JP2009155181A - Apparatus for producing carbon nanotube - Google Patents

Apparatus for producing carbon nanotube Download PDF

Info

Publication number
JP2009155181A
JP2009155181A JP2007337812A JP2007337812A JP2009155181A JP 2009155181 A JP2009155181 A JP 2009155181A JP 2007337812 A JP2007337812 A JP 2007337812A JP 2007337812 A JP2007337812 A JP 2007337812A JP 2009155181 A JP2009155181 A JP 2009155181A
Authority
JP
Japan
Prior art keywords
disk
temperature furnace
shaped substrate
carbon nanotube
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007337812A
Other languages
Japanese (ja)
Other versions
JP5112044B2 (en
Inventor
Hidekazu Sugiyama
英一 杉山
Kazutaka Koshiro
和高 小城
Tadashi Imai
正 今井
Katsunori Ide
勝記 井手
Takeshi Noma
毅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007337812A priority Critical patent/JP5112044B2/en
Publication of JP2009155181A publication Critical patent/JP2009155181A/en
Application granted granted Critical
Publication of JP5112044B2 publication Critical patent/JP5112044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently mass-producing highly functional carbon nanotube excellent in purity and stability at a low cost. <P>SOLUTION: The apparatus for producing carbon nanotube is characterized in that the carbon nanotube is continuously produced by disposing a group 14 of a plurality of discoid substrates with the same diameter fixedly skewered at their center holes in a high temperature furnace 11 of a reducing atmosphere, rotating a center shaft 12 of the group 14 of the plurality of the fixedly skewered discoid substrates with its both ends supported, and continuously and evenly spraying a hydrocarbon onto the surface of each discoid substrate to react on each discoid substrate 13 so that the carbon nanotube is grown. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、純度および安定性の高い高機能で繊維状のカーボンナノチューブを低コストで効率よく量産することができるカーボンナノチューブ製造装置に関する。   The present invention relates to a carbon nanotube production apparatus capable of efficiently mass-producing highly functional and fibrous carbon nanotubes with high purity and stability at low cost.

カーボンナノチューブの生成法には、例えばアーク放電法、レーザー蒸着法、化学気相成長法が挙げられる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブ(以下、CNTと呼ぶ)が生成される方法(特許文献1)である。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりCNTを生成する方法(特許文献2)である。
Examples of the method for producing the carbon nanotube include an arc discharge method, a laser deposition method, and a chemical vapor deposition method.
The arc discharge method is a method in which graphite is evaporated by causing an arc discharge between positive and negative graphite electrodes, and carbon nanotubes (hereinafter referred to as CNT) are generated in a carbon deposit condensed at the tip of the cathode (patent) Reference 1). The laser vapor deposition method is a method of generating CNTs by putting a graphite sample mixed with a metal catalyst in an inert gas heated to a high temperature and irradiating with a laser (Patent Document 2).

CVD法には、反応炉の中に入れた基板にCNTを生成させる気相成長基板法(特許文献3)と、触媒金属と炭素源を一緒に高温の炉に流動させCNTを生成する流動気相法(特許文献4)の二つの方法がある。
前記基板法は図10に示すように行なわれる。図中の符番1は、外側に電気ヒータ2を配置した反応炉としての反応管である。この反応管1内には、触媒担持基板3に担持された触媒4が配置されている。こうした反応管1を用いてCNTを生成するときは、反応管1を加熱しながら原料(炭化水素)5を反応管内に流通させ、反応管内の触媒4上でCNT6を成長させる。反応後のガスは、排ガスとして反応管1から排出される。なお、符番7は炭化水素ガスを示す。
前記流動気相法は、図11に示すように、反応管1の一端側から原料5とともにキャリアガス8を供給することにより、CNT6を成長させる。
The CVD method includes a vapor phase growth substrate method (Patent Document 3) in which CNT is generated on a substrate placed in a reaction furnace, and a fluid gas in which a catalytic metal and a carbon source are flowed together in a high temperature furnace to generate CNT. There are two methods of the phase method (Patent Document 4).
The substrate method is performed as shown in FIG. Reference numeral 1 in the figure is a reaction tube as a reaction furnace in which an electric heater 2 is disposed outside. In the reaction tube 1, a catalyst 4 carried on a catalyst carrying substrate 3 is disposed. When producing CNT using such a reaction tube 1, the raw material (hydrocarbon) 5 is circulated in the reaction tube while heating the reaction tube 1, and CNT 6 is grown on the catalyst 4 in the reaction tube. The gas after the reaction is discharged from the reaction tube 1 as an exhaust gas. Reference numeral 7 denotes a hydrocarbon gas.
In the fluidized gas phase method, as shown in FIG. 11, CNT 6 is grown by supplying a carrier gas 8 together with a raw material 5 from one end side of a reaction tube 1.

一般に、アーク放電法やレーザー蒸発法では結晶性の良いCNTが生成できるが、生成するCNTの量が少なく大量生成が難しいとされる。一方、気相成長基板法はバッジ処理であるので大量生産が難しい。また、流動気相法は温度の均一性が低く結晶性の良いCNTを生成するのが難しいとされている。さらに、流動気相法の発展型として、高温炉の中に、触媒兼用流動材で流動層を形成し、炭素原料を供給して繊維状のナノカーボンを生成する方法も提案されているが、炉内の温度の均一性が低く結晶性の良いCNTを生成するのが難しいと考えられる。   Generally, CNTs with good crystallinity can be produced by the arc discharge method or laser evaporation method, but the amount of CNTs produced is small and it is considered difficult to produce them in large quantities. On the other hand, since the vapor phase growth substrate method is a badge process, mass production is difficult. In addition, the fluidized gas phase method is said to have difficulty in producing CNTs having low temperature uniformity and good crystallinity. Furthermore, as an advanced type of fluidized gas phase method, a method of forming a fluidized bed with a fluid material also serving as a catalyst in a high-temperature furnace and supplying a carbon raw material to generate fibrous nanocarbon has been proposed. It is considered difficult to produce CNTs with low uniformity of temperature in the furnace and good crystallinity.

純度および安定性の高いCNTを低コストで効率よく量産することができるようになれば、CNTの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。
しかし、いずれのCNTを製造する装置においても、生成したCNTには触媒用金属粉が付着、混入しており、この為CNTの純度が落ち、その特性が十分発揮できないという問題がある。
特開2000−95509号公報 特開平10−273308号公報 特開2000−86217号公報 特開2003−342840号公報
If high-purity and stable CNTs can be mass-produced efficiently at low cost, it becomes possible to supply a large amount of nanotechnology products utilizing the characteristics of CNTs at low cost.
However, in any apparatus for producing CNTs, there is a problem that the metal powder for catalyst adheres to and mixes with the produced CNTs, and therefore the purity of the CNTs is lowered and the characteristics cannot be fully exhibited.
JP 2000-95509 A Japanese Patent Laid-Open No. 10-273308 JP 2000-86217 A JP 2003-342840 A

本発明はこうした事情を考慮してなされたもので、炉内の温度が十分に均一になり、滞留時間も容易にコントロールして、純度および安定性の高い高機能のカーボンナノチューブを低コストで効率よく量産するカーボンナノチューブ製造装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and the temperature in the furnace becomes sufficiently uniform, the residence time is easily controlled, and high-performance carbon nanotubes with high purity and stability are efficiently produced at low cost. An object of the present invention is to provide a carbon nanotube production apparatus that is often mass-produced.

本発明に係るカーボンナノチューブ製造装置は、還元雰囲気の高温炉内に複数の同一径の円盤状基板からなる円盤状基板群をその中心穴に串刺し固定状態で配置し、串刺し固定状態の複数の円盤状基板群の中心軸を両端保持の状態で回転させ、各円盤状基板表面に炭化水素を連続的に均一に噴霧することにより各円盤状基板上で反応させ、カーボンナノチューブを成長させることによりカーボンナノチューブを連続的に製造することを特徴とする。   The carbon nanotube manufacturing apparatus according to the present invention includes a plurality of disc-shaped substrate groups each including a plurality of disc-shaped substrate having the same diameter in a reducing atmosphere in a high-temperature furnace, and arranged in a skewed and fixed state in the center hole thereof. The center axis of the group of substrate substrates is rotated while holding both ends, and hydrocarbons are continuously sprayed uniformly on the surface of each disk substrate to cause reaction on each disk substrate to grow carbon nanotubes. Nanotubes are produced continuously.

本発明によれば、炉内の温度が十分に均一になり、滞留時間も容易にコントロールできるので、純度および安定性の高い高機能のカーボンナノチューブを低コストで効率よく量産することができる。   According to the present invention, since the temperature in the furnace becomes sufficiently uniform and the residence time can be easily controlled, highly functional carbon nanotubes with high purity and stability can be mass-produced efficiently at low cost.

以下、本発明のカーボンナノチューブ製造装置について更に詳しく説明する。
(1) 本発明のカーボンナノチューブ製造装置は、上述したように、還元雰囲気の高温炉内に複数の同一径の円盤状基板からなる円盤状基板群をその中心穴に串刺し固定状態で配置し、串刺し固定状態の複数の円盤状基板群の中心軸を両端保持の状態で回転させ、各円盤状基板表面に炭化水素を連続的に均一に噴霧することにより各円盤状基板上で反応させ、カーボンナノチューブを成長させることによりカーボンナノチューブを連続的に製造するものである。
Hereinafter, the carbon nanotube production apparatus of the present invention will be described in more detail.
(1) The carbon nanotube production apparatus of the present invention, as described above, arranges a disk-shaped substrate group composed of a plurality of disk-shaped substrates of the same diameter in a high-temperature furnace in a reducing atmosphere in a fixed state in a skewered state in its center hole, The center axis of a plurality of disk-shaped substrate groups fixed in a skewered state is rotated while holding both ends, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-shaped substrate to cause reaction on each disk-shaped substrate, and carbon Carbon nanotubes are continuously produced by growing the nanotubes.

(2) 上記(1)の発明において、前記円盤状基板群の各円盤状基板表面を掻き取る掻き取り機構を高温炉内に設け、回転する各円盤状基板表面で反応させ、成長したカーボンナノチューブを掻き取ることにより高機能カーボンナノチューブを連続的に製造することが好ましい。掻き取り機構は、回転する各円盤状基板の下側の両面に例えば板状に密着して設置されて、円盤状基板の両面に成長するカーボンナノチューブを一定速度で掻き取るようになっている。これにより、カーボンナノチューブ(CNT)を安定的に生成、回収することができる。   (2) In the invention of (1), a carbon nanotube grown by providing a scraping mechanism for scraping the surface of each disk-shaped substrate in the group of disk-shaped substrates in a high-temperature furnace and reacting on each rotating disk-shaped substrate surface. It is preferable to continuously produce high-performance carbon nanotubes by scraping off the. The scraping mechanism is installed in close contact with, for example, a plate shape on both lower surfaces of each rotating disk-shaped substrate, and scrapes carbon nanotubes growing on both surfaces of the disk-shaped substrate at a constant speed. Thereby, carbon nanotubes (CNT) can be stably generated and recovered.

(3) 上記(1)又は(2)の発明において、高温炉内の温度は、炭化水素を連続的に均一に噴霧する状態で500〜800℃の範囲に設定することが好ましい。高温炉内の温度は高くすればカーボンナノチューブ(CNT)ができやすいが、エネルギー効率の点から温度は800℃を上限値とするのが好ましい。また、500℃未満ではCNTの生成が十分でないので、500℃を下限値とするのが好ましい。   (3) In the above invention (1) or (2), the temperature in the high-temperature furnace is preferably set in the range of 500 to 800 ° C. in a state where the hydrocarbon is sprayed uniformly and uniformly. If the temperature in the high-temperature furnace is increased, carbon nanotubes (CNT) can be easily formed. However, the temperature is preferably set to an upper limit of 800 ° C. from the viewpoint of energy efficiency. Moreover, since the production | generation of CNT is not enough if it is less than 500 degreeC, it is preferable to make 500 degreeC into a lower limit.

(4) 上記(1)〜(3)の発明において、還元雰囲気の高温炉内の各円盤状基板表面に噴霧する炭化水素を加熱したガス状態とし、高温炉内の温度を下げずに均一に噴霧すること好ましい。ここで、炭化水素を加熱したガス状態で高温炉内に供給するには、例えば高温炉の外側の高温加熱ジャケット中に炭化水素供給配管を長い距離分配置したり、あるいは前記ジャケットに炭化水素用配管を巻きつけ、この配管中を炭化水素を通すことにより実現できる。こうした構成により、高温炉の加熱温度を下げることができ、CNT生成効率を高めた状態でCNTを連続的にかつ安定的に生成、回収することができる。   (4) In the inventions of the above (1) to (3), the hydrocarbon sprayed on the surface of each disk-like substrate in the high-temperature furnace in a reducing atmosphere is in a heated gas state, and it is uniform without lowering the temperature in the high-temperature furnace. It is preferable to spray. Here, in order to supply hydrocarbons into the high-temperature furnace in a heated gas state, for example, a hydrocarbon supply pipe is arranged for a long distance in a high-temperature heating jacket outside the high-temperature furnace, or the hydrocarbon is used in the jacket. It can be realized by winding a pipe and passing hydrocarbons through the pipe. With such a configuration, the heating temperature of the high-temperature furnace can be lowered, and CNTs can be continuously and stably generated and recovered with the CNT generation efficiency increased.

(5) 上記(1)〜(4)の発明において、還元雰囲気の高温炉内の各円盤状基板表面に炭化水素及び水素を噴霧することにより各円盤状基板表面を活性化させることが好ましい。このように、基板表面に炭化水素とともに水素を噴霧することにより、炭化水素だけ噴霧され高温状態で反応する場合よりも気相成長法により、より効率的にCNTを生成、成長することができる。   (5) In the inventions of the above (1) to (4), it is preferable to activate each disk-shaped substrate surface by spraying hydrocarbons and hydrogen on each disk-shaped substrate surface in a high-temperature furnace in a reducing atmosphere. Thus, by spraying hydrogen together with hydrocarbons on the substrate surface, CNTs can be generated and grown more efficiently by vapor phase growth than when only hydrocarbons are sprayed and reacted in a high temperature state.

(6) 上記(1)〜(4)の発明において、還元雰囲気の高温炉内の各円盤状基板表面に炭化水素及び水蒸気を噴霧することにより各円盤状基板表面を活性化させることが好ましい。このように、基板表面に炭化水素とともに水蒸気を噴霧することにより、炭化水素だけ噴霧され高温状態で反応する場合よりも気相成長法により、より効率的にCNTを生成、成長することができる。   (6) In the above inventions (1) to (4), it is preferable to activate each disk-shaped substrate surface by spraying hydrocarbons and water vapor onto each disk-shaped substrate surface in a high-temperature furnace in a reducing atmosphere. Thus, by spraying water vapor together with hydrocarbons on the substrate surface, CNTs can be generated and grown more efficiently by vapor phase growth than when only hydrocarbons are sprayed and reacted in a high temperature state.

(7) 上記(1)〜(6)の発明において、高温炉内に内蔵する中心穴に串刺し固定状態で配置する複数の同一径の円盤状基板群は、中心穴に串刺し固定状態のまま高温炉に取付け、取外しできる構造とし、高温炉内の温度を下げた状態で別の複数の円盤状基板群に交換できるようにしたことが好ましい。こうした構成により、CNT生成効率が低下してきた時点で、高温炉の運転を停止し、高温炉内の温度を下げ、高温炉内を開放した後、円盤状基板群を固定状態のまま高温炉から取外し、新たな円盤状基板群をまた固定状態のまま高温炉に取換えることができる。   (7) In the inventions of the above (1) to (6), a plurality of disk-shaped substrate groups having the same diameter arranged in a fixed state in a center hole built in a high temperature furnace are kept in a fixed state in a fixed state in the center hole. It is preferable to have a structure that can be attached to and detached from the furnace so that it can be replaced with another plurality of disk-shaped substrate groups while the temperature in the high-temperature furnace is lowered. With such a configuration, when the CNT production efficiency has declined, the operation of the high-temperature furnace is stopped, the temperature in the high-temperature furnace is lowered, the inside of the high-temperature furnace is opened, and then the disk-like substrate group is fixed from the high-temperature furnace. It is possible to remove and replace a new disk-like substrate group with a high temperature furnace in a fixed state.

(8) 上記(1)〜(7)の発明において、還元雰囲気の高温炉内の下部にはカーボンナノチューブ排出用の上下2段のダブルダンパーを設置し、高温炉内の温度が一定で還元雰囲気にしたままCNTを高温炉外に払い落とすことができる構成であることが好ましい。こうした構成により、CNT払出しを安定的に確実に行うことができるコンパクトなCNT生成装置が得られる。   (8) In the inventions of the above (1) to (7), the upper and lower double dampers for discharging carbon nanotubes are installed in the lower part of the reducing atmosphere in the high-temperature furnace so that the temperature in the high-temperature furnace is constant and the reducing atmosphere It is preferable that the CNTs can be removed outside the high temperature furnace while being kept. With such a configuration, a compact CNT generating apparatus capable of stably and surely delivering CNTs is obtained.

(9) 上記(1)〜(8)の発明において、円盤状基板はハードディスク若しくは廃ハードディスクであることが好ましい。
こうしたハードディスクを用いれば、新たに円盤状基板を製作する必要がなく、特に廃ハードディスクを利用すると、今後益々多く排出される不要となった電子機器の材料廃材を高機能カーボンであるCNTを製造するのに有効に再活用することが可能となる。また、ハードディスク或いは廃ハードディスクの製品規格はほぼ統一であるので、常に安定した純度および安定性の高い高機能のCNTを低コストで効率よく量産することができる。
(9) In the inventions of the above (1) to (8), the disk-shaped substrate is preferably a hard disk or a waste hard disk.
If such a hard disk is used, it is not necessary to manufacture a new disk-shaped substrate. Especially, if a waste hard disk is used, CNT, which is a high-performance carbon, is produced from the waste material of electronic equipment that is no longer required to be discharged in the future. Can be effectively reused. In addition, since the product standards of hard disks or waste hard disks are almost unified, it is possible to mass-produce highly functional CNTs that are always stable and highly stable and highly functional at low cost.

次に、本発明の具体的な実施例を、図面を参照して説明する。なお、本実施例は下記に述べることに限定されない。
(実施例1)
本発明の実施例1に係るカーボンナノチューブ(CNT)製造装置について図1(A),(B)を参照して説明する。ここで、図1(A)は同製造装置の概略的な側面図、図1(B)は図1(A)のX矢視図である。
Next, specific examples of the present invention will be described with reference to the drawings. In addition, a present Example is not limited to what is described below.
Example 1
A carbon nanotube (CNT) manufacturing apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 (A) and 1 (B). Here, FIG. 1 (A) is a schematic side view of the manufacturing apparatus, and FIG. 1 (B) is a view taken in the direction of arrow X in FIG. 1 (A).

図中の符番11は、還元雰囲気のカーボンナノチューブ生成炉(高温炉)を示す。この高温炉11の軸方向には回転可能な中心軸12が配置され、この中心軸12に複数の同一径の円盤状基板13の中心穴13aを貫通するように串刺しされて固定されている。以下、これら複数の円盤状基板13を総称して円盤状基板群14と呼ぶ。高温炉11の外周側には、高温加熱ジャケット15が配置されている。高温炉11の下部側には、生成したCNTを排出するためのカーボンナノチューブ排出ノズル16が設けられている。高温炉11の内側には炭化水素供給ヘッダー17が配置され、この炭化水素供給ヘッダー17に炭化水素供給配管18が接続されている。炭化水素供給ヘッダー17の下部には、各円盤状基板13の両面に炭化水素を連続的にかつ常時均一に噴霧できるように複数の炭化水素噴射ノズル19が設けられている。   Reference numeral 11 in the figure indicates a carbon nanotube production furnace (high temperature furnace) in a reducing atmosphere. A rotatable central shaft 12 is disposed in the axial direction of the high-temperature furnace 11, and is skewered and fixed to the central shaft 12 so as to pass through the central holes 13 a of a plurality of disc-shaped substrates 13 having the same diameter. Hereinafter, the plurality of disk-shaped substrates 13 are collectively referred to as a disk-shaped substrate group 14. A high temperature heating jacket 15 is arranged on the outer peripheral side of the high temperature furnace 11. A carbon nanotube discharge nozzle 16 for discharging the generated CNTs is provided on the lower side of the high temperature furnace 11. A hydrocarbon feed header 17 is disposed inside the high temperature furnace 11, and a hydrocarbon feed pipe 18 is connected to the hydrocarbon feed header 17. A plurality of hydrocarbon injection nozzles 19 are provided below the hydrocarbon supply header 17 so that hydrocarbons can be sprayed continuously and uniformly on both surfaces of each disk-like substrate 13.

