WO2005096414A2 - Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien - Google Patents

Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien Download PDF

Info

Publication number
WO2005096414A2
WO2005096414A2 PCT/EP2005/051238 EP2005051238W WO2005096414A2 WO 2005096414 A2 WO2005096414 A2 WO 2005096414A2 EP 2005051238 W EP2005051238 W EP 2005051238W WO 2005096414 A2 WO2005096414 A2 WO 2005096414A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
lithium
silicon particles
material according
electrolyte
Prior art date
Application number
PCT/EP2005/051238
Other languages
English (en)
French (fr)
Other versions
WO2005096414A3 (de
Inventor
Frank-Martin Petrat
Volker Hennige
Evelyn Albrecht
David Lee
Hilmi Buqa
Michael Holzapfel
Petr NOVÁK
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Priority to EP05729816A priority Critical patent/EP1730800B1/de
Priority to DE502005003995T priority patent/DE502005003995D1/de
Priority to US10/594,995 priority patent/US8124279B2/en
Priority to JP2007505541A priority patent/JP5096136B2/ja
Publication of WO2005096414A2 publication Critical patent/WO2005096414A2/de
Priority to KR1020067020309A priority patent/KR101265340B1/ko
Publication of WO2005096414A3 publication Critical patent/WO2005096414A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an electrode material and its use in lithium-ion batteries.
  • Lithium-ion batteries are technically very interesting energy storage systems because they have the highest energy density of up to 180 Wh / kg among the known, practical chemical and electrochemical energy stores.
  • the lithium-ion batteries are particularly used in the field of portable electronics, such as laptops or cell phones, so-called cell phones.
  • the use of lithium-ion batteries in the field of transportation, such as bicycles or automobiles, is also being discussed.
  • Graphitic carbon in particular is used as the negative electrode material (“anode”).
  • the graphitic carbon is characterized by its stable cycle properties and, in comparison to lithium metal, which is used in so-called “lithium batteries”, a very high level of handling safety.
  • An important argument for the use of graphitic carbon in negative electrode materials lies in the small volume changes of the host material which are associated with the storage and removal of lithium, ie the electrode remains approximately stable.
  • For lithium storage in graphitic carbon only a volume increase of approx. ⁇ 0% can be measured for the limit stoichiometry of LiC 6 .
  • the disadvantage is the very low potential of approx. 100-200 mV vs. Li / Li + of graphite carbon.
  • graphitic carbon Another disadvantage of graphitic carbon, on the other hand, is its relatively low electrochemical capacity of theoretically: 372 mAh / g graphite, which is only about a tenth of the electrochemical capacity of 4235 mAh / g lithium that can theoretically be achieved with lithium metal.
  • Anode materials based on alloys offer the advantage over metallic lithium that dendritic formation does not occur during lithium deposition.
  • anode materials based on alloys are suitable for use together with electrolytes based on propylene carbonate. This enables the use of lithium-ion batteries at low temperatures.
  • the disadvantage of these alloys is, however, the large volume expansion during the cylinder - i.e. during the storage and removal of the lithium, which in some cases is over 200% and even up to 300% (Besenhard et al. In J. Power Sources 68 (1997), 87 ).
  • the metal oxide When metal oxides are used as electrode material, the metal oxide is reduced to metal and lithium oxide during the first lithium storage, the lithium oxide embedding the fine metal particles like a matrix. During the subsequent cycles, a volume expansion can be partially offset, this significantly improves the cycle behavior.
  • Li et al. use a mixture of nanoscale silicon and carbon black, which also shows a very high capacity of initially up to over 2000 mAh / g, which, however, drops significantly over the cycle and less than 25 cycles are shown.
  • Yang et al. use the pyrolysis of a nano-silicon-containing starting mixture to manufacture their active materials and obtain reversible capacities of over 700 mAh / g during 30
  • Gao et al. describe the electrochemical reaction of silicon obtained by laser ablation with lithium, but obtain a reversible capacity of around 700 mAh / g initially.
  • the object of the present invention was to provide an electrode material which has a high reversible capacity, with a slight fading and / or lower irreversible capacity losses preferably being achieved at the same time in the first cycle.
  • the task was to provide an electrode material that has sufficient mechanical stability during the cycle.
  • fading is understood to mean the decrease in the reversible capacity during the continuing cycle.
  • an electrode material which has nanoscale silicon particles which have a BET surface area of 5 to 700 m 2 / g and an average particle diameter of 5 to 200 nm leads to good cycle behavior, in particular in comparison to silicon-based negative electrodes for Lithium-ion batteries according to the prior art
  • the solution to the problem was all the more surprising, especially since it was shown that these electrodes have a very high reversible capacity, which remains approximately constant even during the cycle, so that only slight fading can be observed , It was also shown that the use of these nanoscale silicon particles made the electrode material one! has significantly improved mechanical stability. It was also surprising that the irreversible loss of capacity could be reduced during the first cycle.
  • the invention therefore relates to an electrode material for lithium-ion batteries, which is characterized in that the electrode material - 5-85% by weight of nanoscale silicon particles, a BET surface area of 5 to 700 m 2 / g and an average primary particle diameter have from 5 to 200 nm,. 0-10% by weight conductive carbon black, 5-80% by weight graphite with an average particle diameter of 1 ⁇ m to 100 ⁇ m and -5-25% by weight of a binder has, the proportions of the components totaling a maximum of 100 wt .-%.
  • Another object of the invention is the use of the electrode material according to the invention for the production of lithium-ion batteries.
  • the invention furthermore relates to a lithium-ion battery with a negative electrode, which has the electrode material according to the invention.
  • Electrodes in which the electrode material according to the invention is used have a very high reversible capacity; this applies both to the electrode material according to the invention with a high content of nanoscale silicon particles and to the electrode material according to the invention with a lower content of nanoscale silicon particles.
  • This reversible capacity remains »! also approximately constant over the course of the cycle, so that only slight fading can be observed.
  • the electrode material according to the invention also has good stability. This means that even with longer cycles there are hardly any signs of fatigue, such as mechanical destruction, of the electrode material according to the invention.
  • the irreversible loss of capacity during the first cycle can be reduced when using the electrode material according to the invention compared to corresponding silicon-containing and alloy-based electrode materials for lithium-ion batteries according to the prior art.
  • the electrode material according to the invention shows good cycle behavior.
  • the electrode material according to the invention has the advantage that there is sufficient stability with respect to an electrolyte based on propylene carbonate.
  • the electrode material according to the invention for lithium-ion batteries is characterized in that the electrode material has 5-85% by weight of nanoscale silicon particles, a BET surface area of 5 to 700 m 2 / g and an average primary particle diameter of 5 to 200 nm have, - 0 - 10 wt .-% conductive carbon black, - 5 - 80 wt .-% graphite with an average particle diameter of 1 ⁇ m to 100 ⁇ m and 5 -25 wt .-% of a binder has, the proportions of the components total m-cximal 100 wt .-%.
  • electrode material is understood to mean a substance or a mixture of two or more substances which allows electrochemical energy to be stored in a battery by means of oxidation and / or reduction reactions.
  • electrochemical reaction which, in the (charged) battery, provides energy for oxidation or reduction, one speaks of negative or positive electrode material or also of anode or cathode material.
  • the electrode material according to the invention contains from 0 to 5% by weight, preferably from 0.5 to 4% by weight, of conductive carbon black.
  • the electrode material according to the invention preferably contains a high-purity synthetic carbon black as the conductive carbon black, preferably it has an average particle size of 20 to 60 nm, particularly preferably 30 to 50 nm.
  • the conductive carbon black contained in the electrode material according to the invention has a BET surface area of 50 to 80 m 2 / g, preferably 55 to 70 m 2 / g. In a special embodiment of the electrode material according to the invention, this has a high-purity synthetic carbon black with a mean particle size of 35 to 45 nm and a BET surface area of 57 to 67 m 2 / g.
  • the electrode material according to the invention has from 5 to 25% by weight, preferably from 5 to 10% by weight and particularly preferably 10% by weight, of a binder.
  • a binder is understood to mean a chemical compound which is able to connect the components silicon particles, graphite and possibly conductive carbon black to one another and to the carrier material, which preferably consists of copper, nickel or stainless steel.
  • the electrode material according to the invention preferably has polymeric binders, preferably polyvinylidene fluoride (PVdF), polytetrafluoroethylene or I * ololefins, but particularly preferably thermoplastic elastomers, in particular ethylene-propylene-diene terpolymers.
  • this has gelatin or modified cellulose as a binder.
  • the electrode material according to the invention has from 5 to 80% by weight of graphite, which preferably has an average particle diameter of 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m.
  • the graphite contained in the inventive electrode material preferably has a d 9 o-value of 5 to 10 microns.
  • a d o value of 6 ⁇ m means that 90% of all particles have a particle size of less than or equal to 6 ⁇ m.
  • the graphite contained in the electrode material according to the invention has a BET surface area of preferably from 5 to 30 m 2 / g, preferably from 10 to 20 m 2 / g.
  • the electrode material according to the invention also has from 5 to 85% by weight of nanoscale silicon particles which have an average primary article diameter from 5 to 200 nm, preferably from 5 to 100 nm.
  • Primary particles that have accumulated to form agglomerates or aggregates preferably have a size of 20 to 1000 nm.
  • the particle diameters are determined on the basis of recordings using a transn ⁇ ssion electron microscope (TEM).
  • the electrode material according to the invention preferably has 8 to 20% by weight, preferably 10 to 15% by weight of graphite and 65 to 86.5% by weight, but preferably 70 to 84.5% by weight. -% of nanoscale silicon particles. In a particularly preferred embodiment of the electrode material according to the invention for lithium-ion batteries, this has 65-86.5% by weight of nanoscale silicon particles, 0.5-10% by weight of conductive carbon black, 8-20% by weight of graphite with a average particle diameter from 1 microns to 100 microns and 5 - 10 wt .-% of a binder.
  • composition of the electrode material according to the invention is very particularly preferably 80% by weight of nanoscale silicon particles, 0.5-10% by weight of conductive carbon black, 10-15% by weight of graphite with an average particle diameter of 1 ⁇ m to 100 ⁇ m - 5 - 10 wt .-% of a binder.
  • the electrode material according to the invention has from 55 to 85% by weight, preferably from 65 to 80% by weight, of graphite and from 5 to 40% by weight, preferably from 10 to 30% by weight, of nanoscale Silicon particles.
  • this electrode material according to the invention has - 5 to 40% by weight of nanoscale silicon particles, 55 to 85% by weight of graphite with an average particle diameter of 2 .mu.m to 50 .mu.m and - 5 to 10% by weight of a binder
  • the following composition of the electrode material according to the invention is particularly preferred: 20% by weight of nanoscale silicon particles, 70% to 75% by weight of graphite with an average particle diameter of 2 ⁇ m to 50 ⁇ m and 5% to 10% by weight of a binder ,
  • the electrode material according to the invention has, as silicon particles, a nanoscale, aggregated, crystalline silicon powder with a BET surface area of preferably from 5 to 700 m 2 / g, preferably from 6 to 140 m 2 / g, particularly preferably from 7 to 50 m 2 / g and entirely particularly preferably from 10 to 20 m 2 / g.
  • the electrode material according to the invention can have a nanoscale, aggregated, crystalline silicon powder with a BET surface area of at least 150 m 2 / g, preferably from 160 to 600 m 2 / g, particularly preferably from 160 to 450 m 2 / g ,
  • the BET surface area is determined according to this invention in accordance with ISO 9277 (1995), which replaces DIN 66131.
  • aggregated is understood to mean that spherical or largely spherical primary particles, such as are initially formed in the reaction, grow together to form aggregates in the further course of the reaction.
  • the degree of overgrowth of the aggregates can be influenced by the process parameters.
  • These aggregates can form agglomerates in the further course of the reaction.
  • agglomerates mean a loose aggregation of aggregates that can easily disintegrate into the aggregates.
  • Crystalline is understood to mean that at least 90% of the freshly produced silicon powder is crystalline.
  • freshly produced powder is understood to mean the powder which has just passed through the production process and which does not yet have any signs of aging, such as, for example, due to oxidation on the surface.
  • Such a level of crystallinity can e.g. can be determined by X-ray diffractometry by comparing the intensities of the [111], [220] and [311] signals of the silicon powder used with a silicon powder of known crystallinity and crystallite size.
  • a silicon powder with at least 95%, particularly preferably one with at least 98% crystalline content is preferably used.
  • it is suitable, for example, to evaluate images from a transmission electron microscope (TEM) and to count the primary particles which the grating lines have as a characteristic of the crystalline state.
  • TEM transmission electron microscope
  • the electrode material according to the invention can have silicon particles that are doped.
  • the elements phosphorus, arsenic, antimony, boron, aluminum, gallium and / or indium can preferably be present as doping components.
  • Doping component in the sense of the invention is to be understood as the element present in the silicon particles.
  • the proportion of these doping components in the silicon particles can be up to 1% by weight.
  • the silicon particles contain the doping component i-cn ppm or ppb range. A range of 10 13 to 10 15 atoms doping component / cm 3 is preferred.
  • the silicon particles in the electrode material according to the invention have lithium as a doping component.
  • the proportion of lithium in the silicon particles can be up to 53% by weight.
  • the silicon particles can particularly preferably contain up to 20 to 40% by weight of lithium.
  • the doping component can be homogeneously distributed in the silicon particles, or enriched or intercalated in the shell or in the core of the primary particles. Can prefer the doping components are installed on silicon lattice sites. This essentially depends on the type of dopant and the way in which the silicon particles are produced.
  • the electrode material according to the invention can have silicon particles which, as long as they are freshly produced, also have a hydrogen loading of up to 98 mol%, based on the silicon on the particle surface, a range from 30 to 95 mol% being particularly preferred.
  • NMR spectroscopic methods are suitable for determining the hydrogen loading, such as, for example, 1 H-MAS NMR spectroscopy, headspace gas chromatography after hydrolytic hydrogen elimination or efrusion spectrometry after thermal hydrogen elimination. IR spectroscopy can also be used for a qualitative determination of the hydrogen loading.
  • the silicon particles contained in the electrode material according to the invention are preferably produced by means of a method which is characterized in that at least one vaporous or gaseous silane, and optionally at least one vaporous or gaseous dopant, an inert gas and hydrogen is thermally treated in a hot-wall reactor, - The reaction mixture is cooled or allowed to cool and
  • the reaction product is separated from gaseous substances in the form of a powder, the proportion of silane being from 0.1 to 90% by weight, based on the sum of silane, dopant, hydrogen and inert gases, and the proportion of hydrogen being based on the sum of hydrogen, silane, inert gas and optionally dopant, is in a range from 1 mol% to 96 mol%.
  • a wall-heated hot-wall reactor can be used particularly advantageously, the hot-wall reactor being dimensioned in such a way that the most complete possible conversion of the starting material and, if appropriate, of the dopant is achieved.
  • the residence time in the hot-wall reactor will be between 0.1 s and 2 s.
  • the maximum temperature in the hot-wall reactor is preferably chosen so that it does not exceed 1000 ° C.
  • the reaction mixture can be cooled, for example, by external wall cooling of the reactor or by introducing inert gas in a quench.
  • Hydrogen-containing compounds can be preferred of phosphorus, arsenic, antimony, boron, aluminum, gallium, indium and / or lithium are used as dopants.
  • Diborane and phosphane or substituted phosphanes such as tBuPH 2, tBu 3 P, P tBuPh 2 and Trismemylaminophosphan are particularly preferred ((CH 3) 2 N) 3 P.
  • lithium as a doping component, it has proved most convenient, as a dopant use the metal lithium or lithium amide LiNH 2 .
  • This manufacturing process can be used to produce aggregated, crystalline silicon powder with a BET surface area of 5 to 150 m 2 / g.
  • Dopant is to be understood as the compound that is used in the process to obtain the doping component.
  • the electrode material according to the invention can also have a nanoscale, aggregated, crystalline silicon powder which has been produced by a process which is characterized in that continuously - at least one vaporous or gaseous silane and optionally at least one vaporous or gaseous dopant are combined transferred with an inert gas into a reactor and mixed there, the proportion of silane being between 0.1 and 90% by weight, based on the sum of silane, dopant and inert gases, by energy input by means of electromagnetic radiation in the microwave range at a pressure a plasma of 10 to 1100 mbar is generated and the reaction mixture is allowed to cool or is cooled and the reaction product is separated from gaseous substances in the form of a powder.
  • the conversion of silane is at least 98%.
  • the process is carried out in such a way that the proportion of silane, optionally including the doping component, in the gas stream is from 0.1 to 90% by weight.
  • a silane content of 1 to 10% by weight is preferred. With this proportion, aggregates with a diameter of less than 1 ⁇ m are generally achieved.
  • the service entry is not limited. It should preferably be chosen so that the back-radiated, non-absorbed microwave power is minimal and a stable plasma is produced.
  • the particle size distribution can be varied by the irradiated microwave power. For example, with the same gas compositions and volume flows, higher microwave powers can lead to a smaller particle size and to a narrower particle size distribution.
  • This manufacturing process can be used to produce aggregated, crystalline silicon powder with a BET surface area greater than 50 m 2 / g.
  • the silane is preferably a silicon-containing compound which, under the reaction conditions, supplies silicon, hydrogen, nitrogen and or halogens. These are preferably S1H, Si 2 H 6 , CIS-H 3 , Cl 2 SiH 2 , CI3S-H and / or SiCL, where SiH. is particularly preferred. It is also possible to use N (SiH 3 ) 3 , HN (SiH 3 ) 2 , H 2 N (SiH 3 ), (H 3 Si) 2 NN (S 3 ) 2 , (H 3 Si) NHNH (SiH 3 ) To use H 2 NN (SiH 3 ) 2 .
  • a dopant is a compound which contains the dopant component covalently or ionically bonded and which, under the reaction conditions, supplies the dopant component, hydrogen, nitrogen, carbon monoxide, carbon dioxide and / or halogens.
  • Hydrogen-containing compounds of phosphorus, arsenic, antimony, boron, aluminum, gallium, indium and / or lithium can preferably be used.
  • Diborane and phosphine or substituted phosphanes, such as tBuPH 2 , tBu 3 P, tBuPh 2 P or tBuPh 2 P and trisme ylaminophosphan ((CH 3 ) 2 N) 3p are particularly preferred.
  • lithium it has proven best to use the metal lithium or LitHumamid LiNH 2 as the dopant.
  • Nitrogen, helium, neon, and argon can be used as the inert gas in both silicon particle production processes, with argon being particularly preferred.
  • the electrode material according to the invention is preferably used to produce the negative electrode of a lithium-ion battery.
  • the electrode material according to the invention can be in one Layer thickness of 2 microns to 500 microns, preferably from 10 microns to 300 microns on a copper foil or another current collector. Other coating methods can also be used.
  • the copper foil is preferably treated with a commercially available primer based on polymer resins. It increases the adhesion to the copper, but has practically no electrochemical activity itself.
  • the primer is preferably a heavy-duty polychloroprene-based polymer adhesive. It is preferably applied in a layer thickness of 1 to 100 ⁇ m, preferably 5 to 30 ⁇ m.
  • other adhesion promoters can also be used or one can completely dispense with the use of the adhesion promoter.
  • the electrode material according to the invention is preferably used to produce lithium-ion batteries which, as electrolytes, comprise an electrolyte composition composed of at least one organic solvent, selected from ethylene carbonate, 5 dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, methyl propyl carbonate, butyl methyl carbonate and its isomers, 1, 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, diethylene glycol dialkyl ester, dioxolane, propylene oxide, dimethyl sulfoxide, dimethylformamide, formamide, nitromethane, gamma-butyrolactone, carboxylic acid alkyl ester and / or methyl lactate, and at least one O alkali metal salt, or as a lalkali metal salt, as the alkali metal salt, or 4-alkali metal salt, as the alkali metal salt, or 4-alkal
  • the lithium-ion batteries can also have an electrolyte which has from 0.5 to 10% by weight, preferably from 2 to 5% by weight, of vinylene carbonate.
  • an electrolyte is preferably used which contains from 20 to 70% by volume of ethylene carbonate and / or 20 to 70% by volume of dimethyl carbonate, 0.5 " to 2 mol / 1 LiPF 6 and an addition of 0.5 to 5 wt .-% vinylene carbonate.
  • An electrolyte is particularly preferably used, the propylene carbonate with from 0.5 to 2 moM LiPF 6 and an addition of 0.5 to 5% by weight of vinylene carbonate
  • the invention further relates to a lithium-ion battery with a negative electrode, which has the electrode material according to the invention.
  • FIG. 1 shows a schematic structure of the test arrangement. The powdery product is separated from the gaseous substances in a downstream filter unit. Table 1 contains the respective process parameters for the production of the nanoscale silicon particles Sil, Si2 and Si3.
  • 1 sccm stands for standard centimeter cube per minute, 1 sccm corresponds to 1 cm 3 gas per minute in relation to 0 ° C and atmospheric pressure.
  • a microwave generator from Muegge is used to generate the plasma.
  • the microwave radiation is focused using a tuner (3-rod tuner) in the reaction space. Due to the design of the hollow waveguide, the fine tuning by means of the tuner and the exact positioning of the nozzle, which acts as an electrode, a stable plasma is generated in the pressure range from 10 mbar to 1100 mbar and a microwave power of 100 to 6000 W.
  • the microwave reactor consists of a quartz glass tube with an outer diameter of 30 mm and a length of 120 mm, which is inserted into the plasma applicator.
  • the nanoscale silicon particles of the SiB4 type were produced using such a microwave reactor.
  • an SiH argon mixture - consisting of 200 sccm silane and 1800 sccm argon - and a further mixture consisting of 10000 sccm hydrogen and 20 sccm B 2 H 6 were fed to the microwave reactor via a two-component nozzle.
  • a power of 1000 W is introduced into the gas mixture by means of a microwave, thereby generating a plasma.
  • the plasma torch emerging from the reactor via a nozzle expands into a space, the volume of which is relatively large at about 20 l compared to the reactor.
  • the pressure in this room and in the reactor is regulated to 80 mbar.
  • the p-shaped product is separated from gaseous substances in a downstream filter unit.
  • the BET surfaces of the nanoscale silicon particles were determined in accordance with ISO 9277 (1995).
  • the particle sizes were determined using TEM images.
  • 2a and 2b show TEM images with different resolutions (bar corresponds to 50 nm in FIG. 2a and 0.5 ⁇ m in FIG. 2b) of the nanoscale silicon particles Si3.
  • Table 1 shows a compilation of the nanoscale silicon particles used in the examples. Table 1:
  • the materials are first mixed mechanically, then mixed again in an N-methylpyrrolidone suspension using a high-speed stirrer and then knife-coated onto a 20 ⁇ m thick commercial copper foil pretreated with a primer, preferably with a thickness of 250 ⁇ m.
  • the copper foil coated in this way is then dried at 80 ° C. under vacuum. In some cases the material was then rolled at approx. 80 ° C.
  • the electrodes were then punched out in a circle from this coated copper foil.
  • the copper foil was treated with the electrode material according to the invention with a commercially available primer based on polymer resins. It increases the adhesion to the copper, but has practically no electrochemical activity itself.
  • the "Conti Plus adhesion promoter" from ContiTech was used as the primer. It is a heavy metal-free polymer adhesive based on polychloroprene. It is applied in a layer thickness of 5 to 30 ⁇ m.
  • Table 2 shows a compilation of the electrode materials according to the invention used in the examples and their composition.
  • a carbon black with the product name Super P (manufacturer TIMCAL SA, Switzerland) was used as the conductive carbon black, this is a high-purity synthetic carbon black with an average particle size of approx. 40 nm and a BET surface area of 62 m / g ( ⁇ 5 m 2 / g).
  • a graphite with a product name KS6 (manufacturer TIMCAL SA, Switzerland) was used as graphite; this is a synthetic graphite with ad 9 o value of approx. 6 ⁇ m and a BET surface area of approx. 13.8 m 2 / g.
  • the particle shape of this graphite is rather round.
  • a graphite with the product name SFG6 (manufacturer TIMCAL SA, Switzerland) was used.
  • This is a synthetic graphite with a do value of approx. 6 ⁇ m and a BET surface area of approx. 17.1 m 2 / g.
  • the particle shape of this graphite is rather flat.
  • KS6 it is characterized by a higher stability than the propylene carbonate-based electrolyte used in Example B9.
  • the electrode material according to the invention is used as Working electrode in a sandwich arrangement
  • Working electrode - separator electrolyte - counter-Z reference electrode measured against a lithium disc as counter and reference electrode.
  • the potential limits are 100 mV and 1.0 V vs. Li / Li + used.
  • the material is measured in the front cell arrangement working electrode (graphite) - separator / electrolyte - counter electrode (LiCo ⁇ 2 ) against the standard cathode material LiCoO 2 .
  • Potential limits from 2.5 to 3 V and from 4 to 4.2 V are used here.
  • the cycle speed is specified with the current density per active mass - this corresponds to the total mass of silicon particles and graphite - of the electrode material. The values used for this are from 74 to 372 mA / g.
  • the classic switch-off mode for the individual half cycles which is based exclusively on the upper and lower potential limits. This is the mode used for all common batteries.
  • a so-called capacity-limited mode in which a maximum capacity is specified in addition to the lower potential limit in the charging step. This prevents excessive charging and reduces mechanical stress on the silicon, which should extend the durability of the electrode.
  • composition of the electrolytes used is shown in Table 3. Table 3:
  • Table 4 shows the test parameters with a test procedure according to the classic mode and Table 5 shows the test parameters with a test procedure according to the capacity-limited mode.
  • the electrode material according to the invention used in Examples B1 shows a high reversible capacity up to over 1000 mAh / g and a stability that lasts up to over 50 cycles. However, a relatively high irreversible capacity can be observed in the first cycle.
  • Example B2 shows very stable behavior, very high capacity, weak fading and relatively low irreversible capacity, especially in the first cycle, in which it is only 26%.
  • Examples B3 and B4 show that the electrode material according to the invention allows stable cycles with more than 80 or more than 100 cycles with a capacity limitation. These examples show that the cycle stability of the electrode material according to the invention is higher than for the silicon-based electrode materials described in the literature, and this is also good for the reversible capacitance.
  • Example B5 shows a stable cycle even over 200 cycles.
  • FIG. 6 shows that good current carrying capacity is achieved using the electrode material according to the invention, which is roughly in the range of classic electrode materials.
  • Example B6 also shows stable cycles for over 150 cycles, compared to the other ones according to the invention Electrode materials with higher cycle numbers slightly lower irreversible losses, which are higher in the first cycles, however.
  • the example B7 also shows a stable cycle, here the irreversible losses with higher cycle numbers are somewhat higher than with the others used in the examples electrode materials according to the invention.
  • Example B8 shows a stable cycle over 20 cycles, but higher irreversible losses occur here, which can be attributed to the use of an electrolyte without the film-forming additive vinylene carbonate.
  • Example B9 shows a stable cycle over more than 130 cycles. There are slightly increased irreversible losses in the first cycles, but only very little irreversible losses with higher number of cycles.
  • the example BIO shows a very stable cycle over more than 180 cycles with a lower irreversible capacity from the second cycle. A very stable cycle with a low irreversible capacity can also be observed in Example 11 from the second cycle.
  • the operation of a complete battery is tested using the electrode material EM_Si2_80 according to the invention and the electrolyte ELI.
  • the full cell was operated in a capacity limited mode to 530 mA / g with cycles at 372 mA / g.
  • the temporary drop and the increase in capacity is due to the subsequent increase in the upper cut-off potential from 4.0 to 4.2 V.
  • the measurement shows the functionality of this full cell for over 50 cycles, with relatively low irreversible losses.

Abstract

Die Erfindung betrifft ein Elektrodenmaterial für Lithium-Ionen-Batterien, das sich dadurch auszeichnet, dass das Elektrodenmaterial -5-85 Gew.-% nanoskalige Siliziumpartikel, die eine BET-Oberfläche von 5 bis 700 m2/g und einen mittleren Primärpartikeldurchmesser von 5 bis 200 nm aufweisen, -0-10 Gew.-% Leitruss, - 5-80 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 µm bis 100 µm und -5-25 Gew.-% eines Bindemittels aufweist, wobei die Anteile der Komponenten in Summe maximal 100 Gew.-% ergeben, sowie die Verwendung des erfindungsgemässen Elektrodenmaterials zur Herstellung von Lithium-Ionen-Batterien und eine Lithium-Ionen-Batterie mit einer negativen Elektrode, die das erfindungsgemässe Elektrodenmaterial aufweist.

Description

NANOSKALIGE SILIZIUMPARTIKEL IN NEGATIVEN ELEKTRODENMATERIALIEN FÜR LITHIUM-IONEN BATTERIEN
Die Erfindung betrifft ein Elektrodenmaterial und dessen Verwendung in Lithium-Ionen- Batterien.
Lithium-Ionen-Batterien sind technisch sehr interessante Energiespeichersysteme, da sie unter den bekannten, praktisch verwendbaren chemischen und elektrochemischen Energiespeichern die höchste Energiedichte von bis zu 180 Wh/kg aufweisen. Ehre Anwendung finden die Lithium-Ionen-Batterien vor allem im Bereich der tragbaren Elektronik, wie beispielsweise Laptops oder Mobiltelefonen, sogenannten Handys. Auch eine Anwendung der Lithium- Ionen-Batterien im Bereich der Fortbewegungsmittel, wie beispielsweise Fahrräder oder Automobile, wird bereits diskutiert.
Als negatives Elektrodenmaterial („Anode") findet vor allem graphitischer Kohlenstoff seine Anwendung. Der graphitische Kohlenstoff zeichnet sich durch seine stabilen Zykleneigenschaften und seine, im Vergleich zu Lithiummetall, das in so genannten „Lithiumbatterien" zum Einsatz kommt, recht hohe Handhabungssicherheit aus. Ein wesentliches Argument für die Verwendung von graphitischem Kohlenstoff in negativen Elektrodenmaterialien liegt in den geringen Volumenänderungen des Wirtsmaterials, die mit der Ein- und Auslagerung von Lithium verbunden sind, d.h. die Elektrode bleibt annähernd stabil. So lässt sich für die Lithiumeinlagerung in graphitischem Kohlenstoff nur eine Volumenzunahme von ca. Ϊ0 % für die Grenzstöchiometrie von LiC6 messen. Nachteilig ist jedoch das sehr niedrige Potential von ca. 100-200 mV vs. Li/Li+ des grapbitischen Kohlenstoffs. Ein weiterer Nachteil des graphitischen Kohlenstoffs ist hingegen seine relativ niedrige elektrochemische Kapazität von theoretisch: 372 mAh/g Graphit, die etwa nur ein Zehntel, der mit Lithiummetall theoretisch erreichbaren elektrochemischen Kapazität von 4235 mAh/g Lithium entspricht.
Seit langem wird deshalb nach alternativen Materialien geforscht, v.a. im Bereich der Legierungen, wie beispielsweise binären Legierungen auf der Basis von Aluminium (Lindsay et al. in J. Power Sources 119 (2003), 84), Zinn (Winter et al. in Electrochim. Acta 45 (1999), 31; Tirado in Mater. Sei. Eng. R-Rep. 40 (2003), 103) oder Antimon (Tirado in Mater. Sei. Eng. R-Rep. 40 (2003), 103), ternären Legierungen auf der Basis von Kupfer-Zi-on (Kepler et al. in Electrochem Solid-State Lett 2 (1999), 307) oder Kupfer-Antimon (Tang et al. in Electrochem. Solid State Lett. 2 (1999), 161) oder Metalloxiden auf der Basis von Zinnoxid (Huggins in Solid State Ion. 152 (2002), 61). Diese Materialien haben hohe theoretische spezifische Kapazitäten von beispielsweise 994 mAh/g im Falle von Zinn. Könnte man diese hohen theoretischen Kapazitäten reversibel nutzen, wäre eine deutliche Erhöhung der Energiedichte von Lithium-Ionen-Batterien möglich.
Anodenmaterialien auf der Basis von Legierungen bieten im Vergleich zu metallischem Lithium den Vorteil, dass es nicht zur Dendritehbildung bei der Lithiumabscheidung kommt. Im Gegensatz zu Graphitmaterialien eignen sich Anodenmaterialien auf der Basis von Legierungen für den Einsatz - isammen mit Elektrolyten auf der Basis von Propylencarbonat. Dies ermöglicht die Anwendung von Lithium-Ionen-Batterien bei niedrigen Temperaturen. Der Nachteil dieser Legierungen ist allerdings die große Volumenausdehnung während des Zyldens - also während des Ein- und Auslagerns des Lithiums, die über 200 % teilweise sogar bis zu 300 % beträgt (Besenhard et al. in J. Power Sources 68 (1997), 87).
Bei der Verwendung von Metalloxiden als Elektrodenmaterial findet bei der ersten Lithiiimeinlagerung eine Reduktion des Metalloxids zu Metall und Lithiumoxid statt, wobei das Lithiumoxid die feinen Metallpartikel wie eine Matrix einbettet. Während der nachfolgenden Zyklen kann dadurch eine Volumenausdehnung teilweise aufgefengen werden, dies verbessert das Zyklenverhalten deutlich.
Silizium wurde ebenfalls erforscht, weil es ähnlich wie Zinn, mit Lithium binäre Verbindungen bildet, die elektrochemisch aktiv sind (Weydanz et al. in Journal of Power Sources 82 (1999), 237; Seefurth et al. in J. Electrochem Soc. 124 (1977), 1207; Lai in 1. Electrochem. Soc. 123 (1976), 1196). Diese binären Verbindungen von Lithium und Silizium weisen einen sehr hohen Lithiumgehalt auf. Das theoretische Maximum an ti-iumgehalt findet man bei LL..2Si, dies entspricht einer sehr hohen theoretischen spezifischien Kapazität von ca. 4400 mAh/g Silizium (Lupu et al. in Inorg. Chem. 42 (2003), 3765). Diese binären Verbindungen bilden sich bei einem ähnlich niedrigen Potential wie die Einlagerungsverbindungen von Lithium in Graphit bei < 500 mV vs. Li/Li+ (dh. gegenüber dem Potential von metallischem Lithium, welches als Referenz dient). Wie bei den oben genannten binären Legierungen ist auch im Falle des Siliziums die Ein- und Auslagerung von Lithium mit einer sehr starken Volumenausdehnung verbunden, die bei maximal 323 °/o liegt. Diese Volumenausdehnung fuhrt zu einer starken mechanischen Belastung der Kristallite und dadurch zu einer Amorphisierung und einem Auseinanderbrechen der Partikel unter Verlust des elektrischen Kontakts (Winter et al. in Adv. Mater. 10 (1998), 725; Yang et al. in Solid State Ion. 90 (1996), 281; Bourderau et al. in J. Power Sources 82 (1999), 233).
Um die Haftung des Siliziums am Trägermaterial zu verbessern, werden verschiedene Techniken eingesetzt, wie beispielsweise mehrstündiges intensives Vermählen (Dimov et al. in Electrochim Acta 48 (2003), 1579; Niu et al. in Electrochem Solid State Lett. 5 (2002), A107), Carbon-Coating aus der Gasphase (Wilson et al. in J. Electrochem. Soc. 142 (1995), 326), und Pyrolyse eines innigen Gemischs der jeweiliger Precursoren (Larcher et al. in Solid State Ion. 122 (1999), 71; Wen et al. in Electrochem. Commun 5 (2003), 165). Dabei wird sowohl mit siliziumreichen (60-80 Gew.-% Si), als auch siliziumarmen (5-20 Gew.-% Si) Formulierungen experimentiert.
Experimente mit nanoskaligen Materialien, d. h. einer Partikelgröße von ca. 10O nm, beschreiben Graetz et al. in Electrochem. Solid State Lett. 6 (2003), AI 94; Li et al. in
Electrochem. Solid State Lett. 2 (1999), 547, Yang et al. in Electrochem Solid State Lett. 6
(2003), A154 und Gao et al. in Adv. Mater. 13 (2001), 816. Graetz et al. beschreiben die
Darstellung von nanoskaligen Siliziumfilmen, welche eine reversible Kapazität von mehr als
2300 mAh/g (im Falle eines mittels Chemical Vapor Deposition abgeschiedenen Films) bzw. 1100 mAh/g (im Falle des auf Partikeln aufbauenden Films) zeigen, allerdings ist das Fading relativ hoch. Li et al. benutzen ein Gemisch aus nanoskaligem Silizium und Ruß, welches ebenfalls eine sehr hohe Kapazität von anfänglich bis über 2000 mAh/g zeigt, die allerdings über das Zyklen deutlich abfällt und es sind weniger als 25 Zyklen gezeigt. Yang et al. benutzen die Pyrolyse eines nano-Silizium-haltigen Ausgangsgemisches zur Herstellung ihrer aktiven Materialien und erhalten reversible Kapazitäten von über 700 mAh/g während 30
Zyklen, aber auch hier konnte das Fading nicht vermieden werden. Gao et al. beschreiben die elektrochemische Reaktion von durch Laseräblation erhaltenem Silizium mit Lithium, erhalten aber eine reversible Kapazität von anfänglich um die 700 mAh/g.
Aufgabe der vorliegenden Erfindung war es, ein Elektrodenmaterial bereitzustellen, das eine hohe reversible Kapazität aufweist, wobei vorzugsweise gleichzeitig ein geringfügiges Fading und/oder geringere irreversible Kapazitätsverlusten bei dem ersten Zyklus erreicht werden sollte. Insbesondere war es die Aufgäbe ein Elektrodenmaterial zur Verfügung zu stellen, das eine ausreichende mechanische Stabilität während des Zyklens aufweist.
Unter Fading wird im Sinne dieser Erfindung der Rückgang der reversiblen Kapazität während des fortgesetzten Zyklens verstanden.
Überraschenderweise wurde gefunden, dass ein Elektrodenmaterial, das nanoskalige Siliziumpartikel, die eine BET-Oberflache von 5 bis 700 m2/g und einen mittleren Partikeldurchmesser von 5 bis 200 nm aufweisen, zu einem guten Zyklenverhalten fuhrt, insbesondere im Vergleich zu siliziumbasierten negativen Elektroden für Lithium-Ionen- Batterien gemäß dem Stand der Technik Die Lösung der Aufgabe war umso überraschender, zumal sich zeigte dass diese Elektroden eine sehr hohe reversible Kapazität aufweisen, die auch im Laufe des Zyklens annähernd konstant bleibt, so dass nur ein geringfügiges Fading zu beobachten ist. Femer zeigte sich, dass durch den Einsatz dieser nanoskaligen Siliziumpartikel das Elektrodenmaterial eine! deutlich verbesserte mechanische Stabilität aufweist. Ebenfalls überraschend war, dass der irreversible Kapazitätsverlust während des ersten Zyklus verringert werden konnte.
Gegenstand der Erfindung ist deshalb ein Elektxodenmaterial für Lithium-Ionen-Batterien, das sich dadurch auszeichnet, dass das Elektrodennαaterial - 5 - 85 Gew.-% nanoskalige Siliziumpartikel, die eine BET-Oberfläche von 5 bis 700 m2/g und einen mittleren Primärpartikeldurchmesser von 5 bis 200 nm aufweisen, . 0 - 10 Gew.-% Leitruß, 5 - 80 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 μm bis 100 μm und - 5 - 25 Gew.-% eines Bindemittels aufweist, wobei die Anteile der Komponenten in Summe maximal 100 Gew.-% ergeben.
Weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Elektrodenmaterials zur Herstellung von Lithium-Ionen-Batterien. Ferner ist Gegenstand der Erfindung eine Lithium-Ionen-Batterie mit einer negativen Elektrode, die das erfindungsgemäße Elektrodenmaterial aufweist.
