WO2009051150A1 - 工作機械の加工ツール保護装置およびホーニング盤 - Google Patents

工作機械の加工ツール保護装置およびホーニング盤 Download PDF

Info

Publication number
WO2009051150A1
WO2009051150A1 PCT/JP2008/068693 JP2008068693W WO2009051150A1 WO 2009051150 A1 WO2009051150 A1 WO 2009051150A1 JP 2008068693 W JP2008068693 W JP 2008068693W WO 2009051150 A1 WO2009051150 A1 WO 2009051150A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine tool
protection device
main shaft
tool protection
spindle
Prior art date
Application number
PCT/JP2008/068693
Other languages
English (en)
French (fr)
Inventor
Yasuo Tomita
Tetsuo Iwai
Original Assignee
Nissin Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Manufacturing Co., Ltd. filed Critical Nissin Manufacturing Co., Ltd.
Priority to US12/601,862 priority Critical patent/US20100178848A1/en
Priority to EP08839902A priority patent/EP2199022A1/en
Publication of WO2009051150A1 publication Critical patent/WO2009051150A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/06Honing machines or devices; Accessories therefor with controlling or gauging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/04Arrangements preventing overload of tools, e.g. restricting load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/54Arrangements or details not restricted to group B23Q5/02 or group B23Q5/22 respectively, e.g. control handles
    • B23Q5/58Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load

Definitions

  • This invention relates to a machining tool protection device for machine tools, opho hounging machine, and more particularly, for example, hounging machine for hounging machine.
  • the machining tool attached to the rotating spindle rotates
  • the present invention relates to a processing tool protection technology for preventing and protecting a processing tool from being damaged or broken in a machine tool of a type that performs machining such as grinding or cutting on a workpiece.
  • Hounging is one of the machining methods for finishing the inner peripheral surface of a workpiece (hereinafter referred to as a workpiece) to a mirror surface.
  • a workpiece hereinafter referred to as a workpiece
  • the hounging tool equipped with a grindstone and the workpiece are kept in a relatively floating state, and the honing tool is rotated and reciprocated to expand the houngwool grindstone by means of spring elasticity. Precise finishing on the inner surface of the workpiece.
  • the conventional honing machine has a configuration that protects the machine machine itself, but does not have a configuration that protects the honing tool that is a processing tool.
  • Defective workpiece for example, a hole in the workpiece
  • the honing tool grinds due to clogging of the grindstone, or iii) control program error (human error), etc. This can lead to excessive torque load on the hounging tool.
  • the honing tool has a relatively large diameter, abnormalities can be detected by the biting of the grindstone.
  • the honing tool has a small diameter, the strength of the honing tool itself loses the torque load and breaks. '
  • the present invention has been made in view of the above-described conventional problems.
  • the object of the present invention is to perform machining such as grinding and cutting on a workpiece by rotating a machining tool attached to a rotating spindle. It is intended to provide a machining tool protection device that prevents and protects a machining tool from being damaged or broken by an excessive torque load in a machine tool to be applied.
  • Another object of the present invention is to provide a hounging machine provided with the above processing tool protection device.
  • the machining tool protection device of the present invention is a machine tool of a type in which a machining tool attached to a rotary spindle rotates to perform machining such as grinding or cutting on a workpiece. It prevents and protects the tool from damage, breakage, etc., and transmits the rotational force of the rotary drive source to the rotary spindle by a magnetic action between the rotary spindle and the rotary drive source that rotates the rotary spindle.
  • Magnetic coupling means is provided, and the magnetic transmission torque for transmitting the rotational force of the magnetic force coupling means is set smaller than a predetermined torque load applied to the honing tool.
  • the predetermined torque load is set to a value smaller than the breaking torque at which the honing tool breaks.
  • the magnetic coupling means is in the form of an annular magnet coupling disposed coaxially with the rotation main shaft, and the annular magnet coupling is a drive-side magnet that is drivingly connected to the rotational drive source.
  • a ring member and a driven-side magnet ring member integrally driven and connected to the rotary main shaft in the rotational direction. 'These magnet ring members are parallel and concentric with their annular magnet surfaces in a non-contact state.
  • the magnetic transmission torque is set by a magnetic action gap formed between the two annular magnet surfaces.
  • the driving side and driven side magnet ring members are relatively movable in the axial direction of the rotating main shaft, thereby changing the size of the magnetic action gap between the annular magnet surfaces.
  • the magnetic transmission torque is adjusted.
  • a gap adjustment means is provided for adjusting the magnitude of the magnetic action gearup by moving the drive side and driven side magnet ring members relative to the rotary main shaft in the axial direction.
  • a moving means for moving one of the drive side and driven side magnet ring members in the axial direction of the rotation main shaft; and a gap control means for controlling the moving means. The moving means is controlled so that the magnetic transmission torque is adjusted in accordance with the rotational speed of the rotary main shaft.
  • the gap control means is configured so that the magnetic transmission torque becomes a predetermined starting torque value until the rotation main shaft starts from a stopped state and reaches a predetermined number of rotations.
  • the magnetic transmission torque becomes a predetermined starting torque value until the rotation main shaft starts from a stopped state and reaches a predetermined number of rotations.
  • the moving means includes a feed screw mechanism coupled to one of the drive side and driven side magnet ring members, and a rotational drive source that rotationally drives the feed screw mechanism.
  • a nut member of the mechanism is connected and fixed to one of the driving side and driven side magnet ring members, and a screw member for moving the nut member forward and backward is arranged in parallel to the axis of the rotating main shaft. .
  • annular permanent magnet is provided on the opposing surface of the ring member body, and the annular magnet surface is formed.
  • the driving side and driven side magnet ring members are provided with at least one annular magnet row composed of permanent magnets arranged at equal intervals in the circumferential direction on the opposing surfaces of the ring member body.
  • the annular magnet surface is formed by the magnet array.
  • a plurality of the annular magnet rows having different arrangement diameters are concentrically arranged on the opposing surface of the ring member main body.
  • the honing machine of the present invention is capable of reciprocating in the axial direction of the inner peripheral surface of the workpiece, and is a rotary main shaft that is rotatably supported around the axis, and the rotary main shaft is driven to rotate about the axis.
  • the main shaft rotating means, the main shaft reciprocating drive unit for reciprocating the rotating main shaft in the axial direction of the inner peripheral surface, and the honing whetstone having a grindstone surface along the inner peripheral surface can be expanded and contracted.
  • FIG. 1 is a cross-sectional view of a processing line protection device according to the present invention
  • FIG. 1 is a front view showing, in partial cross section, the schematic configuration of a hounging machine that is Embodiment 1 of the present invention.
  • Fig. 2 is an enlarged front view of the hounging tool protection part of the hounging machine, partially shown in cross section.
  • FIG. 3 is a perspective view showing a magnet ring member of the hounging tool protection unit.
  • Fig. 4 is an enlarged front sectional view showing the state of the work inner peripheral surface heated by the honing wheel of the hounging machine.
  • FIG. 5 is a perspective view showing a magnet ring member of a honing tool protection part in a hounging machine that is Embodiment 2 according to the present invention.
  • FIG. 6 is a plan view showing the arrangement of permanent magnets on the annular magnet surface of the magnet ring member.
  • FIG. 7 is an enlarged front view of the honing tool protection part of the honing machine according to the third embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the gear control section of the hounging tool protection section.
  • FIG. 1 shows a honing machine according to the present invention.
  • this honing machine is a vertical machine for machining an inner peripheral surface Wa of a cylindrical machining hole of a workpiece W.
  • Shaped Rotating spindle 2 equipped with hounging tool 1 at the tip, spindle rotating drive part (spindle rotating means) 3, spindle reciprocating drive part (spindle reciprocating means) 4, grinding wheel cutting part (grinding wheel cutting means) 5 and device control part (Control means) 6 as a main part, and Houng tool protection part (Houng tool protection means, machining tool protection device) 7 in the drive transmission path of the rotation spindle 2 and the spindle rotation drive part 3 Prepare.
  • Houng tool protection part Houng tool protection means, machining tool protection device
  • a honing tool (so-called hounging head) 1 is replaceably mounted on the tip or lower end 2 a of the rotary spindle 2.
  • a plurality of honing stones 10, 10,. 1 1 and a hounging wheel 10, 1 0,... are provided with a return spring (not shown) and the like.
  • Each hounging grindstone 10 has a grindstone surface 10 a along the inner peripheral surface Wa of the workpiece W. Further, the cone rod 11 is provided so as to be movable in the vertical direction in the honing tool 1, and the tip wedge 1 1 a is a grindstone extending portion that presses the grindstone base 1 0 b of each honing grindstone 10 At the same time, the base opening 11b, which is the upper part, is connected to a grindstone expansion rod 35 described later. Further, although not shown, the hounging grindstones 10, 10, 10... Are constantly urged by the return springs in the direction of contraction.
  • the honing grindstones 10, 10,... are expanded according to the downward movement of the cone rod 11, and are contracted by the return spring according to the upward movement of the cone rod 11. Will be.
  • the rotary spindle 2 is provided with a hounging tool 1 at its lower end, the spindle drive shaft 15, the spindle rotation drive unit 3 including a servo motor (rotation drive source) 16, etc., a slide body 1 7, a hydraulic cylinder 1 Different from the above-mentioned main shaft reciprocating drive unit 4 including 8 etc. '
  • the rotation main shaft 2 is rotatably supported by the slide main body 17, and the slide main body 17 is provided on the guide port or rail 21 extending in the vertical direction on the machine body 20 so as to be movable up and down.
  • the slide main body 17 is provided on the guide port or rail 21 extending in the vertical direction on the machine body 20 so as to be movable up and down.
  • the piston rod 1 8 a of the hydraulic cylinder 1 8 attached to the airframe 20. Then, when the biston rod 18 a of the hydraulic cylinder 18 moves up and down, the rotary spindle 2, that is, the hounging tool 1 is moved up and down via the slide body 17.
  • the upper end 2 a of the rotary spindle 2 is spline-fitted to the spindle drive shaft 15 provided rotatably on the head portion 20 a of the airframe 20, and is attached to the spindle drive shaft 15. On the other hand, they are relatively movable in the vertical direction (axial direction) and are connected so as to be rotatable together.
  • the upper end 2 a of the rotary main shaft 2 is pivotally supported on the head portion 20 a of the airframe 20 by the rotary spline device 22 2 and coaxially with the main shaft drive shaft 15. It is connected.
  • the rotary spindle 2 is pivotally supported by the rotary spline device 22 so that the rotary spindle 2 can move and rotate in the vertical direction (axial direction) relative to the machine body 20.
  • the main shaft drive shaft 15 rotatably supported by the head portion 20 a through the tally spline device 22 can move relative to the vertical direction and can be integrally engaged in the rotational direction. It is connected.
  • a rotary pole spline (trade name) is used.
  • the rotary main shaft 2 integrally connected to the main shaft drive shaft 15 is movable and rotatable relative to the machine body 20 in the vertical direction (axial direction).
  • the above-mentioned Hoengu-To-Nole protector 7 is provided at the upper end of the above-mentioned main shaft drive shaft 15 that rotates integrally with the rotary main shaft 2. It is connected to the drive. .
  • the honing tool protection unit 7 prevents and protects the honing tool 1 from being damaged or broken. As described above, the honing tool protection unit 7 is provided on the main shaft drive shaft 15 in the illustrated embodiment. It is.
  • the concrete structure of the honing tool protection unit 7 is shown in FIG. 2, and is composed mainly of a magnetic coupling device (magnetic coupling means) 25.
  • the magnetic force pulling device 25 transmits the rotational force of the servo motor 16 of the main shaft reciprocating drive unit 4 serving as the main shaft rotational drive source to the rotary main shaft 2 by magnetic action.
  • the annular magnet coupling (magnetic force coupling device) 25 of the illustrated embodiment is provided on the main shaft drive shaft 15 of the main shaft reciprocating drive unit 4 as described above, and is drivingly connected to the servo motor 16.
  • a drive-side magnet ring member 30 and a driven-side magnet ring member 3 1 integrally connected to the rotation main shaft 2 in the rotational direction are provided.
  • the pair of magnet ring members 30 and 31 are arranged such that their annular magnet surfaces 30 a and 31 a are opposed to each other in parallel and concentrically in a non-contact state. 3 from the magnetic transmission torque T M generated between 1 a, the rotational force of the drive-side the magnet string member 3 0 is configured to be transmitted to the driven side magnet ring member 3 1.
  • the drive side and driven side magnet ring members 30 and 3 1 are annularly formed on the opposite surface (upper surface in FIG. 3) of the ring member body 3 2 as shown in FIG.
  • the permanent magnets 3 3 are integrally fixed in an embedded state, and the annular flat surfaces 3 3 a of the annular permanent magnets 3 3 are the annular magnets of the drive side and driven side magnet ring members 30 and 31.
  • Surfaces 3 0 a and 3 1 a are formed, respectively.
  • the drive-side magnet ring member 30 is rotatably supported by a bearing 35 on the main shaft drive shaft 15 and is coaxial with the transmission pulley 36. And is connected to a transmission pulley 3 8 attached to the motor shaft of the servo motor 16 through the transmission pulley 3 6 force transmission belt 3 7.
  • the driven-side magnet ring member 31 is screwed and fixed onto the main shaft drive shaft 15 so as to be capable of screwing back and forth in the axial direction, and integrated with the rotary main shaft 2 in the rotational direction. Drive coupled.
  • the annular magnet surfaces 30a, 31a of the magnet ring members 30, 31 are arranged in parallel and concentrically in a non-contact state with a predetermined magnetic action gap G as shown in the figure.
  • the ability to transmit the rotational force of the magnetic coupling device 25, that is, the magnetic transmission torque T M is set by the magnetic action gap G formed between the two annular magnet surfaces 30a and 31a.
  • the driving side and driven side magnet ring members 30, 3 1 are relatively movable in the axial direction of the rotating main shaft 2, so that the annular magnet surface 30 a, The size of the magnetic action gap G between 3 1 a is changed, and the magnetic transmission torque TM is adjusted.
  • the driven-side magnet ring member 3 is screwed and fixed on the main shaft drive shaft 15 so as to be capable of screwing back and forth in the axial direction. 1 is screwed in the axial direction with respect to the spindle drive shaft 15 to adjust the magnetic action gap G to an appropriate size, whereby the size of the magnetic transmission torque T M is set to a predetermined value. It is set as the structure.
  • the magnetic transmission torque T M is set to be equal to or lower than a predetermined torque load applied to the hounging tool 1, and the predetermined torque load is at least a value smaller than a breaking torque at which the honing tool 1 breaks, Desirably, a value smaller than the allowable torque of honing tool 1 is set.
  • the predetermined torque load is set to a value smaller than the allowable torque of the honing tool 1.
  • the rotation speed of the servo motor 16 that drives and controls the rotational operation of the hounging tool 1 is detected by a position detector 39 such as a built-in rotary encoder. 1... Gives cutting action to the above-mentioned Houng to ⁇ ⁇ ⁇ ⁇ ⁇ cone rod 1 1 (Fig. 4), a cutting drive unit 40 for moving this cone head 1 1 up and down and a servo motor as a drive source. 4 1 etc. are provided.
  • the cutting drive unit 40 has a conventionally known structure, and is connected to the motor shaft of the servo motor 41 through a rotation transmission mechanism 42 provided in the head unit 20 a of the machine body 20.
  • the rotation amount of the servo motor 41 that drives and controls the expansion / contraction amount of the honing grindstones 10, 10,... Is detected by a position detector 43 such as a built-in rotary encoder.
  • the device control unit 6 automatically controls the operation of each drive unit of the honing machine in conjunction with each other.
  • the device control unit 6 is a microcomputer including a CPU, ROM, RAM, and I ⁇ port. It is configured.
  • the device control unit 6 incorporates a machining program for executing hounging machining.
  • the device control unit 6 is provided on the slide body 1 7.
  • the position detector 46 which detects the position of the slide body 17 from the scale 45, and other driving units are electrically connected, and actual value information obtained from these forces is preset. The operation of each drive unit 3, 4 and 5 is driven and controlled based on the calculation result.
  • the drive units 3, 4, and 5 are automatically controlled in association with each other by the device control unit 6.
  • the workpiece holding jig 50 is fixed to the inner peripheral surface of the workpiece W by a fixed amount or constant dimension, that is, a predetermined depth of cut over the entire honing area (that is, the stroke width S in Fig. 4). A uniform honing process is performed.
  • the workpiece W is defective (for example, the diameter of the hole inner diameter surface of the workpiece W is smaller than the standard, for example, the pre-curve accuracy is out of the standard, etc.), the hounging whetstones 10, 10, clogged Honin due to misfeeding by control or mistake of control program
  • the honing meteorites 1 0, 1 0, ... of the tool 1 may bite into the workpiece W, causing an excessive torque load on the houng tool 1.
  • the magnetic coupling device 25 is integrally connected to the rotation side main shaft 2 in the rotational direction by a driving side magnet ring member 30 that is drivingly connected to the servomotor 16 that is a rotational driving source.
  • a driving side magnet ring member 30 that is drivingly connected to the servomotor 16 that is a rotational driving source.
  • the annular magnet surfaces 3 0 a and 3 1 a of the magnet ring members 30 and 31 are parallel to each other in a non-contact state.
  • the magnetic transmission torque T M is set by the magnetic action gap G formed between the two annular magnet surfaces 30 a and 3 1 a. It is possible to provide a magnetic coupling device 2 5 that is simple and has few failures. wear.
  • the magnetic coupling device 25 having such a structure can be incorporated into the existing machine tool with a slight improvement, and is versatile and economical.
  • This embodiment is shown in FIG. 5 and FIG. 6, and the specific configuration of the magnet coupling (magnetic coupling device) 25 in the first embodiment is modified.
  • annular magnet coupling 25 of the illustrated embodiment a pair of upper and lower magnet ring members 1 3 0 and 1 3 1 are shown in FIG. 5 as opposed to the ring member main body 1 3 2 (FIG. 5).
  • a plurality of permanent magnets 1 3 3, 1 3 3,... are integrally fixed in an embedded manner at equal intervals in the circumferential direction to form at least one annular magnet array.
  • a plurality of annular magnet arrays with different arrangement diameters, specifically, two annular magnet arrays 1 34 and 1 35 are arranged concentrically.
  • the annular flat surfaces 1 34 a and 1 35 a of the annular magnet rows 1 34 and 1 3 5 are the annular magnet surfaces 1 30 a and 1 3 1 of the driving side and the driven side magnet ring members 1 30 a , 1 3 1 a, respectively.
  • Fig. 6 (a) The arrangement of the permanent magnets 1 3 3, 1 3 3, ... and 1 3 3, 1 3 3, '"in the two annular magnet rows 1 34, 1 3 5 is shown in Fig. 6 (a). As shown in Fig. 6 (b), they are arranged with a slightly shifted phase angle.
  • the slip effect is more pronounced as the number of divided permanent magnets on the annular magnet surfaces 1 30 a and 1 3 1 a, that is, the number of divided permanent magnets 1 3 3, 1 3 3,.
  • the torque load on the hounging tool 1 is reduced (reduced time), but the manufacturing cost and the equipment cost are also increased, so that it is appropriate depending on the purpose of the required effect of reducing the torque load. It is determined.
  • FIG. 7 This embodiment is shown in FIG. 7, in which the configuration of the honing tool protection unit 7 in Embodiment 1 is modified.
  • the magnetic action gap G between the annular magnet surfaces 30a and 31a of the driving side magnet ring 30 and the driven side magnet ring member 31 is manually and
  • the magnetic action gap G is configured to be automatically and variably adjustable.
  • the honing tool protection unit 7 is composed mainly of a magnetic coupling device (magnetic coupling means) 2 2 5, and this magnetic coupling device 2 2 5 is the same as that of the first embodiment. Similarly, it is in the form of an annular magnet coupling provided on the main shaft drive shaft 15 of the main shaft reciprocating drive section 4.
  • the annular magnet coupling 2 2 5 includes a drive-side magnet ring member 2 3 0: drivingly connected to the servo motor 1 6 and a driven-side magnet ring member 2 integrally driven and connected to the rotating main shaft 2 in the rotation direction. 3 with 1 and these Gap adjustment part (gap adjustment means) 2 5 0 that automatically adjusts the size of the magnetic action gap G between the ring magnet surfaces 2 3 0 a and 2 3 1 a on both magnet ring members 2 3 0 and 2 3 1 Prepare.
  • the gear-up adjusting portion 2 5 0 is configured to move both the magnet ring members 2 3 0 and 2 3 1 relative to the rotation main shaft 2 in the axial direction.
  • One of the driven magnet ring members 2 3 0 and 2 3 1 is configured to move in the axial direction of the rotary main shaft 2.
  • the gear adjustment unit 2 5 0 of this embodiment includes a ring member moving unit (moving means) 2 5 1 that moves the driven magnet ring member 2 3 1 in the axial direction of the rotating main shaft 2, and the ring member moving unit 2 5
  • the main part is a gap control unit (gap control means) 2 5 2 for controlling 1.
  • the two magnet ring members 2 3 0 and 2 3 1 are arranged so that their annular magnet surfaces 2 3 0 a and 2 3 1 a face each other in parallel and concentrically without contact.
  • the rotational force of the drive side magnet ring member 2 3 0 is transmitted to the driven side magnet ring member 2 3 1 from the magnetic transmission torque T M generated between the two annular magnet surfaces 2 3 0 a and 2 3 1 a.
  • the driven-side magnet ring member 2 3 1 is configured to be slidable in the axial direction of the rotary main shaft 2.
  • the drive-side magnet ring member 2 3 0 is rotatably supported by the bearing 35 on the main shaft drive shaft 15 and the first embodiment and is integrally coupled to the transmission pulley 3 6 in a coaxial manner.
  • the transmission pulley 36 is connected to a transmission pulley 38 attached to the motor shaft of the servo motor 16 via a transmission belt 37.
  • the driven magnet ring member 2 3 1 is supported by the key fitting 2 5 5 on the main shaft drive shaft 15 and is slidable in the axial direction with respect to the main shaft drive shaft 15. It is configured to rotate integrally with the drive shaft 15.
  • the driven-side magnet ring member 2 31 is connected to the ring member moving portion 25 1.
  • the specific configuration of the annular magnet surfaces 3 0 a and 3 1 a of the drive side and driven side magnet ring members 2 3 0 and 2 3 1 is the same as the annular magnet surfaces 3 0 a and 3 1 a of Embodiment 1. (Refer to Fig. 3) Or, the same as the annular magnet surface 1 30 0a, 1 3 1 a (see Fig. 5 and 6) of the second embodiment. It is said that.
  • the ring member moving portion 2 5 1 includes a feed screw mechanism 2 60 connected to the driven side magnet ring member 2 3 1 and a drive motor 2 6 as a rotational drive source that rotationally drives the feed screw mechanism 2 6 0. 1 are provided as main parts, and these constituent parts 2 60 and 2 61 are provided at positions adjacent to the rotary spindle 2 in the airframe 20.
  • the feed screw mechanism 2 60 is in the form of a pole screw, and a support frame 2 6 a in which a screw member 2 60 a is provided upright on the head portion 2 0 a of the airframe 20. 2 is supported so as to be able to rotate in a state of being parallel or perpendicular to the axis of the rotary main shaft 2, and the base end portion, that is, the upper end portion of the reduction gear 2 6 4 via the coupling 2 6 3
  • the reduction shaft 2 6 4 is connected to the drive shaft 2 6 4 a coaxially and is connected to the motor shaft (not shown) of the drive motor 2 6 1.
  • a nut member 2 60 b is screwed and supported by the screw member 2 60 a so as to be able to advance and retract in the vertical direction, and the nut member 2 6 0 b is supported by the coupling mechanism 2 6 6.
  • the coupling mechanism 2 6 6 Are connected to the driven magnet ring member 2 31.
  • connection mechanism 2 6 6 includes a connection member 2 6 6 a and a support member 2 6 6 b.
  • One end of the connecting member 2 6 6 a is connected and fixed to the nut member 2 60 b in a horizontal state, and the other end is connected and fixed to the support member 2 6 6 b.
  • the support member 2 6 6 b is integrally provided in the axial direction so as to be rotatable via a bearing 2 6 6 c on the outer peripheral portion of the driven magnet ring member 2 3 1.
  • the drive motor 2 6 1 rotates and drives through the speed reducer 2 6 4
  • the screw member 2 6 0a of the screw mechanism 2 6 0 rotates forward or backward at a predetermined speed, and the nut member 2 6 0 b on the screw member 2 6 0 a moves up or down.
  • the driven-side magnet ring member 2 31 that is integrally connected to the base member 26 0 a via the coupling mechanism 2 6 6 moves up or down on the main shaft drive shaft 15, so that the drive-side magnet As a result, the ring member 2 3 0 is separated or approached. Saga wide or narrow is adjusted, and that these ring magnet surface 3 0 a, 3 the magnetic transmission torque T M produced between 1 a is adjusted.
  • the gear-up control unit 25 2 2 controls the ring member moving unit 25 1 so that the magnetic transmission torque T M is automatically adjusted in accordance with the rotational speed of the rotary spindle 2. It constitutes a part of the control unit 6 (see the two-dot chain line in Fig. 1).
  • the gap control unit 2 52 is composed of a calculation unit 2 5 2 a and a motor drive unit 2 5 2 b.
  • the rotation main shaft 2 that is, the main shaft drive shaft 1 5
  • a detection signal from a rotation detection sensor 27 0 0 such as a rotary encoder that detects the number of rotations is input to the calculation unit 2 5 2 a, and the calculation unit 2 5 2 a receives the input detection value (rotation Number) is compared with a preset set value (rotation speed) R, and based on the calculation result, the control signal corresponding to the rotation speed of the rotary spindle 2 detected by the rotation detection sensor 2 70 is Output to the motor drive unit 2 5 2 b, and a movement pulse is sent from the motor drive unit 3 2 b to the drive motor 2 6 1.
  • the value corresponding to the number of revolutions when the rotary spindle 2, that is, the honing tool 1 processes the workpiece W is set as the set value R preset in the gap control unit 2 52.
  • the magnetic transmission torque T M is set to a predetermined start torque value, and the rotation main shaft 2 ⁇
  • the magnetic transmission torque T M is controlled.
  • the rotating spindle 2 when the rotating spindle 2 starts rotating (until the rotating spindle 2 reaches 0 ⁇ the maximum rotating speed required for machining), the rotating spindle 2 rotates in a stopped state.
  • a large initial follow-up torque (larger than the follow-up torque when the rotation speed of the rotating spindle 2 is the maximum rotation speed required for machining) is required to follow the rotation movement of the servo motor 16 described above. Therefore, this initial follow-up torque is set to be adopted as the starting torque value.
  • the above-described gearup adjustment unit 2550 starts the rotary spindle 2 from a stopped state to a predetermined number of rotations (this embodiment)
  • the magnetic force between the annular magnet surfaces 2 3 0 a and 2 3 1 a is set so that the magnetic transmission torque T M becomes a predetermined starting torque value until the maximum rotational speed required for processing is reached.
  • the magnetic transmission torque T M becomes the predetermined processing torque value.
  • the working gear G is set, and the optimum magnetic transmission torque T M corresponding to the rotational speed of the rotary spindle 2 is set and controlled.
  • the magnetic action gear gap G of the driving side and driven side magnet ring members 2 3 0 and 2 3 1 is the rotational speed of the rotating main shaft 2.
  • each component 3, 4, 5, 6, etc. of the hounging board may be other configurations as long as they have the same function.
  • the main shaft reciprocating drive unit 4 that reciprocates the rotary main shaft 2 is configured to use a hydraulic cylinder 18 as a drive source.
  • a combined configuration with a drive motor as a drive source may be a so-called hydraulic-less head configuration.
  • the rotational force of the rotational drive source is applied between the rotary spindle to which the processing tool is attached and the rotary drive source that rotates the rotary spindle.
  • Magnetic force pulling means that is transmitted to the rotary spindle by magnetic action is provided, and the magnetic transmission torque that transmits the rotational force of the magnetic force pulling means is set smaller than a predetermined torque load applied to the machining tool. Therefore, it is possible to effectively prevent and protect the machining tool from being damaged or broken by an excessive torque load.
  • the honing tool grindstone may be damaged due to a defective workpiece, clogging due to clogging of the grindstone of the machining tool, or a control program error.
  • the magnetic transmission torque in the magnetic force pulling means is set to a desired value smaller than the breaking torque of the hounging tool.
  • the rotation transmission force of the magnetic coupling means is invalidated. As a result, the hounging tool is effectively prevented from being damaged or broken.
  • the magnetic coupling means includes a drive side magnet ring member drivingly connected to the rotational drive source, and a driven side magnet ring member integrally driven and connected to the rotation main shaft in the rotation direction.
  • the annular magnet surfaces of the two magnet ring members are arranged in parallel and concentrically facing each other in a non-contact state, and a magnetic action gap formed between these annular magnet surfaces.
  • the magnet coupling having such a structure can be incorporated into existing machine tools with a slight improvement, and is versatile and economical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

回転主軸に取り付けられた加工ツールが回転して、ワークに研削、切削等の機械加工を施す形式の工作機械において、過度なトルク負荷による加工ツールの損傷、折損等を防止保護する加工ツール保護装置を提供する。 例えばホーニング盤において、加工ツールであるホーニングツール(1)が取り付けられた回転主軸(2)と、回転主軸(2)を回転させる主軸回転駆動部(3)のサ一ボモータ(16)との間に、サ一ボモータ(16)の回転力を磁気作用により回転主軸(2)に伝達する磁気式力ップリング装置(25)を備え、磁気式カップリング装置(25)の回転力を伝える磁気伝達トルクが、ホーニングツール(1)にかかる所定のトルク負荷(例えば、ホーニングツール(1)の折損トルク)よりも小さく設定されている。これにより、過度なトルク負荷によるホーニングツール(1)の損傷、折損等を有効に防止保護することができる。

Description

明 細 書 工作機械の加工ツール保護装置およびホーニング盤
技術分野
この発明は、 工作機械の加工ツール保護装置おょぴホーユング盤に関し、 さら に詳細には、 例えばホーユング盤のホーエングツールのように.、 回転主軸に取り 付けられた加工ツールが回転して、 工作物に研削、 切削等の機械加工を施す形式 の工作機械において、 加工ツールの損傷、 折損等を防止保護する加工ツール保護 技術に関する。 背景技術
工作物 (以下、 ワークと称する。 ) の内周面を鏡面に仕上げる加工法の一つと してホーユング加工がある。 このホーユング加工においては、 砥石を備えたホー ユングツールとワークを相対的に浮動の状態におくとともに、 ホーニングツール に回転動作と往復動作を与えて、 ばね弾発力等によるホーユングッールの砥石の 拡張によりワーク内周面に精密仕上げを行う。
ところで、 従来のホーニング盤においては、 装置機械自体を保護する構成は備 えているものの、 加工ツールであるホーニングツールを保護する構成は備えてお らず、 i ) ワークの不良 (例えば、 ワークの穴径が規格よりも小さい等、 前カロェ 精度が規格外であるなど) 、 ii) 砥石の目詰まりによる嚙みこみ、 あるいは iii ) 制御プログラムミス (人為的ミス) などにより、 ホーニングツールの砥石がヮ ークに食い付いてしまい、 ホーユングツールに過度なトルク負荷が生じることが める。 この場合、 ホーニングツールが比較的大径であれば、 砥石の食い付きで異常が 分かるが、 小径だとホーニングツール自体の強度が上記トルク負荷に負けて折損 してしまうという状況があった。 '
しかしながら、 ホーユングツー は比較的高価な部品であるばかりでなく、 そ の交換作業は熟練を要するとともに複雑であり、 装置の復旧に時間がかかるとい う問題があり、 その改善が要望されていた。
このような問題は、 ホーニング盤に限られず、 ポール盤や中ぐり盤等の回転主 軸に取り付けられた加工ツールが回転して、 ワークに研削、 切削等の機械加工を 施す形式の他の工作機械にも共通するものであった。 なお、 本出願人の知る限りにおいて、 このような点に着目 ·改良した先行技術 はまだ存在しない。
本発明は、 かかる従来の問題点に鑑みてなされたものであって、 その目的とす るところは、 回転主軸に取り付けられた加工ツールが回転して、 ワークに研削、 切削等の機械加工を施す形式の工作機械において、 過度なトルク負荷による加工 ツールの損傷、 折損等を防止保護する加工ツール保護装置を提供することにある。 また本発明の他の目的とするところは、 上記加工ツール保護装置を備えたホー ユング盤を提供することにある。
発明の開示
上記目的を達成するため、 本発明の加工ツール保護装置は、 回転主軸に取り付 けられた加工ツールが回転して、 ワークに研削、 切削等の機械加工を施す形式の 工作機械において、 上記加工ツールの損傷、 折損等を防止保護するものであって、 上記回転主軸とこの回転主軸を回転させる回転駆動源との間に、 回転駆動源の回 転力を磁気作用により上記回転主軸に伝達する磁気式カツプリング手段を備え、 この磁気式力ップリング手段の上記回転力を伝える磁気伝達トルクは、 上記ホー ニングツールにかかる所定のトルク負荷よりも小さく設定されていることを特徴 とする。
好適な実施態様として、 以下の構成が採用される。
( 1 ) 上記所定のトルク負荷は、 上記ホーニングツールが折損する折損トルクよ りも小さい値に設定される。
( 2 ) 上記磁気式カップリング手段は、 上記回転主軸と同軸上に配置された環状 マグネットカツプリングの形態とされ、 この環状マグネットカップリングは、 上 記回転駆動源に駆動連結された駆動側マグネットリング部材と、 上記回転主軸に 回転方向へ一体的に駆動連結された従動側マグネットリング部材とを備え、 'これ ら両マグネットリング部材は、 その環状マグネット面が無接触状態で平行にかつ 同心状に対向配置されて、 これら両環状マグネット面間に形成される磁気作用ギ ャップにより上記磁気伝達トルクが設定される。
( 3 ) 上記駆動側および従動側マグネットリング部材は、 上記回転主軸の軸方向 へ相対的に移動可能とされて、 これにより、 上記環状マグネット面間の上記磁気 作用ギャップの大きさが変更されて、 上記磁気伝達トルクが調整される構成とさ れる。
( 4 ) 上記駆動側および従動側マグネットリング部材を上記回転主軸に軸方向へ 相対的に移動させて、 上記磁気作用ギヤップの大きさを調整するギヤップ調整手 段を備え、 このギャップ調整手段は、 上記駆動側および従動側マグネットリング 部材のいずれか一方を上記回転主軸の軸方向へ移 ¾させる移動手段と、 この移動 手段を制御するギャップ制御手段とを備えてなり、 このギャップ制御手段は、 上 記磁気伝達トルクが上記回転主軸の回転数に対応して調整されるように、 上記移 動手段を制御する構成とされる。
( 5 ) 上記ギャップ制御手段は、 上記回転主軸が停止状態から起動して所定の回 転数に達するまでは、 上記磁気伝達トルクが所定の起動用トルク値となるように 、 また上記回転主軸の回転数が上記所定の回転数に達したら、 上記磁気伝達トル クが所定の加工用トルク値になるように、 上記移動手段を制御する構成とされる
( 6 ) 上記移動手段は、 上記駆動側および従動側マグネットリング部材のいずれ か一方に連結された送りねじ機構と、 この送りねじ機構を回転駆動する回転駆動 源とを備えてなり、 上記送りねじ機構のナツト部材が上記駆動側およぴ従動側マ グネットリング部材のいずれか一方に連結固定されるとともに、 このナツト部材 を螺進退動作させるねじ部材が上記回転主軸の軸線に平行に配される。
( 7 ) 上記駆動側およぴ従動側マグネットリング部材は、 リング部材本体の対向 面に、 環状の永久磁石が設けられて、 前記環状マグネット面が形成される。
( 8 ) 上記駆動側および従動側マグネットリング部材は、 リング部材本体の対向 面に、 円周方向へ等間隔をもって配された永久磁石からなる少なくとも一つの環 状磁石列を備えてなり、 この環状磁石列により上記環状マグネット面が形成され る。
( 9 ) 上記リング部材本体の対向面に、 配列径の異なる複数の上記環状磁石列が 同心状に配される。
また、 本願発明のホーニング盤は、 ワークの内周面の軸線方向へ往復移動可能 とされるとともに、 軸線まわりに回転可能に軸支されてなる回転主軸と、 回転主 軸を軸線回りに回転駆動する主軸回転手段と、 回転主軸を上記内周面の軸線方向 へ往復動作させる主軸往復駆動部と、 回転主軸先端に装着され、 上記内周面に沿 つた砥石面を有するホーニング砥石を拡縮可能に備えるホーニングッールと、 こ のホーユングツールのホーニング砥石に所定の切込み動作を与える砥石切込み手 段と、 上記回転主軸と上記主軸回転手段の駆動伝達経路に設けられて、 上記ホー ユングツールの損傷、 折損等を防止保護するホーユングツール保護手段と、 上記 主軸回転手段、 主軸往復手段および砥石切込み手段の動作を相互に連動して自動 制御する制御手段とを備えてなり、 上記ホーニングッ^ "ル保護手段は、 上述した 本願発明の加工ッ一ノレ保護装置により構成されていることを特徴とする 図面の簡単な説明
第 1図は、 本発明に係る実施形態 1であるホーユング盤の概略構成を一部断面 で示す正面図である。
第 2図は、 同ホーユング盤のホーユングツール保護部を拡大して一部断面で示 す正面図である。
第 3図は、 同ホーユングツール保護部のマグネットリング部材を示す斜視図で ある。
第 4図は、 同ホーユング盤のホーニング砥石によるワーク内周面の加ェ状態を 拡大して示す正面断面図である。
第 5図は、 本発明に係る実施形態 2であるホーユング盤におけるホーニングッ ール保護部のマグネットリング部材を示す斜視図である。
第 6図は、 同マグネットリング部材の環状マグネット面における永久磁石の配 列構成を示す平面図である。
第 7図は、 本発明に係る実施形態 3であるホーニング盤のホーニングツール保 護部を拡大して一部断面で示す正面図である。
第 8図は、 同ホーユングツール保護部のギヤップ制御部の構成を示すプロック 図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
実施形態 1
本発明に係るホーニング盤を第 1図に示し、 このホー-ング盤は、 具体的には 第 4図に示すように、 ワーク Wの円筒状の加工穴の内周面 W aを加工する立形の もので、 先端にホーユングツール 1を備える回転主軸 2、 主軸回転駆動部 (主軸 回転手段) 3、 主軸往復駆動部 (主軸往復手段) 4、 砥石切込み部 (砥石切込み 手段) 5および装置制御部 (制御手段) 6などを主要部として備えるとともに、 上記回転主軸 2と上記主軸回転駆動部 3の駆動伝達経路に、 ホーユングツール保 護部 (ホーユングツール保護手段、 加工ツール保護装置) 7を備えてなる。
ホー-ングツール (いわゆるホーユングヘッド) 1は、 回転主軸 2の先端つま り下端 2 aに交換可能に装着されている。
このホーユングツール 1の内部には、 第 4図に示すように、 径方向へ拡縮可能 に配された複数のホーニング砥石 1 0、 1 0、 ··'、 これらホーニング砥石を拡張 動作させるコーンロッド 1 1およびホーユング砥石 1 0、 1 0、 …を復帰動作さ せる復帰ばね (図示省略) 等を備える。
各ホーユング砥石 1 0は、 ワーク Wの内周面 W aに沿った砥石面 1 0 aを有す る。 また、 コーンロッド 1 1は、 上記ホーニングツール 1内において上下方向へ 移動可能に設けられており、 その先端ゥエッジ 1 1 aが各ホーニング砥石 1 0の 砥石台 1 0 bを押圧する砥石拡張部とされるとともに、 その上部である基部口ッ ド 1 1 bが、 後述する砥石拡張ロッド 3 5に連結されている。 また、 図示しない が、 ホーユング砥石 1 0、 1 0、 …は上記復帰ばねにより常時縮閉方向へ弹発的 に付勢されている。
そして、 上記ホーエング砥石 1 0、 1 0、 …は、 上記コーンロッド 1 1の下動 に伴って拡開動作される一方、 コーンロッド 1 1の上動に伴って上記復帰ばねに より縮閉動作されることとなる。
回転主軸 2は、 その下端にホーユングツール 1を備えるとともに、 主軸駆動軸 1 5、 サーポモータ (回転駆動源) 1 6等を含む上記主軸回転駆動部 3と、 スラ ィド本体 1 7、 油圧シリンダ 1 8等を含む上記主軸往復駆動部 4とにそれぞれ違 係されている。 ' すなわち、 回転主軸 2はスライド本体 1 7に回転可能に軸支されており、 この スライド本体 1 7が、 機体 2 0上の上下方向へ延びる案内口ッドまたはレール 2 1上に昇降可能に設けられるとともに、 機体 2 0に取り付けられた油圧シリンダ 1 8のピストンロッド 1 8 aに連結されている。 そして、 この油圧シリンダ 1 8 のビストンロッド 1 8 aが昇降動作することにより、 スライド本体 1 7を介して、 回転主軸 2つまりはホーユングツーノレ 1が昇降動作されることとなる。
また、 回転主軸 2の上端部 2 aは、 機体 2 0のへッド部 2 0 aに回転可能に設 けられた主軸駆動軸 1 5にスプライン嵌合されて、 この主軸駆動軸 1 5に対して、 上下方向 (軸線方向) へ相対的に移動可能でかつ一体回転可能に連結されている。 具体的には、 回転主軸 2の上端部 2 aが、 ロータリスプライン装置 2 2により、 機体 2 0のへッド部 2 0 aに軸支されるとともに、 上記主軸駆動軸 1 5に同軸上 に接続されている。
そして、 このロータリスプライン装置 2 2の軸支作用により、 回転主軸 2は、 上記機体 2 0に対して上下方向 (軸線方向) へ相対的に移動可能でかつ回転可能 とされる一方、 上記口一タリスプライン装置 2 2を介して上記へッド部 2 0 aに 回転可能に支持された主軸駆動軸 1 5に対して上下方向へ相対的に移動可能でか つ回転方向に一体的に係合接続されている。 図示の実施形態のロータリスプライ ン装置 2 2としては、 ロータリポールスプライン (商品名) が用いられている。 これにより、 主軸駆動軸 1 5と一体接続された回転主軸 2は、 上記機体 2 0に対 して、 上下方向 (軸線方向) へ相対的に移動可能でかつ回転可能とされている。 回転主軸 2と一体回転する上記主軸駆動軸 1 5の上端部には、 上記ホーエング ツーノレ保護部 7が設けられており、 このホーユング保護部 7を介して、 主軸駆動 軸 1 5が上記サーポモータ 1 6に駆動連結されている。 .
ホーニングツール保護部 7は、 ホーニングツール 1の損傷、 折損等を防止保護 するもので、 上述のごとく図示の実施形態においては、 主軸駆動軸 1 5に設けら れている。
このホーニングツール保護部 7は、 その具体的構造が第 2図に示されており、 磁気式カツプリング装置 (磁気式カツプリング手段) 2 5を主要部として構成さ れている。
磁気式力ップリング装置 2 5は、 主軸回転駆動源である主軸往復駆動部 4のサ ーボモータ 1 6の回転力を磁気作用により上記回転主軸 2に伝達するもので、 具 体的には、 回転主軸 2と同軸上に配置された環状マグネットカップリングの形態 とされている。
図示の実施形態の環状マグネットカップリング (磁気式力ップリング装置) 2 5は、 上述したように主軸往復駆動部 4の主軸駆動軸 1 5上に設けられており、 サーポモータ 1 6に駆動連結された駆動側マグネットリング部材 3 0と、 上記回 転主軸 2に回転方向へ一体的に駆動連結された従動側マグネットリング部材 3 1 とを備えてなる。
これら一対のマグネットリング部材 3 0、 3 1は、 その環状マグネット面 3 0 a、 3 1 aが無接触状態で平行にかつ同心状に対向配置されて、 これら両環状マ グネット面 3 0 a、 3 1 a間に生じる磁気伝達トルク TMより、 駆動側マグネッ トリング部材 3 0の回転力が従動側マグネットリング部材 3 1へ伝達される構成 とされている。
具体的には、 駆動側およぴ従動側マグネットリン.グ部材 3 0、 3 1は、 第 3図 に示すように、 リング部材本体 3 2の対向面 (第 3図において上面) に、 環状の 永久磁石 3 3が埋設状に一体固定された構造とされ、 この環状の永久磁石 3 3の 環状平坦面 3 3 aが、 駆動側および従動側マグネットリング部材 3 0、 3 1の環 状マグネット面 3 0 a、 3 1 aをそれぞれ形成している。
駆動側マグネットリング部材 3 0は、 第 2図に示すように、 上記主軸駆動軸 1 5上に軸受 3 5により回転可能に軸支されるとともに、 伝動プーリ 3 6と同軸状 に一体結合され、 この伝動プーリ 3 6力 伝動^ ルト 3 7を介して、 上記サーポ モータ 1 6のモータ軸に取り付けられた伝動プーリ 3 8に連結されている。 一方 、 従動側マグネットリング部材 3 1は、 第 2図に示すように、 上記主軸駆動軸 1 5上に軸方向へ螺進退調整可能に螺合固定されて、 上記回転主軸 2に回転方向へ 一体的に駆動連結されている。
上記両マグネットリング部材 3 0、 3 1の環状マグネット面 3 0 a、 3 1 aは 、 図示のごとく、 所定の磁気作用ギャップ Gをもって無接触状態で平行にかつ同 心状に対向配置されており、 これら両環状マグネット面 3 0 a、 3 1 a間に形成 される磁気作用ギャップ Gにより、 磁気式カツプリング装置 2 5の回転力を伝え る能力つまり上記磁気伝達トルク TMが設定される。
これに関連して、 上記駆動側および従動側マグネットリング部材 3 0、 3 1は 、 上記回転主軸 2の軸方向へ相対的に移動可能とされて、 これにより、 上記環状 マグネット面 3 0 a、 3 1 a間の磁気作用ギャップ Gの大きさが変更されて、 上 記磁気伝達トルク T Mが調整される構成とされている。
図示の実施形態においては、 上述したように、 従動側マグネットリング部材 3 1が主軸駆動軸 1 5上に軸方向へ螺進退調整可能に螺合固定されていることから 、 従動側マグネットリング部材 3 1を主軸駆動軸 1 5に対して軸方向へ螺進させ て、 上記磁気作用ギャップ Gを適宜の大きさに調整することで、 上記磁気伝達ト ルク TMの大きさが所定値に設定される構成とされている。
具体的には、 上記磁気伝達トルク TMは、 ホーユングツール 1にかかる所定の トルク負荷以下に設定され、 この所定のトルク負荷は、 少なくともホーニングッ ール 1が折損する折損トルクよりも小さい値、 望ましくはホーニングツール 1の 許容トルクよりも小さい値に設定される。 図示の実施形態においては、 上記所定 のトルク負荷がホーニングツール 1の許容トルクよりも小さい値に設定されてい る。 そして、 上記サーボモータ 1 6の回転駆動により、 伝動プーリ 3 8、 伝動ベル ト 3 7および伝動プーリ 3 6を介して、 駆動側マグネットリング部材 3 0が回転 されると、 その回転力は、 上記磁気伝達トルク TMの作用 (磁気作用) により従 動側マグネットリング部材 3 1に伝達されて、 これと一体となつた主軸駆動軸 1 5が回転され、 これにより、 回転主軸 2つまりはホーニングツール 1が回転駆動 されることとなる。
一方、 ホーユングツール 1にかかるトルク負荷が上記許容トルク以上になって 、 上記磁気伝達トルク TMを上回ることになると、 上記駆動側マグネットリング 部材 3 0と従動側マグネットリング部材 3 1との間に相対的な回転つまり磁気作 用におけるスリップが生じて、 駆動側マグネットリング部材 3 0の回転力は従動 側マグネットリング部材 3 1に伝達されずに遮断されることとなる。
なお、 上記ホーユングツール 1の回転動作を駆動制御するサーポモータ 1 6の 回転数は、 内蔵されたロータリエンコーダ等の位置検出器 3 9により検出される 砥石切込み部 5は、 上記ホーエング砥石 1 0、 1 0、 …に切込み動作を与える もので、 上記ホーユングツー Λ^ Ιのコーンロッド 1 1 (第 4図) 、 このコーン口 ッド 1 1を上下動させる切込み駆動部 4 0および駆動源であるサーポモータ 4 1 等を備える。
切込み駆動部 4 0は従来周知の構造で、 機体 2 0のへッド部 2 0 aに設けられ た回転伝達機構 4 2を介して、 上記サーポモータ 4 1のモータ軸に連結されてい る。
そして、 このサーポモータ 4 1の正方向への回転駆動により、 上記切込み駆動 部 4 0が駆動されて、 上記ホーニングツール 1内のコーンロッド 1 1が下方へ移 動し、 ホーニング砥石 1 0、 1 0、 …が拡張動作される。 一方、 サーボモータ 4 1の逆方向への回転駆動により、 上記コーンロッド 1 1が上方へ移動し、 ホー二 ング砥石 1 0、 1 0、 …がホーユングツール 1内の復帰ばねにより縮閉動作 (復 帰動作) される。
なお、 ホーニング砥石 1 0、 1 0、 …の拡縮量を駆動制御するサーポモータ 4 1の回転量は、 内蔵されたロータリエンコーダ等の位置検出器 4 3により検出さ れる。
装置制御部 6は、 ホーニング盤の各駆動部の動作を相互に連動して自動制御す るもので、 具体的には、 C P U、 R OM, R AMおよび I Ζθポートなどからな るマイクロコンピュータで構成されている。
この装置制御部 6には、 ホーユング加工を実行させるための加工プログラム等 が組み込まれている。
また、 上記装置制御部 6には、 サーポモータ 1 6、 油圧シリンダ 1 8の油圧制 御弁 1 8 b、 サーポモータ 4 1および位置検出器 3 9、 4 3のほか、 スライド本 体 1 7に設けられたスケール 4 5からこのスライド本体 1 7の位置を検出する位 置検出器 4 6、 ならびにその他の駆動部等が電気的に接続されており、 これら力 ら得られる実際値情報が、 予め設定された各種設定値と比較演算されて、 その演 算結果に基づき各駆動部 3、 4および 5の動作が駆動制御される。
しかして、 以上のように構成されたホー-ング盤において、 上記各駆動部 3、 4、 5は、 装置制御部 6により相互に関連して自動制御され、 これにより、 ホー ユングッ"ル 1が、 ワーク保持治具 5 0に支持されたワーク Wの穴内周面に対し て、 定量または定寸加ェ、 つまりホーニング領域全体 (つまり第 4図におけるス トローク幅 S ) にわたつて所定の切込み量をもつた均一なホーニング加工が行わ れる。
ところで、 ワーク Wの不良 (例えば、 ワーク Wの穴内径面の径寸法が規格より も小さい等、 前カ卩ェ精度が規格外であるなど) 、 ホーユング砥石 1 0、 1 0、 … の目詰まりによる嚙みこみ、 あるいは制御プログラムミスなどにより、 ホーニン グツール 1のホーニング柢石 1 0、 1 0、 …がワーク Wに食い付いてしまい、 ホ 一ユングツール 1に過度なトルク負荷が生じることがある。
このような場合に、 ホーニングツール 1にかかるトルク負荷がホーユングツー ル保護部 7における磁気式カツプリング装置 2 5の磁気伝達トルク TMを上回る ことになると、 上述したように、 上記駆動側マグネットリング部材 3 0と従動側 マグネットリング部材 3 1との間に相対的な回転が生じて、 駆動側マグネットリ ング部材 3 0の回転力は従動側マグネットリング部材 3 1に伝達されずに遮断さ れて無効とされる。 その結果、 ホ ユングツール 1の損傷、 折損が未然に有効か つ確実に防止保護される。
以上のように、 図示の実施形態のホーニング盤におけるホーニングツール保護 部 7にあっては、 ホーユングツール 1が取り付けられた回転主軸 2とこの回転主 軸 2を回転させる主軸回転駆動部 3のサーポモータ 1 6との間に、 サーポモータ 1 6の回転力を磁気作用により上記回転主軸 2に伝達する磁気式カツプリング装 置 2 5を備え、 この磁気式カツプリング装置 2 5の上記回転力を伝える磁気伝達 トルク TMが、 上記ホー-ングツール 1にかかる所定のトルク負荷よりも小さく 設定されているから、 過度なトルク負荷によるホーユングツール 1の損傷、 折損 等を有効に防止保護することができる。 . また、 上記磁気式カップリング装置 2 5が、 回転駆動源である上記サーポモー タ 1 6に駆動連結された駆動側マグネットリング部材 3 0と、 上記回転主軸 2に 回転方向へ一体的に駆動連結された従動側マグネットリング部材 3 1とを備えた 環状マグネットカップリングの形態とされて、 上記両マグネットリング部材 3 0、 3 1の環状マグネット面 3 0 a、 3 1 aが無接触状態で平行にかつ同心状に対向 配置されて、 これら両環状マグネット面 3 0 a、 3 1 a間に形成される磁気作用 ギャップ Gにより上記磁気伝達トルク TMが設定される構造とされることにより、 構造簡単でしかも故障の少ない磁気式カツプリング装置 2 5を提供することがで きる。
しかも、 このような構造の磁気式カップリング装置 2 5は、 既設の工作機械に も少しの改良を加えることで組み込むことも可能であり、 汎用性に富み経済的で ある。
実施形態 2
本実施形態は第 5図および第 6図に示されており、 実施形態 1におけるマグネ ットカツプリング (磁気式カツプリング装置) 2 5の具体的構成が改変されたも のである。
図示の実施形態の環状マグネットカツプリング 2 5において、 上下一対のマグ ネットリング部材 1 3 0、 1 3 1は、 第 5図に示すように、 リング部材本体 1 3 2の対向面 (第 5図において上面) に、 複数の永久磁石 1 3 3、 1 3 3、 …が円 周方向へ等間隔をもって埋設状に一体固定されて、 少なくとも一つの環状磁石列 を形成しており、 図示のものにおいては配列径の異なる複数の環状磁石列、 具体 的には 2つの環状磁石列 1 34、 1 3 5が同心状に配されている。
そして、 これら環状磁石列 1 34、 1 3 5の環状平坦面 1 34 a、 1 3 5 aが 、 駆動側およぴ従動側マグネットリング部材 1 3 0、 1 3 1の環状マグネット面 1 30 a, 1 3 1 aをそれぞれ形成している。
なお、 上記二つの環状磁石列 1 34、 1 3 5における永久磁石 1 3 3、 1 3 3 、 …および 1 3 3、 1 3 3、 '"の配置構成は、 第 6図 (a) に示すように同一の 位相角をもって配置され、 あるいは第 6図 (b) に示すように若干ずれた位相角 をもって配置される。
しかして、 以上のように構成されたマグネットカップリング 2 5においては、 その磁気伝達トルク TMをホーニングツール 1にかかるトルク負荷が上回ること になった場合の、 駆動側マグネットリング部材 3 0と従動側マグネットリング部 材 3 1との間に生じる相対的な回転つまり磁気作用におけるスリップが、 実施形 態 1のような環状の永久磁石 3 3により環状マグネット面 3 0 a、 3 1 aが形成 される場合に比較して、 細分化されて円滑なものとなり、 その結果、 ホーユング ツール 1に対するトルク負荷も軽減 (短時間化) されて、 よりホーニングツール
1の有効保護につながる。
なお、 このようなスリップ効果は、 環状マグネット面 1 3 0 a、 1 3 1 aにお ける永久磁石の分割数つまり分割形成された永久磁石 1 3 3、 1 3 3、 …の数が 多いほど、 ホーユングツール 1に対するトルク負荷が軽減 (短時間化) されるが 、 製作コストさらには装置コストは逆に高くなることから、 要求されるトルク負 荷の軽減化効果等の目的に応じて適宜決定される。
その他の構成および作用は実施形態 1と同様である。
実施形態 3
本実施形態は第 7図に示されており、 実施形態 1におけるホーニングツール保 護部 7の構成が改変されたものである。
すなわち、 実施形態 1のホーニングツール保護部 7においては、 駆動側マグネ ットリング 3 0と従動側マグネットリング部材 3 1の環状マグネット面 3 0 a、 3 1 a間の磁気作用ギャップ Gが手作業でかつ固定的に調整可能な構成とされて いるが、 本実施形態のホーニングツール保護部 7においては、 上記磁気作用ギヤ ップ Gが自動でかつ可変的に調整可能な構成とされている。
具体的には、 ホーニングツール保護部 7は、 磁気式カップリング装置 (磁気式 カップリング手段) 2 2 5を主要部として構成され、 この磁気式カップリング装 置 2 2 5は、 実施形態 1と同様、 主軸往復駆動部 4の主軸駆動軸 1 5上に設けら れた環状マグネットカップリングの形態とされている。
この環状マグネットカップリング 2 2 5は、 サーポモータ 1 6に駆動連結され た駆動側マグネットリング部材 2 3 0:と、 上記回転主軸 2に回転方向へ一体的に 駆動連結された従動側マグネットリング部材 2 3 1とを備えるとともに、 これら 両マグネットリング部材 2 3 0、 2 3 1における環状マグネット面 2 3 0 a、 2 3 1 a間の磁気作用ギャップ Gの大きさを自動調整するギャップ調整部 (ギヤッ プ調整手段) 2 5 0を備えてなる。 , このギヤップ調整部 2 5 0は、 上記両マグネットリング部材 2 3 0、 2 3 1を 回転主軸 2に軸方向へ相対的に移動させる構成とされ、 具体的には、 上記駆動側 およぴ従動側マグネットリング部材 2 3 0、 2 3 1のいずれか一方を回転主軸 2 の軸方向へ移動させる構成とされる。
本実施形態のギヤップ調整部 2 5 0は、 従動側マグネットリング部材 2 3 1を 回転主軸 2の軸方向へ移動させるリング部材移動部 (移動手段) 2 5 1と、 この リング部材移動部 2 5 1を制御するギャップ制御部 (ギャップ制御手段) 2 5 2 とを主要部として構成されている。
この目的のため、 上記両マグネットリング部材 2 3 0、 2 3 1は、 その環状マ グネット面 2 3 0 a、 2 3 1 aが無接触状態で平行にかつ同心状に対向配置され て、 これら両環状マグネット面 2 3 0 a、 2 3 1 a間に生じる磁気伝達トルク T Mより、 駆動側マグネットリング部材 2 3 0の回転力が従動側マグネットリング 部材 2 3 1へ伝達される構成とされるとともに、 従動側マグネットリング部材 2 3 1が、 上記回転主軸 2の軸方向へ摺動移動可能な構成とされている。
具体的には、 駆動側マグネットリング部材 2 3 0は、 実施形態 1と主軸駆動軸 1 5上に軸受 3 5により回転可能に軸支されるとともに、 伝動プーリ 3 6と同軸 状に一体結合され、 この伝動プーリ 3 6が、 伝動ベルト 3 7を介して、 上記サー ポモータ 1 6のモータ軸に取り付けられた伝動プーリ 3 8に連結されている。
—方、 従動側マグネットリング部材 2 3 1は、 上記主軸駆動軸 1 5上にキー嵌 合 2 5 5により支持されて、 主軸駆動軸 1 5に対して軸方向へ摺動可能に、 かつ 主軸駆動軸 1 5と一体回転する構成とされている。 また、 この従動側マグネット リング部材 2 3 1は上記リング部材移動部 2 5 1に連結されている。 なお、 駆動側および従動側マグネットリング部材 2 3 0、 2 3 1の環状マグネ ット面 3 0 a、 3 1 aの具体的構成は、 実施形態 1の環状マグネット面 3 0 a、 3 1 a (第 3図参照) または実施形態 2の環状マグネット面 1 3 0 a、 1 3 1 a (第 5図および第 6図参照) と同様とされ、 図示の場合は実施形態 2と同様の構 成とされている。
リング部材移動部 2 5 1は、 従動側マグネットリング部材 2 3 1に連結された 送りねじ機構 2 6 0と、 この送りねじ機構 2 6 0を回転駆動する回転駆動源とし ての駆動モータ 2 6 1とを主要部として備えてなり、 これら構成部 2 6 0、 2 6 1は上記機体 2 0における回転主軸 2に隣接した位置に設けられている。
上記送りねじ機構 2 6 0は、 具体的にはポールねじの形態とされ、 ねじ部材 2 6 0 aが上記機体 2 0のへッド部 2 0 aに起立状に設けられた支持フレーム 2 6 2に、 上記回転主軸 2の軸線に平行つまり垂直状態で回転可能に軸支されるとと もに、 その基端部つまり上端部が、 カップリング 2 6 3を介して減速機 2 6 4の 駆動軸 2 6 4 aに同軸状に接続され、 この減速機 2 6 4が上記駆動モータ 2 6 1 のモータ軸 (図示省略) に駆動連結されている。
また、 上記ねじ部材 2 6 0 aには、 ナツト部材 2 6 0 bが上下方向へ螺進退可 能に螺合支持されるとともに、 このナット部材 2 6 0 bは、 連結機構 2 6 6によ り上記従動側マグネットリング部材 2 3 1に連結されている。
具体的には、 上記連結機構 2 6 6は、 連結部材 2 6 6 aおよび支持部材 2 6 6 bを備えてなる。 上記連結部材 2 6 6 aは、 その一端が上記ナツト部材 2 6 0 b に水平状態で接続固定されるとともに、 その他端が上記支持部材 2 6 6 bに接続 固定されている。 この支持部材 2 6 6 bは、 上記従動側マグネットリング部材 2 3 1の外周部に、 軸受 2 6 6 cを介して回転可能にかつ軸方向へ一体的に設けら れている。
そして、 駆動モータ 2 6 1の回転駆動により、 減速機 2 6 4を介して、 送りね じ機構 2 6 0のねじ部材 2 6 0 aが所定の速度で正回転または逆回転して、 ねじ 部材 2 6 0 a上のナット部材 2 6 0 bが上昇または下降動作し、 これにより、 ナ ット部材 2 6 0 aと連結機構 2 6 6を介して一体接続された従動側マグネットリ ング部材 2 3 1が、 上記主軸駆動軸 1 5上を上昇または下降して、 上記駆動側マ グネットリング部材 2 3 0に対して離隔または接近し、 その結果、 これら両マグ ネットリング部材 2 3 0、 2 3 1における環状マグネット面 2 3 0 a、 2 3 1 a 間の磁気作用ギャップ Gの大きさが広狭調整されて、 これら環状マグネット面 3 0 a、 3 1 a間に生じる上記磁気伝達トルク TMが調整されることとなる。
ギヤップ制御部 2 5 2は、 上記磁気伝達トルク TMが回転主軸 2の回転数に対 応して自動調整されるように、 上記リング部材移動部 2 5 1を制御するものであ り、 装置制御部 6の一部を構成している (第 1図における二点鎖線参照) 。
このギャップ制御部 2 5 2は、 第 8図に示すように、 演算部 2 5 2 aとモ タ 駆動部 2 5 2 bとから構成されており、 回転主軸 2つまりは主軸駆動軸 1 5の回 転数を検出するロータリエンコーダ等の回転検出センサ 2 7 0からの検出信号が 上記演算部 2 5 2 aに入力されて、 この演算部 2 5 2 aが、 この入力された検出 値 (回転数) を予め設定された設定値 (回転数) Rと比較演算して、 その演算結 果に基づき、 回転検出センサ 2 7 0で検出された回転主軸 2の回転数に対応した 制御信号を上記モータ駆動部 2 5 2 bに出力し、 このモータ駆動部 3 2 bから駆 動モータ 2 6 1に移動パルスが送られる。
図示の実施形態においては、 上記ギャップ制御部 2 5 2に予め設定される上記 設定値 Rとして、 上記回転主軸 2つまりホーニングツール 1がワーク Wを加工す る際の回転数に対応した値が設定されており、 これにより、 回転主軸 2が停止状 態から起動して所定の回転数に達するまでは、 上記磁気伝達トルク TMが所定の 起動用トルク値となるように、 また上記回転主軸 2 ©回転数が上記所定の回転数 に達したら、 上記磁気伝達トルク TMが所定の加工用トルク値になるように、 上 記リング部材移動部 2 5 1を制御する構成とされている。
ここに、 上記起動用トルク値に関して、 回転主軸 2の起動回転時 (回転主軸 2 の回転数が 0→加工に必要な最大回転数となるまで) には、 停止状態にある回転 主軸 2の回転動作が上記サーポモータ 1 6の回転動作に追従するために大きな初 期追従トルク (回転主軸 2の回転数が加工に必要な最大回転数となっている場合 の追従トルクよりも大きい) を必要とすることから、 この初期追従トルクが上記 起動用トルク値として採用設定されている。
し力 して、 以上のように構成されたホーユング盤のホーユングツール保護部 7 においては、 上記ギヤップ調整部 2 5 0により、 回転主軸 2が停止状態から起動 して所定の回転数 (本実施形態においては加工に必要な最大回転数) に達するま では、 上記磁気伝達トルク TMが所定の起動用トルク値となるように、 上記環状 マグネット面 2 3 0 a、 2 3 1 a間の磁気作用ギャップ Gが小さく設定されると ともに、 上記回転主軸 2の回転数がー且上記所定の回転数に達したら、 上記磁気 伝達トルク TMが所定の加工用トルク値になるように、 上記磁気作用ギヤップ G が設定され、 回転主軸 2の回転数に応じた最適な磁気伝達トルク TMが設定制御 される。 ' 以上のように、 本実施形態のホーユングツール保護部 7にあっては、 駆動側お よび従動側マグネットリング部材 2 3 0、 2 3 1の磁気作用ギヤップ Gが、 回転 主軸 2の回転数に対応して自動調整される結果、 過度なトルク負荷によるホー二 ングツール 1の損傷、 折損等を有効に防止保護するという実施形態 1と同様な本 来的効果に加えて、 さらに磁気伝達トルク TMを回転主軸 2の回転数に応じて必 要とする追従トルクに対応した最適値に自動調整することができるという付随的 効果が相乗的に得られる。
その他の構成おょぴ作用は実施形態 1と同様である。
なお、 上述した実施形態 1〜 3はあくまでも本発明の好適な実施態様を示すも のであって、 本発明はこれに限定されることなく、 その範囲内で種々の設計変更 が可能である。
例えば、 ホーユング盤の各構成部 3、 4、 5、 6等の具体的な構成は、 同一機 能を有する限り他め構成としてもよい。
一例として、 図示の実施形態 1〜 3においては、 回転主軸 2を上下往復動作さ せる主軸往復駆動部 4が駆動源として油圧シリンダ 1 8を用いた構成とされてい るが、 ポールねじ装置と回転駆動源としての駆動モータとの組み合わせ構成いわ ゆる油圧レスへッド構成とされてもよい。 産業上の利用可能性
以上詳述したように、 本発明に係る加工ツール保護装置によれば、 加 ェツールが取り付けられた回転主軸とこの回転主軸を回転させる回転駆 動源との間に、 回転駆動源の回転力を磁気作用により上記回転主軸に伝 達する磁気式力ップリング手段を備え、 この磁気式力ップリング手段の 上記回転力を伝える磁気伝達トルクが、 上記加工ツールにかかる所定の トルク負荷よりも小さく設定されているから、 過度なトルク負荷による 加工ツールの損傷、 折損等を有効に防止保護することができる。
例えば、 上記加工ツール保護装置を備えたホーユング盤においては、 ワークの 不良、 加工ツールであるホーユングツールの砥石の目詰まりによる嚙みこみ、 あ るいは制御プログラムミスなどにより、 ホーニングツールの砥石がワークに食い 付いてしまい、 ホーニングツールに過度なトルク負荷がかかるような場合でも、 上記磁気式力ップリング手段における磁気伝達トルクがホーユングツールの折損 トルクよりも小さな所望の値に設定されることで、 ホーユングツールが過度なト ルク負荷を受けて折損する前に、 磁気式カツプリング手段の回転伝達力が無効と される結果、 ホーユングツールの損傷、 折損が有効に防止される。 また、 上記磁気式カップリング手段が、 上記回転駆動源に駆動連結された駆動 側マグネットリング部材と、 上記回転主軸に回転方向へ一体的に駆動連結された 従動側マグネットリング部材とを備えた環状マグネットカツプリングの形態とさ れて、 上記両マグネットリング部材の環状マグネット面が無接触状態で平行にか つ同心状に対向配置されて、 これら両環状マグネット面間に形成される磁気作用 ギヤップにより上記磁気伝達トルクが設定される構造とされることにより、 構造 簡単でしかも故障の少ない磁気式カツプリング手段を提供することができる。
しかも、 このような構造のマグネットカップリングは、 既設の工作機械にも少 しの改良を加えることで組み込むことも可能であり、 汎用性に富み経済的である。

Claims

請 求 の 範 囲
1 . 回転主軸に取り付けられた加工ツールが回転して、 工作物に研削、 切削等の機械加工を施す形式の工作機械において、 前記加工ツールの損 傷、 折損等を防止保護する加工ツール保護装置であって、
前記回転主軸とこの回転主軸を回転させる回転駆動源との間に、 回転駆動源の 回転力を磁気作用により前記回転主軸に伝達する磁気式力ップリング手段を備え この磁気式カツプリング手段の前記回転力を伝える磁気伝達トルクは、 前記ホ 一二ングツールにかかる所定のトルク負荷以下に設定されている
ことを特徴とする工作機械の加工ツール保護装置。
2 . 前記所定のトルク負荷は、 前記ホーニングツールが折損する折損トルクより も小さい値に設定されている
ことを特徴とする請求の範囲第 1項に記載の工作機械の加工ツール保護装置。
3 . 前記磁気式カップリング手段は、 前記回転主軸と同軸上に配置された環状マ グネットカップリングの形態とされ、
この環状マグネットカツプリングは、 前記回転駆動源に駆動連結された駆動側 マグネットリング部材と、 前記回転主軸に回転方向へ一体的に駆動連結された従 動側マグネットリング部材とを備え、
これら両マグネットリング部材は、 その環状マグネット面が無接触状態で平行 にかつ同心状に対向配置されて、 これら両環状マグネット面間に形成される磁気 作用ギヤップにより前記磁気伝達トルクが設定される
ことを特徴とする請求の範囲第 1項に記載の工作機械の加工ツール保護装置。
4 . 前記駆動側および従動側マグネットリング部材は、 前記回転主軸の軸方向へ 相対的に移動可能とされて、 これによ'り、 前記環状マグネット面聞の前記磁気作 用ギャップの大きさが変更されて、 前記磁気伝達トルクが調整される構成とされ ている
ことを特徴とする請求の範囲第 3項に記載の工作機械の加工ツール保護装置。
5 . 前記駆動側および従動側マグネットリング部材を前記回転主軸に軸方向へ相 対的に移動させて、 前記磁気作用ギヤップの大きさを調整するギヤップ調整手段 を備え、
このギャップ調整手段は、 前記駆動側および従動側マグネットリング部材のい ずれか一方を前記回転主軸の軸方向へ移動させる移動手段と、 この移動手段を制 御するギヤップ制御手段とを備えてなり、
このギヤップ制御手段は、 前記磁気伝達トルクが前記回転主軸の回転数に対応 して調整されるように、 前記移動手段を制御する構成とされている
ことを特徴とする請求の範囲第 4項に記載の工作機械の加工ツール保護装置。
6 . 前記ギャップ制御手段は、 前記回転主軸が停止状態から起動して所定の回転 数に達するまでは、 前記磁気伝達トルクが所定の起動用トルク値となるように、 また前記回転主軸の回転数が前記所定の回転数に達したら、 前記磁気伝達トルク が所定の加工用トルク値になるように、 前記移動手段を制御する構成とされてい る
ことを特徴とする請求の範囲第 5項に記載の工作機械の加工ツール保護装置。
7 . 前記移動手段は、 前記駆動側およぴ従動側マグネットリング部材のいずれか 一方に連結された送りねじ機構と、 この送りねじ機構を回転駆動する回転駆動源 とを備えてなり、
前記送りねじ機構のナツト部材が前記駆動側および従動側マグネットリング部 材のいずれか一方に連結固定されるとともに、 このナツト部材を螺進退動作させ るねじ部材が前記回転主軸の軸線に平行に配されている
ことを特徴とする請求の範囲第 5項に記載の工作機械の加工ツール保護装置。
8 . 前記駆動側およぴ従動側マグネットリング部材は、 リング部材本体の対向面 に、 環状の永久磁石が設けられて、 前記環状マグネット面が形成されている ことを特徴とする請求の範囲第 3項に記載の工作機械のホーニングツール保護装 置。
9 . 前記駆動側および従動側マグネットリング部材は、 リング部材本体の対向面 に、 円周方向へ等間隔をもって配された永久磁石からなる少なくとも一つの環状 磁石列を備えてなり、 この環状磁石列により前記環状マグネット面が形成されて いる
ことを特徴とする請求の範囲第 3項に記載の工作機械の加工ツール保護装置。
1 0 . 前記リング部材本体の対向面に、 配列径の異なる複数の前記環状磁石列が 同心状に配されている
ことを特徴とする請求の範囲第 9項に記載の工作機械の加工ツール保護装置。
1 1 . 工作物の内周面の軸線方向へ往復移動可能とされるとともに、 軸線まわり に回転可能に軸支されてなる回転主軸と、
回転主軸を軸線回りに回転駆動する主軸回転手段と、
回転主軸を前記內周面の軸線方向へ往復動作させる主軸往復手段と、 回転主軸先端に装着され、 前記内周面に沿った砥石面を有するホー-ング砥石 を拡縮可能に備えるホーユングツールと、
このホーニングツールのホーユング砥石に所定の切込み動作を与える砥石切込 み手段と、
前記回転主軸と前記主軸回転手段の駆動伝達経路に設けられて、 前記ホーニン グツールの損傷、 折損等を防止保護するホーニングツール保護手段と、
前記主軸回転手段、 主軸往復手段および砥石切込み手段の動作を相互に連動し て自動制御する制御手段とを備えてなり、
前記ホーユングツール保護手段は、 請求の範囲第 1項から第 1 0項のいずれか 一つに記載の加エツール保護装置により構成されている ことを特徴とするホーユング盤。
PCT/JP2008/068693 2007-10-15 2008-10-08 工作機械の加工ツール保護装置およびホーニング盤 WO2009051150A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/601,862 US20100178848A1 (en) 2007-10-15 2008-10-08 Protecting device for processing tool of machine tool and honing machine
EP08839902A EP2199022A1 (en) 2007-10-15 2008-10-08 Working tool protecting device for machine tool, and honing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-268365 2007-10-15
JP2007268365A JP2009095913A (ja) 2007-10-15 2007-10-15 工作機械の加工ツール保護装置およびホーニング盤

Publications (1)

Publication Number Publication Date
WO2009051150A1 true WO2009051150A1 (ja) 2009-04-23

Family

ID=40567413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068693 WO2009051150A1 (ja) 2007-10-15 2008-10-08 工作機械の加工ツール保護装置およびホーニング盤

Country Status (6)

Country Link
US (1) US20100178848A1 (ja)
EP (1) EP2199022A1 (ja)
JP (1) JP2009095913A (ja)
KR (1) KR20100069628A (ja)
CN (1) CN101668610A (ja)
WO (1) WO2009051150A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245386A1 (en) * 2020-02-12 2021-08-12 Lamb Weston, Inc. Water bearing and food cutting assembly with magnetically rotated cutting head
CN114851001A (zh) * 2022-06-15 2022-08-05 安徽合祖铝业科技有限公司 一种侧边梁垫块的加工装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684894B2 (ja) * 2011-03-11 2015-03-18 アルバック機工株式会社 真空ポンプ、真空排気装置及び真空ポンプの運転方法
JP5852596B2 (ja) * 2013-01-21 2016-02-03 柳下技研株式会社 研削装置及び研削方法
JP6592861B2 (ja) * 2015-12-01 2019-10-23 株式会社Ihi 観察装置
CN105855917B (zh) * 2016-06-06 2018-01-05 石狮市川朗机械设计有限公司 一种带加工头且能往复运动的加工机构
CN111065488B (zh) * 2017-09-13 2021-10-08 佳能半导体制造设备股份有限公司 加工装置
JP6781242B2 (ja) * 2018-02-19 2020-11-04 ファナック株式会社 制御装置、機械学習装置及びシステム
JP7069822B2 (ja) * 2018-02-26 2022-05-18 トヨタ自動車株式会社 研磨装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192441A (ja) * 1985-02-20 1986-08-27 Toyoda Mach Works Ltd 回転動力伝達装置
JPH03111170A (ja) * 1989-09-22 1991-05-10 Toshiba Corp 研磨加工装置
JPH08141864A (ja) * 1994-11-10 1996-06-04 Fuji Photo Film Co Ltd スピンドルへの回転駆動力伝達方法および装置
JP2003170344A (ja) * 2001-12-03 2003-06-17 Nisshin Seisakusho:Kk ホーニング加工方法、ホーニング盤の砥石切込み装置およびホーニング盤
JP2003236750A (ja) * 2002-02-15 2003-08-26 Nagase Integrex Co Ltd ドレッシング装置
JP2003311611A (ja) * 2002-04-30 2003-11-05 Hiraide Seimitsu:Kk 板状小物ワークの搬送装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404490A (en) * 1965-09-17 1968-10-08 Barnes Drill Co Honing machine with automatic force control
US4002960A (en) * 1974-05-01 1977-01-11 Brookfield Engineering Laboratories, Inc. Torque controlled tapping device
DE3421193A1 (de) * 1984-06-07 1985-12-12 Maschinenfabrik Gehring Gmbh & Co Kg, 7302 Ostfildern Verfahren zum zustellen eines honwerkzeuges und vorrichtung zum ausfuehren des verfahrens
US4566338A (en) * 1984-07-20 1986-01-28 Trw Inc. Noncontact torque sensor
EP0248071B1 (en) * 1985-12-16 1991-06-05 Delapena Honing Equipment Limited Honing machine
US4924713A (en) * 1988-03-14 1990-05-15 Elco Co., Ltd. Transducer to detect force which is applied to machine tool when machining workpiece and its attaching structure
US5426352A (en) * 1993-09-30 1995-06-20 Caterpillar Inc. Automatic honing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192441A (ja) * 1985-02-20 1986-08-27 Toyoda Mach Works Ltd 回転動力伝達装置
JPH03111170A (ja) * 1989-09-22 1991-05-10 Toshiba Corp 研磨加工装置
JPH08141864A (ja) * 1994-11-10 1996-06-04 Fuji Photo Film Co Ltd スピンドルへの回転駆動力伝達方法および装置
JP2003170344A (ja) * 2001-12-03 2003-06-17 Nisshin Seisakusho:Kk ホーニング加工方法、ホーニング盤の砥石切込み装置およびホーニング盤
JP2003236750A (ja) * 2002-02-15 2003-08-26 Nagase Integrex Co Ltd ドレッシング装置
JP2003311611A (ja) * 2002-04-30 2003-11-05 Hiraide Seimitsu:Kk 板状小物ワークの搬送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245386A1 (en) * 2020-02-12 2021-08-12 Lamb Weston, Inc. Water bearing and food cutting assembly with magnetically rotated cutting head
CN114851001A (zh) * 2022-06-15 2022-08-05 安徽合祖铝业科技有限公司 一种侧边梁垫块的加工装置

Also Published As

Publication number Publication date
KR20100069628A (ko) 2010-06-24
CN101668610A (zh) 2010-03-10
JP2009095913A (ja) 2009-05-07
US20100178848A1 (en) 2010-07-15
EP2199022A1 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2009051150A1 (ja) 工作機械の加工ツール保護装置およびホーニング盤
US7416473B2 (en) Numeric-control work-centre for machining plates of glass, stone, marble or the like, with two or more machining heads
JP5260139B2 (ja) 砥石接触感知方法およびその装置、ならびにホーニング加工方法およびホーニング盤
WO2004014606A8 (de) Verfahren und vorrichtung zum aussen- und innenschleifen eines mit einer längsbohrung versehenen rotationssymmetrischen maschinenbauteils
WO2004033148A1 (ja) 薄肉円板状工作物の両面研削方法および両面研削装置
WO2011036791A1 (ja) ねじ状砥石の位相合わせ装置
WO2001036150A1 (fr) Dispositif pour machine-outil et dispositif d'alimentation en liquide de travail correspondant
EP1570952A2 (en) Truing method and apparatus
JP2009072879A (ja) 端面研削方法および両面研削装置
JP5125391B2 (ja) 旋回装置およびそれを備えた円筒研削盤
JP4148166B2 (ja) 接触検出装置
KR101607970B1 (ko) 그라인딩 마찰교반용접장치
JP2012030311A (ja) 球面研削加工方法および球面研削加工装置
CN1810446B (zh) 磨削方法及磨削装置
JPH06254836A (ja) 石材または石材類似物加工機における負荷制御装置
WO1996026804A1 (fr) Dispositif de finition d'engrenage a correction helicoidale
JP2006218597A (ja) 研磨装置
JP2006224240A (ja) ホーニング砥石のドレス方法及びドレス装置
JP6135287B2 (ja) 研削盤
JP7275271B2 (ja) ドレッシング装置および研削ツールをドレッシングするための方法
JP4981769B2 (ja) ねじ状砥石の位相合わせ装置
JPH0426205Y2 (ja)
KR101570341B1 (ko) 연삭숫돌 드레싱장치
JPH0788750A (ja) ケージ窓研削機
JP2023005591A (ja) 研削盤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014047.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08839902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097021245

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008839902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7389/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12601862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE