WO2016045100A1 - 全息三维信息采集、还原装置及方法 - Google Patents

全息三维信息采集、还原装置及方法 Download PDF

Info

Publication number
WO2016045100A1
WO2016045100A1 PCT/CN2014/087578 CN2014087578W WO2016045100A1 WO 2016045100 A1 WO2016045100 A1 WO 2016045100A1 CN 2014087578 W CN2014087578 W CN 2014087578W WO 2016045100 A1 WO2016045100 A1 WO 2016045100A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic
spatial
information
lens array
array plate
Prior art date
Application number
PCT/CN2014/087578
Other languages
English (en)
French (fr)
Inventor
范诚
蔡志森
江朝川
Original Assignee
深圳市泛彩溢实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市泛彩溢实业有限公司 filed Critical 深圳市泛彩溢实业有限公司
Priority to PCT/CN2014/087578 priority Critical patent/WO2016045100A1/zh
Priority to CN201480001301.4A priority patent/CN105637415B/zh
Publication of WO2016045100A1 publication Critical patent/WO2016045100A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography

Definitions

  • the invention relates to a holographic three-dimensional information collecting and reducing device and method.
  • Integrated photography (APPLIED OPTICS/Vol.52, No.4/1February 2013) is theoretically an ideal three-dimensional light field acquisition and display technology, but the imaging quality of the microlens array and its ability to display three-dimensional
  • the inherent contradiction of the resolution of the image is difficult to overcome, that is, the high-resolution three-dimensional display requires a finer-sized microlens array, and the microlens is too small, but it is difficult to ensure the sub-image quality of each lens, so far It is difficult to obtain a satisfactory true three-dimensional display result.
  • WO2010/072065, WO2010/072066, and WO2010/072067 disclose a real-time color holographic three-dimensional display system and method, which realizes perfect three-dimensional visualization of human eyes through a common photographic-projection device array system and a holographic function screen by using the principle of digital holography. display.
  • the imaging quality matching and control of each single photographic-projection device, as well as the anchoring and calibration of the array photographic-projection device bring difficulties to system integration; at the same time, the photographic-projector is used in large quantities. It will inevitably lead to an increase in the manufacturing cost of the system and is difficult to be accepted by ordinary consumers.
  • the main object of the present invention is to provide a holographic three-dimensional information collecting and reducing device and method for the deficiencies of the prior art.
  • the present invention adopts the following technical solutions:
  • a holographic three-dimensional information collecting device comprising:
  • the information acquisition lens array plate has M*N lenses with uniform imaging parameters parallel to the optical axis, M and N are integers greater than 1, and the information acquisition lens array plate is used to perform M* on the object O to be displayed three-dimensionally.
  • An array of photosensitive elements disposed on a side of the information acquisition lens array plate opposite to the object, having M*N photosensitive elements for recording a spatial spectrum image I mn collected by each lens, and resolution of each photosensitive element
  • an information acquisition field stop disposed between the information collection lens array plate and the photosensitive element is further included to eliminate or reduce imaging interference between the lenses of the information acquisition lens array plate.
  • At least one lens in the center of the information acquisition lens array plate can collect a panoramic view of the object.
  • a holographic three-dimensional information collection and processing system comprising:
  • the holographic three-dimensional information collecting device
  • a spatial spectral holographic encoding apparatus for holographically encoding M*N spatial spectral images I mn (j, k), wherein for each volume pixel H jk of the object O, each spatial spectral image I mn ( The (j, k)th pixel P mnjk in j, k) is sequentially combined into an M*N array image S jk as a holographically encoded image of the volume pixel H jk , and the object O is obtained in this manner.
  • a flat panel display for displaying J*K spatial spectral holographic encoded images S jk (m, n) appropriately scaled, the planar display resolution being not lower than M*N*J*K, M, N, J and K are integers greater than 1, and the J*K spatial spectral holographic encoded images S jk (m, n) are provided by the holographic three-dimensional information acquisition and processing system, or holographic three-dimensionally described by a computer virtual Information collection and processing system, provided by three-dimensional model rendering;
  • An information reduction lens array plate having J*K imaging parameters in which optical axes are parallel, for reducing respective spatial spectrally encoded images S jk (m, n) on the flat display to discrete objects O a three-dimensional imaging O' of a spatial spectral image I mn (j, k);
  • each spatial spectral holographic encoded image S jk (m, n) has a corresponding spatial broadening output, and the broadening angle of each spatial spectral holographic encoded image S jk (m, n) is the spatial sampling angle ⁇ mn , thereby making the discrete
  • Each spatial spectrally encoded image S jk (m, n) is coupled to each other without overlapping coverage to form a complete continuous spatial spectral output;
  • the spatial sampling angle ⁇ mn d 2 /l 2
  • d 2 is a center-to-center spacing between the lenses of the information reduction lens array plate
  • l 2 is between the information reduction lens array plate and the holographic function screen the distance.
  • an information reduction field stop disposed between the information reduction lens array plate and the holographic function screen is further included to eliminate or reduce imaging interference between the lenses of the information reduction lens array plate.
  • the distance between the holographic function screen and the information reduction lens array plate is equal to the distance between the reference surface P R in the object space where the body pixel of the object O is located and the object O or the reference surface P R Enlargement or reduction of the distance from the object O.
  • each lens of the information reduction lens array plate is in the form of a honeycomb array.
  • a holographic three-dimensional information collecting method includes the following steps:
  • the spatial spectrum image I mn collected by each lens is recorded by the photosensitive element array, and the photosensitive element is disposed on the opposite side of the information acquisition lens array plate from the object, and has M*N photosensitive elements, and each photosensitive element
  • the method further includes the steps of: eliminating or reducing imaging between the lenses of the information acquisition lens array plate by collecting field of view pupils between information between the information acquisition lens array plate and the photosensitive element array interference.
  • At least one lens in the center of the information acquisition lens array plate can collect a panoramic view of the object.
  • a holographic three-dimensional information collection and processing method includes the following steps:
  • a holographic three-dimensional information restoration method includes the following steps:
  • the J*K spatial spectral holographic encoded images S jk (m, n) which are appropriately scaled are displayed by a flat display, and the resolution of the flat display is not lower than M*N*J*K, M, N, J And K is an integer greater than 1, the J*K spatial spectral holographic encoded images S jk (m, n) are provided by the holographic three-dimensional information acquisition processing method, or the holographic three-dimensional information is virtualized by a computer Acquisition processing method, provided by rendering of a three-dimensional model;
  • each spatial spectrally encoded image S jk (m,n) on the planar display to a three-dimensional imaging O' formed by the discrete spatial spectral image I mn (j, k) of the object O by means of an information reduction lens array plate
  • the information reduction lens array plate has J*K lenses with uniform imaging parameters whose optical axes are parallel;