なお、設計上、各炭化水素噴射ノズル19から噴霧する炭化水素の流量がCNTの生成に最適となるように、炭化水素の噴霧流量を制御する為に炭化水素ヘッダー17への炭化水素供給配管18に流量計、流量調整バルブを設置したりすることは適宜実施する。   It should be noted that, by design, the hydrocarbon supply pipe 18 to the hydrocarbon header 17 is used to control the hydrocarbon spray flow rate so that the flow rate of the hydrocarbon sprayed from each hydrocarbon injection nozzle 19 is optimal for the generation of CNTs. A flow meter and a flow rate adjusting valve are appropriately installed in the system.

一般に、CNTの生成の際には、例えばニッケル,鉄(Fe),アルミナ(Al),ステンレス,クロム(Cr)等のCNT生成の核となる触媒粒子が必要である。本方式によれば、円盤状基板13に金属触媒粒子を含有しており、円盤状基盤13自体を構成する金属触媒粒子がCNT生成の核となりCNTが成長する。なお、図1では図示しないが、CNT生成、成長を促進させる為に必要に応じて金属触媒粒子を導入する。金属触媒粒子を導入する際は、例えば高温炉に触媒導入管を連結し、この触媒導入管を介して高温炉内に触媒を供給するようにする。 In general, for the production of CNTs, for example, catalyst particles that are the core of CNT production, such as nickel, iron (Fe), alumina (Al 2 O 3 ), stainless steel, and chromium (Cr), are required. According to this method, the disk-shaped substrate 13 contains metal catalyst particles, and the metal catalyst particles constituting the disk-shaped substrate 13 itself serve as the nucleus of CNT generation, and CNT grows. Although not shown in FIG. 1, metal catalyst particles are introduced as necessary in order to promote CNT generation and growth. When introducing the metal catalyst particles, for example, a catalyst introduction pipe is connected to a high temperature furnace, and the catalyst is supplied into the high temperature furnace via the catalyst introduction pipe.

上記実施例1に係るCNT製造装置は、図1に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させ、各円盤状基板表面に炭化水素を連続的に均一に噴霧するように構成されている。   As shown in FIG. 1, the CNT manufacturing apparatus according to Example 1 includes a plurality of disk-shaped substrate groups 14 having the same diameter that are skewered in a central hole 13 a of a substrate 13 and placed in a fixed state in a high-temperature furnace 11 in a reducing atmosphere. The center axis 12 of the plurality of disk-like substrate groups 14 in the skewered and fixed state is rotated in a state where both ends are held, and hydrocarbons are continuously and uniformly sprayed on the surface of each disk-like substrate.

従って、各円盤状基板13上では基板を構成する触媒粒子が核となり噴霧された炭化水素と高温状態で反応し、気相成長法によりCNTが生成,成長する。円盤状基板群14は回転しており、各円盤状基板表面は均一に加熱されるとともに、炭化水素も均一に噴霧されることで、各円盤状基板表面で斑なく均一にCNTが生成,成長できる。これにより、CNTを連続的に製造することができる。   Therefore, on each disk-shaped substrate 13, the catalyst particles constituting the substrate serve as nuclei and react with the sprayed hydrocarbon at a high temperature, and CNTs are generated and grown by vapor phase growth. The disk-shaped substrate group 14 is rotating, and the surface of each disk-shaped substrate is uniformly heated and the hydrocarbons are sprayed uniformly, so that CNTs are uniformly generated and grown on the surface of each disk-shaped substrate. it can. Thereby, CNT can be manufactured continuously.

なお、上記実施例1において、高温炉外部は高温加熱ジャケット15によって内部に設置されている円盤状基板群14の基板13が均一に加熱される構成になっている。ここで、高温炉外部からの加熱方法は排熱を利用した熱風ジャケットに限らず、加熱ヒータ等にすることにより、カーボンナノチューブ製造装置全体の効率を高めることができる。   In Example 1, the outside of the high temperature furnace is configured to uniformly heat the substrate 13 of the disk-like substrate group 14 installed inside by the high temperature heating jacket 15. Here, the heating method from the outside of the high-temperature furnace is not limited to the hot air jacket using exhaust heat, and the efficiency of the entire carbon nanotube production apparatus can be increased by using a heater or the like.

(実施例2)
本発明の実施例2に係るCNT製造装置について図2(A),(B)を参照して説明する。ここで、図2(A)は同製造装置の概略的な側面図、図2(B)は図2(A)のX矢視図である。但し、図1と同部材は同符番を付して説明を省略する。
(Example 2)
A CNT manufacturing apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. 2 (A) and 2 (B). Here, FIG. 2 (A) is a schematic side view of the manufacturing apparatus, and FIG. 2 (B) is a view taken in the direction of arrow X in FIG. 2 (A). However, the same members as those in FIG.

図中の符番21は、円盤状基板群14の各円盤状基板表面を掻き取るCNT掻き取りバー(掻き取り機構)であり、高温炉11内に配置されている。掻き取りバー21は、回転する各円盤状基板の両面下側に板状に密着して設置され、円盤状基板13の両面に成長するCNTを掻き取るようになっている。   Reference numeral 21 in the figure is a CNT scraping bar (scraping mechanism) that scrapes the surface of each disk-shaped substrate of the disk-shaped substrate group 14 and is disposed in the high-temperature furnace 11. The scraping bar 21 is installed in close contact with both sides of each rotating disk-shaped substrate in a plate shape, and scrapes CNT growing on both surfaces of the disk-shaped substrate 13.

図2の場合も、図1と同様に各円盤状基板表面に炭化水素を連続的に均一に噴霧できるように、各円盤状基板の上部に炭化水素ヘッダー17を設置し、炭化水素ヘッダー17に設置した炭化水素噴射ノズル19から各円盤状基板両面に炭化水素を連続的に噴霧できるようにしている。   In the case of FIG. 2 as well, a hydrocarbon header 17 is installed on the top of each disk-like substrate so that hydrocarbons can be continuously and uniformly sprayed on the surface of each disk-like substrate as in FIG. Hydrocarbon can be continuously sprayed from the installed hydrocarbon injection nozzle 19 to both sides of each disk-shaped substrate.

各円盤状基板13上では該基板13を構成する触媒粒子が核となり、噴霧された炭化水素と高温状態で反応し、気相成長法によりCNTが生成,成長する。円盤状基板群14は回転しており、各円盤状基板13の表面は均一に加熱されるとともに、炭化水素も均一に噴霧されることで、各円盤状基板表面で斑なく均一にCNTが生成、成長できる。これにより、CNTを連続的に製造することができる。高温炉11では、高温加熱ジャケット15によって内部に設置されている円盤状基板群14が均一に加熱される構成になっている。   On each disk-like substrate 13, catalyst particles constituting the substrate 13 serve as nuclei, react with sprayed hydrocarbons at a high temperature, and CNTs are generated and grown by vapor phase epitaxy. The disk-shaped substrate group 14 is rotating, and the surface of each disk-shaped substrate 13 is uniformly heated and the hydrocarbons are sprayed uniformly, so that CNTs are uniformly generated on the surface of each disk-shaped substrate. Can grow. Thereby, CNT can be manufactured continuously. In the high temperature furnace 11, the disk-shaped substrate group 14 installed inside is heated uniformly by the high temperature heating jacket 15.

実施例2に係るCNT製造装置は、図2に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させて各円盤状基板表面に炭化水素を連続的に均一に噴霧するとともに、CNT掻き取りバー21により各円盤状基板13の両面に成長するCNTを掻き取るように構成されている。従って、以下に述べる効果を有する。   As shown in FIG. 2, the CNT manufacturing apparatus according to the second embodiment is arranged in a fixed state in which a plurality of disk-shaped substrate groups 14 having the same diameter are skewered into the center hole 13a of the substrate 13 in a high temperature furnace 11 in a reducing atmosphere. In addition, the center axis 12 of the plurality of disk-like substrate groups 14 fixed in a skewered state is rotated in a state where both ends are held, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-like substrate. The CNTs that grow on both sides of the disk-shaped substrate 13 are scraped off. Therefore, it has the effects described below.

即ち、上述したように、CNT掻き取りバー21は、回転する各円盤状基板の両面下側に板状に密着して設置されて、各円盤状基板13の両面の成長するCNTを掻き取るようになっている。また、高温炉内で円盤状基板群14は均一の速度で回転しており、各円盤状基板13の表面両面の成長するCNTを一定速度で掻き取ることができる。従って、CNTを連続的に安定的に生成、回収することができる。   That is, as described above, the CNT scraping bar 21 is installed in close contact with both sides of each rotating disk-shaped substrate so as to scrape CNTs growing on both surfaces of each disk-shaped substrate 13. It has become. In addition, the disk-like substrate group 14 rotates at a uniform speed in the high-temperature furnace, and the CNT growing on both surfaces of each disk-like substrate 13 can be scraped off at a constant speed. Therefore, CNT can be continuously and stably generated and recovered.

なお、CNTを掻き取る機構としては、ここに示すCNT掻き取りバーの方式に限らず、CNTが安定的に掻き取れる方式を設計することもできることは言うまでもない。また、掻き取りバーの形状も図示された形状のものに限定されない。   Needless to say, the mechanism for scraping CNTs is not limited to the CNT scraping bar system shown here, and a system that can stably scrape CNTs can be designed. Further, the shape of the scraping bar is not limited to the illustrated shape.

(実施例3)
本発明の実施例3に係るCNT製造装置について図3(A),(B)を参照して説明する。ここで、図3(A)は同生成炉の概略的な側面図、図3(B)はX矢視図である。但し、図1,図2と同部材は同符番を付して説明を省略する。
(Example 3)
A CNT manufacturing apparatus according to Example 3 of the present invention will be described with reference to FIGS. 3 (A) and 3 (B). Here, FIG. 3A is a schematic side view of the production furnace, and FIG. However, the same members as those in FIG. 1 and FIG.

実施例3のCNT製造装置は、実施例2記載の発明に対し、高温炉内の円盤状基板表面温度を、炭化水素を連続的に均一に噴霧する状態で500〜800℃の範囲に設定するようにしたことを特徴とし、その他の構成部材は図2の場合と同様である。   Compared to the invention described in Example 2, the CNT manufacturing apparatus of Example 3 sets the surface temperature of the disk-shaped substrate in the high-temperature furnace to a range of 500 to 800 ° C. in a state where hydrocarbons are sprayed uniformly and uniformly. The other components are the same as in the case of FIG.

基板表面温度を上記のように設定したのは、次の理由による。即ち、高温炉の温度をなるべく低くし、高温炉を備えたCNT製造装置全体の効率を高めることができるのが良い。しかし、本発明者らは、これまでの試験研究より、高温炉の温度を800℃以上に高めなくても、500〜800℃の範囲に設定することで、最も効率的にCNTが生成することを検証している。   The substrate surface temperature is set as described above for the following reason. That is, it is preferable that the temperature of the high-temperature furnace be as low as possible, and the efficiency of the entire CNT manufacturing apparatus equipped with the high-temperature furnace can be increased. However, the present inventors have found that CNT can be generated most efficiently by setting the temperature in the range of 500 to 800 ° C. without increasing the temperature of the high-temperature furnace to 800 ° C. or higher, based on past research. Has been verified.

各円盤状基板13には炭化水素が均一に噴霧される為、これにより各円盤状基板13の温度が下がる。しかし、加熱ヒータの設定温度を800〜900℃程度の高めに設定することで、常に各円盤状基板表面温度を500〜800℃の範囲に保持することができる。   Since each of the disk-shaped substrates 13 is uniformly sprayed with hydrocarbons, the temperature of each of the disk-shaped substrates 13 is thereby lowered. However, by setting the set temperature of the heater to be as high as about 800 to 900 ° C., it is possible to always maintain the surface temperature of each disk-shaped substrate in the range of 500 to 800 ° C.

実施例3に係るCNT製造装置は、図3に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させて各円盤状基板表面に炭化水素を連続的に均一に噴霧するとともに、CNT掻き取りバー21により各円盤状基板13の両面に成長するCNTを掻き取り、更に円盤状基板表面に炭化水素を連続的に均一に噴霧する状態で高温炉11の温度を500〜800℃の範囲に設定するように構成されている。従って、以下に述べる効果を有する。   As shown in FIG. 3, the CNT manufacturing apparatus according to the third embodiment arranges a plurality of disk-shaped substrate groups 14 having the same diameter in a reducing atmosphere in a high temperature furnace 11 in a center hole 13 a of the substrate 13 in a fixed state. In addition, the center axis 12 of the plurality of disk-like substrate groups 14 fixed in a skewered state is rotated in a state where both ends are held, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-like substrate. The CNT growing on both sides of the disk-shaped substrate 13 is scraped, and the temperature of the high-temperature furnace 11 is set in the range of 500 to 800 ° C. in a state where hydrocarbons are continuously sprayed uniformly on the surface of the disk-shaped substrate. Has been. Therefore, it has the effects described below.

即ち、高温炉内で円盤状基板群14は均一の速度で回転しており、その回転速度と炭化水素の噴霧量により各円盤状基板表面温度は変化する。しかし、回転速度や噴霧量をCNT生成に最適な条件に設定するとともに、常に高温炉11の温度を500〜800℃の範囲に保持できるように加熱ヒータの設定温度を設定することにより、CNTを連続的に安定的に生成,回収することができる。   That is, the disk-shaped substrate group 14 rotates at a uniform speed in the high-temperature furnace, and the surface temperature of each disk-shaped substrate varies depending on the rotation speed and the amount of hydrocarbon spray. However, by setting the rotation speed and the amount of spraying to the optimum conditions for CNT generation, and setting the set temperature of the heater so that the temperature of the high-temperature furnace 11 can always be kept in the range of 500 to 800 ° C., It can be produced and recovered continuously and stably.

(実施例4)
本発明の実施例4に係るCNT製造装置について図4(A),(B)を参照して説明する。ここで、図4(A)は同製造装置の概略的な側面図、図4(B)はX矢視図である。但し、図1,図2と同部材は同符番を付して説明を省略する。
Example 4
A CNT manufacturing apparatus according to Example 4 of the present invention will be described with reference to FIGS. Here, FIG. 4A is a schematic side view of the manufacturing apparatus, and FIG. However, the same members as those in FIG. 1 and FIG.

実施例4のCNT製造装置は、実施例3記載の発明に対し、還元雰囲気の高温炉内の各円盤状基板表面に噴霧する炭化水素を加熱したガス状態で供給できるようにし、各円盤状基板表面の温度を下げずに均一に噴霧するようにしたことを特徴とし、その他の構成部材は図3の場合と同様である。具体的には、噴霧する炭化水素を加熱したガス状態で炭化水素ガス噴射ノズル19に供給できるように、炭化水素供給配管41を高温加熱ジャケット15内に意図的に長い距離分配置し、供給する炭化水素の温度を高めるようにした。   The CNT manufacturing apparatus of Example 4 enables the hydrocarbon sprayed on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere to be supplied in a heated gas state with respect to the invention described in Example 3, and each disk-shaped substrate. It is characterized by spraying uniformly without lowering the surface temperature, and the other components are the same as in the case of FIG. Specifically, the hydrocarbon supply pipe 41 is intentionally disposed and supplied in the high-temperature heating jacket 15 for a long distance so that the hydrocarbon to be sprayed can be supplied to the hydrocarbon gas injection nozzle 19 in a heated gas state. The temperature of hydrocarbons was increased.

実施例4に係るCNT製造装置は、図4に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させて各円盤状基板表面に炭化水素を連続的に均一に噴霧するとともに、CNT掻き取りバー21により各円盤状基板13の両面に成長するCNTを掻き取り、更に炭化水素供給配管41を高温加熱ジャケット15内に長い距離分配置して加熱した炭化水素を円盤状基板表面に供給できるようにし、更には円盤状基板表面に炭化水素を連続的に均一に噴霧する状態で基板表面を500〜800℃の範囲に設定するように構成されている。従って、以下に述べる効果を有する。   As shown in FIG. 4, the CNT manufacturing apparatus according to Example 4 has a plurality of disk-shaped substrate groups 14 having the same diameter in a high-temperature furnace 11 in a reducing atmosphere and is arranged in a fixed state by being skewered into the center hole 13 a of the substrate 13. In addition, the center axis 12 of the plurality of disk-like substrate groups 14 fixed in a skewered state is rotated in a state where both ends are held, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-like substrate. The CNT growing on both sides of the disk-shaped substrate 13 is scraped, and the hydrocarbon supply pipe 41 is arranged in a high temperature heating jacket 15 for a long distance so that the heated hydrocarbon can be supplied to the surface of the disk-shaped substrate. The substrate surface is set in a range of 500 to 800 ° C. in a state where hydrocarbons are continuously sprayed uniformly on the disk-shaped substrate surface. Therefore, it has the effects described below.

即ち、実施例4では、還元雰囲気の高温炉内の各円盤状基板表面に噴霧する炭化水素は加熱したガス状態で供給できるように炭化水素供給配管41を介して高温加熱ジャケット15を長い距離分通過させことにより、高温加熱ジャケット15を通過する間に加熱されガス状態まで加熱し、各円盤状基板表面の温度を下げずに均一に噴霧するようにしている。   That is, in Example 4, the hydrocarbon sprayed on the surface of each disk-shaped substrate in the high-temperature furnace in a reducing atmosphere is provided for a long distance through the high-temperature heating jacket 15 via the hydrocarbon supply pipe 41 so that it can be supplied in a heated gas state. By letting it pass, it is heated while passing through the high temperature heating jacket 15 and heated to a gas state, and sprayed uniformly without lowering the temperature of each disk-like substrate surface.

このように、各円盤状基板13に噴霧する炭化水素を予め加熱し、ガス状態として炭化水素ヘッダー17に設置した炭化水素噴射ノズル19から各円盤状基板表面に連続的に噴霧することにより、各円盤状基板13の温度が下がることなく、各円盤状基板表面でのCNT生成反応が促進され、CNTの生成速度が速まり、生成効率が高まるだけでなく、加熱ヒータの設定温度を低めに設定しても各円盤状基板表面温度を500〜800℃の範囲に保持することができる。従って、高温炉11の加熱温度を下げることができ、CNT生成効率を高めた状態でCNTを連続的に安定的に生成、回収することができる。   In this way, hydrocarbons to be sprayed on each disk-shaped substrate 13 are heated in advance, and continuously sprayed on the surface of each disk-shaped substrate from a hydrocarbon injection nozzle 19 installed in the hydrocarbon header 17 as a gas state. The temperature of the disk-shaped substrate 13 is not lowered, the CNT generation reaction on each disk-shaped substrate surface is promoted, the CNT generation speed is increased, the generation efficiency is increased, and the set temperature of the heater is set low. Even in this case, the surface temperature of each disk-shaped substrate can be maintained in the range of 500 to 800 ° C. Therefore, the heating temperature of the high-temperature furnace 11 can be lowered, and CNTs can be continuously and stably generated and recovered with the CNT generation efficiency increased.

なお、実施例4では、炭化水素供給配管内を加熱したガス状態の炭化水素を炭化水素ガス噴射ノズル側に供給する場合について述べたが、これに限らず、液の状態の炭化水素を炭化水素ガス噴射ノズルに送り、噴霧時にガス状態であればよい。   In addition, in Example 4, although the case where the hydrocarbon of the gas state which heated the inside of hydrocarbon supply piping was supplied to the hydrocarbon gas injection nozzle side was described, not only this but the hydrocarbon of a liquid state is hydrocarbon What is necessary is just to be a gas state at the time of spraying and sending to a gas injection nozzle.

(実施例5)
本発明の実施例5に係るCNT製造装置について図5(A),(B)を参照して説明する。ここで、図5(A)は同製造装置の概略的な側面図、図5(B)はX矢視図である。但し、図1,図2,図4と同部材は同符番を付して説明を省略する。
(Example 5)
A CNT manufacturing apparatus according to Embodiment 5 of the present invention will be described with reference to FIGS. Here, FIG. 5A is a schematic side view of the manufacturing apparatus, and FIG. However, the same members as those in FIGS. 1, 2, and 4 are denoted by the same reference numerals, and description thereof is omitted.

実施例5のCNT製造装置は、実施例2記載の発明に対し、還元雰囲気の高温炉内の各円盤状基板表面に加熱した状態の炭化水素を噴霧するだけでなく、水素も噴霧することで各円盤状基板表面を活性化させるようにしたことを特徴とする。ここで、水素の量は、炭化水素に対し1〜5%である。また、炭化水素供給配管41は図4のように高温加熱ジャケット内に長い距離分設置するのではなく、図示しない別な加熱源を通すことにより炭化水素供給配管41を通る炭化水素を加熱したガス状態にしている。図5中の符番51は水素供給配管、符番52はこの水素供給配管に接続された水素供給ヘッダー、符番53はこの水素供給ヘッダー52に設けられた水素ガス噴射ノズルを示す。   In contrast to the invention described in Example 2, the CNT manufacturing apparatus of Example 5 not only sprays heated hydrocarbons on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere, but also sprays hydrogen. Each disk-shaped substrate surface is activated. Here, the amount of hydrogen is 1 to 5% with respect to the hydrocarbon. Further, the hydrocarbon supply pipe 41 is not installed for a long distance in the high-temperature heating jacket as shown in FIG. 4, but is a gas obtained by heating hydrocarbons passing through the hydrocarbon supply pipe 41 by passing another heating source (not shown). It is in a state. In FIG. 5, reference numeral 51 denotes a hydrogen supply pipe, reference numeral 52 denotes a hydrogen supply header connected to the hydrogen supply pipe, and reference numeral 53 denotes a hydrogen gas injection nozzle provided in the hydrogen supply header 52.

即ち、図5では、各円盤状基板表面に炭化水素を連続的に均一に噴霧できる各円盤状基板13の上部の炭化水素供給ヘッダー17の横に、水素を連続的に均一に噴霧できる各円盤状基板13の上部の水素供給ヘッダー52を設置し、炭化水素ヘッダー17に設置した炭化水素噴射ノズル53から各円盤状基板表面に炭化水素を連続的に噴霧できるだけでなく、水素供給ヘッダー52に設置した水素噴射ノズル53から各円盤状基板表面に水素も連続的に噴霧できるようにしている。   That is, in FIG. 5, each disc capable of continuously and uniformly spraying hydrogen beside the hydrocarbon feed header 17 on the top of each disc-like substrate 13 that can continuously and uniformly spray hydrocarbons on the surface of each disc-like substrate. The hydrogen supply header 52 at the top of the cylindrical substrate 13 is installed, and hydrocarbons can be continuously sprayed on the surface of each disk-like substrate from the hydrocarbon injection nozzle 53 installed on the hydrocarbon header 17, and also installed on the hydrogen supply header 52. Hydrogen can be continuously sprayed from the hydrogen injection nozzle 53 to the surface of each disk-like substrate.

実施例5に係るCNT生成炉は、図5に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させて各円盤状基板表面に炭化水素を連続的に均一に噴霧するとともに、CNT掻き取りバー21により各円盤状基板13の両面に成長するCNTを掻き取り、更に炭化水素供給配管41を配置して加熱した炭化水素を円盤状基板表面に供給できるようにするとともに、水素供給ヘッダー52より水素を各円盤状基板表面に供給できるようにし、更には円盤状基板表面に炭化水素を連続的に均一に噴霧する状態で基板表面を500〜800℃の範囲に設定するように構成されている。従って、以下に述べる効果を有する。   As shown in FIG. 5, the CNT generation furnace according to Example 5 has a plurality of disk-shaped substrate groups 14 having the same diameter skewed into the center hole 13 a of the substrate 13 and arranged in a fixed state in a high-temperature furnace 11 in a reducing atmosphere. In addition, the center axis 12 of the plurality of disk-like substrate groups 14 fixed in a skewered state is rotated in a state where both ends are held, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-like substrate. The CNT growing on both sides of the disk-shaped substrate 13 is scraped, and further, a hydrocarbon supply pipe 41 is arranged so that heated hydrocarbons can be supplied to the surface of the disk-shaped substrate, and hydrogen is supplied from the hydrogen supply header 52 to each disk. The substrate surface is set in a range of 500 to 800 ° C. in a state where hydrocarbons are continuously sprayed uniformly on the disk-like substrate surface. Therefore, it has the effects described below.

各円盤状基板上では該基板13を構成する触媒粒子が核となり炭化水素だけでなく水素も噴霧され高温状態で反応することで、炭化水素だけ噴霧され高温状態で反応する場合よりも、気相成長法によりより効率的にCNTが生成,成長する。また、円盤状基板群14は回転しており、各円盤状基板表面は均一に加熱されるとともに、炭化水素と水素が均一に噴霧されることで、各円盤状基板表面で斑なく均一にCNTが生成、成長できる。これにより、CNTを連続的に製造することができる。事実、炭化水素のみを噴霧する場合に比べて実施例5のように炭化水素及び水素を噴霧する場合、2〜5割程度CNTの生成率が上昇することが確認できた。   On each disk-shaped substrate, the catalyst particles constituting the substrate 13 serve as nuclei, and not only hydrocarbons but also hydrogen are sprayed and reacted in a high temperature state, so that the hydrocarbon is sprayed and reacted in a high temperature state. CNTs are generated and grown more efficiently by the growth method. In addition, the disk-shaped substrate group 14 is rotating, and the surface of each disk-shaped substrate is heated uniformly, and the hydrocarbon and hydrogen are sprayed uniformly, so that the surface of each disk-shaped substrate is uniformly uniform. Can be generated and grown. Thereby, CNT can be manufactured continuously. In fact, it was confirmed that when hydrocarbons and hydrogen were sprayed as in Example 5 as compared with the case where only hydrocarbons were sprayed, the production rate of CNT increased by about 20 to 50%.

なお、実施例5では、炭化水素と水素を別々の噴射ノズルを用いて高温炉内の基板表面に噴射する場合について述べたが、これに限らず、1つの噴射ノズルから炭化水素と水素を噴射してもよい。   In the fifth embodiment, the case of injecting hydrocarbons and hydrogen onto the substrate surface in the high-temperature furnace using separate injection nozzles has been described. However, the invention is not limited to this, and hydrocarbons and hydrogen are injected from one injection nozzle. May be.

(実施例6)
本発明の実施例6に係るCNT製造装置について図6(A),(B)を参照して説明する。ここで、図6(A)は同製造装置の概略的な側面図、図6(B)は図6(A)のX矢視図である。但し、図1,図2,図4と同部材は同符番を付して説明を省略する。
(Example 6)
A CNT manufacturing apparatus according to Example 6 of the present invention will be described with reference to FIGS. Here, FIG. 6 (A) is a schematic side view of the manufacturing apparatus, and FIG. 6 (B) is a view taken in the direction of arrow X in FIG. 6 (A). However, the same members as those in FIGS. 1, 2, and 4 are denoted by the same reference numerals, and description thereof is omitted.

実施例6のCNT製造装置は、実施例1〜5記載の発明に対し、還元雰囲気の高温炉内の各円盤状基板表面に炭化水素を噴霧するだけでなく水蒸気も噴霧することで各円盤状基板表面を活性化させるようにしたことを特徴とする。ここで、水蒸気の量は、炭化水素に対し1〜5%である。図6中の符番61は水蒸気供給配管、符番62はこの水蒸気供給配管に接続された水蒸気供給ヘッダー、符番63はこの水蒸気供給ヘッダー62に設けられた水蒸気噴射ノズルを示す。   The CNT manufacturing apparatus of Example 6 is different from the inventions described in Examples 1 to 5 in that each disk shape is formed by spraying not only hydrocarbons but also water vapor on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere. The substrate surface is activated. Here, the amount of water vapor is 1 to 5% with respect to the hydrocarbon. In FIG. 6, reference numeral 61 indicates a steam supply pipe, reference numeral 62 indicates a steam supply header connected to the steam supply pipe, and reference numeral 63 indicates a steam injection nozzle provided on the steam supply header 62.

即ち、図6では、各円盤状基板表面に炭化水素を連続的に均一に噴霧できる各円盤状基板13の上部の炭化水素供給ヘッダー17の横に、水蒸気を連続的に均一に噴霧できる各円盤状基板13の上部の水蒸気供給ヘッダー62を設置し、炭化水素供給ヘッダー17に設置した炭化水素噴射ノズル19から各円盤状基板表面に炭化水素を連続的に噴霧できるだけでなく、水蒸気供給ヘッダー62に設置した水蒸気噴射ノズル63から各円盤状基板表面に水蒸気も連続的に噴霧できるようにしている。   That is, in FIG. 6, each disc that can spray water vapor continuously and uniformly beside the hydrocarbon feed header 17 on the top of each disc substrate 13 that can spray hydrocarbons continuously and uniformly on the surface of each disc substrate. The water vapor supply header 62 on the upper part of the substrate 13 is installed, and hydrocarbons can be continuously sprayed on the surface of each disk-like substrate from the hydrocarbon injection nozzle 19 installed on the hydrocarbon supply header 17. Water vapor can be continuously sprayed from the installed water vapor spray nozzle 63 onto the surface of each disk-shaped substrate.

実施例6に係るCNT製造装置は、図6に示すように、還元雰囲気の高温炉11内に複数の同一径の円盤状基板群14を基板13の中心穴13aに串刺しし固定状態で配置し、串刺し固定状態の複数の円盤状基板群14の中心軸12を両端保持の状態で回転させて各円盤状基板表面に炭化水素を連続的に均一に噴霧するとともに、CNT掻き取りバー21により各円盤状基板13の両面に成長するCNTを掻き取り、更に炭化水素供給配管41を配置して加熱した炭化水素を円盤状基板表面に供給できるようにするとともに、水蒸気供給ヘッダー62より水蒸気を各円盤状基板表面に供給できるようにし、更には円盤状基板表面に炭化水素を連続的に均一に噴霧する状態で基板表面を500〜800℃の範囲に設定するように構成されている。従って、以下に述べる効果を有する。
各円盤状基板13上では基板13を構成する触媒粒子が核となり炭化水素だけでなく水蒸気も噴霧され高温状態で反応することで、炭化水素だけ噴霧され高温状態で反応する場合よりも、気相成長法によりより効率的にCNTが生成,成長する。円盤状基板群14は回転しており、各円盤状基板表面は均一に加熱されるとともに、炭化水素と水蒸気が均一に噴霧されることで、各円盤状基板表面で斑なく均一にCNTが生成,成長できる。これにより、CNTを連続的に製造することができる。事実、炭化水素のみを噴霧する場合に比べて実施例6のように炭化水素及び水蒸気を噴霧する場合、2〜5割程度CNTの生成率が上昇することが確認できた。
In the CNT manufacturing apparatus according to Example 6, as shown in FIG. 6, a plurality of disk-shaped substrate groups 14 having the same diameter are skewered into the central hole 13a of the substrate 13 and placed in a fixed state in a high-temperature furnace 11 in a reducing atmosphere. In addition, the center axis 12 of the plurality of disk-like substrate groups 14 fixed in a skewered state is rotated in a state where both ends are held, and hydrocarbons are continuously sprayed uniformly on the surface of each disk-like substrate. The CNT growing on both sides of the disk-shaped substrate 13 is scraped, and further, a hydrocarbon supply pipe 41 is arranged so that heated hydrocarbons can be supplied to the surface of the disk-shaped substrate, and water vapor is supplied from the water vapor supply header 62 to each disk. The substrate surface is set to a range of 500 to 800 ° C. in a state where hydrocarbons are continuously sprayed uniformly on the disk-like substrate surface. Therefore, it has the effects described below.
On each disk-like substrate 13, the catalyst particles constituting the substrate 13 serve as nuclei, and not only hydrocarbons but also water vapor is sprayed and reacted in a high temperature state. CNTs are generated and grown more efficiently by the growth method. The disk-shaped substrate group 14 is rotating, and the surface of each disk-shaped substrate is heated uniformly, and hydrocarbons and water vapor are sprayed uniformly, so that CNTs are uniformly generated on the surface of each disk-shaped substrate. Can grow. Thereby, CNT can be manufactured continuously. In fact, when spraying hydrocarbons and water vapor as in Example 6 compared to spraying only hydrocarbons, it was confirmed that the production rate of CNTs increased by about 20 to 50%.

なお、実施例6では、炭化水素と水蒸気を別々の噴射ノズルを用いて高温炉内の基板表面に噴射する場合について述べたが、これに限らず、1つの噴射ノズルから炭化水素と水蒸気を噴射してもよい。   In the sixth embodiment, the case of injecting hydrocarbons and water vapor onto the substrate surface in the high-temperature furnace using separate injection nozzles has been described. However, the present invention is not limited to this, and hydrocarbons and water vapor are injected from one injection nozzle. May be.

(実施例7)
本発明の実施例7に係るCNT製造装置について図7(A),(B)を参照して説明する。ここで、図7(A)は同製造装置の一部断面を含む概略的な側面図、図7(B)は図7(A)のX矢視図である。但し、図1,図2,図4,図6と同部材は同符番を付して説明を省略する。
(Example 7)
A CNT manufacturing apparatus according to Example 7 of the present invention will be described with reference to FIGS. 7 (A) and 7 (B). Here, FIG. 7A is a schematic side view including a partial cross-section of the manufacturing apparatus, and FIG. 7B is a view taken in the direction of the arrow X in FIG. However, the same members as those in FIGS. 1, 2, 4, and 6 are denoted by the same reference numerals, and the description thereof is omitted.

実施例7のCNT製造装置は、実施例1〜6記載の発明に対し、高温炉内に内蔵する中心穴に串刺し固定状態で配置する複数の同一径の円盤状基板群14を、中心穴に串刺し固定状態のまま高温炉11に取付け,取外しできる構造とし、高温炉内の温度を下げた状態で別の複数の円盤状基板群14に交換できるようにしたことを特徴とする。前記高温炉11は、フランジ71a,71bを夫々有した半円筒状の高温炉部11a,11bを上下に突合せ、前記フランジ71a,71b間にシール材73を介した状態で複数のボルト72で両フランジ同士を固定したものである。なお、高温炉部11a,11bより高温炉11が構成されている。   The CNT manufacturing apparatus of Example 7 has a plurality of disk-shaped substrate groups 14 of the same diameter arranged in a fixed state in a center hole built in a high-temperature furnace in the center hole in the center hole. The structure is such that it can be attached to and detached from the high temperature furnace 11 while being skewered, and can be replaced with another plurality of disk-like substrate groups 14 while the temperature in the high temperature furnace is lowered. The high-temperature furnace 11 has semi-cylindrical high-temperature furnace parts 11a and 11b each having flanges 71a and 71b, and a plurality of bolts 72 with a sealing material 73 interposed between the flanges 71a and 71b. The flanges are fixed to each other. In addition, the high temperature furnace 11 is comprised from the high temperature furnace parts 11a and 11b.

即ち、図7では、円盤状基板群14は各円盤状基板13の中心穴に1本の中心軸12に円盤状基板13を等間隔で串刺しに固定し、この中心軸12を中心に各円盤状基板13がまとめて回転できる固定状態としたもので、各円盤状基板表面において同一条件でCNTをまとめて効率的に生成,成長できるという大きな特長がある。   That is, in FIG. 7, the disk-shaped substrate group 14 fixes the disk-shaped substrate 13 to the center hole 12 of each disk-shaped substrate 13 at the center axis 12 at equal intervals, and each disk around the center axis 12. It has a fixed state in which the substrate 13 can be rotated together, and has a great feature that CNTs can be efficiently generated and grown together under the same conditions on the surface of each disk substrate.

ところで、各円盤状基板表面の触媒粒子を核に成長するが、次第に各円盤状基板表面の触媒粒子が減少していき、CNT生成効率が低下していく。本発明では、この円盤状基板群14を固定状態のまま高温炉11に取付け、取外しできる構造とし、高温炉内の温度を下げた状態で別の複数の円盤状基板群14に交換できるようにしたもので、高温炉11に簡単に取付け,取外しできるようにしたものである。   By the way, although the catalyst particles on the surface of each disk-shaped substrate are grown as nuclei, the catalyst particles on the surface of each disk-shaped substrate gradually decrease, and the CNT generation efficiency decreases. In the present invention, the disk-like substrate group 14 is fixed and attached to the high-temperature furnace 11 so that it can be removed, and can be replaced with a plurality of other disk-like substrate groups 14 while the temperature in the high-temperature furnace is lowered. Thus, it can be easily attached to and removed from the high-temperature furnace 11.

なお、高温炉11の内部は運転中、還元雰囲気を確保しなくてはならず、外部との気密性を十分確保しなければならない。実施例7の場合、図7に示すように、フランジ71aを有した高温炉部11a,フランジ71bを有した高温炉部11bを上下に分割し、取外す際はこのフランジ71a,71bのボルト72を緩めて高温炉部11a,11bを取外し、内部の円盤状基板群14を取外した後、新たな円盤状基板群をまた固定状態のまま高温炉11に取付け、このフランジ71a,71bのボルト72を締めて固定している。高温炉11内の外部との気密性を十分確保する為に、このフランジ71a,71b間のみならず、両端の軸部のシール構造等についても考慮すべきことは言うまでもない。   In addition, the inside of the high-temperature furnace 11 must ensure a reducing atmosphere during operation, and the airtightness with the outside must be sufficiently ensured. In the case of Example 7, as shown in FIG. 7, the high-temperature furnace part 11a having the flange 71a and the high-temperature furnace part 11b having the flange 71b are divided into upper and lower parts, and when removing the bolts 72 of the flanges 71a and 71b, After loosening and removing the high temperature furnace portions 11a and 11b and removing the internal disk-shaped substrate group 14, the new disk-shaped substrate group is attached to the high temperature furnace 11 in a fixed state, and the bolts 72 of the flanges 71a and 71b are attached. It is fastened and fixed. It goes without saying that not only between the flanges 71a and 71b but also the seal structure of the shafts at both ends should be taken into consideration in order to ensure sufficient airtightness with the outside in the high temperature furnace 11.

実施例7に係るCNT製造装置は、実施例6と比べ、図7に示すように、還元雰囲気の高温炉11内に円盤状基板群14を固定状態のまま高温炉11に取付け,取外しできるように構成されている。従って、以下に述べる効果を有する。
即ち、CNT生成効率が低下してきた時点で、高温炉11の運転を停止し、高温炉内の温度を下げ、高温炉内を開放し、円盤状基板群14を固定状態のまま高温炉11から取外し、新たな円盤状基板群をまた固定状態のまま高温炉に取換えることができる。
Compared with Example 6, the CNT manufacturing apparatus according to Example 7 can be attached to and removed from the high temperature furnace 11 with the disk-like substrate group 14 fixed in the high temperature furnace 11 in a reducing atmosphere as shown in FIG. It is configured. Therefore, it has the effects described below.
That is, when the CNT production efficiency is lowered, the operation of the high temperature furnace 11 is stopped, the temperature in the high temperature furnace is lowered, the inside of the high temperature furnace is opened, and the disk-shaped substrate group 14 is fixed from the high temperature furnace 11. It is possible to remove and replace a new disk-like substrate group with a high temperature furnace in a fixed state.

なお、実施例7では、高温炉が上下の高温炉部に分割され、ボルトの開け閉めにより円盤状基板群を中心軸で串刺しのまま取り外し、新たな円盤状基板群に交換する場合について述べたが、これに限らない。例えば、高温炉の中心軸の長手方向に沿う端部に串刺し状態の円盤状基板群を出し入れする為の窓を設け、この窓の開閉により取付け,取外しできる構成としてもよい。   In the seventh embodiment, the case where the high temperature furnace is divided into upper and lower high temperature furnace parts, the disk-like substrate group is removed while being skewed by the central axis by opening and closing the bolts, and replaced with a new disk-like substrate group is described. However, it is not limited to this. For example, a configuration may be adopted in which a window for inserting and removing the disk-like substrate group in a skewed state is provided at an end portion along the longitudinal direction of the central axis of the high-temperature furnace, and the window can be attached and removed by opening and closing the window.

(実施例8)
本発明の実施例8に係るCNT製造装置について図8(A),(B)を参照して説明する。ここで、図8(A)は同生成炉の一部断面を含む概略的な側面図、図8(B)は図8(A)のX矢視図である。但し、図1,図2,図4,図6,図7と同部材は同符番を付して説明を省略する。
(Example 8)
A CNT manufacturing apparatus according to Example 8 of the present invention will be described with reference to FIGS. Here, FIG. 8 (A) is a schematic side view including a partial cross-section of the generating furnace, and FIG. 8 (B) is a view as viewed from the arrow X of FIG. 8 (A). 1, FIG. 2, FIG. 4, FIG. 6 and FIG.

実施例8のCNT製造装置炉は、実施例7比べ、還元雰囲気の高温炉内の下部にはカーボンナノチューブ排出用の上下2段のダブルダンパーを設置し、高温炉内の温度が一定で還元雰囲気にしたままCNTを高温炉外に払い落とすことができるようにしたことを特徴とする。図中の符番81はCNT排出ノズル16の下部に配置された上部ダンパー、符番82は下部ダンパー、符番83はカーボンナノチューブ(CNT)回収容器である。   Compared with Example 7, the CNT manufacturing apparatus furnace of Example 8 is provided with a two-stage double damper for discharging carbon nanotubes at the lower part of the reducing atmosphere in the high-temperature furnace, the temperature inside the high-temperature furnace is constant, and the reducing atmosphere It is characterized in that the CNTs can be wiped out of the high-temperature furnace while being kept. In the figure, reference numeral 81 is an upper damper disposed below the CNT discharge nozzle 16, reference numeral 82 is a lower damper, and reference numeral 83 is a carbon nanotube (CNT) collection container.

即ち、図8では、CNT生成炉下部にはロータリーバルブ等を設置することで下部に落ちた粉塵を安定的に払い出すことは可能であるが、外部とのシール性能を高める為に、CNT排出ノズル16の下部に上部ダンパー81及び下部ダンパー82によるダブルダンパーを設置し、その下部にカーボンナノチューブ回収容器83等を設置して回収するようにする。   That is, in FIG. 8, it is possible to stably discharge dust that has fallen to the bottom by installing a rotary valve or the like at the bottom of the CNT production furnace, but in order to improve the sealing performance with the outside, CNT discharge A double damper composed of an upper damper 81 and a lower damper 82 is installed below the nozzle 16, and a carbon nanotube collection container 83 and the like are installed below the double damper so as to be collected.

ダブルダンパーの動作は、次のとおりである。即ち、まず、上部ダンパー81、下部ダンパー82を全閉とした後、まず上部ダンパー81を開にし、上部ダンパー82と下部ダンパー83の間に粉塵を溜める。その後、上部ダンパー81を全閉、下部ダンパー82を開にすることにより、高温炉11内部とCNT回収容器83とを縁を切った状態でCNTを回収する。また、CNT回収容器83内の空気が高温炉11に混入しないよう、上部ダンパー81と下部ダンパー82の間に不活性ガスを間欠的に注入するようなことも設計,運用上逐次行い、安定的なCNT払出しが行えるようにする。   The operation of the double damper is as follows. That is, first, the upper damper 81 and the lower damper 82 are fully closed, and then the upper damper 81 is opened to collect dust between the upper damper 82 and the lower damper 83. Thereafter, the upper damper 81 is fully closed and the lower damper 82 is opened, so that the CNTs are recovered with the inside of the high temperature furnace 11 and the CNT recovery container 83 cut off. In addition, in order to prevent the air in the CNT collection vessel 83 from entering the high temperature furnace 11, an inert gas is intermittently injected between the upper damper 81 and the lower damper 82 in order to ensure stable operation. CNT payout can be performed.

実施例8に係るCNT製造装置は、図7のような構成にする他、図8に示すように、生成炉と11の下部に上部ダンパー81及び下部ダンパー82によるダブルダンパーを設置し、その下部にカーボンナノチューブ回収容器83を設置してCNTを回収するように構成されている。従って、CNT払出しを安定的に確実に行うことができるコンパクトなCNT生成炉を提供することができる。   The CNT manufacturing apparatus according to the eighth embodiment is configured as shown in FIG. 7, and as shown in FIG. 8, a double damper comprising an upper damper 81 and a lower damper 82 is installed at the lower part of the generating furnace 11 and the lower part thereof. A carbon nanotube recovery container 83 is installed in the CNT to recover CNTs. Therefore, it is possible to provide a compact CNT generation furnace that can stably and reliably perform CNT payout.

なお、実施例8では、図8においてロータリーバルブの設置を省略した場合について述べたが、ダブルダンパーの上側、或いは下側にロータリーバルブを設置することも可能である。また、高温炉の内部は運転中、還元雰囲気を確保しなくてはならず、外部との気密性を十分確保する為のシール構造等について考慮すべきことは言うまでもない。   In addition, in Example 8, although the case where the installation of the rotary valve was omitted in FIG. 8 was described, the rotary valve can be installed on the upper side or the lower side of the double damper. In addition, it is needless to say that the inside of the high-temperature furnace must secure a reducing atmosphere during operation, and consider a seal structure for ensuring sufficient airtightness with the outside.

(実施例9)
本発明の実施例9に係るCNT製造装置について図9(A),(B)を参照して説明する。ここで、図9(A)は同製造装置の一部断面を含む概略的な側面図、図9(B)は図9(A)のX矢視図である。但し、図1,図2,図4,図6,図7,図8と同部材は同符番を付して説明を省略する。
Example 9
A CNT manufacturing apparatus according to Embodiment 9 of the present invention will be described with reference to FIGS. 9 (A) and 9 (B). Here, FIG. 9 (A) is a schematic side view including a partial cross section of the manufacturing apparatus, and FIG. 9 (B) is a view taken in the direction of arrow X in FIG. 9 (A). 1, FIG. 2, FIG. 4, FIG. 6, FIG. 7, and FIG.

実施例9のCNT製造装置は、実施例1〜8記載の発明に対し、円盤状基板13としてハードディスク(或いは廃ハードディスク)を用いたことを特徴とする。ここで、ハードディスクは、磁性体を塗布した円盤に磁気ヘッドを用いて情報を記録、または読み出す、円盤がガラスやアルミニウム等固い素材で作られていることから硬い円盤の意味でハードディスクと呼ばれる。代表的な磁性体に酸化鉄,酸化クロム,コバルト,フェライトなどがある。硬質材料の円盤上に磁性粉を塗布あるいは蒸着したものがハードディスク装置というコンピュータの記憶装置に用いられる。図9中の符番91は、複数の円盤状ハードディスク92が配置されたハードディスク基板群である。   The CNT manufacturing apparatus according to the ninth embodiment is characterized in that a hard disk (or a waste hard disk) is used as the disk-shaped substrate 13 with respect to the inventions according to the first to eighth embodiments. Here, the hard disk is called a hard disk in the sense of a hard disk because the disk is made of a hard material such as glass or aluminum. The disk is made of a hard material such as glass or aluminum. Typical magnetic materials include iron oxide, chromium oxide, cobalt, and ferrite. A hard material disk coated with or vapor-deposited magnetic powder is used in a computer storage device called a hard disk device. Reference numeral 91 in FIG. 9 is a hard disk substrate group on which a plurality of disk-shaped hard disks 92 are arranged.

ハードディスク(或いは廃ハードディスク)には磁性粉を塗布あるいは蒸着されており、この磁性粉の材質にはCNT生成に必要な触媒となる金属が多く含まれており、しかもハードディスクの規格品は円盤状で一定の形状をしており、中心部に穴が開いており、円盤状の基板として十分な機能を有している。   The hard disk (or waste hard disk) is coated or vapor-deposited with magnetic powder, and the material of this magnetic powder contains a lot of metals that are necessary for the production of CNT, and the standard hard disk is disc-shaped. It has a certain shape, has a hole in the center, and has a sufficient function as a disk-shaped substrate.

一般に、CNTの生成の際には、CNT生成の核となる触媒粒子が必要である。本方式によれば、ハードディスク(或いは廃ハードディスク)にCNT生成に必要な金属触媒粒子を含有しており、ハードディスク(或いは廃ハードディスク)自体を構成する金属触媒粒子がCNT生成の核となりCNTが成長する。なお、図9では図示しないが、CNT生成、成長を促進させる為に必要に応じて金属触媒粒子を導入する。金属触媒粒子を導入する際は、例えば高温炉に触媒導入管を連結し、この触媒導入管を介して高温炉内に触媒を供給するようにする。   In general, when CNT is produced, catalyst particles that are the core of CNT production are required. According to this method, metal catalyst particles necessary for CNT generation are contained in the hard disk (or waste hard disk), and the metal catalyst particles constituting the hard disk (or waste hard disk) itself serve as the nucleus of CNT generation and grow CNT. . Although not shown in FIG. 9, metal catalyst particles are introduced as needed to promote CNT generation and growth. When introducing the metal catalyst particles, for example, a catalyst introduction pipe is connected to a high temperature furnace, and the catalyst is supplied into the high temperature furnace via the catalyst introduction pipe.

実施例9に係るCNT製造装置は、図9に示すように、実施例1〜8と比べ、円盤状基板群に対し複数の円盤状ハードディスク92からなるハードディスク基板群91を高温炉11内に配置した構成になっている。従って、新たに円盤状基板を製作する必要がなく、特に廃ハードディスクを利用すると今後益々多く排出される不要となった電子機器の材料廃材を高機能カーボンであるCNTを製造するのに有効に再活用することが可能となる。更に、ハードディスク或いは廃ハードディスクの製品規格はほぼ統一であるので、常に安定した純度および安定性の高い高機能のCNTを低コストで効率よく量産することができる。   As shown in FIG. 9, in the CNT manufacturing apparatus according to the ninth embodiment, a hard disk substrate group 91 including a plurality of disk-shaped hard disks 92 is arranged in the high-temperature furnace 11 as compared with the first to eighth embodiments. It has a configuration. Therefore, there is no need to manufacture a new disk-shaped substrate, and it is effective to recycle the waste material of electronic equipment that is no longer needed, especially when waste hard disks are used, to produce CNT, which is a high-performance carbon. It can be used. Furthermore, since the product standards of the hard disk or the waste hard disk are almost unified, it is possible to efficiently mass-produce highly functional CNTs with always high purity and stability.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施例1に係るカーボンナノチューブ製造装置の概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 5 of this invention. 本発明の実施例6に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 6 of this invention. 本発明の実施例7に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 7 of this invention. 本発明の実施例8に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus according to Example 8 of the present invention. 本発明の実施例9に係るカーボンナノチューブ製造装置の概略図。Schematic of the carbon nanotube manufacturing apparatus which concerns on Example 9 of this invention. 気相成長基板法の説明図。Explanatory drawing of a vapor phase growth substrate method. 流動気相法の説明図。Explanatory drawing of a fluid gas phase method.

符号の説明Explanation of symbols

11…カーボンナノチューブ生成炉(高温炉)、12…中心軸、13…円盤状基板、14…円盤状基板群、15…高温加熱ジャケット、16…カーボンナノチューブ排出ノズル、17…炭化水素供給ヘッダー、18…炭化水素供給配管、19…炭化水素噴射ノズル、21…カーボンナノチューブ掻き取りバー、41…加熱したガス状態の炭化水素供給配管、51…水素供給配管、52…水素供給ヘッダー、53…水素ガス噴射ノズル、61…水蒸気供給配管、62…水蒸気供給ヘッダー、63…水蒸気噴射ノズル、71…フランジ、72…ボルト、73…シール材、81…上部ダンパー、82…下部ダンパー、83…カーボンナノチューブ回収容器、91…ハードディス基板群、92…ハードディスク基板。   DESCRIPTION OF SYMBOLS 11 ... Carbon nanotube production furnace (high temperature furnace), 12 ... Center axis, 13 ... Disc substrate, 14 ... Disc substrate group, 15 ... High temperature heating jacket, 16 ... Carbon nanotube discharge nozzle, 17 ... Hydrocarbon supply header, 18 DESCRIPTION OF SYMBOLS ... Hydrocarbon supply piping, 19 ... Hydrocarbon injection nozzle, 21 ... Carbon nanotube scraping bar, 41 ... Heated hydrocarbon supply piping in gas state, 51 ... Hydrogen supply piping, 52 ... Hydrogen supply header, 53 ... Hydrogen gas injection Nozzle, 61 ... steam supply pipe, 62 ... steam supply header, 63 ... steam injection nozzle, 71 ... flange, 72 ... bolt, 73 ... seal material, 81 ... upper damper, 82 ... lower damper, 83 ... carbon nanotube recovery container, 91: Hard disk substrate group, 92: Hard disk substrate.

Claims (9)

還元雰囲気の高温炉内に複数の同一径の円盤状基板からなる円盤状基板群をその中心穴に串刺し固定状態で配置し、串刺し固定状態の複数の円盤状基板群の中心軸を両端保持の状態で回転させ、各円盤状基板表面に炭化水素を連続的に均一に噴霧することにより各円盤状基板上で反応させ、カーボンナノチューブを成長させることによりカーボンナノチューブを連続的に製造することを特徴とするカーボンナノチューブ製造装置。 A disk-shaped substrate group consisting of a plurality of disk-shaped substrates of the same diameter is placed in a central hole in a reducing atmosphere in a high-temperature furnace, and the center axis of the plurality of disk-shaped substrate groups in the skewered fixed state is held at both ends. The carbon nanotubes are produced continuously by rotating in a state and reacting on each disk-like substrate by spraying hydrocarbons uniformly and uniformly on the surface of each disk-like substrate, and growing the carbon nanotubes. A carbon nanotube manufacturing apparatus. 回転する串刺し固定状態の複数の同一径の円盤状基板群の各円盤状基板表面を掻き取る掻き取り機構を高温炉内に設け、回転する各円盤状基板表面で反応させ、成長したカーボンナノチューブを掻き取ることにより高機能カーボンナノチューブを連続的に製造することを特徴とする請求項1に記載のカーボンナノチューブ製造装置。 A scraping mechanism for scraping each disk-shaped substrate surface of a plurality of disk-shaped substrate groups of the same diameter fixed in a rotating skewered state is provided in a high-temperature furnace, and the carbon nanotubes grown by reacting on the surface of each rotating disk-shaped substrate are reacted. 2. The carbon nanotube production apparatus according to claim 1, wherein the high-function carbon nanotube is continuously produced by scraping. 高温炉内の温度は、炭化水素を連続的に均一に噴霧する状態で500〜800℃の範囲に設定することを特徴とする請求項1若しくは2に記載のカーボンナノチューブ製造装置。 3. The carbon nanotube production apparatus according to claim 1, wherein the temperature in the high-temperature furnace is set in a range of 500 to 800 ° C. in a state where the hydrocarbon is sprayed uniformly and uniformly. 還元雰囲気の高温炉内の各円盤状基板表面に噴霧する炭化水素は加熱したガス状態とし、高温炉内の温度を下げずに均一に噴霧することを特徴とする請求項1至及3のいずれかに記載のカーボンナノチューブ製造装置。 The hydrocarbon sprayed on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere is in a heated gas state and sprayed uniformly without lowering the temperature in the high-temperature furnace. The carbon nanotube manufacturing apparatus according to claim 1. 還元雰囲気の高温炉内の各円盤状基板表面に炭化水素及び水素を噴霧することにより各円盤状基板表面を活性化させることを特徴とする請求項1至及4のいずれかに記載のカーボンナノチューブ製造装置。 5. The carbon nanotube according to claim 1, wherein the surface of each disk-shaped substrate is activated by spraying hydrocarbon and hydrogen on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere. Manufacturing equipment. 還元雰囲気の高温炉内の各円盤状基板表面に炭化水素及び水蒸気を噴霧することにより各円盤状基板表面を活性化させることを特徴とする請求項1乃至4のいずれかに記載のカーボンナノチューブ製造装置。 The carbon nanotube production according to any one of claims 1 to 4, wherein the surface of each disk-shaped substrate is activated by spraying hydrocarbons and water vapor on the surface of each disk-shaped substrate in a high-temperature furnace in a reducing atmosphere. apparatus. 高温炉内に内蔵する中心軸に串刺し固定状態で配置する複数の同一径の円盤状基板群は、中心軸に串刺し固定状態のまま高温炉に取付け、取外しできる構造とし、高温炉内の温度を下げた状態で別の複数の円盤状基板群に交換できるようにしたことを特徴とする請求項1乃至6のいずれかに記載のカーボンナノチューブ製造装置。 A plurality of disc-shaped substrate groups with the same diameter placed in a fixed state on the central axis built into the high temperature furnace can be attached to and removed from the high temperature furnace while being fixed on the central axis, and the temperature inside the high temperature furnace can be removed. 7. The carbon nanotube production apparatus according to claim 1, wherein the carbon nanotube production apparatus can be replaced with another plurality of disk-shaped substrate groups in a lowered state. 還元雰囲気の高温炉内の下部にはカーボンナノチューブ排出用の上下2段のダブルダンパーを設置し、高温炉内の温度が一定で還元雰囲気にしたままカーボンナノチューブを高温炉外に払い落とすことができる構成であることを特徴とする請求項1乃至7のいずれかに記載のカーボンナノチューブ製造装置。 The upper and lower double dampers for discharging carbon nanotubes are installed in the lower part of the high-temperature furnace in a reducing atmosphere, and the carbon nanotubes can be washed out of the high-temperature furnace while the temperature in the high-temperature furnace is constant and the reducing atmosphere is maintained. The carbon nanotube manufacturing apparatus according to any one of claims 1 to 7, wherein the carbon nanotube manufacturing apparatus has a configuration. 円盤状基板はハードディスク若しくは廃ハードディスクであることを特徴とする請求項1乃至8のいずれかに記載のカーボンナノチューブ製造装置。 9. The carbon nanotube production apparatus according to claim 1, wherein the disk-shaped substrate is a hard disk or a waste hard disk.
JP2007337812A 2007-12-27 2007-12-27 Carbon nanotube production equipment Expired - Fee Related JP5112044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337812A JP5112044B2 (en) 2007-12-27 2007-12-27 Carbon nanotube production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337812A JP5112044B2 (en) 2007-12-27 2007-12-27 Carbon nanotube production equipment

Publications (2)

Publication Number Publication Date
JP2009155181A true JP2009155181A (en) 2009-07-16
JP5112044B2 JP5112044B2 (en) 2013-01-09

Family

ID=40959583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337812A Expired - Fee Related JP5112044B2 (en) 2007-12-27 2007-12-27 Carbon nanotube production equipment

Country Status (1)

Country Link
JP (1) JP5112044B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080912A (en) * 1999-09-10 2001-03-27 Agency Of Ind Science & Technol Production of carbon nanotube
JP2005053710A (en) * 2003-08-04 2005-03-03 Hitachi Zosen Corp Method for producing carbon nanotube
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2005185950A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Gas occluding material, gas occluding apparatus, carbon nanotube and producing method for the nanotube
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
WO2006011655A1 (en) * 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
JP2006172662A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus
JP2007126311A (en) * 2005-11-01 2007-05-24 Sonac Kk Method for producing carbon fiber and catalyst substrate
WO2007064148A1 (en) * 2005-11-29 2007-06-07 Semes Co., Ltd. System and method for producing carbon nanotubes
JP2007261839A (en) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc Method for producing carbon nanotube
WO2007125816A1 (en) * 2006-04-24 2007-11-08 Nec Corporation Apparatus and method for producing carbon nanohorn

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080912A (en) * 1999-09-10 2001-03-27 Agency Of Ind Science & Technol Production of carbon nanotube
JP2005053710A (en) * 2003-08-04 2005-03-03 Hitachi Zosen Corp Method for producing carbon nanotube
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2005185950A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Gas occluding material, gas occluding apparatus, carbon nanotube and producing method for the nanotube
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
WO2006011655A1 (en) * 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
JP2006172662A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus
JP2007126311A (en) * 2005-11-01 2007-05-24 Sonac Kk Method for producing carbon fiber and catalyst substrate
WO2007064148A1 (en) * 2005-11-29 2007-06-07 Semes Co., Ltd. System and method for producing carbon nanotubes
JP2007261839A (en) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc Method for producing carbon nanotube
WO2007125816A1 (en) * 2006-04-24 2007-11-08 Nec Corporation Apparatus and method for producing carbon nanohorn

Also Published As

Publication number Publication date
JP5112044B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5282043B2 (en) Carbon nanotube production equipment
CN102459727B (en) Method for producing solid carbon by reducing carbon oxides
JP2004182573A (en) Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
US20030010279A1 (en) Method for mass-producing carbon nanocoils
KR20070116290A (en) Intermediates for manufacturing carbon nanocoils
JP4608863B2 (en) Carbon nanotube production apparatus and method, and gas decomposer used therefor
JP5049912B2 (en) Nanocarbon generation furnace
JP5112044B2 (en) Carbon nanotube production equipment
JP2010126405A (en) Device for synthesizing carbon nanotube
JP2011241104A (en) Method for producing nanocarbon, multiporous composite metal oxide for producing nanocarbon and apparatus for producing nanocarbon
JP5193745B2 (en) Nanocarbon generation furnace
JP3404543B1 (en) Method for producing carbon nanotube
JP5072887B2 (en) Nanocarbon generator
JP2004190166A (en) Method and apparatus for collecting carbon nanotube and carbon nanotube roll
JP2006027948A (en) Method of manufacturing monolayer carbon nanotube
JP2010042935A (en) Nanocarbon production apparatus
CN110937592B (en) Batch continuous production equipment for carbon nanotubes and preparation method thereof
JP4674355B2 (en) Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
KR100661795B1 (en) Thermal Chemical Vapor Deposition Apparatus for Producing Carbon Nanotube and a Carbon Nanofiber
Mubarak et al. Mass production of carbon nanofibers using microwave technology
JP2013136476A (en) Nanocarbon production apparatus
KR20050078456A (en) Continuous thermochemical vapour deposit system and mass production methods of carbon nanotubes thereof
CN104418317A (en) Continuous growth device for carbon nano-tube
JP2013189334A (en) Nanocarbon generation apparatus
JP2009174092A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees