WO2006013947A1 - 絶縁化超微粉末および高誘電率樹脂複合材料 - Google Patents

絶縁化超微粉末および高誘電率樹脂複合材料 Download PDF

Info

Publication number
WO2006013947A1
WO2006013947A1 PCT/JP2005/014343 JP2005014343W WO2006013947A1 WO 2006013947 A1 WO2006013947 A1 WO 2006013947A1 JP 2005014343 W JP2005014343 W JP 2005014343W WO 2006013947 A1 WO2006013947 A1 WO 2006013947A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafine powder
dielectric constant
insulating
high dielectric
thickness
Prior art date
Application number
PCT/JP2005/014343
Other languages
English (en)
French (fr)
Inventor
Takahiro Matsumoto
Toshiaki Yamada
Hirotaka Tsuruya
Takuya Goto
Masahiro Fujiwara
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to US11/573,307 priority Critical patent/US8184035B2/en
Priority to EP05768582A priority patent/EP1788040B1/en
Publication of WO2006013947A1 publication Critical patent/WO2006013947A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/565Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • Insulated ultrafine powder and high dielectric constant resin composite material Insulated ultrafine powder and high dielectric constant resin composite material
  • the present invention relates to a resin composite material characterized by a high dielectric constant.
  • This material is suitable for forming a high dielectric constant layer integrated with an IC (integrated circuit) package, a module substrate, and an electronic component. It is particularly suitable for forming the inner capacitor layer of a multilayer wiring board.
  • built-in antennas such as wireless LAN and contactless IC card Z tags can be downsized, sensitivity can be improved, and radio wave absorption can be prevented. It is also useful for thinning the body. It is also useful for unnecessary radio wave absorption in the microwave region.
  • a high-capacitance capacitor is provided on the wiring board to remove high-frequency noise.
  • Such a large-capacitance capacitor can be realized by forming a high dielectric constant layer on the wiring board.
  • the high dielectric constant material is useful for reducing the size and thickness of these members. In particular, it is required to impart such characteristics to a resin material excellent in processability and moldability.
  • an antenna is essential for wireless data communication.
  • non-contact ic card Z tags that do not have a built-in power supply are required to improve antenna performance and reduce size in order to convert electromagnetic energy transmitted by the reader / writer into the drive power of the built-in ic chip.
  • Such a method of improving the performance of the antenna wiring board is based on the fact that a loop pattern that acts as a force coil that depends on the frequency band used for wireless communication and an electrode corresponding to the capacitor electrode are provided on the wiring board, and the communication frequency
  • the large-capacitance capacitor used at this time can be realized by forming a high dielectric constant layer on the wiring board.
  • the communication frequency band is 300 MHz or higher, the effect that the antenna size is almost inversely proportional to the square root of the dielectric constant (wavelength shortening effect). The method to use is known.
  • typical conductive fillers such as carbon material-based particles such as graphite and carbon black, or titanium oxide coated with so-called conductive titanium oxide, that is, antimony-doped tin oxide, are contained in an insulating medium.
  • a method of dispersing has also been proposed (see, for example, Patent Document 2). These methods are considered to reduce the thickness of the wave absorber to 1Z20 or less with respect to the wavelength of the radio wave used, considering the non-reflection condition when it is sufficiently away from the transmission source represented by the following formula, that is, When the filling amount of the conductive filler is increased in order to increase the dielectric constant, there is a problem that the non-reflective condition force is separated.
  • a method is used in which a loop-like wiring pattern serving as a coil is formed on a normal resin substrate with a relative dielectric constant of 5 or less and no capacitor is built in.
  • the loop wiring pattern serves as an untuned magnetic pickup coil, and even in an ideal case, the communication distance is reduced to 10 cm, and in practical use, it is reduced to 1 cm or less.
  • the dielectric constant of the resin constituting the substrate is usually as small as 5 or less, the electrode area necessary for forming the tuning capacitor is increased. For this reason, in order to ensure a predetermined electrode area, a plurality of electrode patterns are formed on a substrate, folded and then connected through through-hole wiring (for example, refer to Patent Document 5), or an antenna coil is enlarged and used for synchronization.
  • a method for reducing the area required for a capacitor has been proposed (see, for example, Patent Document 6).
  • the former not only complicates the structure of the antenna substrate, but also significantly reduces the magnetic flux in the antenna coil due to electromagnetic induction generated by the capacitor electrode formed in the center of the antenna coil. As a result, the sensitivity also decreases. In the latter case, the antenna substrate itself becomes large. For this reason, in practice, many magnetic pickup coils are used commercially.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-327831
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-57485
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-237507
  • Patent Document 4 Japanese Patent Laid-Open No. 54-11580
  • Patent Document 5 JP 2002-358479 A
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-183689
  • the present invention solves the above problems and realizes a high dielectric constant resin composite material in which the addition rate of the filler is suppressed so as to maintain the processability and formability that are the original characteristics of the resin material. Means It is to provide.
  • this high dielectric constant resin composite material provides means for realizing miniaturization and high performance of wireless data communication antennas such as non-contact ic card Z tags.
  • the present invention provides means for realizing a thin and light electromagnetic wave absorbing sheet using this high dielectric constant resin composite material.
  • the present inventors have determined that the surface of the conductive ultrafine powder is made of an insulating metal. Oxide or its hydrates, especially insulating metal oxyhydrates with large molecular polarization or insulating ultrafine powders covered with hydrates, can be added even with a small addition amount of 5-50 vol%. The present inventors have found that the dielectric constant of the fat composite material can be increased, and have reached the present invention.
  • the high dielectric constant effect of this insulated ultrafine powder depends not on the dielectric constant of the insulating film but on the molecular polarization. This means that firing for increasing the dielectric constant of the insulating film, that is, for forming a high-density crystalline state with a small amorphous structure is not necessary.
  • the firing temperature may be 500 ° C or more, which may cause alteration of the conductive ultrafine powder that becomes the core. For this reason, the fact that firing is unnecessary has an important meaning other than the energy required for production.
  • an antenna substrate for wireless data communication such as a non-contact IC card Z tag can be easily manufactured, and an electromagnetic wave absorber made of a high dielectric constant resin composite material. It was found that a radio wave absorbing sheet can be produced using
  • Insulated ultrafine powder in which an insulating ultrafine powder is provided with an insulating film, the conductive ultrafine powder is spherical with a particle diameter of 1 nm to 500 nm, and a fibrous shape with a cross-sectional diameter of 1 nm to 500 nm Or a plate-like carbon material having a thickness of 1 nm to 500 nm, and the insulating film is an insulating metal oxide or its hydrate, and the thickness of the insulating film is 0.3 nm or more and is conductive.
  • Insulating ultrafine powder characterized in that it is less than its particle diameter when it is spherical, less than its cross-sectional diameter when it is fibrous, and less than its thickness when it is plate-like,
  • the insulating film has a composition formula MTi Zr O (M is a divalent metal element,
  • Insulated ultrafine powder according to (1) above which is an insulating composite metal oxide (3)
  • Insulating metal oxide or its hydrate is titanium dioxide, zirconium dioxide, tantalum pentoxide, solid solution of zirconium dioxide and silicon dioxide, silicon dioxide, dialuminum trioxide, or oxidation of these metals.
  • the antenna substrate according to (12), comprising at least one layer made of a high dielectric constant resin composite material and having a thickness of 1 m or more and 3 mm or less,
  • V a method for producing an insulated ultrafine powder according to (21) above, comprising a step of firing in a non-acidic atmosphere,
  • V a method for producing an insulated ultrafine powder according to (21) above, comprising the step of heating the film reaction solution and dehydrating the metal oxide or hydrate thereof in the liquid phase,
  • an insulated ultrafine powder obtained by insulatingly coating a conductive ultrafine powder, particularly an insulating ultrafine powder coated with an insulating metal oxide having a large molecular polarization or a hydrate thereof.
  • a resin composite material to which a small amount of fine powder is added exhibits a high dielectric constant and radio wave absorbing ability while maintaining the excellent formability, workability, and lightness inherent to a resin material.
  • the antenna substrate of the present invention can realize miniaturization and high performance of a wireless data communication antenna such as a non-contact IC card Z tag by using the above resin composite material.
  • FIG. 1 A wiring pattern formed on the antenna film substrate surface in Example 20.
  • FIG. 2 A wiring pattern formed on the back surface of the antenna film substrate in Example 20.
  • FIG. 3 It is an external view of the brass cavity resonator used to confirm the effect of radio wave absorption Explanation of symbols
  • the conductive ultrafine powder used in the present invention has an effect of reducing the volume resistance of the resin composite material, that is, imparting conductivity when added alone to the resin material.
  • conductive carbon materials such as natural black lead, artificial graphite, furnace carbon black, graphite carbon black, carbon nanotube, carbon nanofiber, etc. are used as the material constituting such conductive ultrafine powder. Is used.
  • ultrafine powders are easily oxidized and the conductivity is likely to decrease.
  • metal atoms diffuse from the ultrafine powder into the insulator medium, reducing the insulating properties of the composite material.
  • Conductive carbon materials not only suffer from these problems, but also have features not found in other conductive materials and conventional high dielectric constant fillers, where carbon materials have a small specific gravity of 2.2. There is also an effect of ⁇ .
  • the conductive ultrafine powder having the carbon material strength is subjected to an acid treatment on the surface in advance in order to apply the insulating metal oxide film described below.
  • an acid treatment oxidation treatment in an oxygen-containing atmosphere, oxidation treatment with an aqueous solution of nitric acid, potassium permanganate, hydrogen peroxide, etc., an acid catalyst using ruthenium trichloride and sodium hypochlorite, etc. were used. An acid soot treatment is mentioned.
  • the conductive ultrafine powder used in the present invention includes a spherical carbon material having a particle diameter of 1 nm or more and 500 nm or less, preferably 5 nm or more and 300 nm or less, and more preferably 1Onm or more and lOOnm or less.
  • a spherical carbon material such as carbon black
  • Graphite-based carbon black also vaporizes carbon material by arc discharge in a decompression vessel maintained at an internal pressure of 2 to 19 Torr by an atmosphere system of He, CO, or a mixed gas thereof, and cools the vaporized carbon vapor. Obtained by solidification.
  • the spherical shape is not necessarily a strict spherical shape, but may be an isotropic shape. For example, it may be a polyhedron with horns.
  • the conductive ultrafine powder used in the present invention includes a fibrous carbon material having a cross-sectional diameter of 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably lOnm to 200 nm.
  • the length is preferably 3 to 300 times the cross-sectional diameter.
  • Such fibrous carbon materials such as carbon nanofibers and carbon nanotubes, can be obtained by mixing and heating in a gas phase a cobalt or iron organometallic compound serving as a catalyst and a hydrocarbon raw material.
  • some carbon nanofibers can be obtained by melt spinning phenolic resin and heating it in an inert atmosphere. Specific examples include VGCF and VGNF manufactured by Showa Denko KK, Grubre Co., Ltd.
  • the fiber shape means a shape extending in one direction, and may be, for example, a square shape, a round bar shape, or an oval shape.
  • the conductive ultra fine powder used in the present invention includes a plate-like carbon material having a thickness of 1 nm to 500 nm, preferably 5 nm to 300 nm, more preferably 1 Onm to 200 nm.
  • the length and width are preferably not less than 3 times and not more than 300 times the thickness.
  • a plate-like carbon material can be obtained, for example, by refining and crushing / classifying natural graphite or artificial graphite.
  • SSI Co., Ltd. SNE series, SNO series, etc., Nippon Kurofune, scale-like graphite powder, exfoliated graphite powder, etc. are mentioned. These may be further pulverized and precision classified.
  • the plate shape means a shape in which one direction is contracted, and may be, for example, a flat spherical shape or a scale shape.
  • the particle diameter, the cross-sectional diameter or the thickness is smaller than the above range! /, And the conductivity decreases due to the quantum size effect. In addition, if it is difficult to manufacture and cannot be used industrially, it is difficult to handle due to aggregation by force. On the other hand, the particle diameter, cross-sectional diameter or thickness is in the above range. If it is larger, the formation of the continuous layer is 50 vol% or less, that is, the continuous layer is not formed within the range of the addition rate that does not deteriorate the resin properties. In addition, when the shape of the conductive ultrafine powder is fiber or plate, the aspect ratio is preferably 3 to 300.
  • the fibrous form is more preferable than the spherical or plate form. This is because the fibrous material requires a small amount of addition, for example, 30 vol% or less, for forming a continuous layer as a resin composite material having a relative dielectric constant of 20 or more.
  • the insulating film used in the present invention is aimed at ensuring the overall insulation of the resin composite material.
  • the dielectric constant of the insulated ultrafine powder itself is doubled from the dielectric constant of the insulating film constituent material.
  • the thickness of the insulating coating is less than the particle diameter when the conductive ultrafine powder to be coated is spherical, less than its cross-sectional diameter when it is fibrous, and less than its thickness when it is plate-like. It is.
  • the thickness of the insulating film is 0.3 nm or more, and the ratio force with the particle diameter, cross-sectional diameter, or thickness of the conductive ultrafine powder to be coated is 0.01 or more and 0.9 or less. Most preferably, the thickness of the insulating film is 0.3 nm or more, and the ratio force with the particle diameter, cross-sectional diameter, or thickness of the conductive ultrafine powder to be coated is 0.01 or more and 0.5 or less. If the thickness is less than the above range, the insulating effect is reduced, and conduction may not be prevented and the dielectric may not function. On the other hand, if it is thicker than this, the dielectric constant doubling effect of the conductive ultrafine powder that is the core is reduced, and the relative dielectric constant of the resin composite material may be lowered.
  • the material of the insulating film in the present invention is an insulating metal oxide or a hydrate thereof.
  • Examples include insulating oxides such as silicon dioxide, silicon aluminum trioxide, and zirconium dioxide zirconium.
  • these hydrates include silicon tetrahydroxide silicon, aluminum trihydroxide, and tetrahydrate zirconium.
  • Desirable examples include insulating metal oxides such as tantalum pentoxide having a relative dielectric constant of 20 or more, anatase type, and brookite type titanium dioxide and zinc titanate. These solid solutions can also be used.
  • titanium dioxide zirconium dioxide, tantalum pentoxide, solid solution of zirconium dioxide and silicon dioxide, silicon dioxide, silicon aluminum trioxide, or their water.
  • Japanese products are preferred.
  • a metal oxide having a relative dielectric constant of 100 or more is more preferable. Examples include rutile titanium dioxide (TiO 2), barium titanate (BaTiO 3), and strontium titanate.
  • Composition formula such as lead zirconate titanate (PbTi Zr O) MTi Zr O (M is a divalent metal)
  • Insulating metal silicates represented by the element, X is 0 or more and less than 1), hydrates thereof, or insulating solid solutions containing at least one of them in the composition. It is preferable to use a material having such a large dielectric constant because the dielectric constant of the composite material does not decrease even when the insulating film is thick.
  • the material of the insulating film is preferably an insulating metal oxide having a molecular polarization of 5 cm 3 or more or a hydrate thereof.
  • the molecular polarization of many paraelectric metal oxides is calculated from the dielectric constant, specific gravity, and formula weight of the metal oxide as shown in the Clausis-Mossotti equation below.
  • the formula weight means a value converted per metal atom.
  • AIO dimethylaluminum trioxide
  • the dielectric constant of the resin composite material increases with the same film thickness.
  • examples include insulating metal oxides such as silicon dioxide and silicon aluminum trioxide having molecular polarization of 9 cm 3 or more.
  • examples of the hydrate include tetrahydroxide-silicon and trihydrate-aluminum. In the case of a hydrate, a structure in which a part thereof is dehydrated and condensed is also included.
  • a so-called zircon having a molecular polarization of 15 cm 3 or more that is, a solid solution of zirconium dioxide and silicon dioxide, or a hydrate thereof, a solution of tetrahydrate zirconium and tetrahydrate silicon.
  • a so-called zircon having a molecular polarization of 15 cm 3 or more that is, a solid solution of zirconium dioxide and silicon dioxide, or a hydrate thereof, a solution of tetrahydrate zirconium and tetrahydrate silicon.
  • the molecular polarization is 17c
  • titanium dioxide, zirconium dioxide, tantalum pentoxide or hydrates of m 3 or more include titanium tetrahydroxide, zirconium tetrahydroxide, and tantalum pentoxide.
  • those having a structure in which a part thereof is dehydrated and condensed are also included.
  • a known method can be used to form the insulating film. For example, a metal salt and an alkali are reacted in an aqueous solution in which conductive ultrafine powder is dispersed, and metal hydroxide is precipitated using the conductive ultrafine powder as a core, and is subjected to dehydration condensation by filtration and drying. A state in which an insulating metal oxide adheres to the surface of the ultrafine powder can be formed.
  • the conductive ultra fine powder may be dispersed in advance in the metal salt aqueous solution and the alkali may be dropped, or the metal salt aqueous solution and the alkali aqueous solution may be dropped simultaneously or sequentially into the aqueous dispersion of conductive ultra fine particles.
  • conductive ultrafine powder is dispersed in an organic solvent such as alcohol, and metal alkoxide is added to precipitate metal hydroxide with conductive ultrafine powder as the core by sol-gel reaction, followed by dehydration in organic solvent.
  • a state in which an insulating metal oxide adheres to the surface of the conductive ultrafine powder can be formed by the condensation reaction.
  • insulating film formation by sol-gel reaction is desirable.
  • a reaction between a metal salt and an alkali a large amount of water is required to remove the salt, which is a by-product. It ’s not good.
  • the insulating film is formed by the sol-gel reaction, it is desirable to further perform dehydration treatment.
  • a dehydration method it is possible to dehydrate by drying after filtering off the reaction fluid insulating ultrafine powder.
  • the insulating film is dehydrated in the liquid phase as the organic solvent evaporates during the sol-gel reaction.
  • the insulating ultrafine powder used in the present invention has a spherical shape with a particle diameter of 1 nm to 500 nm, a fibrous shape with a cross-sectional diameter of 1 nm to 500 nm, or a plate-like conductivity with a thickness of 1 nm to 500 nm.
  • the insulating ultrafine powder of the present invention can be obtained by blending an amount of 50 vol% or less with a resin, thereby obtaining a high dielectric constant resin composition having a relative dielectric constant of 20 or more.
  • a high dielectric constant resin composite material having a relative dielectric constant of 20 or more when a conventional high dielectric constant filler is used, it is necessary to add about 50 vol% or more of the filler.
  • the insulated ultrafine powder may be blended at 50 vol% or less, for example, 5 to 50 vol%. Therefore, the resin composite material containing the ultrafine powder of insulating material of the present invention exhibits a high dielectric constant without impairing the moldability and light weight, which are the original characteristics of the resin material.
  • the resin component to which the above-mentioned insulated ultrafine powder is added includes PVC resin, phenoxy resin, fluorocarbon resin, PPS resin, PPE resin, polystyrene.
  • thermoplastic resins such as resin, polyolefin resin, polyimide resin, polyamide resin, and mixed resin of these.
  • Particularly desirable is a polyimide resin having excellent insulating properties and excellent adhesion to a metal layer such as copper.
  • the resin component when blended with the insulated ultrafine powder is not only in the form of a polymer but also in the form of a polymerizable compound, that is, phenoxy resin, epoxy resin, cyanate ester. It is formulated as a polymerizable compound such as a thermosetting resin monomer or oligomer such as resin, vinyl ester resin, phenol resin, xylene resin, melamine resin, polyurethane resin, It may be polymerized later.
  • a polymerizable compound such as a thermosetting resin monomer or oligomer such as resin, vinyl ester resin, phenol resin, xylene resin, melamine resin, polyurethane resin
  • Particularly desirable is a resin composition containing epoxy resin. This is because when used for a wiring board or the like, it has a high adhesion strength to a metal layer such as copper.
  • the high dielectric constant resin composite material can be used by further adding a filler as required for purposes other than the high dielectric constant.
  • Fillers include glass fiber for improving elastic modulus, calcium carbonate for reducing molding shrinkage, talc used for improving surface smoothness and abrasion resistance, and Myc used for improving dimensional stability. Power can be mentioned.
  • a filler that imparts flame retardancy that is, as a flame retardant, a halogen-based or phosphorus-based flame retardant, Examples thereof include hydroxide-aluminum and hydroxide-magnesium.
  • ferrite powders and magnetic metal powders based on iron which are used in the prior art to adjust radio wave absorption characteristics, and are carbon-based or tin oxide-based.
  • expanded graphite powder which is a conductive powder having an effect as a conductive powder and a flame retardant, can be further added and used as a filler.
  • the amount of insulating ultrafine powder added to the resin composition is 5 to 50 vol%, preferably 5 to 30 vol%. If the amount is less than this, a continuous layer is not formed in the resin composition, and a sufficient dielectric constant cannot be obtained. On the other hand, when the amount is larger than this, the original processability of the coconut resin composition is impaired.
  • a carbon material is used as a raw material for the insulated ultrafine powder, so that the specific gravity can be reduced to 2 or less.
  • the high dielectric constant resin composite material of the present invention preferably has a relative dielectric constant of 20 or more.
  • a layer having such a high dielectric constant resin composite material of 1 ⁇ m or more and 3 mm or less more specifically, a film formed to a thickness of 1 ⁇ m to 100 ⁇ m or 100 ⁇ m to 100 ⁇ m
  • An antenna substrate can be formed by providing a wiring pattern on at least one surface of a sheet molded to a thickness of 3 mm. If necessary, a through hole may be provided in the film or sheet of the high dielectric constant resin composite material.
  • the ic When using a non-contact ic card Z tag, the ic can be wired directly to the wiring pattern of these antenna boards, or the card Z tag with built-in ic and the antenna board can be contacted and used as a booster antenna. Also good.
  • a protective film or the like when using a film or sheet of a high dielectric constant resin composite material as an antenna substrate or a non-contact IC card, a protective film or the like may be attached if necessary.
  • a radio wave absorber having a relative dielectric constant of 20 or more can be obtained by blending the insulated ultrafine powder of the present invention in an amount of 5 vol% to 50 vol% in the resin.
  • the insulated ultrafine powder may be blended at 50 vol% or less, for example, 5-50 vol%. Therefore, the resin composite material containing the ultrafine powder of insulating material of the present invention is an original feature of the resin material. Exhibits a high dielectric constant without compromising moldability and lightness, and exhibits radio wave absorption in the microwave range.
  • the thickness with respect to the wavelength of the radio wave to be absorbed can be 1Z20 or less.
  • the radio wave absorber of the present invention can be used inside a housing and exhibits excellent performance as an electronic device.
  • the specific gravity of the radio wave absorber can be lowered to 2 or less, and a further light weight can be achieved.
  • Example 2 In synthesizing the insulated ultrafine powder, the same procedure as in Example 1 was conducted, except that 5 g of carbon nanofibers were heated to 100 ° C. in a 60 wt% aqueous nitric acid solution and oxidized. The dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 86.3. The specific gravity of the cured product was 1.3.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 70.1. The specific gravity was 1.5.
  • Example 1 a hardened plate was obtained in the same manner except that 1.5 g of carbon nanofibers was used instead of the insulating ultrafine powder. This means that 7 vol% was added in the volume composition. An attempt was made to measure the dielectric constant, but this plate was a conductor with a volume resistivity of 17.2 ⁇ ⁇ , and the dielectric constant was too strong to measure. In other words, the cured plate was not strong with a dielectric.
  • Example 1 To obtain a cured product, Example 1 except that 5 g of barium titanate with a diameter of 2 m, 5 g of bisphenol A type epoxy monomer, and 0.1 g of curing agent were used instead of insulating ultrafine powder. In the same manner as above, a cured product plate was obtained. This means that 16 vol% barium titanate powder (filler) was added.
  • Example 2 In order to obtain a cured product, the same as Example 1 except that 8 g of barium titanate with a diameter of 2 m, 2 g of bisphenol A type epoxy monomer, and 20 mg of curing agent were used instead of insulating fine powder. Thus, a cured product plate was obtained. This means that 50 vol% barium titanate powder (filler) was added.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 21.8. Specific gravity is 2. It was nine.
  • Example 1 and Comparative Example 1 From Example 1 and Comparative Example 1, it can be seen that when the conductive ultrafine powder is not provided with an insulating film, it does not function as a dielectric due to conduction, and the insulating film has properties as a dielectric.
  • Examples 1 to 4 particularly Example 4 using insulating ultrafine powder obtained by insulatingly coating carbon black, which is a spherical conductive ultrafine powder, with a metal oxide, and a typical filter of the prior art.
  • Comparative Examples 2 and 3 using a certain fine barium titanate powder the high dielectric constant composite material using the insulating ultrafine powder of the present invention is required in the prior art! It can be seen that with a much lower addition rate, a high dielectric constant is realized and light weight.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 122.2. The specific gravity of the cured product was 1.4.
  • Example 5 In synthesizing the ultrafine powder, the same procedure as in Example 5 was performed except that 5 g of carbon nanofibers were heated to 100 ° C. in a 60 wt% aqueous nitric acid solution and oxidized. The dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 116.1. The specific gravity of the cured product was 1.4.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 110.1. The specific gravity was 1.6.
  • the insulating ultrafine powder obtained in the same manner as in Example 8 and an epoxy monomer were mixed and cured, and the dielectric constant was measured in the same manner as in Example 1.
  • the relative dielectric constant was 71.2 and the specific gravity was 1.4.
  • Example 5 and Comparative Example 1 From Example 5 and Comparative Example 1, it can be seen that the conductive ultrafine powder is insulated and coated. In this case, it does not function as a dielectric due to conduction, and the insulating film has properties as a dielectric.
  • Example 8 and Example 9 shows that the dielectric constant is larger than that using strontium titanate, which is a composite oxide, rather than using titanium dioxide as the insulating film. I understand that.
  • Example 5 to 8 particularly Example 8 using insulating ultrafine powder obtained by insulatingly coating carbon black, which is a spherical conductive ultrafine powder, with a metal oxide, and titanic acid, which is a typical filler of the prior art
  • the resin composite material using the insulated ultrafine powder of the present invention has much less filler added than that required in the prior art. The reason for this is that it achieves a high dielectric constant and is lightweight.
  • Carbon nanofibers synthesized by vapor phase growth in 150 g of isopropanol (fibrous with a cross-sectional diameter of 150 nm and a length of 5 to 6 ⁇ m) and tetrapropyloxytitanate l lg were added for 1 hour at room temperature. And mixed with stirring.
  • 77 g of a 1: 6 mixture of distilled water: isopropanol was added dropwise over 5 minutes. After completion of the dropwise addition, stirring was continued for another hour, and then 200 g of N, N-dimethylacetamide was added and heated to 150 ° C. to replace the solvent.
  • the obtained suspension was filtered and dried to obtain 9 g of insulated ultrafine powder.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 92.1. The specific gravity of the cured product was 1.3.
  • Example 11 In synthesizing the ultrafine insulating powder, the same procedure as in Example 10 was performed except that tetrabutyloxyzirconate was used instead of tetrapropyloxytitanate.
  • tetrabutyloxyzirconate was used instead of tetrapropyloxytitanate.
  • a film of zirconium dioxide hydrate having a thickness of 30 to 70 nm and an average thickness of 50 nm was formed.
  • the relative permittivity of the crystalline state of zirconium diacid zirconium is 18, and the specific gravity is 5.5. Therefore, the molecular polarization is 19 cm 3 .
  • the dielectric constant of the high dielectric constant epoxy composite material was measured in the same manner as in Example 1, the relative dielectric constant was 90.7.
  • the specific gravity of the cured product was 1.3.
  • Example 11 In synthesizing the insulated ultrafine powder, the same procedure as in Example 11 was performed, except that 5 g of carbon nanofibers were heated to 100 ° C. in a 60 wt% aqueous nitric acid solution and oxidized. As in Example 1, when the dielectric constant of the high dielectric constant epoxy composite material was measured, the relative dielectric constant was 102. The specific gravity of the cured product was 1.3.
  • silicon dioxide silicon has a relative dielectric constant of 3.8 and a specific gravity of 2.1 in the crystalline state. The molecular polarization is therefore 13 cm 3 .
  • the obtained insulated ultrafine powder (3.5 g), bisphenol A type epoxy monomer (6.5 g), imidazole-based curing catalyst (0.13 g), and methylethyl ketone (10 g) as a solvent were pulverized and mixed in a homogenizer for 1 minute. This is the result of adding 20 vol% of insulating ultrafine powder.
  • the obtained solution was put in a Teflon petri dish and the paste naturally dried for 12 hours was heated at 120 ° C. for 3 hours to obtain a cured plate.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 69.1.
  • the specific gravity was 1.2.
  • dialuminum trioxide has a relative permittivity of 9.6 and a specific gravity of 3.8 in the crystalline state. The molecular polarization is therefore 10 cm 3 .
  • Carbon nanotubes (cross-sectional diameter: 5 to: L lnm, average cross-sectional diameter: 8 nm, length: 50 to 200 nm, fibrous) synthesized in 2.5 g in isopropanol and tetrapropylene After adding 1.8 g of xititanate and stirring for 1 hour, the mixture was stirred and mixed at room temperature for 1 hour. To this dispersion solution, 1.3 g of a 1: 6 mixture with distilled water: isopronool V was added dropwise over 5 minutes. After completion of the dropwise addition, stirring was continued for 1 hour, followed by filtration, air drying for 12 hours, and vacuum drying at 100 ° C. to obtain 5.6 g of powder.
  • Carbon nanofibers (cross-sectional diameter: 300 to 500 nm, average cross-sectional diameter: 400 nm, length: 50 m, fibrous) synthesized in 25 g in Isopronol V—by 5 t and tetrabutyloxyzirco 18 g of Nate was added and stirred and mixed at room temperature for 1 hour.
  • 1.3 g of a 1: 6 mixture of distilled water and isopropanol was added dropwise over 5 minutes. After the completion of the dropwise addition, stirring was continued for another hour, and then the solvent was replaced with N, N-dimethylacetamide in the same manner as in Example 10, followed by filtration and drying to obtain 9 g of powder.
  • Insulating ultrafine powder lg obtained in Example 10 and bisphenol A type epoxy monomer 9 g, imidazole-based curing catalyst 0.16 g, and methylethyl ketone 10 g as a solvent were pulverized and mixed for 1 minute with a homogenizer.
  • a cured sheet was obtained in the same manner as in Example 10. This is the result of adding 5 vol% of insulating ultrafine powder.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 57.8.
  • the specific gravity of the film was 1.3.
  • Example 11 All were the same except that the amount of tetrapropyloxyzirconate added in Example 11 was 0.5 g.
  • This insulating ultrafine powder can be mixed with epoxy resin as in Example 10.
  • the cured product had a dielectric constant of 178 and a specific gravity of 1.3.
  • Example 10 The procedure of Example 10 was repeated except that the amount of tetrapropyloxytitanate added in Example 10 was 22 g.