  • each spatial spectral holographic coded image incident on the holographic function screen by a holographic function screen disposed on a side of the information reduction lens array plate opposite to the flat display and having a regularly distributed fine space structure S jk (m,n) has a corresponding spatial broadening output, and the broadening angle of each spatial spectral holographic coded image S jk (m,n) is the spatial sampling angle ⁇ mn , so that the discrete spatial spectral codes are encoded
  • the images S jk (m, n) are connected to each other but not overlapped to form a complete continuous spatial spectrum output;
  • the spatial sampling angle ⁇ mn d 2 /l 2
  • d 2 is a center distance between the lenses of the information reduction lens array plate
  • l 2 is the information reduction lens array plate and the holographic function screen the distance between.
  • the method further includes the steps of: restoring or reducing the lens of each of the information reduction lens array plates by restoring the field of view pupil by information disposed between the information reduction lens array plate and the holographic function screen Imaging interference.
  • each lens of the information reduction lens array plate is in the form of a honeycomb array.
  • the invention utilizes the lens array and the holographic function screen, effectively overcomes the inherent contradiction between the imaging quality of the microlens array in integrated photography and the resolution of the three-dimensional image that can be displayed, and realizes the collection, holographic coding and restoration of the three-dimensional spatial information.
  • Display a perfect true three-dimensional display that is visible to the human eye, equivalent to the photography-projection device anchored at infinity in WO2010/072067.
  • One of the main points is: rational use of the planar pixel information (J*K*M*N) of the flat panel display, and the discrete spatial spectrum image information I mn is converted into a discrete spatial spectral holographic encoded image S jk by holographic encoding, using the corresponding lens array.
  • the discrete spatial spectrum is restored, and the discrete spatial spectral broadening with a sampling angle of ⁇ mn is realized by the holographic function screen in WO2010/072067 to realize the complete spatial spectrum restoration of the original three-dimensional
  • the code is applicable to any form of three-dimensional reduction system, and the generated holographic coded image S jk (m, n) can be directly applied to lens array imaging, or as a Hagel input of a Fourier transform hologram. 3D image printing.
  • the size of the volume pixel Hjk can be arbitrarily changed to achieve enlargement or reduction display of the three-dimensional object.
  • the maximum spatial spectral sampling angle ⁇ mn required to completely recover the space can be designed, so that the minimum number of spatial spectra (M, N) Perfectly restore the three-dimensional space to be displayed.
  • FIG. 1 is a schematic diagram of parallel acquisition of spatial spectra according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a spatial spectrum image of anchor acquisition in WO2010/072065, WO2010/072066, and WO2010/072067, wherein the reference point R has the same position in each spatial spectrum image;
  • FIG. 3 is a schematic diagram of a spatial spectrum image of parallel acquisition according to an embodiment of the present invention, wherein a reference point R mn is parallel to the image element ⁇ mn in parallel with FIG. 2 ;
  • FIG. 4 is a schematic diagram of a holographic encoded image S jk of a volume pixel H jk according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of complete discrete spatial spectral coding of a three-dimensional object O according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of discrete spatial spectrum reduction according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of decoding and reproduction of a holographic function screen according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a lens arrangement according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a holographic spatial spectrum in an application example of the present invention.
  • FIG. 10 is a photograph of a three-dimensional display taken in the upper, lower, left, and right directions according to an application example of the present invention
  • FIG. 11 is a schematic diagram of a holographic three-dimensional information collection and processing system according to an embodiment of the present invention.
  • a holographic three-dimensional information acquisition and processing system includes a holographic three-dimensional information acquisition device 100 and a spatial spectrum holographic encoding device 200, in accordance with an embodiment of the present invention.
  • Figure 1 shows a holographic three-dimensional information acquisition device for parallel acquisition of spatial spectral information.
  • Three-dimensional information collecting apparatus comprises a holographic information collecting lens array plates L 1 and the photosensitive element array S.
  • the information collecting lens array plate L 1 is a lens array plate composed of M*N lenslets having uniform imaging parameters, and the optical axes of the lenses are parallel.
  • the photosensitive element array S can be a color film, a CCD, a CMOS or the like. Photosensitive element array S may be placed near the back focal plane of a lens board L, distance between the lens plate l 1 ', the space to record each lens acquired spectral information I mn (j, k), l 1 and l 1' is The object image of each single lens is conjugated.
  • the object space pixel corresponding to the object O is H jk , that is, the acquired three-dimensional object O is composed of J*K individual pixels (Hoxel) H jk .
  • the distance between the reference plane P R where the H jk body pixel is located and the object O is l 3 , and the reference point R is located at the center of the reference plane.
  • a field stop M 1 may be disposed between the photosensitive element array S and the information collecting lens array plate L 1 to ensure that each single lens is imaged I mn Do not interfere.
  • a clear spatial spectrum view means that each pixel in a normal photographic image can correspond to a certain clear point in the three-dimensional space. This is the same as the concept of "depth of field" of ordinary photography, that is, the smaller the aperture, the larger the "depth of field” of the photograph taken. From this point of view, the smaller the aperture a 1 , the clearer the spatial spectrum view that can be acquired.
  • the aperture a 1 is small to a certain extent, and the minimum distance that can be resolved by the aperture diffraction effect will increase, that is, the image quality will be significantly reduced, which is the fundamental reason why the conventional integrated photography cannot obtain satisfactory results.
  • the aperture a 1 and the focal length f 1 of the lens determine the angle of view ⁇ of each individual lens, and the larger the ⁇ , the larger the range of scenes of the three-dimensional object that can be acquired.
  • each lens can acquire a spatial spectrum of the three-dimensional target panorama due to anchor acquisition, and in the parallel acquisition of this embodiment, the scene of the acquired target is inherent
  • the field of view ⁇ is cut, so the lens may not be able to acquire the spatial spectrum of the three-dimensional target panorama.
  • at least one lens near the center of the lens array (M/2, N/2) is capable of acquiring a panoramic view of the object O(j, k).
  • each spatial spectrum image is identical except for I (M/2)(N/2) (j, k).
  • each spatial spectrum image I mn (j, k) is shifted by a phase factor ⁇ mn on the spectral surface S and then cropped by the field stop M 1 so that the reference point R mn of the original object O is After imaging reduction by each lens, it still overlaps in the same position in the original space, and R mn is the corresponding coordinate of the reference point R in each spatial spectrum image I mn , as shown in FIGS. 2 and 3 .
  • the phase factor ⁇ mn is an intrinsic property of the parallel acquisition of the present invention, and can also be used as a coordinate translation basis of the spatial spectrum image under the condition of anchored acquisition parallel playback or parallel acquisition anchor playback.
  • FIG. 4 to 5 illustrate holographic encoding of M*N spatial spectral images I mn (j, k) of pixels J*K acquired in FIG. 1 by a spatial spectrum holographic encoding device such as a computer (not shown).
  • J*K sheet spatial spectral holographic encoded image S jk (m, n) is obtained.
  • the specific operation is to fill the (j, k) pixel P mnjk in I mn (j, k) into a certain volume pixel H jk of the object space in FIG. 1 to obtain the body pixel, as shown in FIG. 4 .
  • Spatial spectrum holographically encoded image S jk Spatial spectrum holographically encoded image S jk .
  • the acquisition lens array collects a spatial spectrum from the right side of the object O.
  • the basic principle of the conventional integrated photography is to restore the collected spatial spectrum image through the original lens plate, so that when the restored object is viewed from the left side, What you see is the squint, that is, the stereoscopic relationship is opposite to the original object.
  • the three-dimensional space recovered from the reference plane P R just reverses the original pupil image, that is, the restored image can be seen in front view, and its stereoscopic view. The relationship is the same as the original object.
  • obtaining the spatial spectrum holographic encoded image S jk of a certain volume H jk in the original space by using the spatial spectrum image I mn collected in FIG. 1 can effectively implement the “spectral-image coordinate transformation” and eradicate the contiguous defects of the conventional integrated photography.
  • the meaning of "spectral-image coordinate transformation” can be explained as that the original M*N spatial spectrum images can be expressed as a spatial spectrum view of the original object M*N directions, and the spatial spectrum holographic coded image S jk is the view elements.
  • the volume pixel coding of the restoration space, that is, each body pixel H jk contains information S jk in each direction of the original object space.
  • the J*K spatial spectral holographic encoded images S jk shown in FIG. 4 are simply scaled and displayed on the flat display D, which is displayed on the flat display D.
  • the resolution is not less than M*N*J*K, so that a complete discrete spatial spectral coding pattern is displayed on the flat display D.
  • the holographic three-dimensional information restoration apparatus includes a flat panel display D, an information reduction lens array panel L 2, and a holographic function panel HFS.
  • Fig. 6 shows a holographic three-dimensional information restoration device for reducing a discrete spatial spectrum.
  • the information reduction lens array plate L 2 is placed at a distance l 2 ' in front of the flat display D.
  • the information reduction lens array plate L 2 is an array lens plate composed of J*K lenslets with uniform imaging parameters, each lens having an aperture of a 2 and a center spacing of d 2 (which is exactly the volume pixel H jk to be reduced) size of).
  • the field stop M 2 is also placed to avoid mutual interference of imaging of the individual lenses.
  • the spatial spectral coded information S jk (m, n) on the flat display D is projected by the information reduction lens array plate L 2 to be reduced to a three-dimensional image O' composed of the discrete spatial spectrum I mn (j, k) of the original three-dimensional object O, The number of the body pixels H jk ' becomes J'*K'.
  • the final volume pixel H jk ' which is composed of the accumulation of the spatial spectrum coded image S jk projected by the volume pixel H jk in the space M*N directions.
  • the information reduction lens array plate L 2 herein does not need to be a microlens array, and the lens aperture a 2 is sized to clearly restore each spatial spectrum holographic coded image S jk (m, n
  • the aperture a 2 is too small, as that would cause speckle noise.
  • the larger the field of view ⁇ of each single lens the more the number of discrete spatial spectra (M, N) that can be clearly resolved, the larger the field of view of the three-dimensional object can be restored.
  • each The widening angle of the input spatial spectrum S jk is exactly the spatial sampling angle ⁇ mn shown in FIG. 1 , that is, the discrete spatial spectral codes S jk are connected to each other and do not overlap (expressed that the edge features of the respective lenses are just blurred to become one
  • the overall bright background) forms a complete continuous spatial spectral output, and the human eye can observe O's holographic true three-dimensional imaging through HFS within the viewing angle ⁇ .
  • the size of the volume pixel H jk ' is exactly the corresponding magnification of each pixel of S jk (m, n).
  • the relationship between l 2 and l 2 ' is the object image conjugate relationship of the respective small lenses on the information reduction lens array plate L2.
  • the distance l 2 from the information reduction lens array plate L 2 to the holographic function screen O' is equal to the distance l 3 from the reference surface P R to the object O in Fig. 1 (the equality is not required here, and the hologram function is not required.
  • the position of the screen O' is strictly at this distance, the holographic function screen can also be decoded in its vicinity, but the image surface changes, or the distance l 3 of the reference surface P R and the object O is enlarged or reduced ( That is, the distance l 3 ) corresponding to the object in FIG. 1 after being enlarged or reduced.
  • the viewing angle of the three-dimensional object is
  • the basic parameters of the human eye are: 1) the interpupillary distance (the average distance between the two eyes): d ⁇ 6.5 cm; 2) the diameter of the eyelid (2 to 8 mm is related to the brightness), the average value is: a ⁇ 5 mm; 3) the angular resolution Limit: ⁇ E ⁇ 1.5*10 -4 ; 4) Fixed-point static field of view ⁇ E ⁇ 90°.
  • the spatial spectral representation of the visual three-dimensional spatial information described in points 1 and 2 can be completely acquired by the lens plate array L 1 shown in Fig. 1, or can be completely restored by the lens plate array L 2 shown in Fig. 6.
  • the size of the lens aperture determines the volume size ⁇ jk that can be acquired and restored.
  • Jk / ⁇ mn the focal length of the lens determines the field of view ⁇ of the three-dimensional spatial information, which is represented by the lens unit's ability to process the spatial spectrum of the three-dimensional spatial information.
  • the key is to have the corresponding resolution of the photosensitive and display devices (the photosensitive element array S in Figure 1 and the flat display D in Figure 6), so that it is sufficient to distinguish and display the above J*K*M*N planar pixels Spatial spectrum information composed.
  • the specific display parameters are as follows: 1.
  • the volume of the pixel H jk ' is 4mm * 4mm; 2.
  • the spatial observation angle ⁇ 30°, showing a depth of field of about 40 cm.
  • Figure 8 is a schematic diagram of the lens array we used.
  • 3818 small lenses with a diameter of 10 mm in a honeycomb arrangement.
  • Figure 9 is a schematic diagram of the holographic spatial spectrum coding in each lenslet. Here we remove the physical information acquisition step and replace it with a computer virtual 3D model. The coded image shown is limited to the "head cockpit” part.
  • Fig. 10 is a photograph showing the three-dimensional display of the "truck” taken in the up, down, left, and right directions. It can be seen that the stereoscopic relationship of the "cockpit cockpit” is clear and clear.
  • the display of 4mm body pixels is equivalent to the resolution of LED large-screen display, but the present invention is a body pixel display, and each body pixel is composed of M*N (here, 36*36) rays, thereby realizing true three-dimensional large area. display.
  • M*N here, 36*36
  • a three-dimensional display with a plane resolution of 633*472 and a display space of 2.5m*1.9m*0.5m can be obtained, which is equivalent to a 4mm 3 display. Point to use the light to build blocks in the display space.
  • the ideal holographic three-dimensional display instrument can be designed and manufactured by using the eyepiece system of the current optical microscope with the corresponding sampling angle ⁇ mn .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

本发明公开了一种全息三维信息采集、还原装置及方法,合理利用平面显示器的平面像素信息(J*K*M*N),将离散空间谱图像信息Imn通过全息编码转换为离散空间谱全息编码图像Sjk,利用相应的透镜阵列还原其离散空间谱,再通过全息功能屏,实现抽样角为ωmn的离散空间谱展宽,从而实现了原三维空间的完整空间谱还原。利用透镜阵列及全息功能屏,本发明有效地克服了集成照相术中微透镜阵列的成像质量与其所能显示三维图像的分辨率这一固有矛盾,实现了三维空间信息的全息编码及全息显示,从而获得了人眼可视的完美真三维显示。

Description

全息三维信息采集、还原装置及方法
本申请人在先的PCT国际申请WO2010/072065、WO2010/072066以及WO2010/072067所公开的内容以全文引用的方式并入本文中。
技术领域
本发明涉及一种全息三维信息采集、还原装置及方法。
背景技术
集成照相术(APPLIED OPTICS/Vol.52,No.4/1February 2013)理论上讲是一种理想的三维光场(light field)采集和显示技术,但微透镜阵列的成像质量与其所能显示三维图像的分辨率这一固有矛盾却难以克服,即:高分辨率三维显示需要更加精细尺寸的微透镜阵列,而微透镜太小,却又难以保证各个透镜的子图像成像质量,从而迄今都很难获得令人满意的真三维显示结果。WO2010/072065、WO2010/072066以及WO2010/072067披露了一种实时彩色全息三维显示***及方法,利用数码全息原理,通过普通摄影-投影装置阵列***以及全息功能屏实现人眼可视的完美真三维显示。但在实际操作过程中,对各单个摄影-投影设备的成像质量匹配与控制,以及阵列摄影-投影装置的锚定与校准,给***集成化带来困难;同时,摄影-投影机的大量使用必将带来***的制造成本的增加而难以被普通消费者所接受。
发明内容
本发明的主要目的在于针对现有技术的不足,提供一种全息三维信息采集、还原装置及方法。
为实现上述目的,本发明采用以下技术方案:
一种全息三维信息采集装置,包括:
信息采集透镜阵列板,其具有光轴平行的M*N个成像参数一致的透镜,M和N为大于1的整数,所述信息采集透镜阵列板用于对所要三维显示的物体O进行M*N个空间谱图像Imn抽样采集,m=1到M,n=1到N,其空间抽样角为ωmn=d1/l1,d1是各透镜之间的中心间距,l1是所述信息 采集透镜阵列板与所述物体O之间的距离;以及
感光元件阵列,其设置在所述信息采集透镜阵列板与所述物体相反的一侧,具有M*N个感光元件,用于记录各透镜所采集的空间谱图像Imn,各感光元件的分辨率不小于预先设定的所述物体O在物空间的体像素Hjk的个数J*K,J和K为大于1的整数,所述空间谱图像Imn表示为Imn(j,k),j=1到J,k=1到K。
进一步地,还包括设置在所述信息采集透镜阵列板和所述感光元件之间的信息采集视场光阑,以消除或减小所述信息采集透镜阵列板各透镜相互间的成像干扰。
进一步地,所述信息采集透镜阵列板中心至少有一个透镜能够采集到所述物体的全景。
一种全息三维信息采集处理***,包括:
所述的全息三维信息采集装置;以及
空间谱全息编码装置,用于对M*N个空间谱图像Imn(j,k)进行全息编码,其中,对于所述物体O的一个体像素Hjk,将每个空间谱图像Imn(j,k)中的第(j,k)像素Pmnjk依序组合成一个M*N阵列图像Sjk,作为所述体像素Hjk的全息编码图像,按此方式获得所述物体O的J*K个体像素的空间谱全息编码图像Sjk(m,n)。
一种全息三维信息还原装置,包括:
平面显示器,其对经适当缩放处理的J*K个空间谱全息编码图像Sjk(m,n)进行显示,所述平面显示器分辨率不低于M*N*J*K,M、N、J和K为大于1的整数,所述J*K个空间谱全息编码图像Sjk(m,n)是由所述的全息三维信息采集处理***提供的,或者由计算机虚拟所述的全息三维信息采集处理***,通过三维模型渲染而提供的;
信息还原透镜阵列板,其具有光轴平行的J*K个成像参数一致的透镜,用于将所述平面显示器上各空间谱编码图像Sjk(m,n)还原为所述物体O的离散空间谱图像Imn(j,k)所构成的三维成像O’;以及
全息功能屏,其设置在所述信息还原透镜阵列板的与所述平面显示器相反的一侧,所述全息功能屏具有规律性分布的微细空间结构,使得入射到所述全息功能屏上的各空间谱全息编码图像Sjk(m,n)都有一个相应的空间展宽输出,且各空间谱全息编码图像Sjk(m,n)的展宽角为所述空间抽样角ωmn,从而使离散的各空间谱编码图像Sjk(m,n)相互衔接却又不至于重叠覆盖,以形成一完整连续的空间谱输出;
其中,空间抽样角ωmn=d2/l2,d2是所述信息还原透镜阵列板各透镜之间的中心间距,l2是所述信息还原透镜阵列板与所述全息功能屏之间的距离。
进一步地,还包括设置在所述信息还原透镜阵列板和所述全息功能屏之间的信息还原视场光阑,以消除或减小所述信息还原透镜阵列板各透镜相互间的成像干扰。
进一步地,所述全息功能屏与所述信息还原透镜阵列板的距离等于所述物体O的体像素所在的物空间中的参照面PR与所述物体O的距离或所述参照面PR与所述物体O的距离的放大或缩小。
进一步地,所述信息还原透镜阵列板各透镜为蜂窝状的阵列形式。
一种全息三维信息采集方法,包括如下步骤:
通过信息采集透镜阵列板对所要三维显示的物体O进行M*N个空间谱图像Imn抽样采集,所述信息采集透镜阵列板具有光轴平行的M*N个成像参数一致的透镜,M和N为大于1的整数,m=1到M,n=1到N,其空间抽样角为ωmn=d1/l1,d1是各透镜之间的中心间距,l1是所述信息采集透镜阵列板与所述物体O之间的距离;以及
通过感光元件阵列记录各透镜所采集的空间谱图像Imn,所述感光元件设置在所述信息采集透镜阵列板与所述物体相反的一侧,具有M*N个感光元件,各感光元件的分辨率不小于预先设定的所述物体O在物空间的体像素Hjk的个数J*K,J和K为大于1的整数,所述空间谱图像Imn表示为Imn(j,k),j=1到J,k=1到K。
进一步地,还包括以下步骤:通过在所述信息采集透镜阵列板和所述感光元件阵列之间的信息采集视场光阑,消除或减小所述信息采集透镜阵列板各透镜之间的成像干扰。
进一步地,所述信息采集透镜阵列板中心至少有一个透镜能够采集到所述物体的全景。
一种全息三维信息采集处理方法,包括如下步骤:
用所述的全息三维信息采集方法抽样采集并记录物体O的M*N个空间谱图像Imn(j,k);以及
对M*N个空间谱图像Imn(j,k)进行空间谱全息编码,其中,对于所述物体O的一个体像素Hjk,将每个空间谱图像Imn(j,k)中的第(j,k)像素Pmnjk依序组合成一个M*N阵列图像Sjk,作为所述体像素Hjk的全息编码图像,按此方式获得所述物体O的J*K 个体像素的空间谱全息编码图像Sjk(m,n)。
一种全息三维信息还原方法,包括如下步骤:
通过平面显示器对经适当缩放处理的J*K个空间谱全息编码图像Sjk(m,n)进行显示,所述平面显示器分辨率不低于M*N*J*K,M、N、J和K为大于1的整数,所述J*K个空间谱全息编码图像Sjk(m,n)是由所述的全息三维信息采集处理方法提供的,或者由计算机虚拟所述的全息三维信息采集处理方法,通过三维模型渲染而提供的;
通过信息还原透镜阵列板将所述平面显示器上各空间谱编码图像Sjk(m,n)还原为所述物体O的离散空间谱图像Imn(j,k)所构成的三维成像O’,所述信息还原透镜阵列板具有光轴平行的J*K个成像参数一致的透镜;以及
通过设置在所述信息还原透镜阵列板的与所述平面显示器相反的一侧且具有规律性分布的微细空间结构的全息功能屏,使得入射到所述全息功能屏上的各空间谱全息编码图像Sjk(m,n)都有一个相应的空间展宽输出,且各空间谱全息编码图像Sjk(m,n)的展宽角为所述空间抽样角ωmn,从而使离散的各空间谱编码图像Sjk(m,n)相互衔接却又不至于重叠覆盖,以形成一完整连续的空间谱输出;
其中,所述空间抽样角ωmn=d2/l2,d2是所述信息还原透镜阵列板各透镜之间的中心间距,l2是所述信息还原透镜阵列板与所述全息功能屏之间的距离。
进一步地,还包括以下步骤:通过设置在所述信息还原透镜阵列板和所述全息功能屏之间的信息还原视场光阑,消除或减小所述信息还原透镜阵列板各透镜相互间的成像干扰。
进一步地,所述信息还原透镜阵列板各透镜为蜂窝状的阵列形式。
本发明利用透镜阵列及全息功能屏,有效地克服了集成照相术中微透镜阵列的成像质量与其所能显示三维图像的分辨率这一固有矛盾,实现了三维空间信息的采集、全息编码及还原显示,实现人眼可视的完美真三维显示,相当于WO2010/072067中各摄影-投影装置锚定在无限远。其中一要点是:合理利用平面显示器的平面像素信息(J*K*M*N),将离散空间谱图像信息Imn通过全息编码转换为离散空间谱全息编码图像Sjk,利用相应的透镜阵列还原其离散空间谱,再通过WO2010/072067中的全息功能屏,实现抽样角为ωmn的离散空间谱展宽,以实现原三维空间的完整空间 谱还原。
1)利用所采集的空间谱图像Imn获得原空间某一体像素Hjk的空间谱数码全息编码Sjk,可有效实现“谱-像坐标变换”,根除传统集成照相的赝视缺陷,完美实现原空间的离散空间谱还原。
2)该编码适用于任何形式的三维还原***,所生成的全息编码图像Sjk(m,n)可直接应用于透镜阵列成像,或者作为傅里叶变换全息图的(hagel)输入逐点进行三维图像打印。
3)通过对空间谱全息编码图像Sjk的简单缩放,可任意改变体像素Hjk的尺寸大小以实现三维物体的放大或缩小显示。
4)可根据所要显示三维空间的具体要求(如:分辨率、景深、观察角等)设计出完整恢复该空间所需的最大空间谱抽样角ωmn,从而以最少的空间谱数目(M,N)完美恢复所要显示的三维空间。
附图说明
图1为本发明一种实施例的空间谱平行采集示意图;
图2为WO2010/072065、WO2010/072066以及WO2010/072067中锚定采集的空间谱图像示意图,其中参照点R在各空间谱图像中的位置相同;
图3为本发明一种实施例的平行采集的空间谱图像示意图,其中参照点Rmn相对于图2平行移动了一位像因子δmn
图4为本发明一种实施例的体像素Hjk的全息编码图像Sjk示意图;
图5为本发明一种实施例的三维物体O的完整离散空间谱编码示意图;
图6为本发明一种实施例的离散空间谱还原示意图;
图7为本发明一种实施例的全息功能屏解码再现示意图;
图8为本发明一种实施例的透镜排列示意图;
图9为本发明一种应用实例中的全息空间谱示意图;
图10为本发明一种应用实例的三维显示在上、下、左、右各方向所拍摄的照片;
图11为本发明实施例的全息三维信息采集处理***示意图。
具体实施方式
以下结合附图对本发明的实施方式作详细说明。虽然本发明已经进行 了描述,但是还提供以下实例以便具体说明本发明的实施例以及清晰理解。对于本领域普通技术人员而言所明了的是,根据本文中所阐明的本发明传授内容,可以对如此所描述的这些实施例进行某些改变和修改,而此等改变和修改不脱离本发明的精神或范围。
参阅图1和图11,根据本发明的实施例,一种全息三维信息采集处理***包括全息三维信息采集装置100和空间谱全息编码装置200。
图1示出全息三维信息采集装置进行空间谱信息平行采集。全息三维信息采集装置包括信息采集透镜阵列板L1和感光元件阵列S。信息采集透镜阵列板L1是一由M*N个成像参数一致的小透镜所组成的透镜阵列板,各透镜的光轴平行。各透镜的孔径为a1,焦距为f1,中心间距为d1,各透镜的视场角(FOV)为Ω,满足tan(Ω/2)=a1/2f1。对位于各单个透镜有效视角Ω内的三维物体O来说,各透镜所采集的空间谱信息Imn(m=1到M,n=1到N)与WO2010/072065、WO2010/072066以及WO2010/072067中的描述相当,其抽样角可表示为:ωmn=d1/l1,这里l1是信息采集透镜阵列板L1与物体O间的距离。
感光元件阵列S可以采用彩色胶片、CCD、CMOS等。感光元件阵列S可放置在透镜板L1的后焦面附近,距离透镜板l1’处,以记录各透镜所采集的空间谱信息Imn(j,k),l1与l1’是各单透镜的物像共轭关系。各感光元件的分辨率不小于预先设定的所述物体O在物空间的体像素Hjk的个数J*K,J和K为大于1的整数,j=1到J,k=1到K。物体O对应的物空间体像素为Hjk,即:所采集的三维物体O由J*K个体像素(Hoxel)Hjk构成。Hjk体像素所在的参照面PR与物体O的距离为l3,参照点R位于参照面的中心位置。为防止各透镜所获取的信息在感光元件阵列S上相互干扰,可在感光元件阵列S和信息采集透镜阵列板L1之间设置视场光阑M1,以保证各个单透镜成像Imn互不干扰。
与传统集成照相相比,这里的透镜阵列并不要求是微透镜阵列,其孔径a1的大小以能采集到清晰的空间谱视图即可。清晰的空间谱视图是指普通摄影图像中各像素都能对应于所拍三维空间中的某一清晰点。这和普通照相的“景深”概念相同,即:孔径越小,所拍摄的照片“景深”越大。从这个角度上讲,孔径a1越小,所能采集到的空间谱视图越清晰。但孔径a1小到一定程度,受孔径衍射效应的影响,其所能分辨的最小距离将会增大,即成像质量将明显下降,这也是传统集成照相不能获得满意结果的根本原 因。另外,透镜的孔径a1和焦距f1决定了各单个透镜的视场角Ω,Ω越大则所能采集的三维目标的场景范围就越大。在WO2010/072065、WO2010/072066以及WO2010/072067中,由于锚定采集,每个透镜都能采集到该三维目标全景的空间谱,而在本实施例平行采集中,被采集目标的场景被固有视场角Ω所切割,因此透镜可能不能采集到该三维目标全景的空间谱。在本实施例中,透镜阵列中心(M/2,N/2)附近至少有一个透镜能够采集到物体O(j,k)的全景。
与WO2010/072065、WO2010/072066以及WO2010/072067所揭示的锚定采集相比较,其各空间谱图像除I(M/2)(N/2)(j,k)完全相同外,其他各图像相当于原锚定采集各空间谱图像Imn(j,k)在谱面S上平移一相位因子δmn后被视场光阑M1所裁切,使得原物体O的参照点Rmn在通过各透镜成像还原后仍然重叠在原空间同样位置,Rmn是参照点R在各空间谱图像Imn中的对应坐标,如图2、3所示。该位相因子δmn是本发明平行采集的固有性质,也可作为锚定采集平行播放或平行采集锚定播放条件下,空间谱图像的坐标平移依据。
图4-图5示出通过空间谱全息编码装置例如计算机(未图示),对图1所采集的像素为J*K的M*N个空间谱图像Imn(j,k)进行全息编码,获得J*K张空间谱全息编码图像Sjk(m,n)。其具体操作是将Imn(j,k)中的第(j,k)像素Pmnjk,如图4所示,分别填入图1中物空间的某一体像素Hjk,以获得该体像素的空间谱全息编码图像Sjk
如图1所示,采集透镜阵列从物体O的右侧采集空间谱,传统集成照相基本原理是将所采集到的空间谱图像通过原透镜板还原该物体,因此,当从左边观察还原物体时,所看到的便是赝视像,即:体视关系与原物体相反。我们在物体O的左侧建立参考面PR,经过信息编码后从参考面PR上所恢复的三维空间正好将原赝视像反转,即:能看到正视的还原像,其体视关系和原物体相同。因此,利用图1所采集的空间谱图像Imn获得原空间某一体像素Hjk的空间谱全息编码图像Sjk可有效实现“谱-像坐标变换”,根除传统集成照相的赝视缺陷。“谱-像坐标变换”的含义可以解释为,原M*N个空间谱图像可以表达为原物体M*N个方向的空间谱视图,而空间谱全息编码图像Sjk便是这些视图元素在还原空间的体像素编码,即:每个体像素Hjk包含了原物体空间各方向的信息Sjk
如图5所示,对应于图1中各体像素Hjk,将图4所示的J*K个空间 谱全息编码图像Sjk经简单缩放处理后显示到平面显示器D上面,该平面显示器D的分辨率不小于M*N*J*K,从而在该平面显示器D上显示出完整离散空间谱编码图案。
如图6至图7所示,全息三维信息还原装置包括平面显示器D、信息还原透镜阵列板L2和全息功能屏HFS。图6示出全息三维信息还原装置对离散空间谱进行还原。在平面显示器D前面距离l2’处放置信息还原透镜阵列板L2。信息还原透镜阵列板L2是由J*K个成像参数一致的小透镜所组成的阵列透镜板,各透镜的孔径为a2,中心间距为d2(其正好是所要还原的体像素Hjk的尺寸)。在D与信息还原透镜阵列板L2之间,同样放置视场光阑M2以避免各单个透镜成像的相互干扰。
优选地,信息还原透镜阵列板L2各透镜的视场角(FOV)与信息采集透镜阵列板L1各透镜的视场角相同,也为Ω。如果视场角不相同,将会带来还原三维空间的畸变。平面显示器D上各空间谱编码信息Sjk(m,n)被信息还原透镜阵列板L2投射还原为原三维物体O的离散空间谱Imn(j,k)所构成的三维成像O’,其体像素Hjk’的个数变为J’*K’。J’*K’的大小是由以下因素决定的:1.Sjk中每个像素的大小为ΔD即:平面显示器的像素大小;2.Sjk经信息还原透镜阵列板L2中的小透镜成像后,其尺寸被放大了M倍,所对应体像素的大小为MΔD;3.假设平面显示器的长和宽分别为a和b,则:J'=a/MΔD,K'=b/MΔD。可见J’*K’的大小与J*K没有直接关系,它是体像素Hjk在空间M*N个方向所投射的空间谱图编码图像Sjk的堆积所构成的最终体像素Hjk'在显示器a*b面积中的个数,即:最终全息显示的体像素分辨率。同样,与传统集成照相相比,这里的信息还原透镜阵列板L2并不需要是微透镜阵列,各透镜孔径a2的大小以能清晰的还原各空间谱全息编码图像Sjk(m,n)为原则,能够分辨并清晰成像ΔD,但应避免孔径a2太小,因为那样将会带来散斑噪声。另外,原则上来说,各单个透镜的视场角Ω越大,所能清晰分辨的离散空间谱数目(M,N)越多,所能还原三维物体的视场角就越大。
如图7所示,在到信息还原透镜阵列板L2距离为l2的位置O’处,放置WO2010/072065、WO2010/072066以及WO2010/072067所披露的相应的全息功能屏,使其对各输入空间谱Sjk的展宽角正好是图1所示的空间抽样角ωmn,即:使各离散空间谱编码Sjk相互衔接且不重叠(表现为各透镜的边沿特征刚好被模糊而成为一整体亮背景),形成一完整连续的空间谱输 出,人眼便可在视场角Ω内,通过HFS观察到O’的全息真三维成像。体像素Hjk’的大小正好是Sjk(m,n)各像素的相应放大。
如图1和图7所示,空间抽样角ωmn=d1/l1=d2/l2。图7中,l2与l2’的关系是信息还原透镜阵列板L2上各小透镜的物像共轭关系。图6、7中信息还原透镜阵列板L2到全息功能屏置O’的距离l2与图1中参照面PR到物体O的距离l3相等(这里所说的相等,并非要求全息功能屏的位置O’严格意义上处在该距离处,全息功能屏在其附近也都能解码,只是像面发生变化),或是参照面PR与物体O的距离l3的放大或缩小(即图1中物体放大或缩小后所对应的距离l3)。
成像质量分析
1.三维空间信息的空间谱描述
假设三维空间的体像素Hjk的大小为Δjk,三维空间深度为ΔZ,则其所对应的空间抽样角可表示为ωmn=Δjk/ΔZ。也就是说由J*K*ΔZ*Δjk个体积为Δjk 3的独立小立方体发光单元所构成的三维物体可以完全由M*N*J*K根楔形光束所表达,该楔形光束的顶点位于全息功能屏HFS所在平面,发散角为ωmn
该三维物体的观察视角为
Figure PCTCN2014087578-appb-000001
这里:ΔZ*Δjk=Δjkjkmn=M*N,因为体像素Hjk中包含了M*N个空间谱。
2.人眼视觉的空间谱描述
人眼的基本参数是:1)瞳距(两眼的平均间距):d≈6.5cm;2)眼瞳直径(2~8mm与亮度有关),平均值为:a≈5mm;3)角分辨极限:ωE≈1.5*10-4;4)定点静态视场角ΩE≈90°。
可以看出,当固定双眼位置,则人眼视觉可表示为J*K=(ΩEE)2≈[(π/2)/1.5*10-4]2≈108个体像素和两个空间谱(M*N=2)所构成的双目视差立体图像。其另一物理含义是,大自然中有108个空间谱被人眼所处固定位置的两个体像素H左眼和H右眼所包含并被人眼所接收,形成了淹没在体像素海洋中的人眼对自然的三维客观认识。
3.空间三维信息的有效采集和还原
针对第1,2点所描述的可视三维空间信息的空间谱表达,可用图1所示透镜板阵列L1完整采集,也可用图6所示的透镜板阵列L2完整还原。其中的参数有以下关系:a1=2λl1jk,a2=2λl2jk,λ是可见光平均波长,约为550nm;ωmn=d1/l1=d2/l2;tan(Ω/2)=a1/2f1=a2/2f2。这里透镜孔径的大小决定了所能采集和还原的体像素大小Δjk,透镜中心距离决定了所能采集和还原的空间抽样角ωmn,从而决定了所要采集和还原三维空间的景深ΔZ=Δjkmn,透镜的焦距决定了该三维空间信息的视场角Ω,表现为透镜单元对三维空间信息空间谱的处理能力,
即:
Figure PCTCN2014087578-appb-000002
其关键是必须具备相应分辨率的感光和显示器件(图1中的感光元件阵列S和图6中的平面显示器D),使其足以分辨和显示上述J*K*M*N个平面像素所构成的空间谱信息。
应用实例
我们利用现有商用4K平面显示器,按照上述原理实现了全彩色全视差数码全息三维还原显示,其具体显示参数如下:1.体像素Hjk'尺寸为4mm*4mm;2.体像素Hjk’个数为J’*K’=211*118;3.空间谱数目为M*N=36*36;4.空间观察角度Ω=30°,显示景深约40cm。
图8是我们采用的透镜阵列示意图,为了充分利用显示器有限平面像素的信息量,我们采用蜂窝状排列方式排列了3818个直径为10mm的小透镜。
图9是每个小透镜内全息空间谱编码示意图,这里我们免去了实物信息采集步骤,代之以计算机虚拟三维模型渲染,所示编码图像仅限于“车头驾驶舱”部位。图10是“卡车”三维显示上下左右各方向所拍摄的显示照片。可见“车头驾驶舱”部位体视关系清晰明了。
为了提高显示分辨率,以下两种方案均可实用:
1.利用多台4K显示器的空间拼接以实现大面积三维全息显示。
目前4mm体像素的显示相当于LED大屏幕显示的分辨率,但本发明是体像素显示,每个体像素都由M*N(这里是36*36)根光线构成,从而可以实现真三维大面积显示。在本实例中,若用3*4块同样的4K屏幕拼 接,便可得到平面分辨率为633*472,显示空间为2.5m*1.9m*0.5m的三维显示,这相当于4mm3的显示点在显示空间里用光线搭积木。
2.利用高分辨率平面显示器以实现高分辨率全息显示
不难想象,如果我们利用8K,16K,乃至32K的平面显示器,则利用本发明基本原理,便可实现普清乃至高清的全息显示。实际上利用目前光学显微镜的目镜***配合相应抽样角ωmn,便可设计并制造出理想的全息三维显示仪器。
上述细节描述仅仅是出于便于理解的目的而给出的,而不应从中理解出任何不必要的限制,而对其进行的修改对于所属领域的技术人员而言是显而易见的。虽然本发明是结合其特定的实施例来描述的,但是应理解可以做出进一步的修改,并且本申请意图涵盖大体上遵照本发明的原理的本发明的任何变体、应用,或者调整,并且包括本披露的此类扩展内容,即在本发明所涉及的领域内的已知的或者惯常的实践的范围内的、可以应用到上文提出的基本特征并且遵照所附权利要求书的范围的。
并且,虽然上文描述了且具体实例化了本发明的某些优选实施例,但是这并非意图将本发明限制于此类实施例,并且任何此类的限制仅包含在权利要求书中。

Claims (15)

  1. 一种全息三维信息采集装置,其特征在于,包括:
    信息采集透镜阵列板,其具有光轴平行的M*N个成像参数一致的透镜,M和N为大于1的整数,所述信息采集透镜阵列板用于对所要三维显示的物体O进行M*N个空间谱图像Imn抽样采集,m=1到M,n=1到N,其空间抽样角为ωmn=d1/l1,d1是各透镜之间的中心间距,l1是所述信息采集透镜阵列板与所述物体O之间的距离;以及
    感光元件阵列,其设置在所述信息采集透镜阵列板与所述物体相反的一侧,具有M*N个感光元件,用于记录各透镜所采集的空间谱图像Imn,各感光元件的分辨率不小于预先设定的所述物体O在物空间的体像素Hjk的个数J*K,J和K为大于1的整数,所述空间谱图像Imn表示为Imn(j,k),j=1到J,k=1到K。
  2. 如权利要求1所述的全息三维信息采集装置,其特征在于,还包括设置在所述信息采集透镜阵列板和所述感光元件之间的信息采集视场光阑,以消除或减小所述信息采集透镜阵列板各透镜相互间的成像干扰。
  3. 如权利要求1或2所述的全息三维信息采集装置,其特征在于,所述信息采集透镜阵列板中心至少有一个透镜能够采集到所述物体的全景。
  4. 一种全息三维信息采集处理***,其特征在于,包括:
    权利要求1至3任一项所述的全息三维信息采集装置;以及
    空间谱全息编码装置,用于对M*N个空间谱图像Imn(j,k)进行全息编码,其中,对于所述物体O的一个体像素Hjk,将每个空间谱图像Imn(j,k)中的第(j,k)像素Pmnjk依序组合成一个M*N阵列图像Sjk,作为所述体像素Hjk的全息编码图像,按此方式获得所述物体O的J*K个体像素的空间谱全息编码图像Sjk(m,n)。
  5. 一种全息三维信息还原装置,其特征在于,包括:
    平面显示器,其对经适当缩放处理的J*K个空间谱全息编码图像Sjk(m,n)进行显示,所述平面显示器分辨率不低于M*N*J*K,M、N、J和K为大于1的整数,所述J*K个空间谱全息编码图像Sjk(m,n)是由如权利要求4所述的全息三维信息采集处理***提供的,或者由计算机虚拟如权利要求4所述的全息三维信息采集处理***,通过三维模 型渲染而提供的;
    信息还原透镜阵列板,其具有光轴平行的J*K个成像参数一致的透镜,用于将所述平面显示器上各空间谱编码图像Sjk(m,n)还原为所述物体O的离散空间谱图像Imn(j,k)所构成的三维成像O’;以及
    全息功能屏,其设置在所述信息还原透镜阵列板的与所述平面显示器相反的一侧,所述全息功能屏具有规律性分布的微细空间结构,使得入射到所述全息功能屏上的各空间谱全息编码图像Sjk(m,n)都有一个相应的空间展宽输出,且各空间谱全息编码图像Sjk(m,n)的展宽角为所述空间抽样角ωmn,从而使离散的各空间谱编码图像Sjk(m,n)相互衔接却又不至于重叠覆盖,以形成一完整连续的空间谱输出;
    其中,空间抽样角ωmn=d2/l2,d2是所述信息还原透镜阵列板各透镜之间的中心间距,l2是所述信息还原透镜阵列板与所述全息功能屏之间的距离。
  6. 如权利要求5所述的全息三维信息还原装置,其特征在于,还包括设置在所述信息还原透镜阵列板和所述全息功能屏之间的信息还原视场光阑,以消除或减小所述信息还原透镜阵列板各透镜相互间的成像干扰。
  7. 如权利要求5或6所述的全息三维信息还原装置,其特征在于,所述全息功能屏与所述信息还原透镜阵列板的距离等于所述物体O的体像素所在的物空间中的参照面PR与所述物体O的距离或所述参照面PR与所述物体O的距离的放大或缩小。
  8. 如权利要求5或6所述的全息三维信息还原装置,其特征在于,所述信息还原透镜阵列板各透镜为蜂窝状的阵列形式。
  9. 一种全息三维信息采集方法,其特征在于,包括如下步骤:
    通过信息采集透镜阵列板对所要三维显示的物体O进行M*N个空间谱图像Imn抽样采集,所述信息采集透镜阵列板具有光轴平行的M*N个成像参数一致的透镜,M和N为大于1的整数,m=1到M,n=1到N,其空间抽样角为ωmn=d1/l1,d1是各透镜之间的中心间距,l1是所述信息采集透镜阵列板与所述物体O之间的距离;以及
    通过感光元件阵列记录各透镜所采集的空间谱图像Imn,所述感光元件设置在所述信息采集透镜阵列板与所述物体相反的一侧,具有M*N个感光元件,各感光元件的分辨率不小于预先设定的所述物体O在物空间的体像素Hjk的个数J*K,J和K为大于1的整数,所述空间谱图像Imn表示为 Imn(j,k),j=1到J,k=1到K。
  10. 如权利要求9所述的全息三维信息采集方法,其特征在于,还包括以下步骤:通过在所述信息采集透镜阵列板和所述感光元件阵列之间的信息采集视场光阑,消除或减小所述信息采集透镜阵列板各透镜之间的成像干扰。
  11. 如权利要求9所述的全息三维信息采集方法,其特征在于,所述信息采集透镜阵列板中心至少有一个透镜能够采集到所述物体的全景。
  12. 一种全息三维信息采集处理方法,其特征在于,包括如下步骤:
    用权利要求9至11任一项所述的全息三维信息采集方法抽样采集并记录物体O的M*N个空间谱图像Imn(j,k);以及
    对M*N个空间谱图像Imn(j,k)进行空间谱全息编码,其中,对于所述物体O的一个体像素Hjk,将每个空间谱图像Imn(j,k)中的第(j,k)像素Pmnjk依序组合成一个M*N阵列图像Sjk,作为所述体像素Hjk的全息编码图像,按此方式获得所述物体O的J*K个体像素的空间谱全息编码图像Sjk(m,n)。
  13. 一种全息三维信息还原方法,其特征在于,包括如下步骤:
    通过平面显示器对经适当缩放处理的J*K个空间谱全息编码图像Sjk(m,n)进行显示,所述平面显示器分辨率不低于M*N*J*K,M、N、J和K为大于1的整数,所述J*K个空间谱全息编码图像Sjk(m,n)是由如权利要求12所述的全息三维信息采集处理方法提供的,或者由计算机虚拟如权利要求12所述的全息三维信息采集处理方法,通过三维模型渲染而提供的;
    通过信息还原透镜阵列板将所述平面显示器上各空间谱编码图像Sjk(m,n)还原为所述物体O的离散空间谱图像Imn(j,k)所构成的三维成像O’,所述信息还原透镜阵列板具有光轴平行的J*K个成像参数一致的透镜;以及
    通过设置在所述信息还原透镜阵列板的与所述平面显示器相反的一侧且具有规律性分布的微细空间结构的全息功能屏,使得入射到所述全息功能屏上的各空间谱全息编码图像Sjk(m,n)都有一个相应的空间展宽输出,且各空间谱全息编码图像Sjk(m,n)的展宽角为所述空间抽样角ωmn,从而使离散的各空间谱编码图像Sjk(m,n)相互衔接却又不至于重叠覆盖,以形成一完整连续的空间谱输出;
    其中,所述空间抽样角ωmn=d2/l2,d2是所述信息还原透镜阵列板各 透镜之间的中心间距,l2是所述信息还原透镜阵列板与所述全息功能屏之间的距离。
  14. 如权利要求13所述的全息三维信息还原方法,其特征在于,还包括以下步骤:通过设置在所述信息还原透镜阵列板和所述全息功能屏之间的信息还原视场光阑,消除或减小所述信息还原透镜阵列板各透镜相互间的成像干扰。
  15. 如权利要求13或14所述的全息三维信息还原方法,其特征在于,所述信息还原透镜阵列板各透镜为蜂窝状的阵列形式。
PCT/CN2014/087578 2014-09-26 2014-09-26 全息三维信息采集、还原装置及方法 WO2016045100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/087578 WO2016045100A1 (zh) 2014-09-26 2014-09-26 全息三维信息采集、还原装置及方法
CN201480001301.4A CN105637415B (zh) 2014-09-26 2014-09-26 全息三维信息采集、还原装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087578 WO2016045100A1 (zh) 2014-09-26 2014-09-26 全息三维信息采集、还原装置及方法

Publications (1)

Publication Number Publication Date
WO2016045100A1 true WO2016045100A1 (zh) 2016-03-31

Family

ID=55580147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087578 WO2016045100A1 (zh) 2014-09-26 2014-09-26 全息三维信息采集、还原装置及方法

Country Status (2)

Country Link
CN (1) CN105637415B (zh)
WO (1) WO2016045100A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154567A (zh) * 2016-07-18 2016-11-23 北京邮电大学 一种三维光场显示***的成像方法及装置
CN106154566A (zh) * 2016-07-06 2016-11-23 北京邮电大学 一种三维光场显示***及显示参数确定方法
CN108897138A (zh) * 2018-06-19 2018-11-27 北京邮电大学 一种三维光场显示***及方法
CN110133766A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息采集透镜阵列板
CN110133858A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息还原透镜阵列板
CN110139091A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种感光元件阵列装置
WO2020213447A1 (ja) 2019-04-16 2020-10-22 グリコ栄養食品株式会社 クチナシ青色素及びその製造方法
WO2022044291A1 (ja) 2020-08-28 2022-03-03 グリコ栄養食品株式会社 青色色素及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230166155A (ko) 2016-07-15 2023-12-06 라이트 필드 랩 인코포레이티드 라이트 필드 및 홀로그램 도파관 어레이에서의 에너지의 선택적 전파
CN106707680B (zh) * 2017-03-10 2019-03-12 东南大学 一种基于光场的全息投影方法
CN112055836B (zh) 2018-01-14 2022-09-27 光场实验室公司 光场视力矫正装置
KR20200116941A (ko) 2018-01-14 2020-10-13 라이트 필드 랩 인코포레이티드 정렬된 구조를 사용해 에너지 릴레이의 횡방향 에너지 편재를 위한 시스템 및 방법
CN109084679B (zh) * 2018-09-05 2019-08-06 天目爱视(北京)科技有限公司 一种基于空间光调制器的3d测量及获取装置
CN110495900B (zh) * 2019-08-19 2023-05-26 武汉联影医疗科技有限公司 影像显示方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257496A1 (en) * 2003-06-20 2004-12-23 Casio Computer Co., Ltd. Display device and manufacturing method of the same
CN102024272A (zh) * 2010-09-21 2011-04-20 上海大学 一种获取三维运动物体计算全息图的装置和方法
CN101939703B (zh) * 2008-12-25 2011-08-31 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866121B2 (ja) * 2006-03-23 2012-02-01 日本放送協会 要素画像群撮像装置及び立体像表示装置
JP5168014B2 (ja) * 2008-07-29 2013-03-21 ヤマハ株式会社 話速変換装置およびプログラム
KR101441785B1 (ko) * 2013-01-11 2014-09-22 건양대학교산학협력단 스테레오 홀로그램 기반의 3차원 영상시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257496A1 (en) * 2003-06-20 2004-12-23 Casio Computer Co., Ltd. Display device and manufacturing method of the same
CN101939703B (zh) * 2008-12-25 2011-08-31 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法
CN102024272A (zh) * 2010-09-21 2011-04-20 上海大学 一种获取三维运动物体计算全息图的装置和方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154566A (zh) * 2016-07-06 2016-11-23 北京邮电大学 一种三维光场显示***及显示参数确定方法
CN106154567A (zh) * 2016-07-18 2016-11-23 北京邮电大学 一种三维光场显示***的成像方法及装置
CN106154567B (zh) * 2016-07-18 2018-12-04 北京邮电大学 一种三维光场显示***的成像方法及装置
CN110133766A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息采集透镜阵列板
CN110133858A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息还原透镜阵列板
CN110139091A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种感光元件阵列装置
CN108897138A (zh) * 2018-06-19 2018-11-27 北京邮电大学 一种三维光场显示***及方法
WO2020213447A1 (ja) 2019-04-16 2020-10-22 グリコ栄養食品株式会社 クチナシ青色素及びその製造方法
WO2022044291A1 (ja) 2020-08-28 2022-03-03 グリコ栄養食品株式会社 青色色素及びその製造方法

Also Published As

Publication number Publication date
CN105637415A (zh) 2016-06-01
CN105637415B (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
WO2016045100A1 (zh) 全息三维信息采集、还原装置及方法
WO2016045104A1 (zh) 全息三维显示***和方法
JP7369507B2 (ja) 可変焦点および/または物体認識を備えたウェアラブル3d拡張現実ディスプレイ
EP2957099B1 (en) Plenoptic imaging device
Martinez-Cuenca et al. Progress in 3-D multiperspective display by integral imaging
CN101411207A (zh) 采集和显示三维光场的方法和***
CN107105216B (zh) 一种基于针孔阵列的连续视差、广视角的三维光场显示装置
JP2015052635A (ja) 光学ユニット、撮像装置
JP2020510241A5 (zh)
US20130128008A1 (en) Smart pseudoscopic-to-orthoscopic conversion (spoc) protocol for three-dimensional (3d) display
Kagawa et al. A three‐dimensional multifunctional compound‐eye endoscopic system with extended depth of field
CN109428987A (zh) 一种头戴式全景360度立体摄像装置及摄像处理方法
JP2022046601A (ja) 改善された解像度を用いたプレノプティック・サブアパーチャ・ビュー・シャッフリング
EP3479569B1 (en) Plenoptic camera with a controllable birefringent layer for richer color acquisition
Shin et al. Improved Viewing Quality of 3‐D Images in Computational Integral Imaging Reconstruction Based on Lenslet Array Model
CN112835192B (zh) 一种面向手术显微镜的立体图像互补增强装置及方法
JP2956273B2 (ja) 立体表示装置
KR100730404B1 (ko) 입체 영상 표시 장치
Fan et al. Demonstration of perfect holographic display on commercial 4K plane displayer
Martínez‐Corral et al. Three‐Dimensional Integral Imaging and Display
CN110139091A (zh) 一种感光元件阵列装置
CN110133766A (zh) 一种信息采集透镜阵列板
CN110133858A (zh) 一种信息还原透镜阵列板
Kwan et al. Development of a Light Field Laparoscope for Depth Reconstruction
Okano et al. Depth range of a 3D image sampled by a lens array with the integral method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902794

Country of ref document: EP

Kind code of ref document: A1