Elektroden, bei denen das erfindungsgemäße Elektrodenmaterial verwendet wird, weisen eine sehr hohe reversible Kapazität auf, dies gilt sowohl für das erfindungsgemäße Elektrodenmaterial mit einem hohen Gehalt an nanoskaligen Siliziumpartikeln als auch für das erfindungsgemäße Elektrodenmaterial mit einem geringeren Gehalt an nanoskaligen Siliziumpartikeln. Diese reversible Kapazität bleib»! auch im Laufe des Zyklens annähernd konstant, so dass nur ein geringfügiges Fading zu beobachten ist. Femer weist das erfindungsgemäße Elektrodenmaterial eine gute Stabilität auf. Dies bedeutet, dass auch bei längeren Zyklen kaum Ermüdungserscheinungen, wie beispielsweise mechanische Zerstörung, des erfindungsgemäßen Elektrodenmaterials auftreten. Der irreversible Kapazitätsverlust während des ersten Zyklus kann bei der Verwendung des erfindungsgemäßen Elektrodenmaterials gegenüber entsprechenden siliziumhaltigen und auf Legierungen basierenden Elektrodenmaterialen für Lithium-Ionen-Batterien gemäß dem Stand der Technik verringert werden. Generell zeigt das erfindungsgemäße Elektrodenmaterial ein gutes Zyklenverhalten. Des Weiteren hat das erfindungsgemäße Elektrodenmaterial den Vorteil, dass eine ausreichende Stabilität gegenüber einem Elektrolyten basierend auf Propylencarbonat vorhanden ist.
Das erfindungsgemäße Elektrodenmaterial für Lithium-Ionen-Batterien, zeichnet sich dadurch aus, dass das Elektrodenmaterial 5 - 85 Gew.-% nanoskalige Siliziumpartikel, die eine BET-Oberfläche von 5 bis 700 m2/g und einen mittleren Primärpartikeldurctimesser von 5 bis 200 nm aufweisen, - 0 - 10 Gew.-% Leitruß, - 5 - 80 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 μm bis 100 μm und 5 -25 Gew.-% eines Bindemittels aufweist, wobei die Anteile der Komponenten in Summe m-cximal 100 Gew.-% ergeben.
Unter Elektrodenmaterial wird im Sinne dieser Erfindung ein Stoff oder eine Mischung aus zwei oder mehreren Stoffen verstanden, der/die es erlaubt, durch Oxidations- und/oder Reduktionsreaktionen elektrochemische Energie in einer Batterie zu speichern. Je nach dem, ob die elektrochemische Reaktion, welche, in der (geladenen) Batterie, Energie liefert eine Oxidation oder Reduktion ist, spricht man von negativem oder positivem Elektrodenmaterial oder auch von Anoden- oder Kathodenmaterial.
Es kann vorteilhaft sein, wenn das erfindungsgemäße Elektrodenmaterial von 0 bis 5 Gew.-%, bevorzugt von 0,5 bis 4 Gew.-% an Leitruß enthält. Vorzugsweise enthält das erfindungsgemäße Elektrodenmaterial als Leitruß ein -hochreinen synthetischen Russ, bevorzugt weist dieser eine mittlere Teilchengröße von 20 bis 60 nm, besonders bevorzugt von 30 bis 50 nm auf. Vorteilhaft ist femer, dass der in dem erfindungsgemäßen Elektrodenmaterial enthaltene Leitruß eine BET-Oberflache von 50 bis 80 m2/g, bevorzugt von 55 bis 70 m2/g aufweist. In einer besonderen Ausfuhrungsform des erfindungsgemäßen Elektrodenmaterials weist dieses als Leitruß einen hochreinen synthetischen Ruß mit einer mittleren Teilchengröße von 35 bis 45 nm und einer BET-Oberflache von 57 bis 67 m2/g auf.
Ebenso kann es vorteilhaft sein, wenn das erfindungsgemäße Elektrodenmaterial von 5 bis 25 Gew.-%, bevorzugt von 5 bis 10 Gew.-% und besonders oevorzugt 10 Gew.-% an einem Bindemittel aufweist. Unter einem Bindemittel im Sinne dieser Erfindung wird eine chemische Verbindung verstanden, die in der Lage ist die Komponenten Siliziumpartikel, Graphit und gegebenenfalls Leitruß untereinander und mit dem Trägermaterial, das vorzugsweise aus Kupfer, Nickel oder Edelstahl besteht, zu verbinden. Vorzugsweise weist das erfindungsgemäße Elektrodenmaterial polymere Bindemittel, bevorzugt Polyvinylidenfluorid (PVdF), Polytetrafluorethylen oder I*olyolefine, besonders bevorzugt jedoch thermoplastische Elastomere, insbesondere Ethylen Propylen-Dien-Terpolymere, auf. In einer besonderen Ausführungsform des erfindungsgenαäßen Elektrodenmaterials weist dieses Gelatine oder modifizierte Zellulose als Bindemittel auf. Das erfindungsgemäße Elektrodenmaterial weist von 5 bis 80 Gew.-% an Graphit auf, der vorzugsweise einen mittleren Partikeldurchmesser von 1 bis 100 μm, bevorzugt von 2 bis 50 μm aufweist. Der in dem erfindungsgemäßen Elektrodenmaterial enthaltene Graphit weist vorzugsweise einem d9o-Wert von 5 bis 10 μm auf. Im Sinne dieser Erfindung wird unter einem d o-Wert von 6 μm verstanden, dass 90 % aller Partikel eine Partikelgröfte von kleiner oder gleich 6 μm haben. Ferner weist der in dem erfindungsgemäßen Elekt-codenmaterial enthaltene Graphit eine BET-Oberfläche vorzugsweise von 5 bis 30 m2/g, bevorzugt von 10 bis 20 m2/g auf.
Das erfindungsgemäße Elektrodenmaterial weist des Weiteren von 5 bis 85 Gew.-% an nanoskaligen Sihziumpartikel auf, die einen mittleren Primä artikeldurchmesser von 5 bis 200 nm, bevorzugt von 5 bis 100 nm aufweisen. Primärpartikel, die sich zu Agglomeraten oder Aggregaten zusammengelagert haben, weisen vorzugsweise eine Größe von 20 bis 1000 nm auf. Die Partikeldurchmesser werden anhand von Aufnahmen mittels eines Transnήssionselektronenmikroskops (TEM) ermittelt.
In einer bevorzugten Ausführungsform weist das erfindungsgemäße Elektrodenmaterial vorzugsweise 8 bis 20 Gew.-%, bevorzugt von 10 bis 15 Gew.-% an Graphit und von 65 bis 86,5 Gew.-%, bevorzugt jedoch von 70 bis 84,5 Gew.-% an nanoskaligen Siliziumpartikeln auf. In einer besonders bevorzugten Ausführungsform des erfmdtingsgemäßen Elektrodenmaterials für Lithium-Ionen-Batterien weist dieses 65 -86,5 Gew.-% nanoskalige Siliziumpartikel, - 0,5 - 10 Gew.-% Leitruß, 8 -20 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 μrn bis 100 μm und 5 - 10 Gew.-% eines Bindemittels auf. Ganz besonders bevorzugt ist die folgende Zusammensetzung des erfind ngsgemäßen Elektrodenmaterials 80 Gew.-% nanoskalige Siliziumpartikel, - 0,5 - 10 Gew.-% Leitruß, 10 - 15 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 μm bis 100 μmund - 5 - 10 Gew.-% eines Bindemittels.
In einer weiteren Ausführungsform des erfindungsgemäßen Elektrodenmaterials weist dieses von 55 bis 85 Gew.-%, vorzugsweise von 65 bis 80 Gew.-% an Graphit und von 5 bis 40 Gew.-%, vorzugsweise von 10 bis 30 Gew.-% an nanoskaligen Siliziumpartikern auf. In einer bevorzugten Ausführungsform dieses erfindungsgemäßen Elektrodenmaterials weist es - 5 - 40 Gew.-% nanoskalige Siliziumpartikel, 55 - 85 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 2 μm bis 50 μm und - 5 - 10 Gew.-% eines Bindemittels auf. Besonders bevorzugt ist die folgende Zusammensetzung des e-rfindungsgemäßen Elektrodenmaterials - 20 Gew.-% nanoskalige Siliziumpartikel, - 70 - 75 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 2 μm bis 50 μm und - 5 - 10 Gew.-% eines Bindemittels.
Das erfindungsgemäße Elektrodenmaterial weist als Siliziumpartikel ein nanoskaliges, aggregiertes, kristallines Siliziumpulver mit einer BET-Oberflache vorzugsweise von 5 bis 700 m2/g, bevorzugt von 6 bis 140 m2/g, besonders bevorzugt von 7 bis 50 m2/g und ganz besonders bevorzugt von 10 bis 20 m2/g auf. In einer besonderen Ausfuhrungsform des erfindungsgemäßen Elektrodenmaterials kann es ein nanoskaliges, aggregiertes, kristallines Siliziumpulver mit einer BET-Oberfläche von mindestens 150 m2/g, bevorzugt von 160 bis 600 m2/g, besonders bevorzugt von 160 bis 450 m2/g aufweisen. Die BET-Oberfläche wird gemäß dieser Erfindung nach ISO 9277 (1995), die die DIN 66131 ersetzt, ermittelt.
Unter aggregiert ist im Rahmen dieser Erfindung zu verstehen, dass sphärische oder weitestgehend sphärische Primärpartikel, wie sie zunächst in der Reaktion, gebildet werden, im weiteren Reaktionsverlauf zu Aggregaten zusammenwachsen. Der Verwachsungsgrad der Aggregate kann durch die Prozessparameter beeinflusst werden. Diese Aggregate können im weiteren Reaktionsverlauf Agglomerate bilden. Im Gegensatz zu den Aggregaten, die sich in der Regel nicht oder nur teilweise in die Primärpartikel zerlegen lassen, wird im Rahmen dieser Erfindung unter Agglomeraten eine nur lose Zusammenballung von Aggregaten, die leicht in die Aggregate zerfallen können, verstanden.
Unter kristallin ist zu verstehen, dass wenigstens 90 % des frisch hergestellten Siliziumpulvers kristallin ist. Unter frisch hergestelltem Pulver wird im Sinne dieser Erfindung das Pulver verstanden, das soeben den Herstellungsprozess durchlaufen hat und noch keine Alterungserscheinungen, wie beispielsweise durch Oxidation an der Oberfläch-e, aufweist. Ein solcher Anteil an Kristallmität kann z.B. durch Röntgendiffraktometrie mittels eines Vergleich der Intensitäten der [111]-, [220]- und [311]-Signale des eingesetzten Siliziumpulvers mit einem Siliziumpulver bekannter Kristallinität und Kristallitgröße ermittelt werden. Bevorzugt wird ein Siliziumpulver mit wenigstens 95 %, besonders bevorzugt ein solches mit wenigstens 98 % kristallinem Anteil eingesetzt. Zur Ermittlung dieser Kristallisationsgrade eignet sich beispielsweise die Auswertung von Aufnahmen eines Transr ssionselektronenmikroskops (TEM) und Auszählung der Primärpartikel, welctie Gittemetzlinien als Merkmal des kristallinen Zustandes aufweisen.
Weiterhin kann das erfindungsgemäße Elektrodenmaterial Siliziumpartikel aufweisen, tue dotiert sind. Bevorzugt können als Dotierkomponenten die Elemente Phosphor, Arse-n, Antimon, Bor, Alurmnium, Gallium und/oder Indium vorhanden sein. Unter Dotierkomponente im Sinne der Erfindung ist das in den Sihziumpartikeln vorliegende Element zu verstehen. Der Anteil dieser Dotierkomponenten kann in den Siliziumpartikeln b is zu 1 Gew.-% betragen. In der Regel enthalten die Sihziumpartikel die Dotierkomponente i-cn ppm oder ppb-Bereich. Bevorzugt ist ein Bereich von 1013 bis 1015 Atome Dotierkomponente/cm3.
Ebenfalls ist es möglich, dass die Siliziumpartikeln in dem erfindungsgemäßen Elektrodenmaterial Lithium als Dotierkomponente aufweisen. Der Anteil des Lithiums in den Siliziumpartikeln kann bis zu 53 Gew.-% betragen. Besonders bevorzugt können in den Siliziumpartikeln bis zu 20 bis 40 Gew.-% Lithium enthalten sein.
Die Dotierkomponente kann dabei homogen in den Siliziumpartikeln verteilt sein, oder in der Schale oder im Kern der Prir rpartikel angereichert oder interkaliert sein. Bevorzugt können die Dotierkomponenten auf Gitterplätzen des Siliziums eingebaut sein. Dies ist im wesentlichen von der Art des Dotierstoffes und der Reaktionsführung bei der Herstellung der Siliziumpartikel abhängig.
Das erfindungsgemäße Elektrodenmaterial kann Siliziumpartikel aufweisen, die, solange sie frisch hergestellt sind, weiterhin eine Wasserstoffbeladung von bis zu 98 mol-% bezogen auf das Silizium an der Partikeloberfläche aufweisen, wobei ein Bereich von 30 bis 95 mol-% besonders bevorzugt ist. Geeignet zur Bestimmung der Wasserstoflbeladung sind NMR- spektroskopische Methoden, wie beispielsweise 1H-MAS-NMR-Spektroskopie, Headspace- Gaschromatographie nach einer hydrolytischen Wasserstoffabspaltung oder einer Efrusionsspektrometrie nach einer thermischen Wasserstoffäbspaltung. Für eine qualitative Bestimmung der Wasserstoffbeladung kann auch die IR-Spektroskopie herangezogen werden.
Die Herstellung der in dem erfindungsgemäßen Elektrodenmaterial enthaltenen Siliziumpartikel erfolgt vorzugsweise mittels eines Verfahrens, das dadurch gekennzeichnet ist, dass wenigstens ein dampf- oder gasförmiges Silan, und gegebenenfalls wenigstens ein dampf- oder gasförmigen Dotierstoff, ein Inertgas und Wasserstoff in einem Heißwandreaktor thermisch behandelt wird, - das Reaktionsgemisch abgekühlt oder abkühlen gelassen wird und
- das Reaktionsprodukt in Form eines Pulvers von gasformigen Stoffen abgetrennt wird, wobei der Anteil des Silans von 0,1 bis 90 Gew.-%, bezogen auf die Summe aus Silan, Dotierstoff, Wasserstoff und Inertgasen, beträgt und der Anteil des Wasserstoffes, bezogen auf die Summe von Wasserstoff, Silan, Inertgas und gegebenenfalls Dotierstoff, in einem Bereich von 1 mol-% bis 96 mol-% liegt. Besonders vorteilhaft kann ein wandbeheizter Heißwandreaktor eingesetzt werden, wobei der Heißwandreaktor so zu dimensionieren ist, dass ein möglichst vollständiger Umsatz des Einsatzstoffes und gegebenenfalls des Dotierstoffes eneicht wird. In der Regel wird die Verweilzeit im Heißwandreaktor zwischen 0,1 s und 2 s betragen. Die Maximaltemperatur im Heißwandreaktor wird vorzugsweise so gewählt, dass sie 1000°C nicht übersteigt. Die Abkühlung des Reaktionsgemisches kann beispielsweise durch eine externe Wandkühlung des Reaktors oder durch Einbringen von Inertgas in einem Quench erfolgen. Bevorzugt können wasserstoffenthaltende Verbindungen von Phosphor, Arsen, Antimon, Bor, Aluminium, Gallium, Indium und/oder Lithium als Dotierstoff eingesetzt werden. Besonders bevorzugt sind Diboran und Phosphan oder substituierte Phosphane, wie tBuPH2, tBu3P, tBuPh2P und Trismemylaminophosphan ((CH3)2N)3P. Im Falle von Lithium als Dotierkomponente, hat es sich am günstigsten erwiesen, als Dotierstoff das Metall Lithium oder Lithiumamid LiNH2 einzusetzen. Mittels diesem Herstellungsverfahren kann aggregiertes, kristallines Siliziumpulver mit einer BET- Oberfläche von 5 bis 150 m2/g hergestellt werden.
Unter Dotierstoff ist die Verbindung zu verstehen, die im Verfahren eingesetzt wird, um die Dotierkomponente zu erhalten.
Als Siliziumpartikel kann das erfindungsgemäße Elektrodenmaterial auch ein nanoskaliges, aggregiertes, kristallines Siüziumpulver aufweisen, das durch ein Verfahren hergestellt wurde, das dadurch gekennzeichnet ist, dass man kontinuierlich - wenigstens ein dampf- oder gasförmiges Silan und gegebenenfalls wenigstens einen dampf- oder gasförmigen Dotierstoff, zusammen mit einem Inertgas in einen Reaktor überführt und dort mischt, wobei der Anteil des Silans zwischen 0,1 und 90 Gew.-%, bezogen auf die Summe aus Silan, Dotierstoff und Inertgasen, beträgt, durch Energieeintrag mittels elektromagnetischer Strahlung im Mikrowellenbereich bei einem Druck von 10 bis 1100 mbar ein Plasma erzeugt wird und das Reaktionsgemisch abkühlen gelassen wird oder abkühlt und das Reaktionsprodukt in Form eines Pulvers von gasförmigen Stoffen abtrennt wird. Bei diesem Herstellungsverfähren wird ein stabiles Plasma erzeugt, welches zu einem sehr einheitlichen Produkt führt und im Gegensatz zu Verfahren, welche im hohen Vakuum arbeiten, hohe Umsätze erlaubt. In der Regel liegt der Umsatz an Silan bei wenigstens 98 %. Das Verfahren wird so ausgeführt, dass der Anteil an Silan, gegebenenfalls unter Einschluss der Dotierkomponente, im Gasstrom von 0,1 bis 90 Gew.-% liegt. Bevorzugt ist ein Silan- nteil von 1 bis 10 Gew.-%. Bei diesem Anteil werden in der Regel Aggregate mit einem Durchmesser von weniger als 1 μm erzielt. Der Leistungseintrag ist nicht limitiert. Bevorzugterweise ist er so zu wählen, dass die rückgestrahlte, nicht absorbierte Mikrowellenleistung minimal ist und ein stabiles Plasma entsteht. In der Regel wird in diesem Herstellungsverfahren der Energieeintrag von 100 W bis 100 kW, und besonders bevorzugt von 500 W bis 6 kW, liegen. Dabei kann durch die eingestrahlte Mikrowellenleistung die Partikelgrößenverteilung variiert werden. So können, bei gleichen Gaszusammensetzungen und Volumenströmen, höhere Mikrowellenleistungen zu einer kleineren Partikelgröße und zu einer engeren Partikelgrößenverteilung fuhren. Mittels diesem Herstellungsverfahren können aggregiertes, kristallines Siliziumpulver mit einer BET-Oberfläche größer 50 m2/g hergestellt werden.
In beiden Herstellungsverfahren der Siliziumpartikel ist das Silan vorzugsweise eine siliziumhaltige Verbindung, welches unter den Reaktionsbedingungen Silizium, Wasserstoff, Stickstoff und oder Halogene liefert. Bevorzugt sind dies S1H , Si2H6, CIS-H3, Cl2SiH2, CI3S-H und/oder SiCL, wobei SiH. besonders bevorzugt ist. Daneben ist es auch möglich N(SiH3)3, HN(SiH3)2, H2N(SiH3), (H3Si)2NN(S 3)2, (H3Si)NHNH(SiH3), H2NN(SiH3)2 einzusetzen.
Ein Dotierstoff ist in diesen beiden Herstellungsverfahren eine Verbindung, die die Dotierkomponente kovalent oder ionisch gebunden enthält und die unter den Reaktionsbedingungen die Dotierkomponente, Wasserstoff, Stickstoff, Kohlenmonoxid, Kohlendioxid und/oder Halogene liefert. Bevorzugt können wasserstoffenthaltende Verbindungen von Phosphor, Arsen, Antimon, Bor, Aluminium, Gallium, Indium und/oder Lithium eingesetzt werden. Besonders bevorzugt sind Diboran und Phosphan oder substituierte Phosphane, wie tBuPH2, tBu3P, tBuPh2P oder tBuPh2P und Trisme ylaminophosphan ((CH3)2N)3p. Im Falle von Lithium als Dotierkomponente, hat es sich am günstigsten erwiesen, als Dotierstoff das Metall Lithium oder LitHumamid LiNH2 einzusetzen.
Als Inertgas können in beiden Herstellungsverfahren der Siliziumpartikel hauptsächlich Stickstoff, Helium, Neon, Argon eingesetzt werden, wobei Argon besonders bevorzugt ist.
Weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Elektrodenmaterials zur Herstellung von Lithium-Ionen-Batterien. Das erfindungsgemäße Elektrodenmaterial wird vorzugsweise zur Herstellung der negativen Elektrode einer Lithium- Ionen-Batterie verwendet. Hierbei kann das erfindungsgemäße Elektrodenmaterial in einer Schichtdicke von 2 μm bis 500 μm, bevorzugt von 10 μm bis 300 μm auf eine Kupferfoüe oder einen anderen Stromsammler aufgerakelt werden. Andere Beschichtungsverfahren können ebenso verwendet werden. Vor dem Beschichten der Kupferfoüe mit dem erfindungsgemäßen Elektrodenmaterial erfolgt vorzugsweise eine Behandlung der 5 Kupferfoüe mit einem handelsüblichen Primer, auf der Basis von Polymerharzen. Er erhöht die Haftung auf dem Kupfer, besitzt aber selbst praktisch keine elektrochemische Aktivität. Der Primer ist vorzugsweise ein schwermetaUfieier Polymerkleber auf Polychloropren-Basis. Er wird vorzugsweise in einer Schichtdicke von 1 bis 100 μm, bevorzugt von 5 bis 30 μm, aufgetragen. Es können jedoch auch andere Haftvermittler verwendet werden oder man kann 0 auf die Verwendung des Haft Vermittlers gänzüch verzichten.
Vorzugsweise wird das erfindungsgemäße Elektrodenmaterial zur Herstellung von Lithium- Ionen-Batterien eingesetzt, die als Elektrolyte eine Elektrolytzusammensetzung aus mindestens einem organischen Lösungsmittel, ausgewählt aus Ethylencarbonat,5 Dimethylcarbonat, Ethylmethylcarbonat, Diethylcarbonat, Propylencarbonat, Butylencarbonat, Methylpropylcarbonat, Butylmethylcarbonat und seine Isomere, 1,2- Dimethoxyethan, Tetrahydrofuran, 2-Methyltetrahydrofuran, Diethylenglycoldialkylester, Dioxolan, Propylenoxid, Dimethylsulfoxid, Dime ylformamid, Formamid, Nitromethan, gamma-Butyrolacton, Carbonsäurealkylester und/oder Methyllactat, und mindestens einemO Alkali- oder Erdalkalimetallsalz als Leitsalz, ausgewählt aus LiPFö, LiClθ4, LiAsFό, LiBF4, LiCFsSOs, LiN(CF3Sθ2)2, LiN(SO2CF2CF3)2, LiSbFe, LiAICk, LiGaCk, LiCl, LiNOa, LiSCN, LiOaSCFiCFa, LiCeFsSOa, LiOaCCFs, LiFSOs, LiB(C6Hs)4, LiB(C2θ4)2, Lithiumfluoroalkylphosphate, aufweisen. Die Konzentration des Leitsalzes beträgt vorzugsweise von 0,5 mol/1 bis zur Löslichkeitsgrenze des entsprechenden Salzes, bevorzugt5 jedoch 2 mol/1.
Die Lithium-Ionen-Batterien können allerdings auch einen Elektrolyten aufweisen, der von 0,5 bis 10 Gew.-%, bevorzugt von 2 bis 5 Gew.-% Vinylencarbonat aufweist. O Bevorzugt wird bei der erfindungsgemäßen Verwendung des erfindungsgemäßen Elektrodenmaterials zur Herstellung von Lithium-Ionen-Batterien ein Elektrolyt eingesetzt, der von 20 bis 70 Vol.-% an Ethylencarbonat und/oder 20 bis 70 Vol.-% Dimethylcarbonat, 0,5 "bis 2 mol/1 LiPF6 und einen Zusatz von 0,5 bis 5 Gew.-% Vinylencarbonat aufweist. Besonders bevorzugt wird ein Elektrolyt eingesetzt, der Propylencarbonat mit von 0,5 bis 2 moM LiPF6 und einen Zusatz von 0,5 bis 5 Gew.-% Vinylencarbonat aufweist. Ferner ist Gegenstand der Erfindung eine Lithium-Ionen-Batterie mit einer negativen Elektrode, die das erfindungsgemäße Elektrodenmaterial aufweist.
Die nachfolgenden Beispiele sollen das erfindungsgemäße Elektrodenmaterial näher erläutern, ohne dass die Erfindung auf diese Ausführungsform beschränkt sein soll.
1. Herstellung der nanoskaligen Siliziumpartikel 1.1. Herstellung der nanoskaligen Siliziumpartikel in einem Heißwandreaktor Die nanoskaligen Siliziumpartikel Sil, Si2 und Si3 wurden in einem vertikal angeordneten Heißwandreaktor mit einem Rohr, das eine Länge von 200 cm und einem Durchmesser d aufweist, hergesteUt. Das Rohr besteht aus Quarzglas oder Si/SiC mit einem Quarzglas- Inliner und wird extern mittels einer Widerstandsheizung über eine Zone von 100 cm auf 100O°C beheizt. Über eine Zweistoffdüse wird von oben diesem Heißwandreaktor ein Edud tgemisch aus Silan (SiH.), Argon und Wasserstoff zugeführt. Einen schematischen Aufbau der Versuchsanordnung zeigt Fig. 1. In einer nachgeschalteten Filtereinheit wird das pulverformige Produkt von den gasförmigen Stoffen abgetrennt Die Tabelle 1 enthält die jeweiligen Verfahrensparameter für die Herstellung der nanoskaligen Siliziumpartikel Sil, Si2 und Si3.
Figure imgf000015_0001
1 sccm steht für Standard centimeter cube per ininute, 1 sccm entspricht 1 cm3 Gas pro Minute bezogen auf 0°C und Atmosphärendruck. 1.2 Herstellung von nanoskaügen Siliziumpartikeln, das mit Bor dotiert ist in einem Mikrowellenreaktor.
Zur Erzeugung des Plasmas wird ein Mikrowellengenerator der Fa. Muegge eingesetzt. Die Mikrowellenstrahlung wird mittels eines Tuners (3 -Stab Tuner) im Reaktionsraum fokussiert. Durch die Auslegung des Hohlwellenleiters, die Feinabstimmung mittels des Tuners und die genaue Positionierung der Düse, die als Elektrode fungiert, wird im Druckbereich von 10 mbar bis 1100 mbar und einer Mikrowellenleistung von 100 bis 6000 W ein stabiles Plasma erzeugt. Der Mikrowellenreaktor besteht aus einem Quarzglasrohr mit einem Außendurchmesser von 30 mm und einer Länge von 120 mm, das in den Plasmaapplikator eingesetzt ist. Die nanoskaügen Siliziumpartikel vom Typ SiB4 wurden mittels solch eines Mikrowellenreaktors hergestellt. Hierfür wurde über eine Zweistoffdüse dem Mikrowellenreaktor ein SiH Argon-Gemisch - bestehend aus 200 sccm Silan und 1800 sccm Argon - sowie über die zweite Düse ein weiteres Gemisch bestehend aus 10000 sccm Wasserstoff und 20 sccm B2H6 zugeführt. Mittels einer Mikrowelle wird eine Leistung von 1000 W in das Gasgemisch eingebracht und dadurch ein Plasma erzeugt. Die aus dem Reaktor über eine Düse austretende Plasmafackel expandiert in einen Raum, dessen Volumen mit ca. 20 1 im Vergleich zum Reaktor verhältnismäßig groß ist. Der Druck in diesem Raum und im Reaktor ist auf 80 mbar geregelt. In einer nachgeschalteten Filtereinheit wird das p verförrnige Produkt von gasförmigen Stoffen abgetrennt.
2. Charakterisierung der nanoskaligen Siliziumpartikel
Die BET-Oberflächen der nanoskaligen Siliziumpartikeln wurden gemäß ISO 9277 (1995) bestimmt. Die Partikelgrößen wurden anhand von TEM-Aufiiahmen ermittelt. Fig. 2a und 2b zeigen TEM-Aufiiahmen mit verschiedenen Auflösungen (Balken entspricht in Fig. 2a 50 nm und in Fig. 2b 0,5 μm) der nanoskaligen Siliziumpartikel Si3. Die Tabelle 1 zeigt eine Zusammenstellung der in den Beispielen eingesetzten nanoskaligen Siliziumpartikel. Tabelle 1:
Figure imgf000017_0001
3. Herstellung des Elektrodenmaterials Die Materialien werden zunächst mechanisch gemischt, anschließend in einer N- Methylpyrrolidon-Suspension mittels eines Hochgeschwindigkeitsrührers ein weiteres Mal gemischt und anschließend auf eine mit einem Primer vorbehandelte 20 μm dicke handelsübliche Kupferfolie aufgerakelt, in einer Dicke von vorzugsweise 250 μm. Die auf diese Weise beschichtete Kupferfolie wird anschließend bei 80°C unter Vakuum getrocknet. In manchen Fällen wurde das Material anschließend bei ca. 80°C gewalzt. Die Elektroden wurden anschließend kreisförmig aus dieser beschichteten Kupferfolie ausgestanzt.
Die Behandlung der Kupferfolie vor dem Beschichten mit dem erfindungsgemäßen Elektrodenmaterial erfolgte mit einem handelsüblichen Primer, auf der Basis von Polymerharzen. Er erhöht die Haftung auf dem Kupfer, besitzt aber selbst praktisch keine elektrochemische Aktivität. Als Primer wurde in unserem Fall der „Haftvermittler Conti Plus" von der Firma ContiTech benutzt. Er ist ein schwermetallfreier Polymerkleber auf Polychloropren-Basis. Er wird in einer Schichtdicke von 5 bis 30 μm aufgetragen.
Die Tabelle 2 zeigt eine Zusammenstellung der in den Beispielen verwendeten erfindungsgemäßen Elektrodenmaterialien und deren Zusammensetzung.
Tabelle 2:
Figure imgf000018_0001
Als Leitruß wurde ein Leitruß mit einer Produktbezeichnung Super P verwendet (Hersteller TIMCAL SA, Schweiz), hierbei handelt es sich um einen hochreinen synthetischen Russ mit einer mittleren Teilchengröße von ca. 40 nm und einer BET-Oberfläche von 62 m /g (± 5 m2/g).
Als Graphit wurde ein Graphit mit einer Produktbezeichnung KS6 (Hersteller TIMCAL SA, Schweiz) eingesetzt, hierbei handelt es sich um einen synthetischen Graphit mit einem d9o- Wert von ca. 6 μm und einer BET-Oberfläche von ca. 13,8 m2/g. Die Partikelform dieses Graphits ist eher rund. In dem Beispiel B9 (in Tabelle 5) wurde jedoch ein Graphit mit der Produktbezeichnung SFG6 (Hersteller TIMCAL SA, Schweiz) eingesetzt. Hierbei handelt es sich um einen synthetischen Graphit mit einem d o-Wert von ca. 6 μm und einer BET- Oberfläche von ca. 17,1 m2/g. Die Partikelform dieses Graphits ist eher flach. Er zeichnet sich gegenüber KS6 durch eine höhere Stäbihtät gegenüber dem in Beispiel B9 verwendeten propylencarbonatbasierten Elektrolyten aus.
4. Durchführung der elektrochemischen Untersuchungen
Das elektrochemische Zyklen fand in sogenannten Halb- und Vollzellenanordnungen statt. Bei der Halbzellenanordnung wird das erfindungsgemäße Elektrodenmaterial als Arbeitselektrode in einer Sandwich-Anordnung Arbeitselektrode — Separator Elektrolyt - Gegen-ZReferenzelektrode gegen eine Lithiumscheibe als Gegen- und -Referenzelektrode gemessen. Als Potentialgrenzen werden 100 mV und 1,0 V vs. Li/Li+ verwendet. In den Fällen der Komplettbatterien wird das Material in der VoUzellenanordnung Arbeitselektrode (Graphit) - Separator/Elektrolyt - Gegenelektrode (LiCoθ2) gegen das Standard- Kathodenmaterial LiCoO2 gemessen. Als Potentialgrenzen werden hier von 2,5 bis 3 V und von 4 bis 4,2 V verwendet. Die Zyklengeschwindigkeit wird mit der Stromdichte pro aktive Masse - dies entspricht der Gesamtmasse von Siliziumpartikeln und Graphit - des Elektrodenmaterials angegeben. Die verwendeten Werte hierfür betragen von 74 bis 372 mA/g.
Das Laden erfolgt mit einer Stromabsenkung beim Erreichen der Spannungsgrenze bis unter einen Wert, der 10 mA g entspricht. Die Verwendung dieser Stromäbsenkung ermöglicht, die Leistungsf higkeit einer Elektrode (Anteil des Stroms, der im Konstantstrommodus, oder galvanostatischen Anteil, fließt) von eventuellen irreversiblen Schäden (die sich in einer Verringerung der gesamten, also einschließlich der im potentiostatischen Schritt fließenden, Kapazität) zu trennen (siehe hierzu H. Buqa et al. in ITE Battery Letters, 4 (2003), 38).
Es wurden zwei verschiedene Arten der Versuchsführung durchgeführt:
1. die klassische, mit einem ausschließlich auf die oberen und unteren Potentialgrenzen basierten Abschaltmodus für die einzelnen Halbzyklen. Dies ist der bei allen gängigen Batterien verwendete Modus. 2. einem sogenannten kapazitätslirnitierten Modus, bei dem zusätzüch zu der Potentialuntergrenze im Ladeschritt eine maximale Kapazität vorgegeben wird. Damit wird einer zu starken Ladung vorgebeugt und der mechanische Stress auf das Silizium wird dadurch veimindert, was die Haltbarkeit der Elektrode verlängern soüte.
5. Zusammensetzung des Elektrolyts Die Zusammensetzung der verwendeten Elektrolyten zeigt die Täbeüe 3. Tabelle 3:
Figure imgf000020_0001
6. Ergebnisse der elektrochemischen Untersuchungen mittels einer Halbzellenanordnung Die Tabelle 4 zeigt die Versuchsparameter mit einer Versuchsführung nach dem klassischen Modus und die Tabelle 5 zeigt die Versuchsparameter mit einer Versuchsführung nach dem kapazitätslimitierten Modus.
Tabelle 4:
Figure imgf000020_0002
Figure imgf000020_0003
Figure imgf000021_0001
etwa doppelte Graphitkapazität etwa 1,5 fache Graphitkapazität
Das in den Beispielen Bl verwendete erfindungsgemäße Elektrodenmaterial zeigt eine hohe reversible Kapazität bis über 1000 mAh/g und eine Stabüität, die bis über 50 Zyklen lang anhält. Allerdings kann im ersten Zyklus eine relativ hohe irreversible Kapazität beobachtet werden. Das Beispiel B2 zeigt ein sehr stabiles Verhalten, eine sehr hohe Kapazität, ein schwaches Fading und relativ niedrige irreversible Kapazität vor aUem im ersten Zyklus, in dem sie nur 26 % beträgt. Die Beispiele B3 und B4 zeigen, dass das erfindungsgemäße Elektrodenmaterial bei Kapazitätsbegrenzung ein stabües Zyklen mit mehr als 80 bzw. mehr als 100 Zyklen ermöglicht. Diese Beispiele zeigen, dass die Zyklenstäbilität des erfindungsgemäßen Elektrodenmaterials höher ist, als für die in der Literatur beschriebenen siliziumbasierten Elektrodenmaterialien, dies gut auch für die eneichte reversible Kapazität. Daneben ist auch der irreversible Kapazitätsverlust mit etwa 1,5 % pro Zyklus gering. Das Beispiel B5 zeigt ein stabiles Zyklen sogar über 200 Zyklen hin. Weiterhin zeigt die Fig. 6, dass hierbei eine gute Strombelastbarkeit unter Verwendung des erfindungsgemäßen Elektrodenmaterials, die in etwa im Bereich klassischer Elektrodenmaterialien üegt, erreicht wird Ein stabiles Zyklen während über 150 Zyklen zeigt auch das Beispiel B6, hierbei sind im Vergleich zu den anderen erfindungsgemäßen Elektrodenmaterialien bei höheren Zyklenzahlen etwas niedrigere irreversible Verluste-, die jedoch bei den ersten Zyklen höher sind, zu beobachten.. Das Beispiel B7 zeigt ebenfalls ein stabiles Zyklen, hierbei liegen die irreversible Verluste bei höheren Zyklenzahlen etwas höher als bei den anderen in den Beispielen verwendeten erfindungsgemäßen Elektrodenmaterialien. Ein stabiles Zyklen über 20 Zyklen zeigt das Beispiel B8, jedoch treten hier höhere irreversible Verluste auf, die auf die Verwendung eines Elektrolyten ohne den filmbildenden Zusatz Vinylencarbonat zmück__uführen sind. Das Beispiel B9 zeigt ein stabiles Zyklen über mehr als 130 Zyklen. Es treten leicht erhöhte irreversible Verluste in den ersten Zyklen auf, allerdings nur sehr geringe irreversible Verluste bei höheren Zyklenzahlen. Ein sehr stabiles Zyklen über mehr als 180 Zyklen mit einer niedrigeren irreversibler Kapazität ab dem zweiten Zyklus zeigt das Beispiel BIO. Auch in Beispiel 11 ist ein sehr stabiles Zyklen mit einer niedrigen irreversiblen Kapazität ab dem zweiten Zyklus zu beobachten.
7. Test einer Vollzelle
Das Zyklen erfolgt in einer VollzeUe gegen eine LiCoθ2-Elektrode. In diesem Beispiel
(gezeigt in Fig. 15) wird der Betrieb einer Komplettbatterie unter Verwendung des erfindungsgemäßen Elektrodenmaterials EM_Si2_80 und dem Elektrolyten ELI getestet. Die Vollzelle wurde in einem auf 530 mA/g kapazitätslimierten Modus mit Zyklen mit 372 mA/g betrieben. Der zeitweise Abfall und das Wiederansteigen der Kapazität beruht auf der nachträglichen Anhebung des oberen Abschaltpotentials von 4,0 auf 4,2 V. Die Messung zeigt die Funktionsfahigkeit dieser Vollzelle bis über 50 Zyklen, mit relativ niedrigen irreversiblen Verlusten.

Claims

Patentansprüche:
1. Elektrodenmaterial für Lithium-Ionen-Batterien, dadurch gekennzeichnet, dass das Elektrodenmaterial 5 - 85 Gew.-% nanoskalige Siliziumpartikel, die eine BET-Oberfläche von 5 bis 700 m2/g und einen mittleren Primärpartikeldurchmesser von 5 bis 200 nm aufweisen, - 0 - 10 Gew.-% Leitruß, 5 - 80 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 1 μm bis 100 μm und 5 - 25 Gew.-% eines Bindemittels aufweist, wobei die Anteile der Komponenten in Summe maximal 100 Gew.-% ergeben.
2. Elektrodenmaterial gemäß Anspruch 1, dadurch gekennzeichnet, dass das Elektrodenmaterial 65 — 86,5 Gew.-% nanoskalige Siliziumpartikel, - 0,5 - 5 Gew.-% Leitruß, 8 — 20 Gew.-% Graphit mit einem mittleren Partikeldurchrnesser von 2 μm bis 50 μm und 5 - 10 Gew.-% eines Bindemittels aufweist.
3. Elektrodenmaterial gemäß Ansprach 1, dadurch gekennzeichnet, dass das Elektrodenmaterial 5 — 40 Gew.-% nanoskalige Siliziumpartikel, 55 — 85 Gew.-% Graphit mit einem mittleren Partikeldurchmesser von 2 μm bis 50 μm und 5 - 10 Gew.-% eines Bindemittels aufweist.
4. Elektrodenmaterial gemäß zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die nanoskaligen Siliziumpartikel dotiert sind.
5. Elektrodenmaterial gemäß Ansprach 4, dadurch gekennzeichnet, dass die nanoskaligen Siliziumpartikel maximal 53 Gew.-% an Lithium als Dotierkomponente aufweisen.
6. Elektrodenmaterial gemäß zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die nanoskaligen Siliziumpartikel eine BET-Oberfläche von 6 bis 140 m2/g aufweisen.
7. Verwendung eines Elektrodenmaterials gemäß zumindest einem der Ansprüche 1 bis 6 zur Hersteüung von Lithium-Ionen-Batterien.
8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, dass als Elektrolyt eine Elektiolytzusammensetzung eingesetzt wird, die von 0,5 bis 10 Gew.-% Vinylencaurbonat aufweist.
9. Verwendung gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass als Elektrolyt eine Elekttolytzusammensetzung aus mindestens einem organischen Lösungsmittel und -mindestens einem Alkali- oder Erdalkalimetallsalz eingesetzt wird.
10. Verwendung gemäß Ansprach 9, dadurch gekennzeichnet, dass als Elektrolyt eine Elektrolytzusammensetzung eingesetzt wird, die ein organisches Lösemittel, ausgewählt aus Ethylencarbonat, Dimethylcarbonat, Ethylmethylcarbonat, Diethylcarbonat, Propylencarbonat, Butylencarbonat, Methylpropylcarbonat, Butylmethylcarbonat und seine Isomere, 1,2-Dimethoxyethan, Tetrahydroriiran, 2- Methyltetrahydroruran, Diethylenglycoldialkylester, Dioxolan, Propylenoxid, Dimethylsulfoxid, Dimcthylformamid, Formamid, Nitromethan, gamma-Butyrolacton, Carbonsäurealkylester und/oder Methyllactat, aufweist.
11. Verwendung gemäß Anspruch 9 oder 10, dadurch gekennzeichnet-, dass als Elektrolyt eine Elekttolytzusammensetzung eingesetzt wird, die ein Leitsalz, ausgewählt aus LiP-Fe, LiClθ4, LiAsFe, LiBF4, LiCF3S03, LiN(CF3Sθ2>2, LiN(SO2CF2CF3)2, LiSbFe, LiAlC , LiGaCk, LiCl, LiNOa, LiSCN, Liθ3SCF2CF3, LiC6F5Sθ3, Liθ2CCF3, LiFSOs, LiB(CeH5)4, LiB(C2θ4 und/oder Lithiumfluoroalkylphosphate.
12. Verwendung gemäß zuroindest einem der Ansprüche 7 bis 11, dadurch gekennzeichnet., dass als Elektrolyt eine Elekttolytzusan-tmensetzung eingesetzt wird, deren Konzentration des Leitsalzes von 0,5 m.ol/1 bis zur Löslichkeitsgrenze des entsprechenden Salzes beträgt.
13. Lithium-Ionen-Batterie mit einer negativen Elektrode, die ein Elektrodenmaterial gemäß zumindest einem der Ansprüche 1 bis 6 aufweist.
PCT/EP2005/051238 2004-04-01 2005-03-17 Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien WO2005096414A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05729816A EP1730800B1 (de) 2004-04-01 2005-03-17 Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien
DE502005003995T DE502005003995D1 (de) 2004-04-01 2005-03-17 Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien
US10/594,995 US8124279B2 (en) 2004-04-01 2005-03-17 Nanoscalar silicon particles in negative electrode materials for use in lithium-ion batteries
JP2007505541A JP5096136B2 (ja) 2004-04-01 2005-03-17 リチウムイオン電池に使用するための負電極材料中のナノスケールシリコン粒子
KR1020067020309A KR101265340B1 (ko) 2004-04-01 2006-09-29 리튬 이온 배터리용 음극 물질의 나노스케일 규소 입자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016766.4 2004-04-01
DE102004016766A DE102004016766A1 (de) 2004-04-01 2004-04-01 Nanoskalige Siliziumpartikel in negativen Elektrodenmaterialien für Lithium-Ionen-Batterien

Publications (2)

Publication Number Publication Date
WO2005096414A2 true WO2005096414A2 (de) 2005-10-13
WO2005096414A3 WO2005096414A3 (de) 2007-08-02

Family

ID=35034123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051238 WO2005096414A2 (de) 2004-04-01 2005-03-17 Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien

Country Status (9)

Country Link
US (1) US8124279B2 (de)
EP (1) EP1730800B1 (de)
JP (1) JP5096136B2 (de)
KR (1) KR101265340B1 (de)
CN (1) CN100474665C (de)
AT (1) ATE394806T1 (de)
DE (2) DE102004016766A1 (de)
TW (1) TWI366939B (de)
WO (1) WO2005096414A2 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097380A1 (de) * 2005-03-14 2006-09-21 Degussa Gmbh Verfahren zur herstellung von beschichteten kohlenstoffpartikel und deren verwendung in anodenmaterialien für lithium-ionenbatterien
DE102009033251A1 (de) 2008-08-30 2010-09-23 Universität Duisburg-Essen Einlagerung von Silizium und/oder Zinn in poröse Kohlenstoffsubstrate
DE102009056756A1 (de) 2009-12-04 2011-06-09 Schott Ag Material für Batterie-Elektroden, dieses enthaltende Batterie-Elektroden sowie Batterien mit diesen Elektroden und Verfahren zu dessen Herstellung
WO2011141501A1 (de) 2010-05-11 2011-11-17 Magna E-Car Systems Gmbh & Co Og Material für negative elektroden und negative elektroden sowie batterien umfassend dieses material und verfahren zur herstellung des materials
DE102010026520A1 (de) 2010-07-08 2012-01-12 Magna E-Car Systems Gmbh & Co Og Material für negative Elektroden und negative Elektroden sowie Batterien umfassend dieses Material und Verfahren zur Herstellung des Materials
US8349492B2 (en) 2007-04-24 2013-01-08 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN101600779B (zh) * 2006-10-30 2013-06-26 默克专利股份有限公司 用于蚀刻透明和导电氧化物层的可印刷介质
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2498802B (en) * 2012-01-30 2014-06-11 Nexeon Ltd Composition comprising particulate electroactive material
WO2015014749A1 (de) * 2013-08-02 2015-02-05 Wacker Chemie Ag Verfahren zum zerkleinern von silicium und verwendung des zerkleinerten siliciums in einer lithium-ionen-batterie
WO2015017418A1 (en) * 2013-07-29 2015-02-05 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
US9263771B2 (en) 2006-03-30 2016-02-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method of manufacturing the same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10968106B2 (en) 2016-08-11 2021-04-06 Wacker Chemie Ag Production of Si/C composite particles
US11374215B2 (en) 2012-08-24 2022-06-28 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US11515528B2 (en) 2009-09-29 2022-11-29 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
US11710819B2 (en) 2017-06-16 2023-07-25 Nexeon Limited Electroactive materials for metal-ion batteries

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
JP4979432B2 (ja) * 2007-03-28 2012-07-18 三洋電機株式会社 円筒型リチウム二次電池
KR101126826B1 (ko) * 2008-06-30 2012-03-23 삼성에스디아이 주식회사 이차전지
JP5245592B2 (ja) * 2008-07-14 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
WO2010006763A1 (de) * 2008-07-15 2010-01-21 Universität Duisburg-Essen Einlagerung von silizium und/oder zinn in poröse kohlenstoffsubstrate
KR101819035B1 (ko) * 2009-02-16 2018-01-18 삼성전자주식회사 14족 금속나노튜브를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조 방법
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
PL2526581T3 (pl) * 2010-01-18 2019-05-31 Enevate Corp Materiały kompozytowe do magazynowania elektrochemicznego
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
CN102754268B (zh) * 2010-02-12 2014-11-19 三菱化学株式会社 非水电解液及非水电解质二次电池
US20120052299A1 (en) * 2010-09-01 2012-03-01 Jiang Fan Non-spherical electroactive agglomerated particles, and electrodes and batteries comprising the same
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
US9153819B2 (en) 2011-02-27 2015-10-06 GM Global Technology Operations LLC Negative electrode for a lithium ion battery
US8637186B2 (en) * 2011-08-24 2014-01-28 Gwangju Institute Of Science And Technology Electrode for battery and method for manufacturing thereof
EP2573845B1 (de) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Strukturstabiles Aktivmaterial für Batterieelektroden
KR20130122471A (ko) * 2012-04-30 2013-11-07 삼성에스디아이 주식회사 리튬 이차 전지용 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 상기 음극을 포함하는 리튬 이차 전지
KR20130136131A (ko) * 2012-06-04 2013-12-12 고려대학교 산학협력단 리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지
CN105359304B (zh) * 2013-03-13 2020-04-07 新强能电池公司 用于电池电极的硅颗粒
EP2997621B1 (de) * 2013-05-16 2019-01-09 Albemarle Germany GmbH Aktives lithiumreservoir für lithiumionenbatterien
DE102013211388A1 (de) * 2013-06-18 2014-12-18 Wacker Chemie Ag Elektrodenmaterial und dessen Verwendung in Lithium-Ionen-Batterien
DE102014202156A1 (de) 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
WO2015176051A1 (en) * 2014-05-15 2015-11-19 Quickhatch Corporation Lithium intercalated nanocrystal anodes
CA2949102C (en) 2014-05-15 2019-11-26 Msmh, Llc Methods and systems for the synthesis of nanoparticles including strained nanoparticles
DE102014008739A1 (de) 2014-06-12 2015-12-17 Daimler Ag Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
JP6367653B2 (ja) * 2014-08-27 2018-08-01 国立研究開発法人物質・材料研究機構 シリコン(Si)系ナノ構造材料を負極材に利用したリチウム(Li)イオン二次電池及びその製造方法
PL3238294T3 (pl) 2014-12-23 2022-04-11 Umicore Proszek, elektroda i akumulator zawierające taki proszek
HUE042645T2 (hu) 2014-12-23 2019-07-29 Umicore Nv Lítium-ion akkumulátor anódjában használt kompozit por, valamint a szóban forgó kompozit por elõállításának és elemzésének módszere
KR102095092B1 (ko) 2014-12-23 2020-03-31 유미코아 분말, 이 분말을 포함하는 전극 및 배터리
KR101614016B1 (ko) 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
KR102393997B1 (ko) 2015-02-03 2022-05-02 한국전기연구원 이차전지의 음극용 탄소코팅 결정질 메조스펀지 구조를 갖는 산화텅스텐의 제조방법 및 이를 포함하는 리튬 이온 전지
KR101726037B1 (ko) 2015-03-26 2017-04-11 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
DE102015215415A1 (de) 2015-08-12 2017-02-16 Wacker Chemie Ag Siliciumpartikel enthaltende Anodenmaterialien für Lithium-Ionen-Batterien
NO20151278A1 (en) * 2015-09-29 2017-03-30 Elkem As Silicon-carbon composite anode for lithium-ion batteries
DE102015015400A1 (de) 2015-11-27 2016-06-02 Daimler Ag Elektrochemischer Energiespeicher und Verfahren zu dessen Herstellung
TWI627648B (zh) 2016-01-22 2018-06-21 Asahi Chemical Ind 正極前驅體
WO2017126689A1 (ja) 2016-01-22 2017-07-27 旭化成株式会社 非水系リチウム蓄電素子
US10396361B2 (en) 2016-01-22 2019-08-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
EP3392891B1 (de) * 2016-01-22 2020-01-08 Asahi Kasei Kabushiki Kaisha Wasserfreies lithiumspeicherelement
KR102007130B1 (ko) 2016-01-22 2019-10-01 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
CN108475584B (zh) * 2016-01-22 2019-07-02 旭化成株式会社 非水系锂型蓄电元件
EP3352188B1 (de) 2016-01-22 2020-07-29 Asahi Kasei Kabushiki Kaisha Wasserfreies speicherelement vom lithiumtyp
JP6262402B2 (ja) 2016-01-22 2018-01-17 旭化成株式会社 非水系リチウム蓄電素子
DE102016202458A1 (de) 2016-02-17 2017-08-17 Wacker Chemie Ag Verfahren zur Herstellung von Si/C-Kompositpartikeln
US10644347B2 (en) * 2016-02-29 2020-05-05 Nec Corporation Negative electrode active material and lithium ion secondary battery using the same
DE102016203349A1 (de) 2016-03-01 2017-09-07 Wacker Chemie Ag Herstellung von Si/C-Kompositpartikeln
DE102016203352A1 (de) 2016-03-01 2017-09-07 Wacker Chemie Ag Verfahren zur Verarbeitung von Elektrodenmaterialien für Batterien
US11594757B2 (en) 2016-04-07 2023-02-28 StoreDot Ltd. Partly immobilized ionic liquid electrolyte additives for lithium ion batteries
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
EP3440726A4 (de) * 2016-04-07 2019-09-11 StoreDot Ltd. Lithium-ionen-zellen und anoden dafür
US10727529B2 (en) 2016-08-02 2020-07-28 Wacker Chemie Ag Lithium ion batteries
US11103848B2 (en) 2016-08-15 2021-08-31 Advanced Energy Materials, Llc Flame based fluidized bed reactor for nanomaterials production
KR102244058B1 (ko) * 2016-08-24 2021-04-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP6743159B2 (ja) * 2016-09-23 2020-08-19 株式会社豊田自動織機 Si粒子結合体及びその製造方法
JP2019535107A (ja) 2016-10-05 2019-12-05 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG リチウムイオン電池
DE102016221298A1 (de) * 2016-10-28 2018-05-03 Volkswagen Aktiengesellschaft Neue Bindersysteme für Silicium-haltige Kompositelektroden für Lithium-Ionen-Batterien
WO2018176254A1 (en) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Electrode active material, an anode and a battery containing said electrode active material, and a method for preparing a battery
DE102017211086A1 (de) 2017-06-29 2019-01-03 Sgl Carbon Se Neuartiges Kompositmaterial
JP6784235B2 (ja) * 2017-07-06 2020-11-11 トヨタ自動車株式会社 全固体リチウムイオン二次電池
JP6801596B2 (ja) * 2017-07-06 2020-12-16 トヨタ自動車株式会社 全固体リチウムイオン二次電池
WO2019105544A1 (de) 2017-11-29 2019-06-06 Wacker Chemie Ag Lithium-ionen-batterien
KR102561118B1 (ko) 2017-12-07 2023-07-28 에네베이트 코포레이션 탄화규소 및 탄소 입자를 포함하는 복합물
JP6955696B2 (ja) 2017-12-28 2021-10-27 Jnc株式会社 二次電池負極用組成物並びにこれを用いた二次電池用負極及び二次電池
CN112867691A (zh) 2018-10-02 2021-05-28 瓦克化学股份公司 作为锂离子电池的活性阳极材料的具有特定氯含量的硅颗粒
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
KR102025119B1 (ko) * 2019-02-15 2019-11-04 애경유화 주식회사 리튬 이차 전지 음극활물질 첨가제용 탄소질 재료
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles
KR102649226B1 (ko) 2019-05-21 2024-03-18 와커 헤미 아게 리튬 이온 배터리
JP2023518347A (ja) 2020-02-17 2023-05-01 ワッカー ケミー アクチエンゲゼルシャフト リチウムイオン電池用アノード活物質
JP2023551039A (ja) 2020-11-30 2023-12-06 ワッカー ケミー アクチエンゲゼルシャフト ケイ素含有材料
JP2023552743A (ja) 2020-11-30 2023-12-19 ワッカー ケミー アクチエンゲゼルシャフト シリコン含有材料の製造方法
KR20230035394A (ko) 2021-06-17 2023-03-13 와커 헤미 아게 리튬-이온 배터리에서 실리콘-함유 애노드의 전리튬화 방법
KR20240038083A (ko) 2021-07-29 2024-03-22 와커 헤미 아게 캐스케이드 반응기 시스템에서 규소 함유 물질을 제조하는 방법
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
WO2023099002A1 (de) 2021-12-02 2023-06-08 Wacker Chemie Ag Verfahren zur herstellung von silicium enthaltenden materialien
WO2023117047A1 (de) 2021-12-20 2023-06-29 Wacker Chemie Ag Verfahren zur herstellung von silicium-enthaltenden materialien in einem rührkesselreaktor
US20230216041A1 (en) * 2021-12-30 2023-07-06 Solid Power Operating, Inc. Silicon anode for use in an electrochemical cell

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (ja) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法
JPH103920A (ja) * 1996-06-17 1998-01-06 Toshiba Corp リチウム二次電池及びその製造方法
JPH1125955A (ja) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd 電極シートとこれを用いた非水電解質二次電池
JPH11283628A (ja) * 1998-03-30 1999-10-15 Fuji Photo Film Co Ltd 非水二次電池
JP3438636B2 (ja) * 1998-08-27 2003-08-18 宇部興産株式会社 非水電解液およびそれを用いたリチウム二次電池
US6413678B1 (en) * 1999-03-03 2002-07-02 Ube Industries, Inc. Non-aqueous electrolyte and lithium secondary battery using the same
JP4103285B2 (ja) * 1999-01-14 2008-06-18 日立化成工業株式会社 リチウム電池及びその製造方法
JP2001266866A (ja) * 2000-03-21 2001-09-28 Nippon Steel Corp リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池
JP2002170561A (ja) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk 電極活物質及び非水系二次電池
JP2003109589A (ja) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp リチウム電池用負極活物質材料及びその製造方法並びに該材料を用いた負極
JP3897709B2 (ja) * 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP4228593B2 (ja) * 2002-05-29 2009-02-25 ソニー株式会社 非水電解質二次電池
DE10353996A1 (de) * 2003-11-19 2005-06-09 Degussa Ag Nanoskaliges, kristallines Siliciumpulver
DE10353995A1 (de) * 2003-11-19 2005-06-09 Degussa Ag Nanoskaliges, kristallines Siliciumpulver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.GRAETZ ET AL: "Highly Reversible Lithium Storage in Nanostructured Silicon" ELECTROCHEMICAL AND SOLID-STATE LETTERS, Bd. 6, Nr. 9, 1. September 2003 (2003-09-01), Seiten A194-A197, XP002436966 us in der Anmeldung erwähnt *
J.YANG ET AL: "Si/C Composites for High Capacity Lithium Storage Materials" ELECTROCHEMICAL AND SOLID-STATE LETTERS, Bd. 6, Nr. 8, 1. August 2003 (2003-08-01), Seiten A154-A156, XP002436965 US in der Anmeldung erwähnt *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673502B2 (en) 2005-03-14 2014-03-18 Evonik Degussa Gmbh Method for producing coated carbon particles and use of the latter in anode materials for lithium-ion batteries
WO2006097380A1 (de) * 2005-03-14 2006-09-21 Degussa Gmbh Verfahren zur herstellung von beschichteten kohlenstoffpartikel und deren verwendung in anodenmaterialien für lithium-ionenbatterien
US9263771B2 (en) 2006-03-30 2016-02-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method of manufacturing the same
CN101600779B (zh) * 2006-10-30 2013-06-26 默克专利股份有限公司 用于蚀刻透明和导电氧化物层的可印刷介质
US8795549B2 (en) * 2006-10-30 2014-08-05 Merck Patent Gmbh Printable medium for etching oxidic, transparent and conductive layers
US8349492B2 (en) 2007-04-24 2013-01-08 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
DE102009033251A1 (de) 2008-08-30 2010-09-23 Universität Duisburg-Essen Einlagerung von Silizium und/oder Zinn in poröse Kohlenstoffsubstrate
US11557757B2 (en) 2009-09-29 2023-01-17 Sila Nanotechnologies, Inc. Electrodes, lithium-ion batteries, and methods of making and using same
US11522176B2 (en) 2009-09-29 2022-12-06 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
US11515528B2 (en) 2009-09-29 2022-11-29 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
US11715825B2 (en) 2009-09-29 2023-08-01 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
DE102009056756A1 (de) 2009-12-04 2011-06-09 Schott Ag Material für Batterie-Elektroden, dieses enthaltende Batterie-Elektroden sowie Batterien mit diesen Elektroden und Verfahren zu dessen Herstellung
WO2011141501A1 (de) 2010-05-11 2011-11-17 Magna E-Car Systems Gmbh & Co Og Material für negative elektroden und negative elektroden sowie batterien umfassend dieses material und verfahren zur herstellung des materials
DE102010026520A1 (de) 2010-07-08 2012-01-12 Magna E-Car Systems Gmbh & Co Og Material für negative Elektroden und negative Elektroden sowie Batterien umfassend dieses Material und Verfahren zur Herstellung des Materials
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
GB2498802B (en) * 2012-01-30 2014-06-11 Nexeon Ltd Composition comprising particulate electroactive material
WO2013114094A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US11942624B2 (en) 2012-08-24 2024-03-26 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US11411212B2 (en) 2012-08-24 2022-08-09 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US11374215B2 (en) 2012-08-24 2022-06-28 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
WO2015017418A1 (en) * 2013-07-29 2015-02-05 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
US10637050B2 (en) 2013-08-02 2020-04-28 Wacker Chemie Ag Method for size-reduction of silicon and use of the size-reduced silicon in a lithium-ion battery
WO2015014749A1 (de) * 2013-08-02 2015-02-05 Wacker Chemie Ag Verfahren zum zerkleinern von silicium und verwendung des zerkleinerten siliciums in einer lithium-ionen-batterie
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10968106B2 (en) 2016-08-11 2021-04-06 Wacker Chemie Ag Production of Si/C composite particles
US11710819B2 (en) 2017-06-16 2023-07-25 Nexeon Limited Electroactive materials for metal-ion batteries

Also Published As

Publication number Publication date
DE102004016766A1 (de) 2005-10-20
KR20070004794A (ko) 2007-01-09
EP1730800B1 (de) 2008-05-07
JP5096136B2 (ja) 2012-12-12
US8124279B2 (en) 2012-02-28
EP1730800A2 (de) 2006-12-13
CN101095251A (zh) 2007-12-26
DE502005003995D1 (de) 2008-06-19
US20070281216A1 (en) 2007-12-06
WO2005096414A3 (de) 2007-08-02
KR101265340B1 (ko) 2013-05-20
TWI366939B (en) 2012-06-21
JP2007534118A (ja) 2007-11-22
CN100474665C (zh) 2009-04-01
TW200541142A (en) 2005-12-16
ATE394806T1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1730800B1 (de) Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien
EP1859073B1 (de) Verfahren zur herstellung von beschichteten kohlenstoffpartikeln und deren verwendung in anodenmaterialien für lithium-ionenbatterien
EP3794664B1 (de) Wiederaufladbare batteriezelle
DE60128043T2 (de) Verfahren zur Herstellung von Kathodenaktivmaterial und Verfahren zur Herstellung einer Zelle mit nichtwässrigem Elektrolyten
DE112012000825B4 (de) Elektrode für einen Lithium-Akkumulator und Lithium-Akkumulator
EP2615673B1 (de) Aktivmaterial für die negativelektrode einer lithiumsekundärbatterie, herstellungsverfahren dafür und lithiumsekundärbatterie damit
DE102016117690A1 (de) Ein poröser karbonisierter Verbundwerkstoff für Silicium-Hochleistungsanoden
DE102015110661A1 (de) Verbundaktivmaterial und Verfahren für dessen Herstellung
DE112013005568T5 (de) Nanokristallines Siliciummaterial, Aktivmaterial für eine negative Elektrode, Herstellungsverfahren für das Material und elektrisches Speichergerät
EP2769427B1 (de) Aktivmaterial für batterien
EP3063811B1 (de) Kohlenstoffbeschichtetes lithiumsulfid
DE112017006921T5 (de) Lithium-Ionen-Zelle und Verfahren zur Herstellung davon
DE112017007080T5 (de) Verfahren zum stabilisieren von lithiumtitanatoxid (lto) durch oberflächenbeschichtung
DE102013216814A1 (de) Positives, aktives Elektrodenmaterial, Herstellungsverfahren für dasselbige und wiederaufladbare Batterie aus nichtwässrigem Elektrolyt, welche dasselbige aufweist
DE102020101141A1 (de) Verfahren zur vorlithierung von elektroaktivem material und elektroden mit vorlithiertem elektroaktivem material
DE112016007530T5 (de) Lithium-ionen-batterie und herstellungsverfahren dafür
DE102021129277A1 (de) Negativelektroden-aktivmaterial umfassend einen kern-schalen-verbundstoff und verfahren zur dessen herstellung
DE102013216816A1 (de) Positives, aktives Elektrodenmaterial, Herstellungsverfahren für dasselbige und wiederaufladbare Batterie aus nichtwässrigem Elektrolyt, welche dasselbige aufweist
DE102017219450A1 (de) Hybridsuperkondensator umfassend ein mit Sauerstoff-Leerstellen dotiertes Lithium-Titan-Oxid
DE202022002985U1 (de) Kathode für Lithium-Sekundärbatterie und Lithium-Sekundärbatterie die diese enthält
DE112013005576T5 (de) Negativelektrodenaktivmaterial und Elektrizitätsspeichervorrichtung
DE102020125819A1 (de) Verfahren zur steuerung der bildung von mehrschichtigen kohlenstoffbeschichtungen auf siliziumhaltigen elektroaktiven materialien für lithiumionen-batterien
DE102014207882A1 (de) Neue Beschichtung von Siliziumpartikeln für Lithium-Ionen-Batterien zur verbesserten Zyklenstabilität
DE102019133169A1 (de) Elektrolyt für lithium-sekundärbatterie und diesen enthaltende lithium-sekundärbatterie
DE102018218614A1 (de) Verfahren zur Entfernung von potentiell Wasserstoff bildenden Verbindungen aus elektrochemischen Zellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005729816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3598/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020067020309

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007505541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200580017725.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005729816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020309

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594995

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 10594995

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594995

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005729816

Country of ref document: EP