  • the surface of the obtained insulated ultrafine powder was confirmed with a scanning electron microscope, a titanium dioxide hydrate film having a thickness of 70 to 130 nm and an average lOO nm thickness was formed.
  • the obtained cured product had a dielectric constant of 74.3 and a specific gravity of 1.3.
  • Example 10 was the same as Example 10 except that 7 g of the insulating ultrafine powder in Example 10 and 3 g of bisphenol A type epoxy monomer were mixed. This is equivalent to adding 60 vol% of insulated ultrafine powder. In this case, only a very brittle cured product was obtained. Dielectric constant could not be measured.
  • Example 10 was the same as Example 10 except that the amount of tetrapropyloxytitanate added was 66 g.
  • the surface of the obtained insulated ultrafine powder was confirmed with a scanning electron microscope, a titanium dioxide film having a thickness of 200 to 400 nm and an average thickness of 300 nm was formed.
  • the obtained cured product had a dielectric constant of 16.3 and a specific gravity of 1.3.
  • Example 10 carbon fiber pulverized by a ball mill that is not carbon nanofiber (cross-sectional diameter: 800 nm to l. 2 / ⁇ ⁇ , average cross-sectional diameter: 1 / ⁇ ⁇ , length: 50 / ⁇ ⁇ , fiber
  • cross-sectional diameter 800 nm to l. 2 / ⁇ ⁇
  • average cross-sectional diameter 1 / ⁇ ⁇
  • length 50 / ⁇ ⁇
  • fiber In the same manner as in Example 10.
  • a titanium dioxide film having a thickness of 200 to 500 nm and an average thickness of 300 nm was formed.
  • the obtained cured product had a dielectric constant of 9.2.
  • Example 10 and Comparative Example 1 From Example 10 and Comparative Example 1, it can be seen that when the conductive ultrafine powder is not provided with an insulating film, it does not function as a dielectric due to conduction, and the insulating film has properties as a dielectric. Insulating ultra-fine powders coated with titanium dioxide hydrate and zirconium dioxide hydrate, which have significantly different dielectric constants from Example 10 and Example 11, but have the same molecular polarization, were used. In this case, it can be seen that the effect of molecular polarization is large since almost the same high dielectric constant resin composite material can be obtained.
  • Examples 10-14 especially spheres Example 14 using an insulating ultrafine powder in which carbon black, which is a conductive ultrafine powder, is covered with dimethylaluminum trihydrate, and titanium, which is a typical filler of the prior art.
  • carbon black which is a conductive ultrafine powder
  • titanium which is a typical filler of the prior art.
  • the high dielectric constant composite material using the insulated ultrafine powder of the present invention is more powerful than required in the prior art. It can be seen that with a small addition rate, a high dielectric constant is realized and the weight is low.
  • Example 2 0.2 g of the insulated ultrafine powder obtained in Example 1 and 5.3 g of polyimide varnish (solid content 15 wt%) were pulverized and mixed with a homogenizer for 30 minutes. This means that 10 vol% of the insulated ultrafine powder was added. Varnish was applied to a glass plate and baked at 200 ° C for 1 hour to obtain a film. Using this, the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 92.1. The specific gravity of the film was 1.3.
  • a 12 m thick copper foil was dry-laminated on both sides of the film, and the wiring patterns shown in Figs. 1 and 2 were formed on each film by etching with a salty ferric aqueous solution to obtain an antenna film substrate.
  • a cut was made in the wiring pattern on the back of the film so that it tuned to 13.56MHz while in contact with a commuter pass with a non-contact IC card.
  • the commuter pass with a non-contact IC is brought into contact with this antenna film substrate, the commuter pass is 32 cm away from a commercially available non-contact one reader (Sony Corp. RC-S310) that uses 56 MHz.
  • the IC built-in IC could be read.
  • Example 20 0.35 g of the insulated ultrafine powder obtained in Example 3 and 5.3 g of polyimide varnish (solid content 15 wt%) were pulverized and mixed for 30 minutes with a homogenizer. This means that 20 vol% of insulated ultrafine powder was added. Varnish was applied to a glass plate and baked at 200 ° C for 1 hour. Using this, the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 70.1. The specific gravity of the film was 1.3. As in Example 20, the antenna film substrate was provided with a wiring pattern in the same way as in Example 20, and it was possible to read the IC data contained in the commuter pass with a distance of 27 cm from a commercially available non-contact IC reader. It was.
  • Example 20 0.25 g of the insulated ultrafine powder obtained in Example 4 and 5 g of polyimide varnish (solid content 15 wt%) The mixture was pulverized and mixed for 30 minutes with a homogenizer. This is the result of adding 13 vol% of insulating ultrafine powder. Varnish was applied to a glass plate and baked at 200 ° C for 1 hour. Using this, the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 72.1. The specific gravity of the film was 1.3. As in Example 20, the antenna film substrate was provided with a wiring pattern in the same manner as in Example 20, and the commercially available non-contact IC reader force was 20 cm away, and the IC data contained in the commuter pass could be read. It was.
  • Carbon nanotubes (cross-sectional diameter: 5 to: L lnm, average cross-sectional diameter: 8 nm, length: 50 to 200 nm, fibrous) synthesized in 2.5 g in isopropanol by 0.5 g After adding 1.8 g of pyroxytitanate and stirring for 1 hour, the mixture was stirred and mixed at room temperature for 1 hour. To this dispersion solution, 1.3 g of a 1: 6 mixture with distilled water: isopronool V was added dropwise over 5 minutes. After the completion of the dropwise addition, stirring was continued for 1 hour, followed by filtration, air drying for 12 hours, and vacuum drying at 100 ° C. When the surface of the powder obtained by a scanning electron microscope was confirmed, a film of titanium dioxide having a thickness of 2 to 4 nm and an average of 3 nm was formed.
  • Example 2 The same procedure as in Example 1 was conducted except that 0.2 g of the insulated ultrafine powder obtained in Example 1 and 16 g of polyimide varnish (solid content: 15 wt%) were pulverized and mixed for 30 minutes with a homogenizer. This means that 5 vol% of insulating ultrafine powder was added. Varnish was applied to a glass plate and baked at 200 ° C for 1 hour. Using this, the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 256. The specific gravity of the film was 1.3. Similar to Example 20, a wiring pattern was provided on the antenna film substrate in the same manner as in Example 20. It was possible to read the IC data contained in the commuter pass at a distance of 47 cm from a commercially available contactless IC reader.
  • Example 20 The same procedure as in Example 20 was conducted except that 0.2 g of the insulated ultrafine powder obtained in Example 1 and 1. lg of polyimide varnish (solid content: 15 wt%) were pulverized and mixed for 30 minutes with a homogenizer. This means that 40 vol% of insulating ultrafine powder was added. The varnish was applied to a glass plate and baked at 200 ° C for 1 hour. Using this, the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 256. The specific gravity of the film was 1.6. In the same manner as in Example 20, an antenna film substrate was provided with a wiring pattern at 13.56 MHz as in Example 20. ⁇ Non-contact IC reader power of sales It was possible to read the IC data built into the commuter pass with a distance of 28 cm.
  • Example 20 All of the procedures were the same as in Example 20 except that the amount of tetrapropyloxytitanate added was 0.5 g.
  • the surface of the obtained insulating ultrafine powder was confirmed with a scanning electron microscope.
  • the obtained film had a dielectric constant of 178 and a specific gravity of 1.3.
  • a pattern tuned to 13.56 MHz was provided.
  • the non-contact IC reader power of general sales was 46cm away, and it was possible to read the IC data built in the commuter pass.
  • Example 20 All of the procedures were the same as in Example 20 except that the amount of tetrapropyloxytitanate added was 0.5 g.
  • a titanium dioxide film having a thickness of 70 to 130 nm and an average lOO nm thickness was formed.
  • the resulting film had a dielectric constant of 47.3 and a specific gravity of 1.3.
  • a pattern tuned to 13.5 6 MHz was provided. It was possible to read the IC data contained in the commuter pass while being 18cm away from a commercially available contactless IC reader.
  • an antenna film substrate provided with a wiring pattern on a baked polyimide film was used in the same manner as in Example 20, and a lcm from a commercially available non-contact IC card reader Z writer was used. The IC data could not be read if it was released more than this. In other words, this polyimide film substrate had an effect as an antenna substrate.
  • Example 20 was the same as Example 20 except that 0.2 g of the insulated ultrafine powder in Example 1 and 0.44 g of polyimide varnish were mixed. This is the addition of 60 vol% of insulating ultrafine powder. In this case, a flexible film cannot be obtained. It was a force that could not be used to measure the dielectric constant, etc., and to make an antenna substrate.
  • Example 20 The procedure of Example 20 was repeated except that the amount of tetrapropyloxytitanate added was 66 g.
  • the surface of the obtained insulating ultrafine powder was confirmed with a scanning electron microscope, a titanium dioxide film having a thickness of 200 to 400 nm and an average thickness of 300 nm was formed.
  • the obtained film had a dielectric constant of 16.3 and a specific gravity of 1.3.
  • IC data could not be read if it was separated from the commercially available non-contact IC card reader Z writer by at least 1 cm. That is, this polyimide film substrate was effective as an antenna substrate.
  • Example 20 carbon fiber pulverized by a ball mill not carbon nanofiber (cross-sectional diameter: 800 nm to l.2 / ⁇ ⁇ , average cross-sectional diameter 1 / ⁇ ⁇ , length: 50 / ⁇ ⁇ , fibrous shape ) was used in the same manner as in Example 20.
  • cross-sectional diameter 800 nm to l.2 / ⁇ ⁇ , average cross-sectional diameter 1 / ⁇ ⁇ , length: 50 / ⁇ ⁇ , fibrous shape
  • the dielectric constant of the obtained film was 9.2.
  • IC data could not be read if it was separated from the commercially available non-contact IC card reader Z writer by 1 cm or more.
  • this polyimide film substrate was effective as an antenna substrate.
  • Carbon nanofiber (cross-sectional diameter: 150 nm, length: 5-6 / ⁇ ⁇ ) 5 8 and 4.5 g of tetrapropyloxytitanate were added to 150 g of isopropanol, and the mixture was stirred and mixed at room temperature for 1 hour.
  • 77 g of a 1: 6 mixture with distilled water: isopronool V was added dropwise over 5 minutes. After completion of the dropwise addition, the mixture was further stirred for 1 hour and then filtered. After air drying for 12 hours, it was vacuum dried at 100 ° C.
  • a 50 mm ⁇ 40 mm ⁇ 20 mm brass cavity resonator was fabricated, and input terminal 1 and output terminal 2 were provided on the opposite side surfaces, respectively.
  • the parameters were measured using an Agilent 8722ES type network analyzer to confirm the resonance spectrum peak of the cavity resonator. 10.
  • a peak at 3 GHz (wavelength 30 mm) occurred at an intensity of 3 dB. This peak corresponds to unwanted radio waves inside the housing.
  • a 1 mm thick sheet of cured product was laid and measured in the same manner. The peak disappeared. This means that the lmm-thick sheet of cured product has a large radio wave absorption effect.
  • Insulated ultrafine powder 3.5g and bisphenol A type epoxy monomer (EP-4100G manufactured by Asahi Denka Kogyo Co., Ltd.) 6.5g, imidazole-based curing catalyst (Cueazole 2E4MZ manufactured by Shikoku Chemical Co., Ltd.) 0.13 g and 10 g of methyl ethyl ketone as a solvent were pulverized and mixed with a homogenizer for 30 minutes. This is the result of adding 20 vol% of insulating ultrafine powder.
  • the obtained solution was placed in a Teflon petri dish and the paste that had been air-dried for 12 hours was heated at 120 ° C. for 3 hours to obtain a cured sheet having a thickness of 1 mm.
  • the dielectric constant was measured in the same manner as in Example 1, the relative dielectric constant was 70.1.
  • the specific gravity was 1.3.
  • Carbon nanotubes (cross-sectional diameter: 5 to: L lnm, average cross-sectional diameter: 8 nm, length: 50 to 200 nm, fibrous) synthesized by vapor phase growth in 2.5 g of isopropanol were 0.5 g. After adding 1.8 g of trapropyloxytitanate and stirring for 1 hour, the mixture was stirred and mixed at room temperature for 1 hour. To this dispersion, 1.3 g of a 1: 6 mixture of distilled water: isopropanol was added dropwise over 5 minutes. After completion of the dropwise addition, the mixture was further stirred for 1 hour and then filtered. After air drying for 12 hours, it was vacuum dried at 100 ° C. When the surface of the powder obtained with a scanning electron microscope was confirmed, a film of titanium dioxide having a thickness of 2 to 4 nm and an average thickness of 3 nm was formed.
  • Carbon nanofibers (cross-sectional diameter: 300 to 500 nm, average cross-sectional diameter: 400 nm, length: 50 m, fibrous) synthesized in 25 g in isopronol V-tetrafluoropropyl titanate 18 g was added and stirred for 1 hour, and then stirred and mixed at room temperature for 1 hour.
  • 1.3 g of a 1: 6 mixture with distilled water: isopronool V was added dropwise over 5 minutes. After the completion of the dropwise addition, stirring was continued for 1 hour, followed by filtration, air drying for 12 hours, and vacuum drying at 100 ° C.
  • Example 29 4 g of insulating ultrafine powder obtained in Example 29 and bisphenol A type epoxy monomer (EP-4100G manufactured by Asahi Denka Kogyo Co., Ltd.) 4 g, imidazole-based curing catalyst (Cazole 2E4MZ manufactured by Shikoku Chemical Co., Ltd.) 0
  • a cured sheet was obtained in the same manner as in Example 29 except that 08 g and 10 g of methyl ethyl ketone as a solvent were pulverized and mixed with a homogenizer for 30 minutes. This is the addition of 40 vol% of insulating ultrafine powder.
  • the dielectric constant was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 256.
  • the specific gravity of the film was 1.6.
  • Example 29 All procedures were the same except that the amount of tetrapropyloxytitanate added in Example 29 was 0.5 g.
  • a titanium dioxide film having a thickness of 2 to 7 nm and an average thickness of 5 nm was formed.
  • the cured product obtained by mixing this insulated ultrafine powder with Epoxy oil as in Example 29 had a dielectric constant of 178 and a specific gravity of 1.3.
  • the peak at 10.3 GHz (wavelength 30 mm) disappeared. This means that the lmm-thick sheet of cured product has a great effect of electromagnetic wave absorption.
  • Example 37 The procedure was the same as in Example 29 except that the amount of tetrapropyloxytitanate added in Example 29 was 22 g.
  • the surface of the obtained insulated ultrafine powder was confirmed with a scanning electron microscope, a titanium dioxide film having a thickness of 70 to 130 nm and an average lOOnm thickness was formed.
  • the obtained cured product had a dielectric constant of 47.3 and a specific gravity of 1.3.
  • measurement was conducted in a cavity resonator, and the peak at 10.3 GHz (wavelength 30 mm) disappeared. This means that the lmm-thick sheet of cured product has a large effect of radio wave absorption.
  • Example 29 The procedure was the same as Example 29 except that the insulating ultrafine powder was not added.
  • the dielectric constant of the cured product was 4.8. 10. 6GHz and 10.8GHz resonance peak splitting was observed. In other words, the suppression effect was almost strong.
  • Example 29 The same procedure as in Example 29 was performed except that carbon nanofibers not subjected to insulation treatment were added to the epoxy resin. 10. A peak at 6GHz occurred.
  • Example 29 The procedure was the same as Example 29, except that 7 g of the insulating ultrafine powder in Example 29 and 3 g of bisphenol A type epoxy monomer were mixed. This is equivalent to adding 60 vol% of insulating ultrafine powder. In this case, only a very brittle cured product was obtained. Measurement of dielectric constant, etc. and radio wave absorption characteristics could not be evaluated.
  • Example 29 The procedure of Example 29 was repeated except that the amount of tetrapropyloxytitanate added was 66 g.
  • the surface of the obtained insulating ultrafine powder was confirmed with a scanning electron microscope, a titanium dioxide film having a thickness of 200 to 400 nm and an average thickness of 300 nm was formed.
  • Example 29 carbon fiber pulverized by a ball mill not carbon nanofiber (cross-sectional diameter: 800 nm to l. 2 / ⁇ ⁇ , average cross-sectional diameter: 1 / ⁇ ⁇ , length: 50 / ⁇ ⁇ , fiber
  • cross-sectional diameter 800 nm to l. 2 / ⁇ ⁇ , average cross-sectional diameter: 1 / ⁇ ⁇ , length: 50 / ⁇ ⁇ , fiber
  • the resin composite material to which a small amount of the insulated ultrafine powder of the present invention is added has a high dielectric constant and further a radio wave absorption ability while maintaining the excellent moldability, workability and lightness inherent to the resin material. It appears. Further, the antenna substrate of the present invention using this resin composite material can realize miniaturization and high performance of a wireless data communication antenna such as a non-contact IC card Z tag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 本発明は、導電性超微粉末に絶縁皮膜を設けてなる絶縁化超微粉末であって、導電性超微粉末が、粒子直径1nm以上500nm以下の球状、断面直径1nm以上500nm以下の繊維状、または厚さ1nm以上500nm以下の板状の炭素材料からなり、絶縁皮膜が絶縁性金属酸化物又はその水和物からなり、絶縁皮膜の厚さが、0.3nm以上で、かつ導電性超微粉末が球状の場合にはその粒子直径以下、繊維状の場合にはその断面直径以下、板状の場合にはその厚さ以下であることを特徴とする絶縁化超微粉末、及びこれを用いた高誘電率樹脂複合材料である。樹脂材料本来の優れた成形性や加工性および軽量性を維持したまま高誘電率、さらには電波吸収能を発現する。                                                                         

Description

明 細 書
絶縁化超微粉末および高誘電率樹脂複合材料
技術分野
[0001] 本発明は高誘電率を特長とする榭脂複合材料に関する。この材料は、 IC (集積回 路)パッケージ、モジュール基板、電子部品に一体化した高誘電率層を形成するのに 好適である。特に、多層型配線基板の内層キャパシタ層を形成するのに好適である
。また、高誘電率による波長短縮効果を利用することで、無線 LANや非接触 ICカー ド Zタグなどの内蔵アンテナの小型化、感度改善や、高周波電子機器内部の電波干 渉を防止する電波吸収体の薄型化にも有用である。また、マイクロ波領域における不 要電波吸収にも有用である。
背景技術
[0002] ICのデータエラーの原因の一つとして、高周波雑音の影響がある。これを抑制する ために、配線基板に容量の大きなキャパシタを設けて、高周波雑音を取り除く方法が 知られている。このような容量の大きなキャパシタは、配線基板に高誘電率層を形成 することで実現される。また、内臓アンテナのサイズや電波吸収体の厚さが誘電率の 平方根にほぼ反比例するため、高誘電率材料はこれら部材の小型化、薄型化に有 用である。特に加工性や成形性に優れた榭脂材料にこのような特性を付与すること が求められている。
[0003] ところで、無線データ通信にはアンテナが必須である。特に電源を内蔵しない非接 触 icカード Zタグは、リーダ ·ライタが発信する電磁波エネルギーを内臓 icチップの 駆動電源に変換するため、アンテナの性能向上かつ小型化が求められている。 アンテナ配線基板のこのような高性能化の方法は、無線通信に用いる周波数帯に 依存する力 コイルの役割をするループ状のパターンとコンデンサーの電極に相当 する電極を配線基板上に設け、通信周波数に適合した同調回路を形成する方法が よく知られている。この時に用いられる容量の大きなコンデンサ一は、配線基板に高 誘電率層を形成することで実現される。また通信周波数帯が 300MHz以上の場合 には、アンテナのサイズが誘電率の平方根にほぼ反比例する効果 (波長短縮効果)を 利用する方法が知られている。
[0004] また、近年、電子機器の高密度化が進み、さらに携帯電話などの無線データ通信 機器の普及により不要電波の吸収に対する要求が高くなつている。
これまでフェライトゃ軟磁性合金の粉末を高充填した榭脂複合材料が用いられてき たが (例えば、特許文献 1参照)、使用電波がマイクロ波領域に高周波化するにつれ 、透磁率が低下し、吸収特性を発現するのに必要な厚さが増加してしまうという問題 が生じている。また比重が大きい粉末を高充填することになるため、榭脂複合材料の 比重が大きくなり、特に携帯通信機器の軽量ィ匕に適さないという課題もある。
[0005] 一方、代表的な導電性フィラーである、黒鉛やカーボンブラックなどの炭素材料系 粒子や、 、わゆる導電性酸ィ匕チタンすなわちアンチモンドープ酸化スズで被覆した 酸化チタンを絶縁媒体中に分散させる方法も提案されている (例えば、特許文献 2参 照)。これらの方法は、以下の式で表される発信源から十分離れた場合の無反射条 件から考えると、使用する電波の波長に対する、電波吸収体の厚さを 1Z20以下に するために、すなわち誘電率を大きくするために導電性フィラーの充填量を増やすと 、無反射条件力もかけ離れてしまうという問題がある。特に誘電率を 20以上にしょうと すると、乖離が著しくなり、電波吸収シートを厚くするか、薄くした場合、 1cm以下の 短波長、 30GHz以上の電波のみにし力利用できないなどの制約があった。
[0006] [数 1]
Figure imgf000003_0001
[0007] (但し、 ε:複素比誘電率、 d:電波吸収体の厚さ、 λ:電波の波長、 i:虚数単位) [0008] 高誘電率榭脂複合材料の従来の技術としては、チタン酸バリウムなどに代表される 強誘電体を高誘電率フイラ一として 65vol%以上、つまり 80wt%以上充填した榭脂 複合材料が提案されて ヽる (例えば、特許文献 3参照)。
一方、導電性粉末に、熱硬化榭脂で絶縁皮膜する高誘電率組成物が提案されて いるが (例えば、特許文献 4参照)、安定な性能が得られないため、商業的に製造され ず、実際には先に述べたフィラーを大量添加する方法が用いられて 、るのが現状で ある。このため、高誘電率化と引き換えに榭脂材料本来の特長である加工性、成形 性、軽量性が損なわれることになる。
[0009] 特に非接触 ICカードのアンテナ基板に無機フィラーを高充填した高誘電率材料が 商業的に使われることはな力つた。
例えば、 13. 56MHzを用いる非接触 ICカードの場合、コイルの役割をするループ 状の配線パターンを通常の比誘電率 5以下の榭脂基板上に形成し、コンデンサーを 内蔵しない方式が用いられる。この場合、ループ状配線パターンは非同調型磁気ピ ックアップコイルとしての役割を果たし、理想的な場合でも通信距離が 10cm、実際の 利用では lcm以下にまで低下してしまう。
[0010] 基板を構成する榭脂の誘電率が通常 5以下と小さいため、同調用コンデンサーを 形成するために必要な電極面積が大きくなつてしまう。このため、所定の電極面積を 確保するために、複数の電極パターンを基板に形成後に折り畳み、更にスルーホー ル配線で接続する方法 (例えば特許文献 5参照)や、アンテナコイルを大きくして、同 調用コンデンサーに必要な面積を減らす方法 (例えば特許文献 6参照)が提案され ている。これらの技術のうち、前者はアンテナ基板の構造が複雑ィ匕するのみならず、 アンテナコイルの中央部に形成されたコンデンサー用の電極で発生する電磁誘導の ためアンテナコイル内の磁束が著しく減少し、これに伴い感度も低下してしまう。また 後者はアンテナ基板そのものが大きくなつてしまう。このため、実際には磁気ピックァ ップコイルを用いたものが商業的に多く用いられて 、る。
[0011] 特許文献 1 :特開 2003— 327831号公報
特許文献 2:特開 2002— 57485号公報
特許文献 3:特開 2001— 237507号公報
特許文献 4:特開昭 54 - 11580号公報
特許文献 5:特開 2002— 358479号公報
特許文献 6:特開 2002— 183689号公報
発明の開示
[0012] 本発明は、上記課題を解決し、榭脂材料本来の特長である加工性や成形性を維 持できるようにフイラ一の添加率を抑制した、高誘電率榭脂複合材料の実現手段を 提供するものである。また、この高誘電率榭脂複合材料を用い、非接触 icカード Zタ グ等の無線データ通信用アンテナの小型化、高性能化の実現手段を提供するもの である。さらには、この高誘電率榭脂複合材料を用い、薄くて軽い電波吸収シートの 実現手段を提供するものである。
[0013] 本発明者らは、榭脂材料中でのフィラーの連続層形成およびフィラー自身の高誘 電率化につ 1、て鋭意検討した結果、導電性超微粉末の表面を絶縁性金属酸化物ま たはその水和物、特に分子分極の大きな絶縁性金属酸ィヒ物またはその水和物で被 覆した絶縁ィ匕超微粉末は、 5〜50vol%といった少ない添加量でも、榭脂複合材料 の誘電率を高くできることを見出し本発明に至った。
特に、この絶縁化超微粉末の高誘電率効果は絶縁皮膜の誘電率ではなく分子分 極に依存する。このことは、絶縁皮膜の誘電率を高くするための、すなわち非晶質構 造の少ない高密度の結晶状態にするための焼成が不要になることを意味する。通常 、焼成温度は 500°C以上になることが多ぐ芯となる導電性超微粉末の変質を起こす ことがある。このため、焼成が不要となることは製造に要するエネルギー以外にも、重 要な意味を持つ。
また、この高誘電率榭脂複合材料を用いて、非接触 ICカード Zタグ等の無線デー タ通信用アンテナ基板を容易に作製でき、また、高誘電率榭脂複合材料からなる電 波吸収材を用いて、電波吸収シートを作製できることを見出した。
[0014] すなわち、本発明は、
(1)導電性超微粉末に絶縁皮膜を設けてなる絶縁化超微粉末であって、導電性超 微粉末が、粒子直径 lnm以上 500nm以下の球状、断面直径 lnm以上 500nm以 下の繊維状、または厚さ lnm以上 500nm以下の板状の炭素材料力もなり、絶縁皮 膜が絶縁性金属酸ィ匕物又はその水和物力 なり、絶縁皮膜の厚さが、 0. 3nm以上 で、かつ導電性超微粉末が球状の場合にはその粒子直径以下、繊維状の場合には その断面直径以下、板状の場合にはその厚さ以下であることを特徴とする絶縁ィ匕超 微粉末、
(2)前記絶縁皮膜が、組成式 MTi Zr O (Mは 2価の金属元素、
1 3 xは 0以上 1未満) で表される絶縁性複合金属酸ィ匕物カゝらなる上記(1)記載の絶縁化超微粉末、 (3)絶縁性金属酸化物が、分子分極が 5cm3以上である絶縁性金属酸ィ匕物又はその 水和物である上記(1)記載の絶縁化超微粉末、
(4)絶縁性複合金属酸ィ匕物力 チタン酸バリウム、チタン酸ストロンチウム、チタン酸 鉛、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛、またはこれらのうち少なくと も一種を組成に含む絶縁性固溶体である上記(2)記載の絶縁化超微粉末、
(5)炭素材料の表面に酸化処理を施した上記(1)記載の絶縁化超微粉末、
(6)炭素材料が、カーボンナノファイバー、天然黒鉛、ファーネスカーボンブラック、 黒鉛ィ匕カーボンブラック、カーボンナノチューブ、又は人造黒鉛である上記(1)記載 の絶縁化超微粉末、
(7)絶縁性金属酸化物又はその水和物が、二酸化チタン、二酸ィ匕ジルコニウム、五 酸化二タンタル、二酸化ジルコニウムと二酸化シリコンとの固溶体、二酸化シリコン、 三酸化二アルミニウム、又はこれら金属酸化物の水和物である上記(3)記載の絶縁 化超微粉末、
(8)上記(1)に記載の絶縁ィ匕超微粉末と榭脂とを、体積比 (絶縁化超微粉末 Z榭脂 ) 5Z95〜50Z50の範囲で配合して得られる高誘電率榭脂複合材料、
(9)比重が 2以下である上記 (8)記載の高誘電率榭脂複合材料、
(10)さらに充填剤を含有する上記 (8)記載の高誘電率榭脂複合材料、
(11)比誘電率が 20以上である上記 (8)記載の高誘電率榭脂複合材料、
(12)上記 (8)記載の高誘電率榭脂複合材料を用いたアンテナ基板、
(13)高誘電率榭脂複合材料からなり、かつ厚さが 1 m以上 3mm以下である層を 少なくとも一層含む上記(12)記載のアンテナ基板、
(14)上記(12)記載のアンテナ基板を用いることを特徴とする非接触 ICカード Zタグ
(15)上記 (8)記載の高誘電率榭脂複合材料を用いた電波吸収材、
(16)吸収する電波の波長に対する厚さが 1Z20以下である上記(15)記載の電波 吸収材を用いた電波吸収材シート、
( 17)上記( 15)記載の電波吸収材を筐体内部に用 、た電子機器、
(18)上記 (8)記載の高誘電率榭脂複合材料を用いて形成される高誘電率フィルム 又はシート、
( 19)上記( 18)記載の高誘電率フィルム又はシートを用 、ることを特徴とする電子部
P
TO、
(20)上記 (8)記載の高誘電率榭脂複合材料を用いて形成される電子部品、
(21)導電性超微粉末を分散し、かつ少なくとも一種類の金属アルコキシドの溶解し た有機溶媒中にお!ヽて、該金属アルコキシドをゾルゲル反応により導電性超微粉末 の表面に金属酸化物又はその水和物を析出させる工程を含む上記(1)記載の絶縁 化超微粉末の製造方法、
(22)導電性超微粉末の表面に金属酸ィヒ物又はその水和物を析出させる工程に次
V、で、非酸ィ匕性雰囲気下で焼成する工程を含む上記 (21)記載の絶縁化超微粉末 の製造方法、
(23)導電性超微粉末の表面に金属酸ィヒ物又はその水和物を析出させる工程に次
V、で、皮膜反応液を加熱し液相中で金属酸化物又はその水和物を脱水する工程を 含む上記(21)記載の絶縁化超微粉末の製造方法、
を提供するものである。
[0015] 本発明によれば、導電性超微粉末を絶縁被膜した絶縁化超微粉末、特には分子 分極の大きな絶縁性金属酸ィ匕物またはその水和物で絶縁被膜した絶縁ィ匕超微粉末 を少量添加した榭脂複合材料は、榭脂材料本来の優れた成形性や加工性および軽 量性を維持したまま高誘電率、さらには電波吸収能を発現する。
また、本発明のアンテナ基板は、上記榭脂複合材料を用いることで、非接触 ICカー ド Zタグなどの無線データ通信のアンテナの小型化、高性能化を実現できる。
図面の簡単な説明
[0016] [図 1]実施例 20において、アンテナフィルム基板表面に形成した配線パターンである [図 2]実施例 20にお 、て、アンテナフィルム基板裏面に形成した配線パターンである [図 3]電波吸収の効果を確認するために用いた真鍮製の空洞共振器の外観図である 符号の説明
[0017] 1 入力端子
2 出力端子
発明を実施するための最良の形態
[0018] 本発明で用いる導電性超微粉末は、単独で榭脂材料に添加した場合、榭脂複合 材料の体積抵抗を低下させる、すなわち、導電性を付与する効果を有するものであ る。本発明においては、このような導電性超微粉末を構成する材質としては、天然黒 鉛、人造黒鉛、ファーネスカーボンブラック、黒鉛ィ匕カーボンブラック、カーボンナノ チューブ、カーボンナノファイバーなどの導電性炭素材料が用いられる。
導電性炭素材料に対し、代表的な導電体である金属は、一部の貴金属を除いて、 超微粉末は酸化され易ぐ導電性が低下しやすいのみでなぐ粉塵爆発の可能性も ある。また、金属原子が超微粉末から絶縁体媒質中に拡散し、複合材料の絶縁性を 低下させる。
導電性炭素材料はこうした問題点がなぐさらに、炭素材料が比重 2. 2と小さぐ他 の導電性物質や従来の高誘電率フィラーにはない特長を有し、高誘電率複合材料 の軽量ィ匕という効果もある。
[0019] 炭素材料力 なる導電性超微粉末には、次に述べる絶縁性金属酸ィ匕物の皮膜を 施すために、予め表面に酸ィ匕処理を施しておくことが望ましい。酸化処理としては、 酸素含有雰囲気下での酸化処理、硝酸、過マンガン酸カリウム、過酸化水素などの 水溶液による酸化処理、三塩化ルテニウムと次亜塩素酸ナトリウム力 なる酸ィ匕触媒 等を用いた酸ィ匕処理が挙げられる。
[0020] 本発明で用いる導電性超微粉末としては、粒子直径が lnm以上 500nm以下、望 ましくは 5nm以上 300nm以下、より望ましくは lOnm以上 lOOnm以下の球状の炭素 材料が挙げられる。このような球状の炭素材料、例えばカーボンブラックは、炭化水 素原料を気相で熱分解することによって得られる。また黒鉛ィ匕カーボンブラックは、 H e、 CO、またはこれら混合ガスの雰囲気系により内圧 2〜19Torrに保持された減圧 容器内において、炭素材料をアーク放電によって気化させ、気化した炭素蒸気を冷 却凝固することによって得られる。具体的には、東海カーボン (株)製のシースト Sや導 電'性カーボンブラック # 5500、 # 4500、 # 4400、 # 4300や黒 H匕カーボンブラッ ク # 3855、 # 3845、 # 3800、あるいは、三菱ィ匕学 (株)製の # 3050B、 # 3030B、 # 3230B、 # 3350B、 MA7、 MA8、 MA11、あるいは、ライオン (株)製のケッチェ ンブラック EC、ケッチェンブラック EC600JDなどが例示できる。なお、ここで球状とは 必ずしも厳密な球状である必要はなぐ等方的な形状であればよい。例えば角が発 生した多面体状であってもよ 、。
[0021] また、本発明で用いる導電性超微粉末としては、断面直径が lnm以上 500nm以 下、望ましくは 5nm以上 300nm以下、より望ましくは lOnm以上 200nm以下の繊維 状の炭素材料が挙げられる。その長さは断面直径の 3倍以上 300倍以下であること が好ましい。このような繊維状の炭素材料、例えばカーボンナノファイバーや、カーボ ンナノチューブは触媒となるコバルトや鉄の有機金属化合物と炭化水素原料を気相 で混合し、加熱することによって得られる。また、カーボンナノファイバ一はフエノール 系榭脂を溶融紡糸し、非活性雰囲気下で加熱することによって得られるものもある。 具体的には、昭和電工 (株)製の VGCFおよび VGNFや、(株) GSIクレオス製の力 ルベール、群栄化学工業 (株)製のカーボンナノファイバーなどが例示できる。なお、 ここで繊維状とは一方向に伸びた形状を意味し、例えば角材状、丸棒状や長球状で あってもよい。
[0022] さらに、本発明で用いる導電性超微粉末としては、厚さが lnm以上 500nm以下、 望ましくは 5nm以上 300nm以下、より望ましくは lOnm以上 200nm以下の板状の炭 素材料が挙げられる。その長さおよび幅は、厚さの 3倍以上 300倍以下であることが 好ましい。このような板状の炭素材料は、例えば天然黒鉛や人造黒鉛を精製'粉砕 · 分級することによって得られる。例えば、(株)エスィーシ一製の SNEシリーズ、 SNO シリーズ等や日本黒船製、鱗状黒鉛粉末、薄片化黒鉛粉末等が挙げられる。また、 これらをさらに粉砕し、精密分級してもよい。なお、ここで板状とは、一方向が縮んだ 形状を意味し、例えば扁平球状や鱗片状であってもよい。
[0023] 該粒子直径、断面直径または厚さが上記範囲より小さ!/、と量子サイズ効果により導 電性が低下する。また、製造が難しく工業的に用いることができないば力りでなぐ凝 集などにより取り扱いも難しい。一方、該粒子直径、断面直径または厚さが上記範囲 より大きいと、連続層の形成が 50vol%以下、すなわち榭脂特性を悪化させない添 加率の範囲では連続層が形成されなくなってしまう。また、導電性超微粉末の形状が 繊維状もしくは板状の場合、アスペクト比は 3〜300が望ましい。本発明で用いる導 電性超微粉末は、この中でも繊維状の方が球状や板状よりも望ましい。これは繊維 状のほうが、比誘電率が 20以上である榭脂複合材料として連続層を形成するために 必要な添加量が例えば 30vol%以下と少なくてすむためである。
[0024] 次に、本発明に用いる絶縁皮膜は、榭脂複合材料の全体的な絶縁性の確保を目 的の一つとしている。また、導電性超微粉末の表面上に被覆することで、絶縁化超微 粉末自体の誘電率は、絶縁皮膜構成材質の誘電率を倍加したものになる。このため 、絶縁皮膜の厚さは、被覆する導電性超微粉末が球状の場合にはその粒子直径以 下、繊維状の場合にはその断面直径以下、板状の場合にはその厚さ以下である。更 に望ましくは、絶縁皮膜の厚さは 0. 3nm以上で、かつ被覆する導電性超微粉末の 粒子直径、断面直径、または厚さとの比率力 0. 01以上 0. 9以下である。最も望ま しくは、絶縁皮膜の厚さは 0. 3nm以上で、かつ被覆する導電性超微粉末の粒子直 径、断面直径、または厚さとの比率力 0. 01以上 0. 5以下である。上記範囲よりも薄 いと絶縁効果が低減し、導通を防げず誘電体として機能しない場合がある。一方、こ れより厚い場合には、芯である導電性超微粉末の誘電率倍加効果が低減し、榭脂複 合材料の比誘電率が低下する場合がある。
[0025] 本発明における絶縁皮膜の材質は、絶縁性金属酸ィ匕物またはその水和物である。
例としては二酸ィ匕シリコン、三酸ィ匕ニアルミニウム、二酸ィ匕ジルコニウムなどの絶縁性 酸化物が挙げられる。またはこれらの水和物として、四水酸ィ匕シリコン、三水酸化ァ ルミ-ゥム、四水酸ィ匕ジルコニウムが挙げられる。水和物の場合、その一部が脱水縮 合した構造のものも含まれる。望ましくは比誘電率 20以上の五酸化二タンタル等の 絶縁性金属酸化物、アナタース型、およびブルカイト型の二酸ィ匕チタン、チタン酸ジ ルコ-ゥムが挙げられる。また、これらの固溶体も用いることができる。
これらのうち、二酸化チタン、二酸化ジルコニウム、五酸化二タンタル、二酸化ジル コ-ゥムとニ酸ィ匕シリコンとの固溶体、二酸ィ匕シリコン、三酸ィ匕ニアルミニウム、又はこ れらの水和物が好ましい。 さらに望ましくは比誘電率 100以上の金属酸ィ匕物が挙げられる。この例としては、 ルチル型の二酸化チタン (TiO )、チタン酸バリウム(BaTiO )、チタン酸ストロンチウ
2 3
ム(SrTiO )、チタン酸鉛(PbTiO )、チタン酸ジルコン酸バリウム(BaTi Zr O )、
3 3 0.5 0.5 3 チタン酸ジルコン酸鉛(PbTi Zr O )などの組成式 MTi Zr O (Mは 2価の金属
0.5 0.5 3 1 3
元素、 Xは 0以上 1未満)で表される絶縁性金属酸ィヒ物、またはこれらの水和物、さら にはこれらのうち少なくとも一種類を組成に含む絶縁性固溶体が挙げられる。これら の誘電率が大き 、材料を用いると、厚く絶縁被膜しても複合材料の誘電率が低下し ないため好ましい。
[0026] また、絶縁皮膜の材質としては、分子分極が 5cm3以上の絶縁性金属酸ィ匕物または その水和物が望ましい。常誘電体の多くの金属酸化物の分子分極は、つぎの Clausi us— Mossottiの式にあるとおり金属酸化物の誘電率、比重、式量から計算される。
[0027] [数 2]
£ - 1 M
a =
ε + 2 ρ
[0028] (但し、 a:分子分極、 ε:比誘電率、 Μ :式量、 ρ:比重)
なお、本発明では、式量は 1金属原子あたりに換算したものを意味する。例えば、 三酸ィ匕ニアルミニウムの場合、 AIO として、五酸ィ匕ニタンタルの場合には TaO と
1.5 2.5 して計算した式量から分子分極を計算する。尚、二酸ィ匕シリコンや二酸ィ匕チタンなど では、通常の式量となる。
特に分子分極が大きい材質を用いた場合、同じ皮膜の厚さにおいて、榭脂複合材 料における誘電率が大きくなる。例としては分子分極が 9cm3以上の二酸ィ匕シリコン、 三酸ィ匕ニアルミニウムなどの絶縁性金属酸ィ匕物が挙げられる。その水和物として四 水酸ィ匕シリコン、三水酸ィ匕アルミニウムが挙げられる。水和物の場合、その一部が脱 水縮合した構造のものも含まれる。望ましくは分子分極 15cm3以上のいわゆるジルコ ンすなわち二酸ィ匕ジルコニウムと二酸ィ匕シリコンとの固溶体、またはその水和物とし て四水酸ィ匕ジルコニウムと四水酸ィ匕シリコンとの固溶体が挙げられる。水和物の場合 、その一部が脱水縮合した構造のものも含まれる。さらに望ましくは分子分極が 17c m3以上の二酸化チタン、二酸化ジルコニウム、五酸化二タンタルまたはその水和物 として四水酸化チタン、四水酸化ジルコニウム、五水酸化タンタルが挙げられる。水 和物の場合、その一部が脱水縮合した構造のものも含まれる。
[0029] 絶縁皮膜の形成は、公知の方法を利用することができる。例えば導電性超微粉末 が分散した水溶液中で金属塩とアルカリを反応させ、導電性超微粉末を核として金 属水酸化物を析出させ、濾別 ·乾燥することにより脱水縮合させ、導電性超微粉末表 面に絶縁性金属酸化物が付着した状態を形成できる。この場合、予め金属塩水溶液 に導電性超微粉末を分散させてアルカリを滴下しても、導電性超微粒子の水分散液 に金属塩水溶液とアルカリ水溶液を同時もしくは逐次滴下してもよい。またはアルコ ールなどの有機溶媒に導電性超微粉末を分散し、金属アルコキシドを添加してゾル ゲル反応により導電性超微粉末を核とした金属水酸化物の析出、さらに有機溶媒中 で脱水縮合反応により導電性超微粉末表面に絶縁性金属酸化物が付着した状態を 形成できる。この中でも望ましいのは、ゾルゲル反応による絶縁皮膜形成である。金 属塩とアルカリの反応を用いた場合、副生成物である塩の除去に大量の水が必要と なるばかりでなぐ塩による凝祈がおこり、絶縁ィ匕超微粉末が固まってしまうため望ま しくない。
[0030] ゾルゲル反応により絶縁皮膜形成を行なった後は、さらに脱水処理を施すことが望 ましい。脱水方法としては、反応液力 絶縁ィ匕超微粉末を濾別したのちに乾燥により 脱水できる。または反応液を加熱しつつ、加熱温度より沸点が高い溶媒を添加して 溶媒を置換する方法もある。この方法は、ゾルゲル反応時の有機溶媒の蒸発に伴つ て、液相中で絶縁皮膜の脱水処理を行うものである。絶縁化超微粉末の製造法とし ては、液相中で絶縁皮膜の脱水縮合を行なうことが望ましい。液相中での脱水処理 を行なわずにろ過 ·乾燥した場合、ろ過時に形成される絶縁化超微粉末のケーキが 固まってしまうため望ましくな!/ヽ。
また、これらの反応後に焼成処理を行ってもよい。通常、焼成処理は 200〜1500 °Cの温度範囲で、 30分〜 24時間保持することにより行う。但し、導電性超微粉末が 炭素材料である場合、焼成雰囲気を非酸化性とする必要がある。すなわち窒素置換 やアルゴン置換を施し、酸素を遮断する必要がある。 [0031] 本発明で用いる絶縁ィ匕超微粉末は、粒子直径が lnm以上 500nm以下の球状、 断面直径が lnm以上 500nm以下の繊維状、または厚さが lnm以上 500nm以下の 板状の導電性炭素材料が金属酸ィ匕物またはその水和物により絶縁化された超微粉 末である。本発明の絶縁化超微粉末は、榭脂に 50vol%以下の量を配合すること〖こ より比誘電率が 20以上である高誘電率榭脂複合材料が得られる。比誘電率 20以上 の高誘電率榭脂複合材料を実現するには、従来の高誘電率フィラーを使用した場合 は該フイラ一を 50vol%程度以上配合する必要があるが、本発明の絶縁ィ匕超微粉末 を使用した場合は該絶縁化超微粉末を 50vol%以下、例えば、 5〜50vol%配合す ればよい。したがって、本発明の絶縁ィ匕超微粉末を配合した榭脂複合材料は、榭脂 材料本来の特長である成型加工性や軽量性が損なわれることなぐ高い誘電率を発 現する。
[0032] また本発明にお 、て、上記絶縁化超微粉末を添加する榭脂成分としては、 PVC榭 脂、フエノキシ榭脂、フッ化炭素系榭脂、 PPS榭脂、 PPE榭脂、ポリスチレン榭脂、ポ リオレフイン榭脂、ポリイミド榭脂、ポリアミド榭脂等の熱可塑性榭脂、あるいはこれら の混合系榭脂を挙げることができる。特に望ましくは、絶縁性に優れ、銅などの金属 層との密着性に優れたポリイミド榭脂である。
[0033] また、絶縁化超微粉末と配合する際の榭脂成分は、重合体の形態としてのみなら ず重合性ィ匕合物の形態として、すなわち、フエノキシ榭脂、エポキシ榭脂、シァネート エステル榭脂、ビニルエステル榭脂、フエノール榭脂、キシレン榭脂、メラミン榭脂、 ポリウレタン榭脂等の熱硬化性榭脂のモノマーやオリゴマーなどの重合性ィ匕合物とし て配合しておいて、後で重合させてもよい。
特に望ましくはエポキシ榭脂を含む榭脂組成物である。これは配線基板などに用 いる場合、銅等の金属層と密着強度が大きいためである。
[0034] 前記高誘電率榭脂複合材料は、高誘電率以外の目的で、必要に応じて充填剤を さらに添加して用いることができる。充填剤としては、弾性率改善のためのガラス繊維 、成形収縮率を低下させるための炭酸カルシウム、表面平滑性ゃ耐摩耗性の改善に 用いられるタルク、寸法安定性を改善するために用いられるマイ力が挙げられる。ま た、難燃性を付与する充填剤すなわち難燃剤としてハロゲン系またはリン系難燃剤、 水酸ィ匕アルミニウム、水酸ィ匕マグネシウムが挙げられる。
また、電波吸収材として用いる場合には、電波吸収特性の調整に従来技術で用い られて 、るフェライト粉末や鉄を主成分とした磁性金属体粉末、ある!/、はカーボン系 や酸化スズ系の導電性粉末や難燃剤としての効果も有する導電性粉末である膨張 黒鉛粉末などを充填剤として、さらに添加して用いることができる。
[0035] 本発明にお 、て、絶縁ィ匕超微粉末の榭脂組成物に対する添加量としては 5〜50v ol%、望ましくは 5〜30vol%である。これより少ないと、榭脂組成物中で連続層が形 成されず充分な比誘電率が得られない。一方、これより多いと、榭脂組成物本来の加 工性などが損なわれてしまう。
なお、本発明の高誘電率榭脂複合材料は、絶縁化超微粉末の原料に炭素材料を 用いるので、その比重を 2以下に軽量ィ匕できる。
[0036] 本発明の高誘電率榭脂複合材料を特にアンテナ基板に用いる場合、該高誘電率 榭脂複合材料は比誘電率が 20以上であることが望ましい。そして、このような高誘電 率榭脂複合材料を 1 μ m以上 3mm以下である層として、より具体的には、 1 μ m〜l 00 μ mの厚さに成形したフィルムまたは 100 μ m〜3mmの厚さに成形したシートの 少なくとも一方の表面に配線パターンを設けることで、アンテナ基板を形成することが できる。また、必要に応じて、高誘電率榭脂複合材料のフィルムまたはシートにスル 一ホールを設けることも可能である。非接触 icカード Zタグとする場合、これらのアン テナ基板の配線パターンに icを直接配線してもよ 、し、 icを内蔵したカード Zタグと アンテナ基板を接触させ、ブースターアンテナとして利用してもよい。また、高誘電率 榭脂複合材料のフィルムまたはシートをアンテナ基板や非接触 ICカードとして用いる 場合、必要に応じて保護フィルムなどを貼り付けてもよ 、。
[0037] 本発明の絶縁化超微粉末を、榭脂に 5vol%以上 50vol%以下の量配合することに より比誘電率が 20以上である電波吸収材が得られる。比誘電率 20以上の電波吸収 材を実現するには、従来の高誘電率フィラーを使用した場合は該フイラ一を 50vol% 程度以上配合する必要があるが、本発明の絶縁化超微粉末を使用した場合は該絶 縁化超微粉末を 50vol%以下、例えば、 5〜50vol%配合すればよい。したがって、 本発明の絶縁ィ匕超微粉末を配合した榭脂複合材料は、榭脂材料本来の特長である 成型加工性や軽量性が損なわれることなぐ高い誘電率を発揮し、マイクロ波領域で 電波吸収能を発揮する。
このような本発明の高誘電率榭脂複合材料を用いた電波吸収材は、高い誘電率を 有するため、シート化した場合に、吸収する電波の波長に対する厚さを 1Z20以下と することができる。
また、本発明の電波吸収材は、筐体内部に用いることができ、電子機器として優れ た性能を示す。
なお、絶縁ィ匕超微粉末の原料に炭素材料を用いるため、電波吸収材の比重を 2以 下に下げることができ、一層の軽量ィ匕を図ることができる。
実施例
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によって なんら限定されるものではな 、。
実施例 1
イソプロパノール 150g中にカーボンナノファイバー(昭和電工 (株)製 VGCF— H、 断面直径 150nm、長さ 5〜6 μ mの繊維状) 5gとテトラプロピルォキシチタネート l lg を添加し、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水:イソプロパノー ルで 1 : 6混合液 77gを 5分かけて滴下した。滴下終了後更に 1時間攪拌を継続した 後、濾過した。 12時間自然乾燥した後、 100°Cにて真空乾燥した。走査型電子顕微 鏡で得られた粉末の表面を確認したところ、 30〜70nm厚、平均 50nm厚の二酸ィ匕 チタンの皮膜が形成されて ヽた。
得られた絶縁ィ匕超微粉末 2gとビスフエノール A型ェポシキモノマー (旭電化工業( 株)製 EP— 4100G) 8g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾール 2E 4MZ) 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間 粉砕混合した。これは絶縁ィ匕超微粉末 (フイラ一)を 10vol%添加したことになる。得 られた溶液をテフロンシャーレに入れ 12時間自然乾燥した後に 120°Cで 3時間加熱 し、硬化物の板を得た。
これを用いて Agilent社製 4294A型インピーダンス ·アナライザで 10MHzの誘電 率を測定したところ、比誘電率は 92. 1であった。また硬化物の比重は 1. 3であった [0039] 実施例 2
絶縁化超微粉末を合成するに当たり、カーボンナノファイバー 5gを 60wt%硝酸水 溶液中で 100°Cに加熱し、酸化処理を施した以外は、実施例 1と同様にした。実施 例 1と同様に誘電率を測定したところ、比誘電率は 86. 3であった。硬化物の比重は 1. 3であった。
[0040] 実施例 3
イソプロパノール 25g中に、天然黒鉛((株)エスィーシ一製 SNO— 2:厚さ 100〜2 OOnm、平均厚さ 150nm、 1〜3 μ m角、平均 2 μ m角の板状) 5gとテトラプロピルォ キシチタネート 1. 8gを加え、 1時間攪拌した後、室温にて 1時間で攪拌混合した。こ の分散溶液に蒸留水:イソプロパノールで 1: 6混合液 13gを 5分かけて滴下した。滴 下終了後更に 1時間攪拌を継続した後、濾過した。 12時間自然乾燥した後、 100°C にて真空乾燥した。走査型電子顕微鏡で得られた粉末の表面を確認したところ、 30 〜70nm厚、平均 50nm厚の二酸化チタンの皮膜が形成されて!、た。
得られた絶縁化超微粉末 3. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 6. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 13g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁化超微粉末 (フイラ一)を 20vol%添加したことに なる。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°C で 3時間加熱し硬化物の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 70. 1であった。比重は 1. 5であった。
[0041] 実施例 4
イソプロノ V—ル 25g中に、導電性カーボンブラック(東海カーボン (株)製、粒子直 径 10〜30nm、平均直径 25nmの球状) 5gとテトラプロピルォキシチタネート 1. 8gを 加え、 1時間攪拌した後、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水: イソプロパノールで 1 : 6混合液 13gを 5分かけて滴下した。滴下終了後更に 1時間攪 拌を継続した後、濾過した。 12時間自然乾燥した後、 100°Cにて真空乾燥した。走 查型電子顕微鏡で得られた粉末の表面を確認したところ、 3〜7nm厚、平均 5nm厚 の二酸ィ匕チタンの皮膜が形成されていた。
得られた絶縁化超微粉末 2. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 7. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 15g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 13vol%添加したことになる。得ら れた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°Cで 3時間 加熱し、硬化物の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 71. 6であり、比重は 1. 4で めつに。
[0042] 比較例 1
実施例 1において、絶縁ィ匕超微粉末の代わりにカーボンナノファイバーを 1. 5gとし て他は同様にして硬化物の板を得た。これは体積組成では 7vol%添加したことにな る。誘電率測定を試みたが、この板は体積抵抗率 17. 2 Ω πιの導電体であり誘電率 は測定できな力つた。すなわち、この硬化物の板は誘電体ではな力つた。
[0043] 比較例 2
硬化物を得るに当たり、絶縁ィ匕超微粉末の代わりに、直径 2 mのチタン酸バリウム を 5g、ビスフエノール A型エポキシモノマーの量を 5g、硬化剤を 0. lgとした以外は 実施例 1と同様にして、硬化物の板を得た。これはチタン酸バリウム粉末 (フイラ一)を 16vol%添カ卩したことになる。
実施例 1と同様に誘電率を測定したところ、比誘電率は 6. 8であった。比重は 1. 7 であった。
[0044] 比較例 3
硬化物を得るに当たり、絶縁ィ匕超微粉末の代わりに、直径 2 mのチタン酸バリウム を 8g、ビスフエノール A型エポキシモノマーの量を 2g、硬化剤を 20mgとした以外は 実施例 1と同様にして、硬化物の板を得た。これはチタン酸バリウム粉末 (フイラ一)を 50vol%添カ卩したことになる。
実施例 1と同様に誘電率を測定したところ、比誘電率は 21. 8であった。比重は 2. 9であった。
[0045] これらの結果を表 1にまとめた。
[表 1]
Figure imgf000018_0001
[0046] 実施例 1および比較例 1より、導電性超微粉末に絶縁皮膜を設けていない場合は 導通により誘電体として機能せず、絶縁皮膜により誘電体として性質が備わったこと がわかる。また、実施例 1〜4、特に球状導電性超微粉末であるカーボンブラックを金 属酸化物で絶縁被覆した絶縁化超微粉末を用いた実施例 4と、従来技術の代表的 なフイラ一であるチタン酸バリウム微粉末を用いた比較例 2、 3からもわかるように、本 発明の絶縁ィ匕超微粉末を用いた高誘電率複合材料は、従来技術で必要とされて!/ヽ たよりもはるかに少ない添加率で、高誘電率が実現しかつ軽量であることがわかる。
[0047] 実施例 5
イソプロパノール 160g中に金属ストロンチウムを 2. 9gとテトラプロピルォキシチタネ ート 9. 3gをカ卩え、 1時間沸点還流し、無色透明ゾル液を得た。ここに、カーボンナノ ファイバー(昭和電工 (株)製 VGCF— H、断面直径 150nm、長さ 5〜6 m) 10gを 加え、 14時間室温で撹拌した。これに、蒸留水 15gとイソプロパノール 120gの混合 液を 30分かけて滴下し、 2時間撹拌した後、吸引濾過した。 12時間自然乾燥した後 、 100°Cにて真空乾燥した。
得られた絶縁ィ匕超微粉末 2gとビスフエノール A型ェポシキモノマー (旭電化工業( 株)製 EP— 4100G) 8g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾール 2E 4MZ) 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間 粉砕混合した。これは絶縁ィ匕超微粉末を 10vol%添加したことになる。得られた溶液 をテフロンシャーレに入れ 12時間自然乾燥した後に 120°Cで 3時間加熱し、硬化物 の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 122. 2であった。また硬化 物の比重は 1. 4であった。
[0048] 実施例 6
絶縁化超微粉末を合成するに当たり、カーボンナノファイバー 5gを 60wt%硝酸水 溶液中で 100°Cに加熱し、酸化処理を施した以外は、実施例 5と同様にした。実施 例 1と同様に誘電率を測定したところ、比誘電率は 116. 1であった。硬化物の比重 は 1. 4であった。
[0049] 実施例 7
イソプロパノール 80g中に、金属ストロンチウムを 0. 5gとテトラプロピルォキシチタネ ート 1. 6gを加え、 1時間沸点還流し、無色透明ゾル液を得た。ここに、天然黒鉛((株 )エスィーシ一製 SNO— 2 :厚さ 100〜200nm、平均厚さ 150nm、 1〜3 πι角、平 均 角の板状)を 10g加え、 14時間室温で撹拌した。これに、蒸留水 2. 5gとイソ プロパノール 20gの混合液を 30分かけて滴下し、 2時間撹拌した後、吸引濾過した。 12時間自然乾燥した後、 100°Cにて真空乾燥した。
得られた絶縁化超微粉末 3. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 6. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 13g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁化超微粉末 (フイラ一)を 20vol%添加したことに なる。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°C で 3時間加熱し、硬化物の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 110. 1であった。比重は 1 . 6であった。
[0050] 実施例 8
イソプロパノール 80g中に、金属ストロンチウムを 1. 5gとテトラプロピルォキシチタネ ート 4. 8gをカ卩え、 1時間沸点還流し、無色透明ゾル液をえた。ここに、導電性カーボ ンブラック(東海カーボン (株)製、粒子直径 10〜30nm、平均直径 25nmの球状) 10 gを加え、 14時間室温で撹拌した。これに、蒸留水 7. 5gとイソプロパノール 60gの 混合液を 30分力けて滴下し、 2時間撹拌した後、吸引濾過した。 12時間自然乾燥し た後、 100°Cにて真空乾燥した。
得られた絶縁化超微粉末 2. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 7. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 15g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁化超微粉末 (フイラ一)を 13vol%添加したことに なる。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°C で 3時間加熱し、硬化物の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 102. 6であり、比重は 1. 4 であった。
[0051] 実施例 9
イソプロノ V—ル 25g中に、導電性カーボンブラック (東海カーボン (株)製、粒子直 径 10〜30nm、平均直径 25nm) 5gとテトラプロピルォキシチタネート 1. 8gを加え、 1時間攪拌した後、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水:イソプ ロバノールで 1 : 6混合液 13gを 5分かけて滴下した。滴下終了後更に 1時間攪拌を継 続した後、濾過し 12時間自然乾燥した後、 100°Cにて真空乾燥した。
実施例 8と同様に得られた絶縁ィ匕超微粉末とエポキシモノマーを混合'硬化し、実 施例 1と同様に誘電率を測定した。比誘電率 71. 2、比重 1. 4であった。
[0052] これらの結果を表 2にまとめた。
[表 2]
Figure imgf000020_0001
実施例 5および比較例 1より導電性超微粉末に絶縁被覆して ヽな 、場合は導通に より誘電体として機能せず、絶縁皮膜により誘電体として性質が備わったことがわか る。また、実施例 8と実施例 9との比較により、絶縁皮膜に二酸ィ匕チタンを用いるより 複合酸ィ匕物であるチタン酸ストロンチウムを用いた方力 より誘電率が大きくなり、好 ましいことがわかる。実施例 5〜8、特に球状導電性超微粉末であるカーボンブラック を金属酸化物で絶縁被覆した絶縁化超微粉末を用いた実施例 8と、従来技術の代 表的なフィラーであるチタン酸バリウム微粉末を用いた比較例 2、 3からもわ力るように 、本発明の絶縁化超微粉末を用いた榭脂複合材料は、従来技術で必要とされてい たよりもはるかに少ないフィラー添加率で、高誘電率が実現しかつ軽量であることが ゎカゝる。
[0054] 実施例 10
イソプロパノール 150g中に気相成長法で合成したカーボンナノファイバー(断面直 径 150nm、長さ 5〜6 μ mの繊維状) 5gとテトラプロピルォキシチタネート l lgを添カロ し、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水:イソプロパノールで 1 : 6 混合液 77gを 5分かけて滴下した。滴下終了後更に 1時間攪拌を継続した後、 N, N —ジメチルァセトアミドを 200g添加しつつ 150°Cに加熱し、溶媒置換した。得られた 懸濁液を濾別、乾燥し、 9gの絶縁化超微粉末を得た。
走査型電子顕微鏡で得られた粉末の表面を確認したところ、 40〜60nm厚、平均 50nm厚の二酸ィ匕チタン水和物の皮膜が形成されていた。尚、二酸化チタンであり、 アナターゼ型結晶の場合、比誘電率 31、比重 4. 1であるため、分子分極は 19cm3あ る。ルチル型結晶ゃブルッカイト型結晶も分子分極は 18〜 19cm3である。
得られた絶縁ィ匕超微粉末 2gとビスフエノール A型エポキシモノマー 8g、イミダゾー ル系硬化触媒 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 1分間粉砕混合した。これは絶縁ィ匕超微粉末を 10vol%添加したことになる(絶縁ィ匕 超微粉末とビスフエノール A型エポキシモノマーとの配合割合 (体積比): 10790)。 得られた溶液をテフロンシャーレに入れ 12時間自然乾燥した後に 120°Cで 3時間加 熱し、硬化物の板として高誘電率エポキシ複合材料を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 92. 1であった。また硬化物 の比重は 1. 3であった。
[0055] 実施例 11 絶縁化超微粉末を合成するに当たり、テトラプロピルォキシチタネートに替えて、テ トラブチルォキシジルコネートを用いた以外は実施例 10と同様にした。走査型電子 顕微鏡で得られた粉末の表面を確認したところ、 30〜70nm厚、平均 50nm厚の二 酸ィ匕ジルコニウム水和物の皮膜が形成されていた。尚、二酸ィ匕ジルコニウムの結晶 状態の比誘電率は 18であり比重は 5. 5である。したがって分子分極は 19cm3となる 。実施例 1と同様に高誘電率エポキシ複合材料の誘電率を測定したところ、比誘電 率は 90. 7であった。また硬化物の比重は 1. 3であった。
[0056] 実施例 12
絶縁化超微粉末を合成するに当たり、カーボンナノファイバー 5gを 60wt%硝酸水 溶液中で 100°Cに加熱し、酸化処理を施した以外は、実施例 11と同様にした。実施 例 1と同様に、高誘電率エポキシ複合材料の誘電率を測定したところ、比誘電率は 1 02であった。硬化物の比重は 1. 3であった。
[0057] 実施例 13
イソプロパノール 25g中に、天然黒鉛(厚さ 100〜200nm、平均厚さ 150nm、 1〜 角、平均 2 m角の板状) 5gとテトラエトキシシリケート 1. 8gをカロえ、室温にて 1 時間で攪拌混合した。この分散溶液に蒸留水:イソプロパノールで 1 : 6混合液 13gを 5分かけて滴下した。滴下終了後更に 24時間攪拌を継続した後、 N, N—ジメチルァ セトアミドを 30g添加しつつ 150°Cに加熱し、溶媒置換した。得られた懸濁液を濾別、 乾燥し、 5. 6gの絶縁化超微粉末を得た。
走査型電子顕微鏡で得られた粉末の表面を確認したところ、 30〜50nm厚、平均 40nm厚の二酸ィ匕シリコン水和物の皮膜が形成されていた。尚、二酸ィ匕シリコンは、 結晶状態において、比誘電率 3. 8、比重 2. 1である。したがって分子分極は 13cm3 である。
得られた絶縁化超微粉末 3. 5gとビスフエノール A型エポキシモノマー 6. 5g、イミダ ゾール系硬化触媒 0. 13g、および溶媒としてメチルェチルケトン 10gをホモジナイザ 一で 1分間粉砕混合した。これは絶縁ィ匕超微粉末を 20vol%添加したことになる。得 られた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°Cで 3時 間加熱し、硬化物の板を得た。 実施例 1と同様に誘電率を測定したところ、比誘電率は 69. 1であった。比重は 1. 2であった。
[0058] 実施例 14
イソプロパノール 25g中に、カーボンブラック(粒子直径 10〜30nm、平均直径 25η mの球状) 5gとトリプロピルォキシアルミナート 1. 8gを加え、室温にて 1時間で攪拌混 合した。この分散溶液に蒸留水:イソプロノ V—ルで 1: 6混合液 13gを 5分かけて滴 下した。滴下終了後更に 12時間攪拌を継続した後は、実施例 1と同様に N, N—ジメ チルァセトアミドに溶媒置換した後、濾別、乾燥し、 5. 5gの絶縁ィ匕超微粉末を得た。 走査型電子顕微鏡で得られた粉末の表面を確認したところ、 5〜: LOnm厚、平均 7 nm厚の三酸ィ匕ニアルミニウム水和物の皮膜が形成されていた。尚、三酸化二アルミ -ゥムは結晶状態において比誘電率 9. 6、比重 3. 8である。したがって分子分極は 10cm3である。
得られた絶縁化超微粉末 2. 5gとビスフエノール A型エポキシモノマー 7. 5g、イミダ ゾール系硬化触媒 0. 15g、および溶媒としてメチルェチルケトン 10gをホモジナイザ 一で 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 13vol%添加したことになる。 得られた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°Cで 3 時間加熱し、硬化物の板を得た。
実施例 1と同様に誘電率を測定したところ、比誘電率は 70. 7であり、比重は 1. 3で めつに。
[0059] 実施例 15
イソプロパノール中 2. 5g中に気相成長法にて合成したカーボンナノチューブ(断 面直径: 5〜: L lnm、平均断面直径: 8nm、長さ: 50〜200nm、繊維状)を 5gとテトラ プロピルォキシチタネート 1. 8gを加え、 1時間攪拌した後、室温にて 1時間で攪拌混 合した。この分散溶液に蒸留水:イソプロノ V—ルで 1 : 6混合液 1. 3gを 5分かけて滴 下した。滴下終了後更に 1時間攪拌を継続した後、濾過し 12時間自然乾燥した後、 100°Cにて真空乾燥し、 5. 6gの粉末を得た。
走査型電子顕微鏡で得られた粉末の表面を確認したところ、 2〜4nm厚、平均 3n m厚の二酸ィ匕チタン水和物の皮膜が形成されて ヽた。 得られた絶縁ィ匕超微粉末 2gとビスフエノール A型エポキシモノマー 8g、イミダゾー ル系硬化触媒 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥した 後に 120°Cで 3時間加熱し、厚さ lmmの硬化物のシートを得た。これは絶縁化超微 粉末を 10vol%添加したことになる。これを、実施例 1と同様に誘電率を測定したとこ ろ、比誘電率は 189であった。また板の比重は 1. 3であった。
[0060] 実施例 16
イソプロノ V—ル中 25g中に溶融紡糸法により合成したカーボンナノファイバー(断 面直径: 300〜500nm、平均断面直径: 400nm、長さ: 50 m、繊維状)を 5gとテト ラブチルォキシジルコネート 18gをカ卩え、室温にて 1時間で攪拌混合した。この分散 溶液に蒸留水:イソプロパノールで 1 : 6混合液 1. 3gを 5分かけて滴下した。滴下終 了後更に 1時間攪拌を継続した後、実施例 10と同様に N, N—ジメチルァセトアミド に溶媒置換した後、濾別、乾燥し、 9gの粉末を得た。
走査型電子顕微鏡で得られた粉末の表面を確認したところ、 90〜130nm厚、平 均 l lOnm厚の二酸ィ匕ジルコニウム水和物の皮膜が形成されていた。実施例 10と同 様に高誘電率エポキシ複合材料の硬化物の板を作製し、実施例 1と同様に誘電率を 測定したところ、比誘電率は 58. 4であった。
[0061] 実施例 17
実施例 10で得られた絶縁ィ匕超微粉末 lgとビスフエノール A型エポキシモノマー 9g 、イミダゾール系硬化触媒 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジ ナイザーで 1分間粉砕混合した以外は全て実施例 10と同様にして硬化物のシートを 得た。これは絶縁ィ匕超微粉末を 5vol%添加したことになる。実施例 1と同様に誘電率 を測定したところ、比誘電率は 57. 8であった。またフィルムの比重は 1. 3であった。
[0062] 実施例 18
実施例 11におけるテトラプロピルォキシジルコネートの添加量を 0. 5gとした以外は 、全て同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕微鏡で確 認したところ、 2〜7nm厚、平均 5nm厚の二酸化ジルコニウム水和物の皮膜が形成 されていた。この絶縁ィ匕超微粉末を実施例 10と同様にエポキシ榭脂と混合し得られ た硬化物の誘電率は 178、比重は 1. 3であった。
[0063] 実施例 19
実施例 10におけるテトラプロピルォキシチタネートの添加量を 22gとした以外は、 全て実施例 10と同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕 微鏡で確認したところ、 70〜130nm厚、平均 lOOnm厚の二酸化チタン水和物の皮 膜が形成されていた。得られた硬化物の誘電率は 74. 3、比重は 1. 3であった。
[0064] 比較例 4
実施例 10における絶縁ィ匕超微粉末を 7gとビスフエノール A型エポキシモノマーを 3 g混合した以外は、実施例 10と同様にした。これは絶縁化超微粉末を 60vol%添カロ したことになる。この場合、非常に脆い硬化物しか得られな力つた。誘電率の測定が 出来なかった。
[0065] 比較例 5
実施例 10においてテトラプロピルォキシチタネートの添加量を 66gとした以外は、 実施例 10と同様にした。尚、得られた絶縁化超微粉末の表面を走査型電子顕微鏡 で確認したところ、 200〜400nm厚、平均 300nm厚の二酸化チタンの皮膜が形成 されていた。得られた硬化物の誘電率は 16. 3、比重は 1. 3であった。
[0066] 比較例 6
実施例 10にお 、てカーボンナノファイバーではなぐボールミルで粉砕した炭素繊 維(断面直径: 800nm〜l. 2 /ζ πι、平均断面直径: 1 /ζ πι、長さ:50 /ζ πι、繊維状)を 用いたほかは、実施例 10と同様にした。尚、得られた絶縁化超微粉末の表面を走査 型電子顕微鏡で確認したところ、 200〜500nm厚、平均 300nm厚の二酸化チタン の皮膜が形成されていた。得られた硬化物の誘電率は 9. 2であった。
[0067] 実施例 10および比較例 1より、導電性超微粉末に絶縁皮膜を設けていない場合は 導通により誘電体として機能せず、絶縁皮膜により誘電体として性質が備わったこと がわかる。実施例 10と実施例 11より、結晶状態の誘電率が大幅に異なるが、分子分 極が同等である二酸化チタン水和物および二酸化ジルコニウム水和物でそれぞれ 皮膜した絶縁化超微粉末を用いた場合、ほぼ同等の高誘電率榭脂複合材料が得ら れることから、分子分極の影響が大きいことがわかる。また、実施例 10〜14、特に球 状導電性超微粉末であるカーボンブラックを三酸ィ匕ニアルミニウム水和物で絶縁被 覆した絶縁ィ匕超微粉末を用いた実施例 14と、従来技術の代表的なフィラーであるチ タン酸バリウム微粉末を用いた比較例 2、 3からもわかるように、本発明の絶縁化超微 粉末を用いた高誘電率複合材料は、従来技術で必要とされて ヽたよりもはる力ゝに少 な 、添加率で、高誘電率が実現しかつ軽量であることがわかる。
[0068] 実施例 20
実施例 1で得られた絶縁化超微粉末を 0. 2gとポリイミドワニス 5. 3g (固形分 15wt %)をホモジナイザーで 30分間粉砕混合した。これは絶縁化超微粉末を 10vol%添 カロしたことになる。ワニスをガラス板に塗布し、 200°Cで 1時間焼成しフィルムを得た。 これを用いて実施例 1と同様に誘電率を測定したところ、比誘電率は 92. 1であった 。またフィルムの比重は 1. 3であった。
フィルム両面に 12 m厚の銅箔をドライラミネートし、それぞれに図 1および 2の配 線パターンを塩ィ匕第 2鉄水溶液によるエッチングにて、形成し、アンテナフィルム基板 を得た。非接触 ICカード内臓の定期券と接触した状態で 13. 56MHzに同調するよ うに、フィルム裏面の配線パターンに切込みを入れた。このアンテナフィルム基板と非 接触 IC内臓の定期券を接触させると、 13. 56MHzを利用する市販の非接触 1じリー ダ (ソニー (株)製 RC— S310)から 32cm離れた状態で、定期券に内蔵された ICの データ読み取りが可能であった。
[0069] 実施例 21
実施例 3で得られた絶縁化超微粉末 0. 35gとポリイミドワニス 5. 3g (固形分 15wt %)をホモジナイザーで 30分間粉砕混合した。これは絶縁化超微粉末を 20vol%添 カロしたことになる。ワニスをガラス板に塗布し、 200°Cで 1時間焼成した。これを用いて 実施例 1と同様に誘電率を測定したところ、比誘電率は 70. 1であった。またフィルム の比重は 1. 3であった。実施例 20と同様にアンテナフィルム基板に、実施例 20と同 様に配線パターンを設け、市販の非接触 ICリーダから 27cm離れた状態で、定期券 に内蔵された ICのデータ読み取りが可能であった。
[0070] 実施例 22
実施例 4で得られた絶縁化超微粉末 0. 25gとポリイミドワニス 5g (固形分 15wt%)を ホモジナイザーで 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 13vol%添加した ことになる。ワニスをガラス板に塗布し、 200°Cで 1時間焼成した。これを用いて実施 例 1と同様に誘電率を測定したところ、比誘電率は 72. 1であった。またフィルムの比 重は 1. 3であった。実施例 20と同様にアンテナフィルム基板に、実施例 20と同様に 配線パターンを設け、市販の非接触 ICリーダ力も 20cm離れた状態で、定期券に内 蔵された ICのデータ読み取りが可能であった。
[0071] 実施例 23
イソプロパノール 2. 5g中に気相成長法にて合成したカーボンナノチューブ (断面直 径: 5〜: L lnm、平均断面直径: 8nm、長さ: 50〜200nm、繊維状)を 0. 5gとテトラプ 口ピルォキシチタネート 1. 8gを加え、 1時間攪拌した後、室温にて 1時間で攪拌混合 した。この分散溶液に蒸留水:イソプロノ V—ルで 1 : 6混合液 1. 3gを 5分かけて滴下 した。滴下終了後更に 1時間攪拌を継続した後、濾過し、 12時間自然乾燥した後、 1 00°Cにて真空乾燥した。走査型電子顕微鏡で得られた粉末の表面を確認したところ 、 2〜4nm厚、平均 3nm厚の二酸化チタンの皮膜が形成されていた。
得られた絶縁化超微粉末 0. 25gとポリイミドワニス 5g (固形分 15wt%)をホモジナ ィザ一で 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 13vol%添加したことにな る。ワニスをガラス板に塗布し、 200°Cで 1時間焼成した。これを用いて実施例 1と同 様に誘電率を測定したところ、比誘電率は 189であった。またフィルムの比重は 1. 3 であった。実施例 20と同様にアンテナフィルム基板に、実施例 20と同様に配線パタ ーンを設け、市販の非接触 ICリーダカゝら 36cm離れた状態で、定期券に内蔵された I Cのデータ読み取りが可能であった。
[0072] 実施例 24
イソプロパノール中 25g中に溶融紡糸法により合成したカーボンナノナノファイバー (断面直径: 300〜500nm、平均断面直径: 400nm、長さ: 50 m、繊維状)を 5gと テトラプロピルォキシチタネート 18gを加え、 1時間攪拌した後、室温にて 1時間で攪 拌混合した。この分散溶液に蒸留水:イソプロパノールで 1 : 6混合液 1. 3gを 5分かけ て滴下した。滴下終了後更に 1時間攪拌を継続した後、濾過し 12時間自然乾燥した 後、 100°Cにて真空乾燥した。走査型電子顕微鏡で得られた粉末の表面を確認した ところ、 90〜130nm厚、平均 l lOnm厚の二酸化チタンの皮膜が形成されていた。 得られた絶縁化超微粉末 0. 25gとポリイミドワニス 5g (固形分 15wt%)をホモジナイ ザ一で 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 13vol%添加したことになる 。ワニスをガラス板に塗布し、 200°Cで 1時間焼成した。これを用いて実施例 1と同様 に誘電率を測定したところ、比誘電率は 56. 3であった。またフィルムの比重は 1. 3 であった。実施例 20と同様にアンテナフィルム基板に、実施例 20と同様に配線パタ ーンを設け、市販の非接触 ICリーダカゝら 36cm離れた状態で、定期券に内蔵された I Cのデータ読み取りが可能であった。
[0073] 実施例 25
実施例 1で得られた絶縁化超微粉末 0. 2gとポリイミドワニス 16g (固形分 15wt%) をホモジナイザーで 30分間粉砕混合した以外は全て実施例 1と同様にした。これは 絶縁ィ匕超微粉末を 5vol%添加したことになる。ワニスをガラス板に塗布し、 200°Cで 1時間焼成した。これを用いて実施例 1と同様に誘電率を測定したところ、比誘電率 は 256であった。またフィルムの比重は 1. 3であった。実施例 20と同様にアンテナフ イルム基板に、実施例 20と同様に配線パターンを設けた。市販の非接触 ICリーダか ら 47cm離れた状態で、定期券に内蔵された ICのデータ読み取りが可能であった。
[0074] 実施例 26
実施例 1で得られた絶縁化超微粉末 0. 2gとポリイミドワニス 1. lg (固形分 15wt% )をホモジナイザーで 30分間粉砕混合した以外は全て実施例 20と同様にした。これ は絶縁ィ匕超微粉末を 40vol%添加したことになる。ワニスをガラス板に塗布し、 200 °Cで 1時間焼成した。これを用いて実施例 1と同様に誘電率を測定したところ、比誘 電率は 256であった。またフィルムの比重は 1. 6であった。実施例 20と同様にアンテ ナフイルム基板に、実施例 20と同様にして 13. 56MHzに配線パターンを設けた。巿 販の非接触 ICリーダ力 28cm離れた状態で、定期券に内蔵された ICのデータ読み 取りが可能であった。
[0075] 実施例 27
テトラプロピルォキシチタネートの添加量を 0. 5gとした以外は、全て実施例 20と同 様にした。なお得られた絶縁ィ匕超微粉末の表面を走査型電子顕微鏡で確認したとこ ろ、 2〜7nm厚、平均 5nm厚の二酸化チタンの皮膜が形成されていた。 得られたフィルムの誘電率は 178、比重は 1. 3であった。実施例 20と同様にして 1 3. 56MHzに同調するパターンを設けた。巿販の非接触 ICリーダ力も 46cm離れた 状態で、定期券に内蔵された ICのデータ読み取りが可能であった。
[0076] 実施例 28
テトラプロピルォキシチタネートの添加量を 0. 5gとした以外は、全て実施例 20と同 様にした。なお得られた絶縁ィ匕超微粉末の表面を走査型電子顕微鏡で確認したとこ ろ、 70〜130nm厚、平均 lOOnm厚の二酸化チタンの皮膜が形成されていた。得ら れたフィルムの誘電率は 47. 3、比重は 1. 3であった。実施例 20と同様にして 13. 5 6MHzに同調するパターンを設けた。市販の非接触 ICリーダから 18cm離れた状態 で、定期券に内蔵された ICのデータ読み取りが可能であった。
[0077] 比較例 7
非接触 ICカード内臓の定期券単独では、市販の非接触 ICリーダカゝら lcm以上離 すとデータの読み取り不良となった。
[0078] 比較例 8
絶縁化超微粉末を添加しな 、こと以外は、実施例 20と同様に焼成したポリイミドフィ ルムに配線パターンを設けたアンテナフィルム基板を用いたところ、市販の非接触 IC カードリーダ Zライタから lcm以上離すと ICのデータ読み取りができなくなった。すな わちこのポリイミドフィルム基板にはアンテナ基板としての効果がな力つた。
[0079] 比較例 9
絶縁ィ匕処理を施さないカーボンナノファイバーを添加した以外は実施例 20と同様 に焼成したポリイミドフィルムに配線パターンを設けたアンテナフィルム基板を用いた ところ、市販の非接触 ICカードリーダ Zライタから lcm以上離すと ICのデータ読み取 りができなくなった。すなわちこのポリイミドフィルム基板にはアンテナ基板としての効 果がなかった。
[0080] 比較例 10
実施例 1における絶縁化超微粉末を 0. 2gとポリイミドワニスを 0. 44g混合した以外 は、実施例 20と同様にした。これは絶縁ィ匕超微粉末を 60vol%添加したことになる。 この場合、柔軟性のあるフィルムが得られず。誘電率等の測定や、アンテナ基板にす ることが出来な力つた。
[0081] 比較例 11
実施例 20においてテトラプロピルォキシチタネートの添加量を 66gとした以外は、 実施例 20と同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕微鏡 で確認したところ、 200〜400nm厚、平均 300nm厚の二酸化チタンの皮膜が形成 されていた。
得られたフィルムの誘電率は 16. 3、比重は 1. 3であった。実施例 20と同様にこの フィルムに配線パターンを設けたアンテナフィルム基板を用いたところ、市販の非接 触 ICカードリーダ Zライタから lcm以上離すと ICのデータ読み取りができなくなった 。すなわちこのポリイミドフィルム基板にはアンテナ基板としての効果がな力つた。
[0082] 比較例 12
実施例 20にお 、てカーボンナノファイバーではなぐボールミルで粉砕した炭素繊 維(断面直径: 800nm〜l. 2 /ζ πι、平均断面直径 1 /ζ πι、長さ:50 /ζ πι、繊維状)を 用いたほかは、実施例 20と同様にした。なお得られた絶縁化超微粉末の表面を走 查型電子顕微鏡で確認したところ、 200〜500nm厚、平均 300nm厚の二酸化チタ ンの皮膜が形成されていた。
得られたフィルムの誘電率は、 9. 2であった。実施例 20と同様にこのフィルムに配 線パターンを設けたアンテナフィルム基板を用いたところ、市販の非接触 ICカードリ ーダ Zライタから lcm以上離すと ICのデータ読み取りができなくなった。すなわちこ のポリイミドフィルム基板にはアンテナ基板としての効果がな力つた。
[0083] 実施例 29
イソプロパノール 150g中にカーボンナノファイバー(断面直径: 150nm、長さ: 5〜 6 /ζ πι) 58とテトラプロピルォキシチタネート 4. 5gを添加し、室温にて 1時間で攪拌混 合した。この分散溶液に蒸留水:イソプロノ V—ルで 1: 6混合液 77gを 5分かけて滴 下した。滴下終了後更に 1時間攪拌を継続した後、濾過した。 12時間自然乾燥した 後、 100°Cにて真空乾燥した。
得られた絶縁ィ匕超微粉末 2gとビスフエノール A型ェポシキモノマー (旭電ィ匕工業製 EP-4100G) 8g、イミダゾール系硬化触媒(四国化学製キュアゾール 2E4MZ) 0. 16g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合 した。これは絶縁ィ匕超微粉末を 10vol%添加したことになる。得られた溶液をテフロン シャーレに入れ 12時間自然乾燥した後に 120°Cで 3時間加熱し、硬化物である厚さ lmmのシートを得た。これを用いて実施例 1と同様に誘電率を測定したところ、比誘 電率は 96. 1であった。また硬化物の比重は 1. 3であった。
次に、図 3に示した通り、 50mm X 40mm X 20mmの真鍮製の空洞共振器を作製 し対向する側面にそれぞれ入力端子 1と出力端子 2を設け、 5GHz〜15GHzの入力 -出力間の Sパラメータを、 Agilent社製 8722ES型ネットワークアナライザーを用い て測定し空洞共振器の共鳴スペクトルピークを確認した。 10. 3GHz (波長 30mm) のピークが 3dBの強度で発生して 、た。このピークが筐体内での不要電波に対応 するものである。つぎに、 1mm厚の硬化物のシートを敷き、同様に測定したところ、ピ ークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大きいこ とを意味する。
実施例 30
イソプロパノール 25g中に、天然黒鉛(厚さ: 100〜200nm、平均厚さ: 150nm、 1 〜3 111角、平均 2 m角の平板状) 5gとテトラプロピルォキシチタネート 0. 6gをカロ え、 1時間攪拌した後、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水:ィ ソプロパノールで 1 : 6混合液 4gを 5分かけて滴下した。滴下終了後更に 1時間攪拌を 継続した後、濾過した。 12時間自然乾燥した後、 100°Cにて真空乾燥した。
得られた絶縁化超微粉末 3. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 6. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 13g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 20vol%添加したことになる。得ら れた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°Cで 3時間 加熱し、厚さ lmmの硬化物のシートを得た。実施例 1と同様に誘電率を測定したとこ ろ、比誘電率は 70. 1であった。比重は 1. 3であった。
実施例 29と同様に空洞共振器に入れて測定したところ、 10. 3GHz (波長 30mm) のピークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大き いことを意味する。
[0085] 実施例 31
イソプロパノール 25g中に、導電性カーボンブラック(粒子直径: 10〜30nm、平均 粒子直径: 25nm) 5gとテトラプロピルォキシチタネート 1. 8gをカ卩え、 1時間攪拌した 後、室温にて 1時間で攪拌混合した。この分散溶液に蒸留水:イソプロパノールで 1 : 6混合液 13gを 5分かけて滴下した。滴下終了後更に 1時間攪拌を継続した後、濾過 し 12時間自然乾燥した後、 100°Cにて真空乾燥した。
得られた絶縁化超微粉末 2. 5gとビスフエノール A型ェポシキモノマー (旭電化工 業 (株)製 EP— 4100G) 7. 5g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾ ール 2E4MZ) 0. 15g、および溶媒としてメチルェチルケトン 10gをホモジナイザーで 30分間粉砕混合した。これは絶縁ィ匕超微粉末を 15vol%添加したことになる。得ら れた溶液をテフロンシャーレに入れ 12時間自然乾燥したペーストを 120°Cで 3時間 加熱し、厚さ lmmの硬化物のシートを得た。実施例 1と同様に誘電率を測定したとこ ろ、比誘電率は 71. 6であり、比重は 1. 3であった。
実施例 29と同様に空洞共振器に入れて、 10. 3GHz (波長 30mm)のピークが消 滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大きいことを意味 する。
[0086] 実施例 32
イソプロパノール中 2. 5g中に気相成長法にて合成したカーボンナノチューブ(断 面直径: 5〜: L lnm、平均断面直径: 8nm、長さ: 50〜200nm、繊維状)を 0. 5gとテ トラプロピルォキシチタネート 1. 8gを加え、 1時間攪拌した後、室温にて 1時間で攪拌 混合した。この分散溶液に蒸留水:イソプロパノールで 1 : 6混合液 1. 3gを 5分かけて 滴下した。滴下終了後更に 1時間攪拌を継続した後、濾過した。 12時間自然乾燥し た後、 100°Cにて真空乾燥した。走査型電子顕微鏡で得られた粉末の表面を確認し たところ、 2〜4nm厚、平均 3nm厚の二酸化チタンの皮膜が形成されていた。
得られた絶縁ィ匕超微粉末 2gとビスフエノール A型ェポシキモノマー (旭電化工業( 株)製 EP— 4100G) 8g、イミダゾール系硬化触媒(四国化学 (株)製キュアゾール 2E 4MZ) 0. 16g、および溶媒としてメチルェチルケトン lOgをホモジナイザーで 30分間 粉砕混合した。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥した後に 12 0°Cで 3時間加熱し、厚さ lmmの硬化物シートを得た。これは絶縁化超微粉末を 10v ol%添加したことになる。これを用いて実施例 1と同様に誘電率を測定したところ、比 誘電率は 189であった。またフィルムの比重は 1. 3であった。
実施例 29と同様に空洞共振器に入れて測定したところ、 10. 3GHz (波長 30mm) のピークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大き いことを意味する。
[0087] 実施例 33
イソプロノ V—ル中 25g中に溶融紡糸法により合成したカーボンナノファイバー(断 面直径: 300〜500nm、平均断面直径: 400nm、長さ: 50 m、繊維状)を 5gとテト ラブロピルォキシチタネート 18gを加え、 1時間攪拌した後、室温にて 1時間で攪拌混 合した。この分散溶液に蒸留水:イソプロノ V—ルで 1 : 6混合液 1. 3gを 5分かけて滴 下した。滴下終了後更に 1時間攪拌を継続した後、濾過し、 12時間自然乾燥した後 、 100°Cにて真空乾燥した。走査型電子顕微鏡で得られた粉末の表面を確認したと ころ、 90〜130nm厚、平均 l lOnm厚の二酸化チタンの皮膜が形成されていた。 得られた絶縁ィ匕超微粉末 2gとビスフエノール A型ェポシキモノマー (旭電ィ匕工業製 EP-4100G) 8g、イミダゾール系硬化触媒(四国化学製キュアゾール 2E4MZ) 0. 16g、および溶媒としてメチルェチルケトン lOgをホモジナイザーで 30分間粉砕混合 した。得られた溶液をテフロンシャーレに入れ 12時間自然乾燥した後に 120°Cで 3 時間加熱し、厚さ lmmの硬化物のシートを得た。これは絶縁ィ匕超微粉末を 10vol% 添カロしたことになる。
実施例 29と同様に空洞共振器に入れて測定したところ、 10. 3GHz (波長 30mm) のピークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大き いことを意味する。
[0088] 実施例 34
実施例 29で得られた絶縁ィ匕超微粉末 lgとビスフエノール A型ェポシキモノマー (旭 電化工業 (株)製 EP - 4100G) 9g、イミダゾール系硬化触媒(四国化学 (株)製キュ ァゾール 2E4MZ) 0. 16g、および溶媒としてメチルェチルケトン lOgをホモジナイザ 一で 30分間粉砕混合した以外は全て実施例 29と同様にして硬化物のシートを得た 。これは絶縁ィ匕超微粉末を 5vol%添加したことになる。これを用いて実施例 1と同様 に誘電率を測定したところ、比誘電率は 256であった。またフィルムの比重は 1. 3で めつに。
実施例 29と同様に空洞共振器に入れて測定したところ、 10. 3GHz (波長 30mm) のピークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大き いことを意味する。
[0089] 実施例 35
実施例 29で得られた絶縁ィ匕超微粉末 4gとビスフエノール A型ェポシキモノマー (旭 電化工業 (株)製 EP - 4100G) 4g、イミダゾール系硬化触媒(四国化学 (株)製キュ ァゾール 2E4MZ) 0. 08g、および溶媒としてメチルェチルケトン 10gをホモジナイザ 一で 30分間粉砕混合した以外は全て実施例 29と同様にして硬化物のシートを得た 。これは絶縁ィ匕超微粉末を 40vol%添加したことになる。これを用いて実施例 1と同 様に誘電率を測定したところ、比誘電率は 256であった。またフィルムの比重は 1. 6 であった。
実施例 29と同様に空洞共振器に入れて測定したところ、 10. 3GHz (波長 30mm) のピークが消滅していた。これは、硬化物 lmm厚のシートが電波吸収の効果が大き いことを意味する。
[0090] 実施例 36
実施例 29におけるテトラプロピルォキシチタネートの添加量を 0. 5gとした以外は、 全て同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕微鏡で確認 したところ、 2〜7nm厚、平均 5nm厚の二酸化チタンの皮膜が形成されていた。この 絶縁化超微粉末を実施例 29と同様にェポシキ榭脂と混合し得られた硬化物の誘電 率は 178、比重は 1. 3であった。実施例 29と同様に空洞共振器に入れて測定したと ころ、 10. 3GHz (波長 30mm)のピークが消滅していた。これは、硬化物 lmm厚の シートが電波吸収の効果が大き 、ことを意味する。
[0091] 実施例 37 実施例 29におけるテトラプロピルォキシチタネートの添加量を 22gとした以外は、 全て実施例 29と同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕 微鏡で確認したところ、 70〜130nm厚、平均 lOOnm厚の二酸化チタンの皮膜が形 成されていた。
得られた硬化物の誘電率は 47. 3、比重は 1. 3であった。実施例 29と同様に空洞 共振器に入れて測定したところ、 10. 3GHz (波長 30mm)のピークが消滅していた。 これは、硬化物 lmm厚のシートが電波吸収の効果が大きいことを意味する。
[0092] 比較例 13
絶縁化超微粉末を添加しないこと以外は、実施例 29と同様にした。硬化物の誘電 率は 4. 8であった。 10. 6GHzおよび 10. 8GHzの共鳴ピークの***が認められた 。すなわち抑制の効果はほとんどな力つた。
[0093] 比較例 14
絶縁ィ匕処理を施さないカーボンナノファイバーをエポキシ榭脂に添加した以外は、 実施例 29と同様にした。 10. 6GHzのピークが発生していた。
すなわち、電波吸収の効果はな力つた。
[0094] 比較例 15
実施例 29における絶縁ィ匕超微粉末を 7gとビスフエノール A型ェポシキモノマーを 3 g混合した以外は、実施例 29と同様にした。これは絶縁ィ匕超微粉末を 60vol%添カロ したことになる。この場合、非常に脆い硬化物しか得られな力つた。誘電率等の測定 や、電波吸収特性を評価することが出来なかった。
[0095] 比較例 16
実施例 29においてテトラプロピルォキシチタネートの添加量を 66gとした以外は、 実施例 29と同様にした。なお得られた絶縁化超微粉末の表面を走査型電子顕微鏡 で確認したところ、 200〜400nm厚、平均 300nm厚の二酸化チタンの皮膜が形成 されていた。
得られた硬化物の誘電率は 16. 3、比重は 1. 3であった。実施例 29と同様に空洞 共振器の内部においたところ、 10. 7GHzのピークが発生していた。すなわち、電波 吸収の効果はなかった。 [0096] 比較例 17
実施例 29にお 、てカーボンナノファイバーではなぐボールミルで粉砕した炭素繊 維(断面直径: 800nm〜l. 2 /ζ πι、平均断面直径: 1 /ζ πι、長さ:50 /ζ πι、繊維状)を 用いたほかは、実施例 29と同様にした。なお得られた絶縁化超微粉末の表面を走 查型電子顕微鏡で確認したところ、 200〜500nm厚、平均 300nm厚の二酸化チタ ンの皮膜が形成されていた。得られた硬化物の誘電率は、 9. 2であった。実施例 29 と同様に空洞共振器の内部においたところ、 10. 7GHzのピークが発生していた。す なわち、電波吸収の効果はな力つた。
産業上の利用可能性
[0097] 本発明の絶縁化超微粉末を少量添加した榭脂複合材料は、榭脂材料本来の優れ た成形性や加工性および軽量性を維持したまま高誘電率、さらには電波吸収能を発 現する。また、この榭脂複合材料を用いた本発明のアンテナ基板は、非接触 ICカー ド Zタグなどの無線データ通信のアンテナの小型化、高性能化を実現できる。

Claims

請求の範囲
[I] 導電性超微粉末に絶縁皮膜を設けてなる絶縁化超微粉末であって、導電性超微 粉末が、粒子直径 lnm以上 500nm以下の球状、断面直径 lnm以上 500nm以下 の繊維状、または厚さ lnm以上 500nm以下の板状の炭素材料力もなり、絶縁皮膜 が絶縁性金属酸ィ匕物又はその水和物力 なり、絶縁皮膜の厚さが、 0. 3nm以上で
、かつ導電性超微粉末が球状の場合にはその粒子直径以下、繊維状の場合にはそ の断面直径以下、板状の場合にはその厚さ以下であることを特徴とする絶縁ィ匕超微 粉末。
[2] 前記絶縁皮膜が、組成式 MTi Zr O (Mは 2価の金属元素、 Xは 0以上 1未満)で
1 3
表される絶縁性複合金属酸化物からなる請求項 1記載の絶縁化超微粉末。
[3] 絶縁性金属酸化物が、分子分極が 5cm3以上である絶縁性金属酸化物又はその 水和物である請求項 1記載の絶縁化超微粉末。
[4] 絶縁性複合金属酸化物が、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛
、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛、またはこれらのうち少なくとも 一種を組成に含む絶縁性固溶体である請求項 2記載の絶縁化超微粉末。
[5] 炭素材料の表面に酸化処理を施した請求項 1記載の絶縁化超微粉末。
[6] 炭素材料が、カーボンナノファイバー、天然黒鉛、ファーネスカーボンブラック、黒 鉛ィ匕カーボンブラック、カーボンナノチューブ、又は人造黒鉛である請求項 1記載の 絶縁化超微粉末。
[7] 絶縁性金属酸化物又はその水和物が、二酸化チタン、二酸ィ匕ジルコニウム、五酸 化二タンタル、二酸化ジルコニウムと二酸化シリコンとの固溶体、二酸化シリコン、三 酸ィ匕ニアルミニウム、又はこれら金属酸ィ匕物の水和物である請求項 3記載の絶縁ィ匕 超微粉末。
[8] 請求項 1に記載の絶縁化超微粉末と榭脂とを、体積比 (絶縁化超微粉末 Z榭脂) 5
Z95〜50Z50の範囲で配合して得られる高誘電率榭脂複合材料。
[9] 比重が 2以下である請求項 8記載の高誘電率榭脂複合材料。
[10] さらに充填剤を含有する請求項 8記載の高誘電率榭脂複合材料。
[II] 比誘電率が 20以上である請求項 8記載の高誘電率榭脂複合材料。
[12] 請求項 8記載の高誘電率榭脂複合材料を用いたアンテナ基板。
[13] 高誘電率榭脂複合材料からなり、かつ厚さが 1 m以上 3mm以下である層を少な くとも一層含む請求項 12記載のアンテナ基板。
[14] 請求項 12記載のアンテナ基板を用いることを特徴とする非接触 ICカード Zタグ。
[15] 請求項 8記載の高誘電率榭脂複合材料を用いた電波吸収材。
[16] 吸収する電波の波長に対する厚さが 1Z20以下である請求項 15記載の電波吸収 材を用いた電波吸収材シート。
[17] 請求項 15記載の電波吸収材を筐体内部に用いた電子機器。
[18] 請求項 8記載の高誘電率榭脂複合材料を用いて形成される高誘電率フィルム又は シート。
[19] 請求項 18記載の高誘電率フィルム又はシートを用いることを特徴とする電子部品。
[20] 請求項 8記載の高誘電率榭脂複合材料を用いて形成される電子部品。
[21] 導電性超微粉末を分散し、かつ少なくとも一種類の金属アルコキシドの溶解した有 機溶媒中にぉ 、て、該金属アルコキシドをゾルゲル反応により導電性超微粉末の表 面に金属酸化物又はその水和物を析出させる工程を含む請求項 1記載の絶縁ィ匕超 微粉末の製造方法。
[22] 導電性超微粉末の表面に金属酸ィ匕物又はその水和物を析出させる工程に次 、で 、非酸化性雰囲気下で焼成する工程を含む請求項 21記載の絶縁化超微粉末の製 造方法。
[23] 導電性超微粉末の表面に金属酸ィ匕物又はその水和物を析出させる工程に次 、で 、皮膜反応液を加熱し液相中で金属酸化物又はその水和物を脱水する工程を含む 請求項 21記載の絶縁化超微粉末の製造方法。
PCT/JP2005/014343 2004-08-06 2005-08-04 絶縁化超微粉末および高誘電率樹脂複合材料 WO2006013947A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/573,307 US8184035B2 (en) 2004-08-06 2005-08-04 Insulated ultrafine powder and high dielectric constant resin composite material
EP05768582A EP1788040B1 (en) 2004-08-06 2005-08-04 Insulated ultrafine powder and high dielectric constant resin composite material

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004230159 2004-08-06
JP2004-230159 2004-08-06
JP2004-230160 2004-08-06
JP2004230160 2004-08-06
JP2004312190 2004-10-27
JP2004312191 2004-10-27
JP2004-312191 2004-10-27
JP2004-312190 2004-10-27
JP2005139484 2005-05-12
JP2005-139484 2006-05-18

Publications (1)

Publication Number Publication Date
WO2006013947A1 true WO2006013947A1 (ja) 2006-02-09

Family

ID=35787226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014343 WO2006013947A1 (ja) 2004-08-06 2005-08-04 絶縁化超微粉末および高誘電率樹脂複合材料

Country Status (3)

Country Link
US (1) US8184035B2 (ja)
EP (1) EP1788040B1 (ja)
WO (1) WO2006013947A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094962A (ja) * 2006-10-12 2008-04-24 Mitsubishi Gas Chem Co Inc 絶縁化超微粉末および高誘電率樹脂複合材料
WO2011013501A1 (ja) 2009-07-28 2011-02-03 三菱瓦斯化学株式会社 絶縁化超微粉末およびその製造方法、並びに高誘電率樹脂複合材料
WO2013021831A1 (ja) * 2011-08-10 2013-02-14 三菱瓦斯化学株式会社 高誘電率な樹脂複合材料、及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
EP1833289A1 (en) * 2004-12-17 2007-09-12 Kabushiki Kaisha Fine Rubber Kenkyuusho Dielectric raw material, antenna device, portable phone and electromagnetic wave shielding body
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders
US7993611B2 (en) 2006-08-02 2011-08-09 Eestor, Inc. Method of preparing ceramic powders using ammonium oxalate
US8048341B2 (en) * 2008-05-28 2011-11-01 Applied Sciences, Inc. Nanocarbon-reinforced polymer composite and method of making
JP5278709B2 (ja) * 2009-12-04 2013-09-04 株式会社村田製作所 導電性樹脂組成物およびチップ型電子部品
CN102352133B (zh) * 2011-06-17 2013-12-25 上海华力索菲科技有限公司 超细炉甘石微粒的表面包覆方法及其在合成纤维中的应用
JP5880483B2 (ja) * 2013-05-09 2016-03-09 コニカミノルタ株式会社 導電性粒子、その製造方法、導電性組成物、導電性部材および画像形成装置
US20170114455A1 (en) * 2015-10-26 2017-04-27 Jones Tech (USA), Inc. Thermally conductive composition with ceramic-coated electrically conductive filler
US11193964B2 (en) * 2018-06-04 2021-12-07 Purdue Research Foundation System and method for measuring changes in dielectric properties in a structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411580A (en) 1977-06-27 1979-01-27 Renault Device for retreating tools in machine tool
WO2000032538A1 (de) 1998-11-30 2000-06-08 Institut Für Neue Materialien Gem. Gmbh Beschichtete, elektrisch polarisierbare, nicht magnetische teilchen, verfahren zu deren herstellung und deren verwendung
JP2001237507A (ja) 2000-02-24 2001-08-31 Ngk Spark Plug Co Ltd 高誘電率複合材料及びそれを用いたプリント配線板並びに多層プリント配線板
JP2002057485A (ja) 2000-06-01 2002-02-22 Yokohama Rubber Co Ltd:The 電波吸収体組成物
WO2002016257A2 (en) 2000-08-24 2002-02-28 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
JP2002183689A (ja) 2000-12-11 2002-06-28 Dainippon Printing Co Ltd 非接触データキャリア装置とその製造方法
EP1231637A2 (en) 2001-02-08 2002-08-14 Hitachi, Ltd. High dielectric constant composite material and multilayer wiring board using the same
JP2002358479A (ja) 2001-03-26 2002-12-13 Sony Corp バーコード読み取り装置
JP2003327831A (ja) 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体
JP2004244599A (ja) * 2003-02-17 2004-09-02 Toda Kogyo Corp 改質カーボンブラック粒子粉末及びその製造法、当該改質カーボンブラック粒子粉末を含有する塗料及び樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757149A (en) * 1953-01-30 1956-07-31 Weyerhaeuser Timber Co Reactive precipitation of resin on fibers
US5603983A (en) * 1986-03-24 1997-02-18 Ensci Inc Process for the production of conductive and magnetic transitin metal oxide coated three dimensional substrates
US5077241A (en) * 1988-11-17 1991-12-31 Minnesota Mining And Manufacturing Company Sol gel-derived ceramic bubbles
US4992333A (en) * 1988-11-18 1991-02-12 G&H Technology, Inc. Electrical overstress pulse protection
JPH08183875A (ja) 1994-12-28 1996-07-16 Otsuka Chem Co Ltd 高熱伝導性複合充填材及び高熱伝導性樹脂組成物
US6926972B2 (en) * 2002-01-10 2005-08-09 Basf Corporation Method of providing an electroluminescent coating system for a vehicle and an electroluminescent coating system thereof
JP2003317831A (ja) 2002-04-25 2003-11-07 Tyco Electronics Amp Kk 基板取付型電気コネクタ組立体および電気コネクタ
JP2004031325A (ja) * 2002-05-10 2004-01-29 Mitsubishi Electric Corp 固体高分子型燃料電池およびその製造方法
JP2004077399A (ja) * 2002-08-22 2004-03-11 Hitachi Ltd ミリ波レーダ
US20060154071A1 (en) * 2002-09-05 2006-07-13 Itaru Homma Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the sdame, and supercapacitor and secondary battery carbon fine powder
DK1654561T3 (da) * 2003-08-14 2012-10-22 Saab Sensis Corp Mållokalisering under anvendelse af en fordelt TDOA-antenne
KR20060115993A (ko) * 2003-09-22 2006-11-13 니혼 이타가라스 가부시키가이샤 청색 착색 박편 및 그것을 배합한 화장료, 도료 조성물,수지 조성물 및 잉크 조성물
US7338622B2 (en) * 2003-12-04 2008-03-04 E.I. Du Pont De Nemours And Company Thick film compositions for use in electroluminescent applications

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411580A (en) 1977-06-27 1979-01-27 Renault Device for retreating tools in machine tool
WO2000032538A1 (de) 1998-11-30 2000-06-08 Institut Für Neue Materialien Gem. Gmbh Beschichtete, elektrisch polarisierbare, nicht magnetische teilchen, verfahren zu deren herstellung und deren verwendung
JP2002531590A (ja) * 1998-11-30 2002-09-24 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク コートされた、電気的に分極可能な、非磁性粒子、それらの製造方法およびそれらの使用
JP2001237507A (ja) 2000-02-24 2001-08-31 Ngk Spark Plug Co Ltd 高誘電率複合材料及びそれを用いたプリント配線板並びに多層プリント配線板
JP2002057485A (ja) 2000-06-01 2002-02-22 Yokohama Rubber Co Ltd:The 電波吸収体組成物
JP2004506530A (ja) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
WO2002016257A2 (en) 2000-08-24 2002-02-28 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
JP2002183689A (ja) 2000-12-11 2002-06-28 Dainippon Printing Co Ltd 非接触データキャリア装置とその製造方法
EP1231637A2 (en) 2001-02-08 2002-08-14 Hitachi, Ltd. High dielectric constant composite material and multilayer wiring board using the same
JP2002334612A (ja) * 2001-02-08 2002-11-22 Hitachi Ltd 高誘電率複合材料とそれを用いた多層配線板
JP2002358479A (ja) 2001-03-26 2002-12-13 Sony Corp バーコード読み取り装置
JP2003327831A (ja) 2002-05-14 2003-11-19 Dow Corning Toray Silicone Co Ltd 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体
JP2004244599A (ja) * 2003-02-17 2004-09-02 Toda Kogyo Corp 改質カーボンブラック粒子粉末及びその製造法、当該改質カーボンブラック粒子粉末を含有する塗料及び樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ONG K.G.; GRIMES C.A., SENSORS, vol. 1, 2001, pages 193 - 205
See also references of EP1788040A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094962A (ja) * 2006-10-12 2008-04-24 Mitsubishi Gas Chem Co Inc 絶縁化超微粉末および高誘電率樹脂複合材料
WO2011013501A1 (ja) 2009-07-28 2011-02-03 三菱瓦斯化学株式会社 絶縁化超微粉末およびその製造方法、並びに高誘電率樹脂複合材料
JP2011049141A (ja) * 2009-07-28 2011-03-10 Mitsubishi Gas Chemical Co Inc 絶縁化超微粉末およびその製造方法、並びに高誘電率樹脂複合材料
CN102471066A (zh) * 2009-07-28 2012-05-23 三菱瓦斯化学株式会社 绝缘化超微粉末及其制造方法及高介电常数树脂复合材料
US9315673B2 (en) 2009-07-28 2016-04-19 Mitsubishi Gas Chemical Company, Inc. Insulated ultrafine powder, method for producing same, and high dielectric constant resin composite material
US9394447B2 (en) 2009-07-28 2016-07-19 Mitsubishi Gas Chemical Company, Inc. Insulated ultrafine powder, method for producing same, and high dielectric constant resin composite material
WO2013021831A1 (ja) * 2011-08-10 2013-02-14 三菱瓦斯化学株式会社 高誘電率な樹脂複合材料、及びその製造方法

Also Published As

Publication number Publication date
EP1788040B1 (en) 2012-06-06
US8184035B2 (en) 2012-05-22
EP1788040A4 (en) 2009-12-23
US20110102231A1 (en) 2011-05-05
EP1788040A1 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
WO2006013947A1 (ja) 絶縁化超微粉末および高誘電率樹脂複合材料
JP5092341B2 (ja) 絶縁化超微粉末および高誘電率樹脂複合材料
JP5574395B2 (ja) 複合材料及びその製造方法
US9394447B2 (en) Insulated ultrafine powder, method for producing same, and high dielectric constant resin composite material
Kumar et al. Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution
JP2019083315A (ja) セラミック電子部品およびその製造方法、ならびに電子装置
JP6422569B2 (ja) 軟磁性体粉末、成形部材、圧粉コア、電気・電子部品、電気・電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
JP4867130B2 (ja) 絶縁化超微粉末とその製造方法、およびそれを用いた高誘電率樹脂複合材料
JP4977976B2 (ja) 絶縁化超微粉末および高誘電率樹脂複合材料
KR102498656B1 (ko) 유전체 세라믹 재료, 그 제조 방법 및 복합 유전체 재료
JP5119873B2 (ja) ノイズ抑制体及びノイズ抑制フィルム
JP6282952B2 (ja) Fe基合金組成物、成形部材、成形部材の製造方法、圧粉コア、電子部品、電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
JP2004273751A (ja) 磁性部材、電磁波吸収シート、磁性部材の製造方法、電子機器
JP2010028179A (ja) 近距離通信用アンテナフィルム
JP2008022416A (ja) 高誘電体を用いたアンテナ
JP6422568B2 (ja) 軟磁性体粉末、成形部材、圧粉コア、電気・電子部品、電気・電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
CN116368004A (zh) 电磁波吸收片
JP2009017142A (ja) 誘電特性を用いたノイズ抑制材料およびノイズ抑制フィルム
JP2009159392A (ja) 近距離通信用icチップを搭載した携帯情報端末
JP2009049263A (ja) ノイズ抑制フィルムおよびその製造方法
JP2009001702A (ja) ノイズ抑制樹脂複合材料
Mathur et al. Processing of nano-crystallite spinel ferrite prepared by co-precipitation method
JP2010155914A (ja) プリプレグ及びその製造方法、積層板、プリント配線板
Ahmed et al. Research Article High Dielectric Constant Study of TiO
JP2003178927A (ja) 電子部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005768582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005768582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11573307

Country of ref document: US