视图信息, 如图 22。
2) 参照面 PR可以是任意曲面, 但在此曲面上, 包含着原三维空间 0在其相应 空间谱方向 (m,n)上所对应视图信息的清晰射影图案光强分布。 这要求各投影单元 ^所投射出的图像除了在参照面 PR上具有清晰成像外, 还需对该成像进行必要的 畸变矫正,使其同原三维空间 0沿该空间谱方向(m, n)在 PR上的视图射影相吻合。
3) 参照面 PR实际上可被视为完整恢复该所要还原三维空间 0所需空间谱信息 的全息图, 此全息图以参照点 R为还原空间 O'的原点, 忠实地反映了原空间 0在其 各相应空间谱方向 (m,n)上所对应视图信息的清晰射影图案光强分布, 并在全息功 能屏的作用下将这些离散空间谱信息完整地以数码全息显示方式表达出来。
4) 等效几何光学成像状态
在满足上述锚碇原则的情况下, 图 47给出了模拟图 31 所构成的特殊光电混合 处理***几何光学成像情况。 可以看到图中 Ο0与 Ι0对应于严格物像对应面上的某一 点, 全息功能屏放置在参照面 PR上, 为严格像面; 0+1与1+1对应于物或像平面前的 某一点, 且满足透镜成像关系, 对参照面 PR来讲, 1+1为实像; 0^与 1^对应于物或 像平面后的某一点, 且满足透镜成像关系, 对参照面PR来讲, 1^为虚像。 可以看到, 所有成像光线通过全息功能屏后均变成以全息功能屏上某一点为顶点, 空间抽样角 (Dmn为立体锥角的锥形光线空间分布, 而正是无数个由该分布构成的原物空间光信息 抽样的基本单元构成了我们所要恢复空间的全息表达形式。
二. 锚碇方法
若所要还原的三维空间 0是计算机辅助设计产生的虚拟三维空间, 则利用各种 3D软件均可以方便地选择参照点位置和摄影机参数, 从而获得满足各种类型三维空 间显示的对应空间谱视图 lmn
1 . 空间谱采集摄影***的锚碇方法
对于现实三维空间信息的空间谱采集方式,它不同于计算机模拟光线的单纯几何 投影处理, 还牵扯到各摄影-投影单元的复杂成像过程及规律, 可按以下步骤进行。
1 ) 如图 48所示, 选定原空间参照点 R, 按空间抽样角为 o½n的规律选定 M*N 个空间谱抽样点 Smn后,将各摄影单元 Cmn的入瞳中心与 Smn重叠,且使得各摄影单 元 Cmn的成像光轴 Amn在参照点 R与空间谱抽样点 Smn连线上, 即: 参照点 R在各 摄影单元 Cmn所采集的二维图像 1^中对应于该图像的视景中心。 2) 由按照 1 )所固定的 M*N个摄影单元 Cmn所构成的整体***装置, 便可用于 其相应三维空间信息的向内锚碇空间谱采集;若将各摄影单元 Cmn按其成像光轴方向 旋转 180度, 则该装置也可用于其相应三维空间信息的向外锚碇空间谱采集。
3) 在用该装置进行空间谱采集的时候, 针对具体情况需要对各摄影单元〇^进 行焦距调节, 使得各空间谱视图清晰可辨。
2. 空间谱还原投影***的锚碇方法
一旦确定了所要还原的三维空间 0 的离散空间谱视图信息 lmn, 便可通过 M*N 个投影单元 Pmn所构成的空间谱还原投影***,全息地恢复并显示该三维空间。 以下 便是该 M*N个投影单元 Pmn的锚碇方法。
1 )选定还原空间参照点 R', 按空间抽样角为 (Dmn的规律选定 M*N个空间谱抽 样还原点 S'mn后,将各投影单元 Pmn的出瞳中心与 S'mn重叠,且使得各摄影单元 Pmn 的成像光轴在参照点 R'与空间谱抽样还原点 3'^连线上, BP : 参照点 R'在各投影单 元 Pmn所投射的二维图像 Imn中对应于该图像的视景中心。
2) 由按照 1 )所固定的 M*N个投影单元 Pmn所构成的整体***装置, 便可用于 其相应三维空间信息的向内锚碇空间谱还原;若将各投影单元 Pmn按其成像光轴方向 旋转 180度, 则该装置也可用于其相应三维空间信息的向外锚碇空间谱还原。
3) 在用该装置进行空间谱还原的时候, 针对具体情况需要对各投影单元 ^进 行焦距调节, 且对各投影视图作相应的畸变矫正, 使得各空间谱视图在参照面 PR上 均有其清晰可辨的原空间对应的几何射影。
3. 参照面 PR的选定方法
由于现有科技发展水平还远未能达到我们可以用人眼角分辨率 ωΕ作为空间抽样 角 0^。来进行上述空间谱采集和还原过程,我们在还原过程中还需选择适当的还原参 照面 PR并在该参照面上放置相应的全息功能屏以使该已被还原的离散空间谱信息得 以正确的全谱显示。
1 ) 平面参照面的选定方法与畸变矫正
无论是针对图 44所示全视景还是图 45所示部分视景还原, 其还原参照面均可 是平面, 选定在某一空间谱视图 lmn的正面投影成像面, 如图 49所示。 在这种情况 下, 除了该正面投影单元 Pmn外, 其它各投影单元在 PR上的视图投影较原三维空间 在该方向的空间谱视图射影均有一梯形畸变需要矫正,这是因为投影点不再无限远的 缘故。 这一点尤其对图 41和图 42所述情况更加重要。
2) 曲面参照面的选定方法与宗旨
针对图 35到图 40所列举各种情况下曲面参照面的选定, 其宗旨是它应该是各 个还原空间谱视图清晰成像面所构成的包络面, 这一宗旨基于以下两个事实: a) 如图 50所示, 以抽样角为 0^。各还原投影单元 ^在正投影情况下均能在 该包络面的切面上以发散角 emn找到其视图清晰投影成像 imn ; 当然, 若斜入射投射 不可避免, 则必须进行梯形畸变矫正;
b) 原投影单元 Pmn必须具备足够的清晰投影景深已满足在该包络面上的清晰空 间谱视图射影与原空间谱表达一致。
本发明以光子所承载的可分辨信息 --二维图像为基本线索, 通过对光子离散能量 分布客观描述-波函数的四维傅里叶变换, 定义出了体像素与空间谱这对大自然所客 观存在的物理新概念,并且明确了二维图像的物理实质便是三维空间通过体像素所物 理实现的该空间某一方向的几何射影, 即: 空间谱的物理表现形式。通过对空间谱的 采集、还原与显示, 以完美实现彩色实时全息三维显示之目的; 其所相应的关键词是 对所要恢复三维空间信息的连续空间谱进行: 离散抽样、清晰还原与完整显示; 其所 相应采取的有效措施是: 同步锚碇、 校准矫正与有限展宽。
本发明利用现代数字图像信息科技发展的丰富软硬件资源,将传统全息术中波前 记录与再现辉煌思想得以实时数字化实现。借鉴数码全息打印技术的基本原理和实现 手段, 对所要三维显示的空间信息用二维图像阵列 (M*N; M和 N中至少有一个大 于 2 )进行抽样, 并将该阵列抽样图像信息阵列投影到特制的全息功能屏上, 该全息 功能屏的作用就是恢复阵列图像抽样所要表达的复杂空间波前,从而获得以恢复复杂 波前为目的的完美全息三维显示。由于投影阵列中各投影单元的图像均能分别利用现 代信息科技成就得以有效实时传输与处理, 从而可实现完美彩色实时全息三维显示, 诞生出 21世纪新一代人类视觉传播超级媒体--全息电影电视,使人类彻底摆脱数百 年来二维图像对其思维与交流的根本桎梏。
本发明使得我们可以将图像信息作为大自然的一个空间谱, 通过体像素对其进行 数字矢量处理, 恢复三维现实信息。
本发明使得我们可以在 "谱域范畴" 内, 利用现代信息科技丰富软硬件资源以摆 脱传统全息固有高信息冗余度特性而从新讨论全息术,其要点是利用合理的空间谱抽 样, 通过全息功能显示屏上的相应体像素, 恢复大自然的三维显示。
由于本发明可以利用 M*N套摄像-投影***来梳理由空间谱构成的凌乱光线, 并 用体像素将其进行有序的组织, 我们便可利用全息功能显示屏实现实时全息显示,在 此全息的思想被 M*N路频道现有 IT成果的简单累加便可实现。这便意味着全息术在 不久的将来将会迎来一个崭新发展阶段, 即: 在整合现有信息科技产业的过程中实现 人类三维通讯的终极梦想。我们期待着光子时代的新一代文明表现形式,其中图像只 是已被现有光电科技所娴熟操控的一个空间谱,在全息思想的指导下整个世界将会沉 浸在 M*N倍现有信息量的三维通讯海洋之中。

Claims

权 利 要 求 书
1 . 一种全息三维显示***, 其特征是包括: 彩色实时全息三维图像信息的摄影采 集装置、 实时全息图像信息的投影还原装置及全息功能屏;
所述摄影采集装置包括 M*N个彩色二维图像摄取单元 C^,用于对所要三维显 示的物体 0在其任意空间谱面 S上进行 M*N个空间谱抽样摄取, 每个抽样点 对 应于物体 0的一个体像素 H^,各图像摄取单元 所采集到的信息相当于该体像素 所对应的空间谱视图 1 , 以获取物体 0的 M*N个阵列抽样空间谱图像信息; 所 述 M*N个彩色二维图像摄取装置 C^在空间谱面 S上按照预定的空间抽样角 排 列, 且将其各自的成像光轴锚碇在物体 0所对应空间的同一参照点 R上; 每一个摄 像单元均聚焦在所对应空间谱方向的物体 0的可视表面以获得该方向的清晰视图 I 所述投影还原装置包括 Μ*Ν个彩色二维图像投影单元 Ρ^, 用于分别同时将所 采集的 Μ*Ν个体像素 处的相应阵列抽样视图图像 1 沿与采集时相应的锚碇关 系投影成像到与原物体 0相对应的还原空间中某个参照面 PR上, 并使在该参照面上 各个投影视图图像 的射影图案与原物体 0在该方向的空间谱射影图案一致; 所 述 Μ*Ν个彩色二维图像投影装置 在所述空间谱面 S在还原空间的对应面 S'上按 照与摄取时相同的空间抽样角 排列, 且将各投影装置 的成像光轴锚碇在所述 参照点 R在还原空间的对应点 R '上;
其中, M、 N、 m、 n为自然数, 且 M和 N中至少有一个大于 2;
所述全息功能屏放置在所述参照面 PR上, 用于对各单一空间谱所承载视图图像 信息 Imn的输入信息作与空间抽样角 相应的空间谱展宽, 展宽到各视图 1 的输 出空间谱分布相互衔接却又不至于重叠覆盖,以确保所恢复三维空间信息的数码全息 空间谱被连续完整地还原输出, 即: 对应于该全息功能屏上的每个体像素 Hjk来说, 空间单方向输入光线的展宽角正好是所述的空间抽样角 ω^, 从而获得以恢复复杂波 前为目的的全息三维显示。
2. 如权利要求 1所述的全息三维显示***, 其特征是, 采集装置和投影还原装置的 各摄影-投影单元一一对应, 每个摄影单元所采集到的图像信息可以用任意数字图像 传输格式直接或间接地传递给与其相对应的投影单元,而无需对该具体图像信息做本 质上的编码和重组。
3. 一种全息三维显示方法, 其特征是包括: 全息三维图像信息的摄影采集过程、 实时全息图像信息的投影还原过程及全息功能屏的有限展宽过程;
所述摄影采集过程包括如下步骤: 利用 Μ*Ν个彩色二维图像摄取单元 C^, 对所要三维显示的物体 0在其任意空间谱面 S上进行 M*N个空间谱抽样摄取,每个 抽样点 对应于物体 0的一个体像素 H^,各图像摄取单元 所采集到的信息相 当于该体像素 所对应的空间谱视图 1 , 以获取物体 0的 M*N个阵列抽样空间 谱图像信息; 所述 M*N个彩色二维图像摄取装置 在空间谱面 S上按照预定的空 间抽样角 排列,且将其各自的成像光轴锚碇在物体 0所对应空间的同一参照点 R 上; 每一个摄像单元均聚焦在所对应空间谱方向的物体 0 的可视表面以获得该方向 的清晰视图 1
所述投影还原过程包括如下步骤: 利用 Μ*Ν个彩色二维图像投影单元 Ρ^, 分 别同时将所采集的 Μ*Ν个体像素 处的相应阵列抽样视图图像 1 沿与采集时相 应的锚碇关系投影成像到与原物体 0相对应的还原空间中某个参照面 PR上, 并使在 该参照面上各个投影视图图像的射影图案与原物体 0在该方向的空间谱射影图案一 致; 所述 M*N个彩色二维图像投影装置 在所述空间谱面 S在还原空间的对应面 S'上按照与摄取时相同的空间抽样角 ωπιη排列, 且将各投影装置 的成像光轴锚碇 在所述参照点 R在还原空间的对应点 R '上;
其中, M、 N、 m、 n为自然数, 且 M和 N中至少有一个大于 2;
所述全息功能屏的有限展宽过程包括如下步骤:将所述全息功能屏放置在所述参 照面 PR上,从而对各单一空间谱所承载视图图像信息 1 的输入信息作与空间抽样角 相应的空间谱展宽, 展宽到各视图 1 的输出空间谱分布相互衔接却又不至于重 叠覆盖, 以确保所恢复三维空间信息的数码全息空间谱被连续完整地还原输出, 艮卩: 对应于该全息功能屏上的每个体像素 Hjk来说, 空间单方向输入光线的展宽角正好是 所述的空间抽样角 ω^, 从而获得以恢复复杂波前为目的的全息三维显示。
4. 如权利要求 3所述的全息三维显示方法, 其特征是, 采集过程和投影还原过程的 各摄影-投影单元一一对应, 每个摄影单元所采集到的图像信息可以用任意数字图像 传输格式直接或间接地传递给与其相对应的投影单元,而无需对该具体图像信息做本 质上的编码和重组。
5. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 各摄影-投影单元除空间 位置校准外,还要进行相应的时间同步和色彩亮度校准, 以确保输入输出信息的实时 还原逼真度。
6. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 所述投影阵列均可根据 实际情况排列在空间任意曲面或曲线上, 以实现任意方式的全息三维显示,其所恢复 的三维空间可以是原三维空间的放大或縮小。
7. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 所述参照面 1¾可以是任 何曲面以满足各式各样的全息三维显示需求;所述各投影单元在该参照面 1¾上呈现出 清晰可辨的具体图像信息且已完成各自相应的必要图形畸变校正。
8. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 所述的空间谱空间抽样 角 ω^, 或该***的空间采样密度其倒数 Ι/ω^, 决定了该***能够恢复三维空间清 晰可辨信息的能力, 即: 在离开所述参照面 PR的距离为 ΔΖ的地方, 由所述全息功 能屏能够输出一个实像或虚像光斑,该光斑大小与在该屏幕上各空间谱输入图像的平 面像素大小相当。
9. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 所述各摄影 -投影单元成 像质量, 包括视场角、 分辨率、 亮度、 对比度、 色阶与色彩饱和度等, 可套用现有普 通二维图像显示的基本标准。
10. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 所述各摄影-投影单元 的锚碇原则是: 1 ) 各摄影-投影单元所涉及处理的视图图像, 代表锚碇点 R (R' ) 与 采样点 S^ '^) 连线所决定的空间谱方向上该三维物体 0的几何投影, BP : 图像 平面是各摄影-投影方向的法平面; 2) 各视图图像在该图像平面内沿各摄影-投影单 元的成像光轴方向无旋转。
11. 如权利要求 3或 4所述的全息三维显示方法, 其特征是, 对各摄影 -投影单元所 处理的空间谱视图信息作相应的图形畸变及聚焦调整。
PCT/CN2009/072499 2008-12-25 2009-06-29 全息投影实时三维显示***及方法 WO2010072067A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801004825A CN101855600B (zh) 2008-12-25 2009-06-29 全息投影实时三维显示***及方法
US13/141,490 US8890932B2 (en) 2008-12-25 2009-06-29 Holographic projection real-time 3D display system and method
JP2011542651A JP5676472B2 (ja) 2008-12-25 2009-06-29 ホログラフィック投影による実時間3次元表示システム及び方法
EP09834020A EP2372469A4 (en) 2008-12-25 2009-06-29 SYSTEM AND METHOD FOR REAL-TIME THREE-DIMENSIONAL DISPLAY BY HOLOGRAPHIC PROJECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810241842.0 2008-12-25
CN200810241842 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010072067A1 true WO2010072067A1 (zh) 2010-07-01

Family

ID=42286865

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2009/072452 WO2010072065A1 (zh) 2008-12-25 2009-06-25 全息三维图像信息采集装置、方法及还原装置、方法
PCT/CN2009/072460 WO2010072066A1 (zh) 2008-12-25 2009-06-26 一种全息功能屏及其制作方法
PCT/CN2009/072499 WO2010072067A1 (zh) 2008-12-25 2009-06-29 全息投影实时三维显示***及方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/072452 WO2010072065A1 (zh) 2008-12-25 2009-06-25 全息三维图像信息采集装置、方法及还原装置、方法
PCT/CN2009/072460 WO2010072066A1 (zh) 2008-12-25 2009-06-26 一种全息功能屏及其制作方法

Country Status (5)

Country Link
US (1) US8890932B2 (zh)
EP (1) EP2372469A4 (zh)
JP (1) JP5676472B2 (zh)
CN (3) CN101939703B (zh)
WO (3) WO2010072065A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052980A (zh) * 2013-03-12 2014-09-17 耿征 真三维图像采集装置、显示***及显示控制方法
WO2016045104A1 (zh) * 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维显示***和方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939703B (zh) * 2008-12-25 2011-08-31 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法
US8421903B2 (en) * 2010-05-10 2013-04-16 Abbott Laboratories Staggered contact image sensor imaging system
CN102024272A (zh) * 2010-09-21 2011-04-20 上海大学 一种获取三维运动物体计算全息图的装置和方法
CN102279514B (zh) * 2011-08-24 2013-04-10 浙江大学 基于组合屏幕的俯仰多视角悬浮式全景空间三维显示装置
CN102506748B (zh) * 2011-10-21 2013-09-04 李志扬 一种基于激光探针阵列的三维测量方法及装置
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9342929B2 (en) * 2013-01-22 2016-05-17 Microsoft Technology Licensing, Llc Mixed reality experience sharing
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
JP6261717B2 (ja) * 2013-04-19 2018-01-17 エンパイア テクノロジー ディベロップメント エルエルシー ホログラム像の生成および再生
KR20140126120A (ko) * 2013-04-22 2014-10-30 한국전자통신연구원 디지털 홀로그램 합성 방법 및 그 장치
PL2938919T3 (pl) 2013-07-30 2019-06-28 Leia Inc. Podświetlanie oparte na wielowiązkowej siatce dyfrakcyjnej
US20150102999A1 (en) * 2013-10-14 2015-04-16 Industrial Technology Research Institute Display apparatus
CN103558690B (zh) * 2013-10-30 2015-07-01 青岛海信电器股份有限公司 一种光栅式立体显示装置、信号处理方法及图像处理装置
CN103888757A (zh) * 2014-03-24 2014-06-25 中国人民解放军国防科学技术大学 众视点裸视三维数字立体投影显示***
CN104090476B (zh) * 2014-06-30 2017-01-04 中国科学院上海光学精密机械研究所 用于全息显示的三维场景信息的获取方法
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
US9508195B2 (en) * 2014-09-03 2016-11-29 Microsoft Technology Licensing, Llc Management of content in a 3D holographic environment
WO2016045100A1 (zh) * 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
CN104331923A (zh) * 2014-11-06 2015-02-04 张振宇 一种码制三维全息传感***构造方法
ES2578356B1 (es) 2014-12-22 2017-08-04 Universidad De La Laguna Método para determinar la amplitud compleja del campo electromagnético asociado a una escena
KR102322340B1 (ko) 2015-01-10 2021-11-05 레이아 인코포레이티드 제어된 회절 결합 효율을 갖는 회절 격자-기반 백라이팅
CN107209406B (zh) 2015-01-10 2021-07-27 镭亚股份有限公司 二维/三维(2d/3d)可切换显示器背光和电子显示器
PT3243094T (pt) 2015-01-10 2022-07-05 Leia Inc Retroiluminação baseada em rede de difração de feixes múltiplos e um método de operação de ecrã eletrónico
WO2016118107A1 (en) 2015-01-19 2016-07-28 Leia Inc. Unidirectional grating-based backlighting employing a reflective island
WO2016122679A1 (en) 2015-01-28 2016-08-04 Leia Inc. Three-dimensional (3d) electronic display
ES2877511T3 (es) 2015-03-16 2021-11-17 Leia Inc Retroiluminación unidireccional basada en rejilla que emplea una capa reflectante angularmente selectiva
ES2956682T3 (es) 2015-04-23 2023-12-26 Leia Inc Retroiluminación basada en rejilla de guía de luz dual y pantalla electrónica que usa la misma
JP2018517242A (ja) 2015-05-09 2018-06-28 レイア、インコーポレイテッドLeia Inc. 色走査格子ベースのバックライトおよび同バックライトを用いる電子ディスプレイ
US9736440B2 (en) * 2015-05-26 2017-08-15 Chunghwa Picture Tubes, Ltd. Holographic projection device capable of forming a holographic image without misalignment
KR102329110B1 (ko) 2015-05-30 2021-11-18 레이아 인코포레이티드 차량 모니터링 시스템
KR102486430B1 (ko) 2015-09-25 2023-01-10 엘지이노텍 주식회사 영상 처리 장치
US10073520B2 (en) * 2015-10-30 2018-09-11 Sony Mobile Communications Inc. Method and system for interaction using holographic display system
DE202016008701U1 (de) * 2015-12-30 2019-02-07 Dualitas Ltd. Dynamische holografieorientierte Tiefendruckvorrichtung
US11281003B2 (en) 2015-12-30 2022-03-22 Dualitas Ltd Near eye dynamic holography
EP3295257B1 (en) 2015-12-30 2019-05-15 Dualitas Ltd. Dynamic holography non-scanning printing method
CN106054570B (zh) * 2016-04-26 2019-06-25 上海大学 强度传输方程实现单幅数字全息图较大相位重建方法
KR102609330B1 (ko) 2016-07-15 2023-12-05 라이트 필드 랩 인코포레이티드 라이트 필드 및 홀로그램 도파관 어레이에서의 에너지의 선택적 전파
WO2018109902A1 (ja) 2016-12-15 2018-06-21 アルプス電気株式会社 画像表示装置
US11085018B2 (en) 2017-03-10 2021-08-10 Prellis Biologics, Inc. Three-dimensional printed organs, devices, and matrices
WO2018218085A2 (en) 2017-05-25 2018-11-29 Prellis Biologics, Inc. Three-dimensional printed organs, devices, and matrices
US10347030B2 (en) 2017-05-15 2019-07-09 Envisics Ltd Adjusting depth of augmented reality content on a heads up display
KR102401168B1 (ko) * 2017-10-27 2022-05-24 삼성전자주식회사 3차원 디스플레이 장치의 파라미터 캘리브레이션 방법 및 장치
RU2686576C1 (ru) 2017-11-30 2019-04-29 Самсунг Электроникс Ко., Лтд. Компактное устройство голографического дисплея
JP7420383B2 (ja) 2018-01-14 2024-01-23 ライト フィールド ラボ、インコーポレイテッド 秩序化構造体を使用したエネルギー・リレー内の横方向エネルギー局在化ためのシステムおよび方法
CN115430062A (zh) 2018-01-14 2022-12-06 光场实验室公司 光场视力矫正装置
CN111684793A (zh) * 2018-02-08 2020-09-18 索尼公司 图像处理装置、图像处理方法、程序以及投影***
CN110133858A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息还原透镜阵列板
US11734477B2 (en) * 2018-03-08 2023-08-22 Concurrent Technologies Corporation Location-based VR topological extrusion apparatus
JP7155737B2 (ja) * 2018-08-10 2022-10-19 株式会社リコー 画像処理装置、画像処理システム、プログラムおよび画像処理方法
CN108957911B (zh) * 2018-08-22 2021-04-16 北京华捷艾米科技有限公司 散斑结构光投影模组及3d深度相机
US11523097B2 (en) * 2019-03-22 2022-12-06 Universita' Degli Studi Di Bari Aldo Moro Process and apparatus for the capture of plenoptic images between arbitrary planes
CN110187627B (zh) * 2019-06-28 2021-04-02 赣南师范大学 一种复振幅传感成像装置和方法
GB2586511B (en) 2019-08-23 2021-12-01 Dualitas Ltd Holographic projector
GB2586512B (en) * 2019-08-23 2021-12-08 Dualitas Ltd Holographic projection
JP2022550054A (ja) * 2019-09-27 2022-11-30 プレリス バイオロジクス,インク. 三次元印刷された臓器、デバイス、およびマトリックス
CN111240148B (zh) * 2019-12-27 2021-08-10 北京航空航天大学 一种基于自适应变焦相机的全息实时获取与投影***
US11439263B1 (en) 2020-05-19 2022-09-13 Denise Page Holographic Christmas tree
CN111818324A (zh) * 2020-05-26 2020-10-23 北京邮电大学 一种三维大视角光场的生成装置及生成方法
CN112596239A (zh) * 2020-12-22 2021-04-02 上海趣立信息科技有限公司 基于空间光调制器的全息近眼显示方法及***
CN113079365B (zh) * 2021-03-26 2022-09-09 中国人民解放军陆军装甲兵学院 基于移轴相机的集成成像单元图像阵列生成方法和***
CN115209181B (zh) * 2022-06-09 2024-03-22 咪咕视讯科技有限公司 一种基于环绕视角的视频合成方法、控制器及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1384963A (en) * 1972-04-28 1975-02-26 Konishiroku Photo Ind Method of reproducing images
US5260814A (en) * 1989-11-01 1993-11-09 Advanced Holographic Imaging Technologies, Inc. Production of full color stereographic holograms
CN1560702A (zh) * 2004-02-16 2005-01-05 ���֪�� 全息立体图像记录与显示方法及其装置与应用
CN1608386A (zh) * 2001-10-24 2005-04-20 纽鲁克公司 三维图像的投影
CN1811589A (zh) * 2005-12-23 2006-08-02 深圳市泛彩溢实业有限公司 一种全息投影屏及其制作方法、***和应用
US20070121182A1 (en) * 2005-09-29 2007-05-31 Rieko Fukushima Multi-viewpoint image generation apparatus, multi-viewpoint image generation method, and multi-viewpoint image generation program

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078854A (en) * 1971-10-05 1978-03-14 Canon Kabushiki Kaisha Stereo imaging system
JP2956273B2 (ja) * 1991-06-04 1999-10-04 富士通株式会社 立体表示装置
US5430474A (en) * 1993-11-24 1995-07-04 Hines; Stephen P. Autostereoscopic imaging system
JPH08240789A (ja) * 1995-03-03 1996-09-17 Canon Inc 画像表示装置及び画像入力装置
JPH08240788A (ja) * 1995-03-01 1996-09-17 Canon Inc 立体画像表示装置及びそれを用いた立体画像表示システム
JPH09113846A (ja) * 1995-10-13 1997-05-02 Tsushin Hoso Kiko 立体画像表示装置及びその方法
AU2168700A (en) * 1998-12-10 2000-06-26 Zebra Imaging, Inc. Dynamically scalable full-parallax stereoscopic display
JP4095245B2 (ja) * 2000-12-22 2008-06-04 日本放送協会 立体画像撮影装置および立体画像表示装置
GB0124807D0 (en) * 2001-10-16 2001-12-05 Geola Technologies Ltd Fast 2-step digital holographic printer
CN100362374C (zh) * 2002-07-12 2008-01-16 X3D科技有限责任公司 自动立体投影装置
JP3739350B2 (ja) * 2002-11-11 2006-01-25 日本電信電話株式会社 三次元表示装置
JP4427716B2 (ja) * 2003-10-14 2010-03-10 ソニー株式会社 スクリーン
CN100389366C (zh) * 2004-03-29 2008-05-21 深圳市泛彩溢实业有限公司 数字散斑全息图的制作方法和装置
CN1617009A (zh) * 2004-09-20 2005-05-18 深圳大学 基于空间点阵投影的三维数字成像方法
JP2006113182A (ja) * 2004-10-13 2006-04-27 Masaaki Okamoto 多視点立体表示装置
US20080246757A1 (en) * 2005-04-25 2008-10-09 Masahiro Ito 3D Image Generation and Display System
JP2007024975A (ja) * 2005-07-12 2007-02-01 Sony Corp 立体画像表示装置
DE102005058586B4 (de) * 2005-12-04 2009-12-17 Universität Kassel Wiedergabevorrichtung zur autostereoskopen Wiedergabe von dreidimensionalen Darstellungen
CN100511124C (zh) * 2006-11-09 2009-07-08 上海大学 自由多视点多投影三维显示***和方法
JP4355747B2 (ja) * 2007-03-05 2009-11-04 キヤノン株式会社 光電変換装置及び光電変換システム並びにその駆動方法
JP4267668B2 (ja) * 2007-03-08 2009-05-27 株式会社日立製作所 立体像表示装置
GB0718626D0 (en) * 2007-05-16 2007-11-07 Seereal Technologies Sa Holograms
CN101939703B (zh) * 2008-12-25 2011-08-31 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1384963A (en) * 1972-04-28 1975-02-26 Konishiroku Photo Ind Method of reproducing images
US5260814A (en) * 1989-11-01 1993-11-09 Advanced Holographic Imaging Technologies, Inc. Production of full color stereographic holograms
CN1608386A (zh) * 2001-10-24 2005-04-20 纽鲁克公司 三维图像的投影
CN1560702A (zh) * 2004-02-16 2005-01-05 ���֪�� 全息立体图像记录与显示方法及其装置与应用
US20070121182A1 (en) * 2005-09-29 2007-05-31 Rieko Fukushima Multi-viewpoint image generation apparatus, multi-viewpoint image generation method, and multi-viewpoint image generation program
CN1811589A (zh) * 2005-12-23 2006-08-02 深圳市泛彩溢实业有限公司 一种全息投影屏及其制作方法、***和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2372469A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052980A (zh) * 2013-03-12 2014-09-17 耿征 真三维图像采集装置、显示***及显示控制方法
WO2016045104A1 (zh) * 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维显示***和方法

Also Published As

Publication number Publication date
CN101939703A (zh) 2011-01-05
US8890932B2 (en) 2014-11-18
CN101855600A (zh) 2010-10-06
WO2010072065A1 (zh) 2010-07-01
CN101918901A (zh) 2010-12-15
WO2010072066A1 (zh) 2010-07-01
US20110254916A1 (en) 2011-10-20
CN101918901B (zh) 2012-09-19
JP5676472B2 (ja) 2015-02-25
CN101939703B (zh) 2011-08-31
JP2012514214A (ja) 2012-06-21
CN101855600B (zh) 2012-01-04
EP2372469A4 (en) 2012-05-30
EP2372469A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2010072067A1 (zh) 全息投影实时三维显示***及方法
Stern et al. Three-dimensional image sensing, visualization, and processing using integral imaging
Okoshi Three-dimensional displays
Okoshi Three-dimensional imaging techniques
Min et al. Three-dimensional display system based on computer-generated integral photography
JP6370905B2 (ja) ホログラフィ三次元表示システム及び方法
JPS6112267B2 (zh)
JPS63234239A (ja) 四次元画像をうる装置
US20210389724A1 (en) Holographic display system
CN102590923B (zh) 透镜、全息图投影制作***及方法
Luo et al. 360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer
Javidi et al. Breakthroughs in photonics 2014: recent advances in 3-D integral imaging sensing and display
US4128324A (en) Three-dimensional photography using incoherent light
Fan et al. Integral imaging near-eye 3D display using a nanoimprint metalens array
KR20160098589A (ko) 홀로그램 3d 영상의 촬영 및 표출장치
WO2001048563A1 (fr) Procede de formation d'hologrammes
Mishina 3D television system based on integral photography
Fan et al. Use of spatial spectrum of light to recover three-dimensional holographic nature
US20030053162A1 (en) Method and apparatus for producing holographic stereograms
Collender The stereoptiplexer
Khan et al. A low-resolution 3D holographic volumetric display
CN203324632U (zh) 360度全息投影装置
Petrov et al. Large-screen multi-view 3D display
RU2529666C2 (ru) Система и способ печати интегральных фотографий, обеспечивающих полный параллакс и высокое разрешение трехмерного изображения (варианты)
Oliveira Light and shadows in holography: A possible dialogue between art and science by using artistic holography

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100482.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009834020

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011542651

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13141490

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE