WO2004089829A1 - 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート - Google Patents

複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート Download PDF

Info

Publication number
WO2004089829A1
WO2004089829A1 PCT/JP2004/004655 JP2004004655W WO2004089829A1 WO 2004089829 A1 WO2004089829 A1 WO 2004089829A1 JP 2004004655 W JP2004004655 W JP 2004004655W WO 2004089829 A1 WO2004089829 A1 WO 2004089829A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
zinc
particles
composite
indium oxide
Prior art date
Application number
PCT/JP2004/004655
Other languages
English (en)
French (fr)
Inventor
Yuko Sawaki
Mikio Kishimoto
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to GB0520075A priority Critical patent/GB2415191B/en
Priority to US10/551,188 priority patent/US7449235B2/en
Priority to JP2005505224A priority patent/JPWO2004089829A1/ja
Publication of WO2004089829A1 publication Critical patent/WO2004089829A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a composite oxidized film particle, a method for producing the same, a conductive paint, a conductive coating film, and a conductive sheet.
  • the present invention relates to composite zinc oxide particles comprising zinc oxide and tin-containing zinc oxide, a method for producing the same, and a conductive paint, a conductive coating film, and a conductive sheet using the particles.
  • tin oxide particles As materials for the transparent conductive paint, tin oxide particles, antimony-containing tin oxide particles, tin-containing zinc oxide particles, aluminum-substituted zinc oxide particles, and the like are known. Above all, tin-containing indium oxide particles have high transparency to visible light and high conductivity, and require CRT (cathode-ray tube) screens, LCD (liquid crystal) display) It is applied to screens and used. Furthermore, due to its translucency and conductivity, the sheet coated with these particles is expected to be used in a wide range of applications, not only for displays but also for touch panels.
  • CTR cathode-ray tube
  • LCD liquid crystal
  • tin-containing oxidized indium particles have inferior properties to tin-containing oxidized indium films prepared by vapor deposition or the spa method, and are relatively simple and cost-effective to apply.
  • the advantages of being able to be produced by the above means have not been fully utilized, and have been applied only to limited uses.
  • tin-containing indium oxide has a problem that raw material costs are high because indium, which is a main raw material thereof, is expensive.
  • zinc oxide particles, titanium oxide particles, cerium oxide particles, iron oxide particles, and the like are known as materials for ultraviolet shielding or high refractive index paints.
  • zinc oxide particles exhibit excellent shielding properties against ultraviolet rays in the UV-A region, and particularly have high transparency to visible light, so that they are applied as cosmetics for shielding ultraviolet rays, and have a high refractive index. Because of its (refractive index 2.1), it is also applied as a high refractive index material.
  • Disperse transparent particles such as tin-containing zinc oxide and zinc oxide in the binder When used after application, the particle size must be usually less than 1/2 of the wavelength of light in order to obtain high visible light transparency. Therefore, for example, in order to make it transparent to visible light, it is necessary to use fine particles having a particle diameter of 200 nm or less.
  • a method for producing such fine particles is described in Japanese Patent Application Publication No. Sho 62-72627. In this method, an aqueous solution of ammonium hydroxide or an aqueous solution of ammonium carbonate is added to a mixed aqueous solution of indium chloride and tin chloride to form a coprecipitated hydroxide, and the hydroxide is subjected to heat treatment.
  • tin-containing zinc oxide After forming tin-containing zinc oxide, it is mechanically pulverized to obtain fine particles.
  • tin-containing indium oxide particles having an average particle diameter of 0.1 m are obtained by heat treatment and further mechanical pulverization.
  • Japanese Patent Application Laid-Open No. 2002-210382 discloses that zinc oxide particles contain a small amount of silicon or aluminum oxide or hydroxide inside. I have. As a result, zinc oxide particles having a good dispersibility of 0.33 ⁇ m or less are obtained.
  • Examples of applications of the transparent conductive particles and the ultraviolet-shielding / high-refractive-index particles as described above include an antireflection film having an excellent antistatic effect.
  • this type of antireflection coating multiple films with individual functions can be stacked, but in recent years, as various devices have become thinner, a film having multiple functions in a single-layer structure is desired. It is rare.
  • Japanese Unexamined Patent Application Publication No. 2002-1675767 relates to such a single-layer structure film.
  • conductive fine particles mainly composed of indium oxide or tin oxide and high refractive index particles using titanium oxide or zinc oxide are mixed and dispersed in a binder to form a high-dispersion material.
  • a refractive index conductive material is obtained. In doing so, the transparency of the film and the It is said that in order to maintain the dispersibility, it is necessary to keep the particle size to 0.2 ⁇ m or less and the coating film thickness to 20 / m or less.
  • tin-containing indium oxide particles and cerium oxide particles were mixed and dispersed to prepare a paint, which was applied to obtain a refractive index of 1.68 and a surface resistance of 2.5 ⁇ . to obtain a coating film of 1 0 9 ⁇ / mouth.
  • the non-conductive particles enter between the conductive particles and the conductive particles due to the mixing and dispersion, thereby reducing the contact between the conductive particles.
  • the electrical conductivity of the coating film tends to decrease. This is an essential feature of this type of mixed dispersion.
  • the coating film surface resistivity of about 1 0 9 ⁇ port has a sufficient conductivity, i.e. having an antistatic function, and can be said, as a further feature, an electromagnetic shielding property, or It is expected to have excellent electrical conductivity that can be applied to panels and the like.
  • the white conductive powder used in such a case include a white inorganic pigment coated with tin-containing indium oxide using muscovite as a nucleus (Japanese Patent Application Laid-Open No. Sho 60-2531112); White inorganic pigment particles such as zinc or titanium oxide are coated on the surface with tin dioxide, and the white conductive powder is further coated with tin-containing zinc oxide (Japanese Patent Laid-Open No. 06-33882). No. 13).
  • a white pigment having ultraviolet shielding properties such as titanium oxide or zinc oxide
  • a conductive oxide such as tin oxide / tin oxide.
  • Some of them are intended to be white in themselves, but are not used as UV shielding agents. Furthermore, it is difficult to reduce the volume resistivity to the extent necessary for use in conductive paints and the like due to the effect of the white inorganic pigment serving as the substrate. Disclosure of the invention
  • particles of this type are dispersed in a solvent in which an inorganic or organic binder is dissolved, and the obtained paint is applied to various bases. Apply on the material.
  • the particles need to be fine particles, and at the same time, the particles need to be uniformly dispersed in the coating film.
  • the particles tend to form secondary aggregates in the paint, and it is difficult to obtain a uniform dispersion.
  • the presence of such agglomerates not only reduces the conductivity of the coating film, but also reduces the transparency.
  • the present invention has been developed as a novel fine particle for a coating film having both a transparent conductivity and an ultraviolet shielding property, and a coating type material capable of realizing cost reduction by reducing the amount of indium used. It is an object of the present invention to provide composite indium oxide particles having excellent dispersibility as fine particles for a transparent conductive film and a method for producing the same. Another object of the present invention is to use such composite indium oxide particles to realize a conductive sheet or the like having both excellent transparent conductivity and ultraviolet shielding properties.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, they have zinc oxide as a nucleus and coat it with tin-containing indium oxide to substantially consist of zinc oxide and tin-containing indium oxide.
  • it is derived from the tin-containing indium oxide particles by making the composite indium oxide particles having an average particle diameter of 5 to 100 nm.
  • Particles having an average particle size of less than 5 nm are not only difficult to disperse when preparing a coating using the same, but are also difficult to manufacture. If the average particle size exceeds 100 nm, visible light On the other hand, it is difficult to ensure transparency.
  • zinc oxide and tin-containing indium oxide are in the form of zinc oxide-tin tin'-containing indium oxide composite particles while maintaining their respective crystal structures, It is preferable that the volume resistivity of the green compact under a pressure of 14.7 MPa (150 kgf / cm 2 ) is 10 ⁇ 3 to 10 ⁇ cm.
  • the present inventors use the specific means uniquely found to obtain the tin-containing acid
  • the present inventors have developed a novel manufacturing method completely different from the conventional manufacturing method to obtain zinc oxide and tin-containing zinc oxide having an average particle diameter in the range of 5 nm to 100 nm as described above. It has succeeded in obtaining composite indium oxide particles, which are composite particles.
  • a zinc compound (or a zinc-containing compound which is elementally substituted with aluminum, gallium, or the like) is added to an aqueous alkaline solution in which a tin salt is dissolved, and further, a tin-containing indium oxide phase is added.
  • the suspension is diluted with water.
  • Heat treatment in the temperature range of 110 to 300 ° C in the presence, filtration, drying, and then in air at 300 to 100 ° C; heat treatment in the temperature range of 100 ° C, then reducing atmosphere Medium 150 to 400 ° C temperature reduction By performing the treatment, the composite particles of the above-mentioned zinc oxide and tin-containing silicon oxide particles are produced.
  • the composite zinc oxide particles obtained by the method of the present invention have a great feature that they have both transparency, conductivity and ultraviolet shielding properties. This is because by coating the zinc oxide with the tin-containing indium oxide, the electrons flow through the tin-containing indium oxide formed on the particle surface, so that the excellent conductivity of the tin-containing indium oxide is exhibited. In addition, it is considered that because the light passes through the whole particles, the excellent ultraviolet shielding property of zinc oxide is exhibited. As a result, a single type of particle can simultaneously achieve transparency, conductivity, and ultraviolet shielding.
  • the particles of the present invention can be manufactured at low cost because the amount of indium used is small. It also has the advantage of being able to.
  • tin-containing zinc oxide particles which are conventional transparent conductive materials, were one of the factors that hindered widespread use due to their high cost.
  • the conductivity is kept equal to or higher and the amount of indium used is reduced by 20 to 80%, so that cost reduction is realized.
  • the zinc oxide and the tin-containing indium oxide are combined (more preferably, the zinc oxide is covered with the tin-containing indium oxide), and thereby the transparent conductivity of the tin-containing indium oxide is improved. Further, it is possible to realize fine particles having both the ultraviolet shielding property and the transparency of zinc oxide. In this case, by further replacing the metal element of zinc oxide and tin-containing indium oxide with an element such as aluminum or gallium, transparency and ultraviolet shielding properties can be maintained, and higher conductivity can be obtained. This can only be realized by using the particles of the present invention, which cannot be obtained with conventional particles obtained by mixing transparent conductive particles and ultraviolet shielding particles.
  • the composite zinc oxide particles obtained by the present invention are most suitable as conductive particles for a transparent conductive coating film having an ultraviolet shielding effect, and their industrial utility value is extremely large.
  • the zinc oxide and the tin-containing indium oxide are composited (more preferably, the zinc oxide and the tin-containing zinc oxide are coated with the tin-containing oxidized zinc oxide). Composited).
  • the composite zinc oxide particles of the present invention also have excellent ultraviolet shielding properties, which is a characteristic of zinc oxide, while maintaining excellent conductivity. Therefore, the paint of the present invention using the particles, the coating film of the present invention formed using the particles, and the conductive film of the present invention formed on the surface of a sheet-shaped transparent base material.
  • the conductive sheet has excellent transparency, conductivity, and ultraviolet shielding properties.
  • the composite indium oxide particles having the average particle diameter of the particles in the range of 5 nm to 100 nm and coated with zinc oxide with tin-containing indium oxide can be obtained.
  • Such composite oxidized indium particles are novel functional particles developed for the first time according to the present invention.
  • FIG. 1 is an X-ray diffraction spectrum of the oxidized zinc-tin-containing oxidized zinc composite particles having a zinc oxide concentration of 50 mol% obtained in Example 1.
  • FIG. 2 is a transmission electron micrograph (magnification: 300,000 times) of the indium oxide composite particles containing zinc oxide tin and tin oxide having a zinc oxide concentration of 50 mol% obtained in Example 1.
  • Figure 3 is a transmission electron micrograph (magnification 300,000) of zinc oxide-tin-containing indium oxide composite particles having a zinc oxide concentration of 18 mol% and an aluminum concentration of 5.2 mol% obtained in Example 6. It is.
  • FIG. 4 is a graph showing the light transmittance spectrum of the particles of the compound of the present invention having a zinc oxide concentration of 45 mol% and an aluminum concentration of 7 mol%, which were obtained in Example 5, and containing the silicon oxide. 200 to 2500 nm).
  • a zinc compound or a zinc-containing compound substituted with an element such as aluminum or gallium is added to and mixed with an aqueous solution of an aluminum salt in which a tin salt is dissolved in advance, and this zinc is added.
  • An aqueous solution of an indium salt is added to the aqueous solution of a tin salt containing the compound.
  • an aluminum compound, a gallium compound or the like is further mixed, and an alkaline aqueous solution is added.
  • the zinc oxide conjugate coated with the tin hydrate and the zinc hydrate is hydrated at 110 to 300 ° C. by using an autoclave or the like in the presence of water. Heat treatment within the above temperature range adjusts to the desired shape and particle size.
  • the zinc compound coated with the hydroxide or hydrate of tin and indium is subjected to a heat treatment in air and a hydrogen reduction treatment, so that the particle size distribution is uniform, and sintering and agglomeration are performed.
  • composite indium oxide particles with a small amount.
  • the process of adjusting the shape and the particle diameter and the material used are originally For the first time, we have developed composite oxidized particles with an average particle size in the range of 5 nm to 100 nm, based on the idea of separating the process from the goal of maximizing the physical properties possessed. It is.
  • a coating film using the composite indium oxide particles of the present invention produced by such a process has high transparency and conductivity, and further has an ultraviolet shielding property, which cannot be obtained with a coating film using conventional conductive particles. Demonstrate excellent performance that combines.
  • Indium salts such as indium chloride, indium nitrate, and indium sulfate are dissolved in water to prepare an aqueous solution containing indium ions.
  • chloride is the most preferable for obtaining fine composite indium oxide particles.
  • a solution is prepared by mixing a zinc compound or an element-substituted zinc salt mixture with a tin ion-containing alkali solution. That is, after melting an aqueous solution such as sodium hydroxide, sodium hydroxide, lithium hydroxide, and aqueous ammonia into water, a tin salt such as tin chloride, tin nitrate, or tin sulfate is dissolved.
  • a zinc compound such as zinc hydroxide or zinc oxide, or an element-substituted zinc compound such as zinc hydroxide or zinc oxide substituted with a trivalent element such as aluminum or gallium is mixed to form an alkaline solution.
  • chlorides are most preferred for obtaining finely divided composite oxide particles.
  • an aluminum compound such as aluminum hydroxide or hydroxide
  • a gallium compound such as gallium hydroxide or gallium oxide
  • the composite oxide particles a part of the tin or zinc atoms in the tin-containing zinc oxide phase is replaced by a trivalent element such as aluminum or gallium.
  • the conductivity of the particles can be further improved.
  • the concentration of the zinc compound to be mixed is preferably adjusted so that the zinc oxide concentration in the composite indium oxide particles is 5 to 7 Omol%, more preferably 10 to 5 Omol%,
  • the tin concentration in the tin-containing zinc oxide phase is preferably 3 to 3 Omol%, more preferably 5 to 15 mol%.
  • the zinc oxide phase contains aluminum, gallium, etc.
  • the concentration of the contained trivalent element is preferably 3 Omol% or less in the composite indium oxide particles.
  • the concentration of the trivalent element contained in the zinc oxide phase is 0 to 3 Omol%, more preferably 2 to 15 mol%, based on zinc oxide, and is contained in the tin-containing indium oxide phase.
  • the trivalent element concentration is 0 to 1 Omol%, more preferably 2 to 5 mol%, based on the tin-containing indium oxide.
  • the term “0 to X mol%” does not include the lower limit “0 mol%” and includes the upper limit X mol% unless otherwise specified.
  • the conductivity is not affected, but the ultraviolet shielding property is reduced. If the zinc oxide concentration (1 ⁇ X) is higher than this range, the ultraviolet shielding property is not affected. However, conversely, the conductivity is significantly reduced. Further, when the total content of the trivalent element added to improve the conductivity is higher than the above range, the conductivity is conversely reduced or separated without being completely replaced, and the final product is, for example, aluminum oxide. Etc. are formed and become a mixture. On the other hand, if the tin concentration in the tin-containing indium oxide is lower than the above range, sufficient conductivity cannot be obtained, and if the tin concentration is higher than this range, the conductivity is impaired.
  • the trivalent element When the trivalent element is contained, at least one of the zinc oxide inside and the tin-containing indium oxide formed on the surface can be substituted and contained, but the conductivity is further improved. Both Sani ⁇ to lay preferable be contained substituted, and as the trivalent element, may be added Okishiaru force Riamin and more preferably c wherein Al force Li solution be contained aluminum in order .
  • Alkoxyalkaliamine is a pH buffer in the alkaline region and also acts as a crystal growth regulator.
  • examples of the oxamine are monoethanolamine, triethanolamine, isobutanolamine, propanolamine, etc. Among them, monoethanolamine which is a crystal growth inhibitor in obtaining fine particles is preferred. Min is best.
  • the aqueous zinc salt solution is dropped into the alkaline solution to form a zinc oxide conjugate (precipitate) coated with a tin hydrate or hydrate hydroxide.
  • the pH of the suspension containing the precipitate is adjusted to a range of 4 to 12, and the suspension is preferably aged for 10 to 100 hours in a temperature range of 10 to 50 ° C. .
  • This pH adjustment and ripening are effective in obtaining a composite indium oxide particle at a relatively low treatment temperature in the subsequent hydrothermal treatment step. If the ripening time is shorter than 10 hours, the effect of ripening is small, while if it is long, there is no particularly bad effect, but the ripening effect is saturated, so it has little meaning.
  • the suspension containing the zinc compound coated with the tin or zinc hydroxide or hydrate is subjected to hydrothermal treatment using an autoclave or the like.
  • hydrothermal treatment the suspension containing the precipitate is washed with water to remove products and residues other than the precipitate, and then the pH may be adjusted again with NaOH or the like. .
  • the value of pH at this time is preferably 4 to 12. If the pH is lower than this, tin hydroxide is redissolved during the hydrothermal treatment, and if it is too high, the particle size distribution is widened, and tin, zinc, indium, and aluminum are compounded by redissolution. It may be a compound without it.
  • the hydrothermal treatment temperature is preferably in the range of 110 ° C to 300 ° C. If the temperature is lower than this, sufficient crystal growth cannot be performed. Therefore, the equipment becomes expensive and there is no advantage.
  • the hydrothermal treatment time is preferably in the range of 1 hour to 4 hours. If the hydrothermal treatment time is too short, the crystal growth of the particles will be insufficient, and if the hydrothermal time is too long, there will be no particular problem, but the production cost is high, and it is meaningless.
  • the zinc compound coated with tin and indium hydroxide which is coated with hydrate, is subjected to heat treatment after filtration and drying, but before filtration, the pH is washed with water. It is preferable to adjust the neutral region around 6 to 9. This is because water-soluble Na ions or amine-containing substances are removed when oxyalkaliamine is added. If filtration, drying, and heat treatment are performed in a state where the Na ion-containing amine-containing substance remains, the conductivity of the obtained particles tends to decrease. It is preferable to keep it.
  • a silica compound such as sodium silicate may be added to the above zinc oxide conjugate coated with tin or zinc hydroxide or hydrate to perform a silica treatment.
  • This silica treatment is effective in retaining the composite indium oxide particles as the final product in the fine particles.
  • This treatment ultimately forms a film with a sily force on the surfaces of the composite oxide particles, so that the sily force is effective in maintaining the fine particle state.
  • the amount of the silicon compound to be added is preferably 0.1 to 5% by weight with respect to the indium oxide particles.
  • the heat treatment temperature is preferably in the range of 300 ° C. to 1000 ° C. When the temperature is lower than this temperature, tin is hardly replaced in the tin-containing indium oxide to be coated, and a structure such as tin oxide, a mixture of indium oxide and zinc oxide is formed, or a hydroxide is formed into an oxide in a state of hydroxide.
  • the composite oxide oxide particles after the heat treatment are subjected to a reduction treatment in a reducing atmosphere at a temperature in the range of 150 ° C. to 400 ° C., whereby a yellow-gray or bluish-white composite oxide having conductivity is obtained. As a result, an aluminum particle is obtained.
  • the composite indium oxide particles thus obtained have a particle diameter in the range of 5 nm to 10 O nm, and have a particle diameter that is particularly preferable for a transparent conductive film. If the particle diameter is smaller than this, the cohesive force between the particles becomes extremely strong, and it becomes difficult to disperse the particles. On the other hand, if it is larger than this, the transparency of the coating will decrease when dispersed.
  • the average particle diameter of the composite indium oxide particles is preferably 5 to 10 nm, more preferably 10 to 60 nm.
  • the conductive sheet according to the present invention is obtained by adding the composite oxide particles prepared as described above to a solution containing a binder and a solvent, and mixing and dispersing these to form a conductive paint. It is produced by preparing a sheet and applying it on a sheet. Next, the production of this conductive sheet will be described.
  • a resin film or sheet can be used as the substrate.
  • the resin film or sheet is, for example, a saturated polyester resin, a polycarbonate resin, a polyacrylate resin, an alicyclic polyolefin resin, a polystyrene resin, a polyvinyl chloride resin, a polyvinyl acetate resin, or the like.
  • the resin can be produced by a known method such as a method of melt molding by extrusion molding, calendar molding, compression molding, or injection molding, or a method of dissolving in a solvent and casting.
  • the thickness of the base material is preferably about 10 m to 5 employment.
  • additives such as an antioxidant, a flame retardant, a heat resistance inhibitor, an ultraviolet absorber, a lubricant, and an antistatic agent may be added to these base materials.
  • an easy-adhesion layer may be provided on the surface of the base material, or a known surface treatment such as corona treatment or plasma treatment may be performed.
  • the disperser for producing the dispersion containing the composite oxide particles and the binder is not particularly limited, and may be a three-roll mill, a ball mill, a paint shaker.
  • a known disperser such as an ultrasonic disperser can be used.
  • the weight ratio of the composite indium oxide particles to the binder is preferably 50 to 99%, more preferably 70 to 92% (i.e., 100 parts by weight of the binder).
  • the content of the composite indium oxide particles is preferably 100 to 900 parts by weight, and more preferably 230 to 115 parts by weight. If the weight content is less than 50%, the probability of contact between the particles is reduced, and it is difficult to form a conductive path, so that the conductivity is reduced and the particles cannot occupy a sufficient physical volume in the film. As a result, the ultraviolet shielding property also decreases.
  • the weight content is more than 99%, the binding property between the binder and the particles will be reduced, causing powder dropping, cracking of the film, and reduced adhesion between the coating film and the substrate. As a result, the conductivity of the coating film decreases.
  • other conductive substances for example, metals such as Au and Ag, metal colloids, carbon nanotubes, etc.
  • the weight content of the conductive substance is preferably in the above range.
  • any binder can be used, whether aqueous or non-aqueous, as long as it does not hinder dispersion.
  • acrylic resin, polyurethane, polyvinyl chloride, epoxy resin, polyester, polyvinyl acetate, polystyrene, cellulose, polyvinyl alcohol, polybutyral, and the like, and resins obtained by copolymerizing these resins can be used.
  • a binder having a functional group a polythiophene derivative (PEDOT), N, N-di (naphthalene-111) -N, N-diphenyl-pentidene derivative (NPB)
  • PEDOT polythiophene derivative
  • NPB N-diphenyl-pentidene derivative
  • MEH-PPV a conductive polymer material
  • a known dispersant, surfactant, leveling agent and the like may be added to such an extent that the optical properties and conductivity are not affected.
  • Examples of the solvent used for the conductive paint include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran, methanol, ethanol, propanol, ethanol, and the like.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran, methanol, ethanol, propanol, ethanol, and the like.
  • a transparent conductive coating film having ultraviolet shielding properties is provided on the surface.
  • a conductive sheet (a transparent conductive sheet when a transparent substrate is used) is obtained.
  • a coating method there are known coating methods (roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, microgravure coating) and printing methods (gravure printing, screen printing, Offset printing, inkjet printing) and the like can be used.
  • the dry film thickness of the coating film is preferably from 50 nm to 15 ⁇ m, more preferably from 500 nm to 5 ⁇ m.
  • the dry film thickness is less than 5 Onm, sufficient conductivity and ultraviolet shielding properties will not be obtained, and if it exceeds 15 m, the visible light transmittance of the coating film will deteriorate and the transparency will decrease, and the coating film will crack. It is not preferable because it may occur.
  • the calendering conditions are as follows: treatment speed: lm / min to 30 m / min; heat treatment temperature: Tg ⁇ 50 ° C with respect to the glass transition temperature (Tg) of the resin (the resin used as the binder).
  • the pressurizing conditions are in the range of 9.8 ⁇ 10 4 to 9.8 ⁇ 10 6 Pa (1-100 kg / cm 2 ).
  • the resulting hydrothermally treated product is filtered and washed to pH 7.8, dried in air at 90 ° C, crushed lightly in a mortar, and heated in air at 600 ° C for 2 hours. After the treatment, a reduction treatment was performed in a hydrogen atmosphere at 250 ° C. to obtain composite indium oxide particles which are composite particles of zinc oxide and tin-containing indium oxide.
  • the composition of the particles is represented by (ZnO) 0.5 (ITO) 0.5 from the charged amount.
  • the contents of zinc and tin in the particles examined by X-ray fluorescence analysis were 50 mol% and 5 mol%, respectively, and the tin concentration in T 2 O was 1 Omol%.
  • FIG. 1 shows an X-ray diffraction spectrum of the composite indium oxide particles
  • FIG. 2 shows a transmission electron micrograph of the particles taken at a magnification of 300,000.
  • the X-ray diffraction spectrum is composed of two phases, indium oxide and zinc oxide, while the particle shape by transmission electron microscopy is uniform, indicating that tin-containing zinc oxide was used. Can be seen to be coated with zinc oxide.
  • This coating solution is applied to a transparent sheet-like substrate made of polyethylene terephthalate (PET) using a barco all-over-one so that the thickness after drying is 3 m, and then dried. Then, a conductive sheet having an ultraviolet shielding conductive coating on the surface was prepared.
  • PET polyethylene terephthalate
  • the aluminum-substituted zinc oxide substituted with l Omol% of aluminum with respect to the zinc was used without mixing the zinc oxide with the aqueous solution. Except for mixing and preparing the aqueous alkali solution, a precipitate containing aluminum-substituted zinc oxide coated with tin hydride or hydrate was produced in the same manner as in Example 1, After washing with water, filtration, and drying, heat treatment and reduction treatment were performed to produce composite indium oxide particles.
  • the contents of zinc, aluminum and tin in the particles examined by X-ray fluorescence analysis were 45 mol%, 5 mol% and 5 mol%, respectively, and the tin concentration in ITO was 1 Omol%.
  • Example 2 When the X-ray diffraction spectrum of the composite indium oxide particles was measured, it was found that the composite indium oxide particles had two phases of tin-containing oxide and aluminum-substituted zinc oxide. Further, when observed by transmission electron microscopy, as in Example 1, the particles were uniform particles having a particle size of 20 to 3 O nm. Thus, as in Example 1, the tin-containing oxide was made of aluminum. It was found that the substrate was coated with the substituted zinc oxide. Next, a conductive sheet having a conductive film having a thickness of 3 ⁇ m after drying on the surface was prepared in the same manner as in Example 1 using the composite particles.
  • a precipitate containing aluminum-substituted zinc oxide coated with hydroxide or hydrate of tin and indium is generated, washed with water, filtered, dried, and then subjected to a heat treatment and a reduction treatment to form composite indium oxide particles.
  • the composition of the particles is expressed from the charged amount ⁇ (Z n 0 .9 A l oi) 0 ⁇ 0.2 (ITO) 0.8.
  • the contents of zinc, aluminum and tin in the particles examined by X-ray fluorescence analysis were 18 mol%, 2 mol% and 8 mol%, respectively, and the tin concentration in IT ⁇ was 1 Omol%. .
  • Example 1 When the X-ray diffraction spectrum of the composite indium oxide particles was measured, it was found that the composite indium oxide particles had two phases of tin-containing indium oxide and aluminum-substituted zinc oxide. Further, when observed by transmission electron microscopy, as in Example 1, the particles were uniform particles having a particle size of 20 to 3 O nm. Therefore, as in Example 1, the tin-containing zinc oxide was replaced with aluminum. It was found to be coated with zinc oxide. Next, using this composite indium oxide particle, a conductive sheet having a conductive film having a thickness of 3 m after drying on the surface was produced in the same manner as in Example 1.
  • Example 2 In the same manner as in Example 1 except that 0.32 g of hydroxyl hydroxide was mixed and an aqueous solution of aluminum hydroxide was prepared, a hydroxide or hydrate comprising tin, indium and aluminum was prepared. After preparing a precipitate of zinc oxide coated on the material, aging and hydrothermal treatment were performed, followed by filtration, washing, drying, heat treatment, and reduction treatment, thereby producing composite indium oxide particles. The composition of the particles is expressed from the charged amount (Z n O) 0.5 ⁇ ( ITO) 0. 96 A l o.oJ 0.5. The contents of zinc, aluminum and tin in the particles determined by X-ray fluorescence analysis were 5 Omol%, 2 mol% and 4.8 mol%, respectively, and the tin concentration in ITO was 1 Omol%. Was.
  • Example 2 A transmission electron microscope observation was performed on the composite oxidized particles. After all, it was a uniform particle having a particle diameter of 20 to 3 O nm. Further, when the X-ray diffraction spectrum was measured, the same spectrum as in Example 1 was obtained. Since the peak relating to aluminum was not independently observed, the tin-containing indium oxide particles were converted to aluminum. It was found that zinc oxide was coated with an aluminum-substituted tin-containing indium oxide.
  • a conductive sheet having a conductive film having a thickness of 3 m after drying on the surface was prepared in the same manner as in Example 1 using the composite indium oxide particles.
  • the zinc oxide was not mixed with the aqueous aluminum oxide solution, but aluminum-substituted zinc oxide substituted with 1 mol% of aluminum was mixed.
  • g of hydroxide consisting of tin, indium and aluminum was coated with a hydrate in the same manner as in Example 1 except that g of sodium hydroxide and aluminum hydroxide were mixed to prepare an alkali aqueous solution.
  • aging and hydrothermal treatment were performed, followed by filtration, washing, drying, heat treatment, and reduction treatment, to produce composite indium oxide particles.
  • a conductive sheet having a conductive film having a thickness of 3 m after drying on the surface was prepared in the same manner as in Example 1 by using the composite oxide particles.
  • Example 6 In the method for synthesizing the complexed oxide particles of Example 1, 24.7 g of sodium hydroxide was dissolved in 800 ml of water, and 4.8 g of tin chloride (IV) was added to the alkaline solution. ) The pentahydrate was dissolved to prepare an aqueous solution. Instead of mixing 13 g of zinc oxide powder with this aqueous solution, 5 g of aluminum-substituted zinc oxide substituted with 1 Oinol% of aluminum with respect to zinc was further mixed with 0.5 g. lg of aluminum hydroxide oxide powder was mixed.
  • indium (III) chloride tetrahydrate was dissolved in 400 ml of water to prepare an aqueous solution of indium chloride.
  • a precipitate containing aluminum-substituted zinc oxide coated with a hydroxide or hydrate of tin and indium is formed, washed with water, filtered, dried, and then subjected to a heat treatment and a reduction treatment to form a composite oxide.
  • Indium particles were produced. The composition of the particles, the charged amount ⁇ ( ⁇ ⁇ . ⁇ 9 A l oi) 0 ⁇ 0. 2 ⁇ (ITO). g6 A l 0.04 ⁇ 0.8.
  • the contents of zinc, aluminum and tin in the particles examined by X-ray fluorescence analysis were 18 mol% and 5.2 mol%, respectively, and the tin content was 7.7 mol%.
  • the tin concentration in ITO was 1 Omol%.
  • the composite indium particles had two phases of aluminum-substituted tin-containing indium oxide and aluminum-substituted zinc oxide. Further, when observed by transmission electron microscopy, as in Example 1, the particles were uniform particles having a particle size of 20 to 3 O nm, so that aluminum coated with aluminum-substituted tin-containing indium oxide was used. It was found that substituted zinc oxide particles were obtained.
  • Fig. 3 shows a transmission electron micrograph of the composite indium oxide particles.
  • a conductive sheet having a conductive film having a thickness of 3 ⁇ m after drying on the surface was prepared in the same manner as in Example 1.
  • an indium chloride solution was dropped into an aqueous solution containing tin ions and zinc oxide, and coated with a hydroxide or hydrate of tin and zinc.
  • a zinc oxide precipitate was produced and aged at 90 ° C. for about 20 hours instead of being aged at room temperature for about 20 hours.
  • an aqueous solution of sodium hydroxide was added to the suspension of this precipitate, and instead of adjusting 11 to 10.0, it was adjusted to 13.0, and charged in an autoclave, and water was added at 180 ° C for 4 hours.
  • Example 1 Except for the heat treatment, a precipitate containing aluminum-substituted zinc oxide coated with a hydroxide or hydrate of tin and indium was formed in the same manner as in Example 1, and washed with water, filtered, and dried. Then, heat treatment and reduction treatment were performed to produce composite indium oxide particles.
  • the composition of the particles and the contents of zinc, aluminum and tin in the particles investigated by X-ray fluorescence analysis were the same as in Example 1. When the X-ray diffraction spectrum of the composite indium oxide particles was measured, it was found that, as in Example 1, the composite indium oxide particles had two phases of tin-containing indium oxide and aluminum-substituted indium oxide. . In addition, transmission electron microscopy revealed that the particles were uniform with a particle size of 50 to 60 nm, indicating that the tin-containing zinc oxide covered the aluminum-substituted zinc oxide. .
  • a conductive sheet having a conductive coating having a thickness of 3 / m after drying on the surface was prepared in the same manner as in Example 1 using the composite indium oxide particles.
  • the aluminum oxide aqueous solution was mixed with zinc oxide substituted with 1 Omol% of aluminum without mixing zinc oxide, and 0.32 g of water was further added.
  • Aluminum oxide was mixed to prepare an alkaline aqueous solution.
  • the hydroxide containing tin, indium and aluminum was a hydroxide of aluminum-substituted zinc oxide coated with hydrate. After preparing the precipitate, adjust the pH of the suspension to 5.0, ripen it at room temperature for 20 hours, perform hydrothermal treatment under the condition of pH 5.0, and perform filtration, washing, drying, heating, and reduction. Thus, composite indium oxide particles were prepared.
  • the composition of the particles is ⁇ (Zn 0 .g Al 0. !) ⁇ From the charged amount. ⁇ 5 ⁇ (I TO). . 96 A1 0. M ⁇ 0 . Represented by 5.
  • the contents of zinc, aluminum and tin in the particles determined by X-ray fluorescence analysis were 45 mol% s 7 mol% and 4.8 mol%, respectively, and the tin concentration in ITO was 1 Omol%. .
  • the aluminum coated with the hydroxide or hydrate of tin and aluminum was used while maintaining the temperature of the alkaline solution at 60 ° C. After forming a precipitate containing substituted zinc oxide, the suspension was adjusted to pH 5.0, aged at room temperature, and washed in the same manner as in Example 6 except that it was subjected to hydrothermal treatment. After filtration and drying, heat treatment and reduction treatment were performed to produce composite indium oxide particles.
  • the contents of zinc, aluminum, and tin in the particles examined by X-ray fluorescence analysis were 18 mol% and 5.2 mol%, respectively, and the tin content was 7.7 mol%, The tin concentration was 1 Omol%.
  • the composite indium particles had two phases of aluminum-substituted tin-containing indium oxide and aluminum-substituted zinc oxide. Further, when observed by transmission electron microscopy, the particles were found to be uniform with a particle diameter of 40 to 6 O nm. Therefore, aluminum-substituted acid coated with aluminum-substituted tin-containing indium oxide was used. It was found that dani zinc particles were obtained.
  • Example 1 In the method for synthesizing the complexed oxide particles of Example 1, the indium solution was added dropwise to an alkali solution in which tin chloride was previously dissolved to ripen the hydrate or hydroxide containing tin and indium. After that, a hydrothermal treatment was performed and the same as in Example 1, After filtration, washing, and drying, heat treatment and reduction treatment were performed to produce tin-containing indium oxide particles.
  • the tin-containing indium oxide particles were found to be tin-containing oxide oxides by X-ray diffraction.When observed by transmission electron microscopy, the tin-containing indium oxide particles had a particle diameter of 40 to 70 nm. The particles were square plate-shaped particles. The tin content determined by X-ray fluorescence analysis was 1 Omol%.
  • Example 2 the zinc oxide particles obtained above and the tin-containing indium oxide particles obtained in Comparative Example 1 were mixed at a molar ratio of 1: 1 to obtain a mixture of zinc oxide and tin-containing indium oxide. A mixed powder was prepared. The amounts of the constituent elements measured by the X-ray fluorescence analysis were the same as the results of Example 1.
  • Example 2 Next, using a mixed powder of the zinc oxide particles and the tin-containing indium oxide particles, a conductive film having a thickness of 3 ⁇ m after drying on the surface was obtained in the same manner as in Example 1. A sheet was made.
  • Example 1 In the method for synthesizing the complexed oxide particles of Example 1, the procedure was the same as in Example 1 except that the alkaline aqueous solution was prepared without dissolving the salt in the alkaline aqueous solution. After preparing a precipitate of zinc oxide coated with hydroxide or hydrate composed of zinc, aging and hydrothermal treatment are performed, followed by filtration, washing, drying, heat treatment, and reduction treatment to obtain a composite indium oxide. Particles were prepared. The composition of the particles, the charged amount (Z n O) 0.5 (I n 0 3/2) 0. Believed to be represented by 5. Further, the content of zinc in the particles examined by the X-ray fluorescence analysis was 50 mol%.
  • the transmission electron microscopic observation of the composite indium oxide particles revealed that the particles were uniform with a particle size of 20 to 30 nm. Furthermore, when the X-ray diffraction spectrum was measured, it was composed of two phases of zinc oxide and indium oxide. Next, using the composite indium oxide particles, a conductive sheet having a conductive film having a dried thickness of 3 ⁇ m on the surface was produced in the same manner as in Example 1.
  • Example 2 In the method for synthesizing complex oxide particles of Example 1, instead of zinc oxide, aluminum-substituted zinc oxide substituted with 40 mol% of aluminum was mixed, and 3.2 g of aluminum hydroxide oxide was further added. A precipitate containing an aluminum-substituted zinc oxide coated with a hydroxide or hydrate of tin and indium was formed in the same manner as in Example 1 except that the aqueous solution was mixed to prepare an aqueous solution. After washing with water, filtration and drying, heat treatment and reduction treatment were performed to produce particles. The composition of the particles, the charged amount ⁇ (Z n 0. 6 A l o.4) 0 ⁇ 0.5 ⁇ (ITO). . Represented by 6 A l o.4 ⁇ D. 5. The contents of zinc, aluminum, and tin in the particles examined by X-ray fluorescence analysis were 3 Omol%, 4 Omol%, and 3 mol%, respectively, and the tin content in ITO was 1 Omol%. Met.
  • a conductive sheet having a conductive film having a dried thickness of 3 ⁇ m on the surface was prepared in the same manner as in Example 1.
  • Table 1 summarizes the configurations of the particles obtained in the above Examples and Comparative Examples.
  • A1-IT0 Aluminum oxide containing tin oxide.
  • the volume resistivity of the particles obtained in each of the examples and comparative examples was examined.
  • the volume resistivity was determined by a four-terminal method using a mouthless PA system (MCP-PD41) manufactured by Mitsubishi Chemical Corporation. It was measured.
  • the measurement conditions were as follows: powder density 2.7 gZcm 3 -container inner diameter 2 cm ⁇ distance between terminals 3 feet.
  • the surface resistivity (based on JIS K7194-1994) of the conductive coating film on the conductive sheet obtained in each of the examples and comparative examples was examined.
  • the surface resistivity was measured by a four terminal method using a mouthless AP system (MCP-PD41) manufactured by Mitsubishi Chemical Corporation.
  • MCP-PD41 mouthless AP system
  • FIG. 4 shows the light transmittance spectrum.
  • Table 2 summarizes the above measurement results. Table 2 shows that the smaller the value of the volume resistivity is, the higher the conductivity is, which indicates that the conductive film is excellent. Also, the smaller the value of the UV transmittance (described as “350 nm transmittance” in Table 2), the more excellent the UV shielding property. Therefore, those having small values of both volume resistivity and ultraviolet transmittance have excellent characteristics.
  • the composite indium oxide particles obtained in each of the examples include the tin-containing indium oxide particles obtained in Comparative Example 2 and particles obtained by simply mixing zinc oxide and the tin-containing oxide particles obtained in Comparative Example 3.
  • the conductivity was not improved. Indicates a dramatically higher value. This is because, in Comparative Example 2, since the indium oxide and the zinc oxide were present independently without being compounded, the zinc oxide as the insulator hindered the electric conduction in the powder. However, it is considered that the conductivity was lower than in the case of the composite oxide particles in each example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 スズ塩が溶解されたアルカリ水溶液に亜鉛化合物を混合し、インジウム塩の水溶液を添加し、得られたスズ、インジウム、亜鉛を含有する水酸化物あるいは水和物を水の存在下で110~300℃の温度範囲で加熱処理する。次いで、ろ過、乾燥後、空気中300~1000℃の温度範囲で加熱処理し、さらに還元雰囲気中150~400℃の温度範囲で還元処理を行って酸化亜鉛−スズ含有酸化インジウム複合化粒子とする。これにより、粒子の平均粒子径が5nmから100nmの範囲にある酸化亜鉛−スズ含有酸化インジウム複合化粒子を得る。得られた酸化亜鉛−スズ含有酸化インジウム複合化粒子は、紫外線遮蔽性を併せ持つ透明導電性塗膜の形成に適している。

Description

明 細 書 複合化酸ィ匕ィンジゥム粒子およびその製造方法ならびに導電性塗料、 導電性塗膜 および導電性シート 技術分野
本発明は、 酸化亜鉛とスズ含有酸化ィンジゥムとを含んでなる複合化酸化ィン ジゥム粒子とその製造方法、 ならびに該粒子を用いた導電性塗料、 導電性塗膜お よび導電性シートに関する。
背景技術
透明導電性塗料用の材料として、 酸化スズ粒子、 アンチモン含有酸化スズ粒子、 スズ含有酸化ィンジゥム粒子、 アルミニウム置換酸化亜鉛粒子などが知られてい る。 中でも、 スズ含有酸ィ匕インジウム粒子は、 その可視光に対する高い透光性と、 その高い導電性から、 静電防止や電磁波遮蔽が要求される C R T (cathode-ray tube) 画面、 L C D (liquid crystal display) 画面などに塗布して使用されている。 さらに、 この粒子を分散塗布したシートは、 その透光性と導電性により、 デイス プレイ用のみならず夕ツチパネル用など、 広範囲での応用が期待されている。 しかしながら、 スズ含有酸ィ匕インジウム粒子を用いた塗膜は、 現状では、 蒸着 やスパヅ夕法で作製したスズ含有酸ィ匕インジウム膜に比べて、 特性が劣り、 塗布 という比較的簡便で低コストの手段により作製できるメリットを十分に活かしき れておらず、 限られた用途にしか適用されていない。 また、 スズ含有酸化インジ ゥムは、 その主原料であるインジウムが高価であるため、 原材料費が高くつくと いう問題がある。
一方、 紫外線遮蔽用あるいは高屈折率塗料用の材料として、 酸化亜鉛粒子、 酸 化チタン粒子、 酸化セリウム粒子、 酸化鉄粒子などが知られている。 中でも、 酸 化亜鉛粒子は、 U V - A領域の紫外線に対して優れた遮蔽性を示し、 特に可視光 に対する透明度が高いため、 紫外線遮蔽用の化粧料などとして応用され、 さらに、 その高い屈折率 (屈折率 2. 1 ) から高屈折率材料としても応用されている。
これらスズ含有酸化ィンジゥムや酸化亜鉛などの透明性粒子を結合剤中に分散 2 させて塗布して使用する場合、 高い可視光透明性を得るためには、 通常、 粒子径 を光の波長の 1 / 2以下にする必要がある。 したがって、 例えば可視光に対して 透明にするためには、 粒子径を 2 0 0 n m以下の微粒子にする必要がある。 このような微粒子の製造方法の一例は、 特閧昭 6 2 - 7 6 2 7号公報に記載さ れている。 この方法では、 塩ィ匕インジウムと塩化スズとの混合水溶液に、 アンモ 二ァ水または炭酸ァンモニゥム水溶液などのアル力リ水溶液を加えて共沈水酸化 物を作り、 この水酸化物を加熱処理してスズ含有酸化ィンジゥムとした後、 機械 的に粉砕して、 微粒子を得る。 特開昭 6 2— 7 6 2 7号公報の例では、 熱処理と さらに機械的粉砕により、 平均粒子径が 0 . 1 mのスズ含有酸化ィンジゥム粒 子が得られている。
特開平 5— 2 0 1 7 3 1号公報では、 特開昭 6 2 - 7 6 2 7号公報と同様の方 法によりインジウムとスズとの共沈水酸化物を作製した後、 焼成、 粉砕してスズ 含有酸化ィンジゥム粒子とする際に、 ナトリウムとカリゥムの含有量を特定量以 下にすることが、 高い導電性を得る上で重要であるとの指摘がなされている。 特 開平 5— 2 0 1 7 3 1号公報では、 粉砕後に、 粒子径が 0 . 0 1〜0 . 0 3 111の スズ含有酸化ィンジゥム粒子が得られている。
一方、 酸化亜鉛の微粒子は、 単独では凝集力が強く、 分散させることが困難で あることも知られている。 酸化亜鉛微粒子の分散性を向上させるために、 特開 2 0 0 2 - 2 0 1 3 8 2号公報では、 酸化亜鉛粒子内部に微量のシリコンあるいは アルミニウムの酸化物または水酸化物を含有させている。 それにより、 0 . 0 3 β m以下の分散性の良い酸化亜鉛粒子が得られている。
上記のような透明導電性粒子や紫外線遮蔽 ·高屈折率粒子の用途としては、 例 えば帯電防止効果に優れた反射防止膜などが挙げられる。従来、 この種の反射防 止膜では、 個々の機能を持つ膜を複数重ねられるが、 近年、 種々の機器の薄型化 が進むにつれ、 単層構造でありながら複数の機能を備えた膜が望まれている。 そ のような単層構造膜に関連するものとしては、 例えば特開 2 0 0 2 - 1 6 7 5 7 6号公報がある。 その公報では、 酸ィ匕インジウムや酸ィ匕スズを主成分とする導電 性微粒子と、 酸化チタンや酸ィ匕亜鉛を用いた高屈折率粒子とを、 バインダ中に混 合分散させて、 高屈折率導電性材料を得ている。 その際、 膜の透明性と粒子の分 散性を維持する上で、 粒子サイズを 0 . 2〃 m以下、 塗布膜厚を 2 0 / m以下と することが必要であるとされている。 また、 その実施例 1では、 スズ含有酸化ィ ンジゥム粒子と酸化セリゥム粒子とを混合分散して塗料を作製し、 これを塗布す ることで屈折率 1. 6 8、 表面抵抗値 2. 5 x 1 09 Ω/口の塗布膜を得ている。 上述したような導電性粒子と非導電性粒子との混合分散系においては、 混合分 散により非導電性粒子が導電性粒子と導電性粒子との間に入り、 導電性粒子間の 接触が減少する結果として、 塗膜の電気伝導度が低下しやすくなる。 これは、 こ の種の混合分散系における本質的な特徴である。 帯電防止効果に限って言えば、 表面抵抗率が約 1 09 ΩΖ口の塗布膜は十分な導電性を持つ、 すなわち帯電防止 機能を有する、 と言えるが、 さらなる機能として、 電磁遮蔽性、 あるいは夕ヅチ パネルなどに応用できる程度の優れた導電性が期待される。 ところが、 このよう な優れた導電性を得るためにはスズ含有酸化ィンジゥム等の導電性粒子の含有量 をできる限り多くする必要がある。 しかし、 導電性粒子の含有量を多くすると酸 化亜鉛等の非導電性粒子の含有量が減少し、 例えば酸化亜鉛の特長である紫外線 遮蔽性はほとんど発現しなくなる。 このように、 導電性と紫外線遮蔽性はトレー ドオフの関係にある。
さらに、 近年においては、 清潔感を必要とする白衣やクリーンルームの内装、 あるいは明彩色の塗料やプラスチヅク製品に対して、 白色導電性粉末を用いた帯 電防止用の塗料の需要が増大している。 このような場合に用いられる白色導電性 粉末としては、 白雲母を核としてスズ含有酸化インジウムで被覆した白色無機顔 料 (特開昭 6 0— 2 5 3 1 1 2号公報) 、 酸ィ匕亜鉛や酸ィ匕チタンなどの白色無機 顔料粒子の表面に二酸ィ匕スズを被覆し、 さらにその上からスズ含有酸化ィンジゥ ムで被覆した白色導電性粉末 (特開平 0 6— 3 3 8 2 1 3号公報) などが挙げら れる。 これらの白色導電性粉末の中には、 酸化チタンや酸化亜鉛等の紫外線遮蔽 性を持つ白色顔料を核にし、 その外側を導電性を持つ酸ィ匕スズゃスズ含有酸化ィ ンジゥム等で被覆したものがあるが、 いずれも白色を呈すること自体が目的とさ れており、 紫外線遮蔽剤として利用されているものではない。 さらに、 基体とな る白色無機顔料の影響により、 導電性塗料等に用いるのに必要な程度にまで体積 固有抵抗率を低下することは困難である。 発明の開示
上記のような金属酸ィ匕物粒子を含んだ塗布膜を形成するには、 一般に、 この種 の粒子を、 無機あるいは有機バインダーを溶解した溶媒中に分散させ、 得られた 塗料を各種の基材上に塗布する。 その際、 塗膜の透明性を得るために、 粒子が微 粒子である必要があると同時に、 粒子を塗膜中で均一に分散させる必要がある。 しかしながら、 微粒子にすると塗料中で粒子が 2次凝集体を生成しやすく、 均一 な分散体を得ることが困難になる。 このような凝集体が存在すると、 塗膜の導電 性が低下するのみならず、 透明性も低下する。
本発明は、 上記の事情に照らし、 透明導電性と紫外線遮蔽性とを併せ持つ新規 な塗布膜用の微粒子として、 さらには、 インジウム使用量を減少させることによ り低コスト化を実現できる塗布型の透明導電膜用の微粒子として、 分散性に優れ た複合化酸化ィンジゥム粒子およびその製造方法を提供することを目的とする。 また、 本発明は、 このような複合化酸化インジウム粒子を用いて、 優れた透明導 電性と紫外線遮蔽性とを併せ持つた導電性シート等を実現することを目的とする。 本発明者らは、 上記の目的を達成するため、 鋭意検討した結果、 酸化亜鉛を核 としてスズ含有酸化ィンジゥムでこれを被覆して、 実質的に酸化亜鉛とスズ含有 酸ィ匕ィンジゥムとからなる平均粒子径 5〜 1 0 0 nmの複合ィ匕酸ィ匕ィンジゥム粒 子とすることで、 従来のスズ含有酸化ィンジゥム粒子よりもインジウム使用量が 少ないにもかかわらず、 スズ含有酸化ィンジゥム粒子に由来する透明導電性と、 酸化亜鉛に由来する紫外線遮蔽性とを併せ持ち、 しかも分散性にも優れる微粒子 材料、 すなわち塗布膜や塗布型透明導電膜に用レヽるのに適した微粒子材料が得ら れることを見出した。粒子の平均粒子径が 5 nm未満のものは、 これを用いた塗 料を作製する際に分散させにくいのみならず、 製造が困難であり、 l O O nmを 超えた場合には、 可視光に対して透明性を確保することが困難になる。
本発明の複合化酸化ィンジゥム粒子においては、 酸化亜鉛とスズ含有酸化ィン ジゥムがそれぞれの結晶構造を保持したまま、 酸化亜鉛一スズ'含有酸化ィンジゥ ム複合化粒子となっていることが好ましく、 圧力 14. 7 MP a ( 1 5 0 k g f / cm2 ) 下の圧粉体の体積抵抗率が 1 0 -3~ 1 0 Ω cmであることが好ましい。
また、 本発明者らは、 独自に見出した特定の手段を用いて、 前記スズ含有酸ィ匕 インジウムと酸化亜鉛の少なくとも一方の構成金属の一部を、 アルミニウム、 ガ リウム、 ホウ素、 夕リウム等の 3価の元素、 中でも好ましくはアルミニウム、 ガ リウムにより置換して、 含有させた複合化酸化ィンジゥム粒子 [化学式: { ( Z iii-y Ay ) 0} 1-x { ( I T O ) !-z Az } x (式中、 Aは A l, G a等の 3価の元 素を表す。 ) ] とすることにより、 より導電性を向上させることができることを 見出した。
さらに、 本発明者らは、 従来の製造方法とは全く異なる新規な製造方法により、 上記のような平均粒子径が 5 n mから 1 0 0 nmの範囲にある、 酸化亜鉛とスズ 含有酸化ィンジゥムとの複合化粒子である複合化酸化ィンジゥム粒子を得ること に成功したものである。
すなわち、 本発明の方法は、 スズ塩を溶解させたアルカリ水溶液に、 亜鉛化合 物 (またはアルミニウム、 ガリウム等で元素置換された亜鉛ィ匕合物) を加え、 さ らに、 スズ含有酸化インジウム相に対してアルミニウム、 ガリウム等の元素置換 を行う場合には、 アルミニウム化合物、 ガリウム化合物等を加え、 アルカリ水溶 液を調製し、 このアルカリ水溶液にインジウム塩の水溶液を添加し、 得られたス ズとインジウムの水酸化物ある 、は水和物で被覆された亜鉛化合物の沈殿物を含 む懸濁液の p Hが 4〜1 2の範囲になるように調整した後、 懸濁液を水の存在下 で 1 1 0〜3 0 0 °Cの温度範囲で加熱処理し、 ろ過、 乾燥後、 さらに空気中 3 0 0〜; 1 0 0 0 °Cの温度範囲で加熱処理した後、 還元雰囲気中 1 5 0〜4 0 0 °Cの 温度範囲で還元処理を行うことにより、 上記の酸ィ匕亜鉛とスズ含有酸ィ匕インジゥ ムの複合化粒子である複合ィ匕酸ィ匕ィンジゥム粒子を製造するものである。
本発明の方法で得られた複合化酸化ィンジ.ゥム粒子は、 透明性と導電性さらに は紫外線遮蔽性を併せ持つという大きな特徴がある。 これは、 酸ィ匕亜鉛をスズ含 有酸化ィンジゥムで被覆することにより、 電子は粒子表面に形成されたスズ含有 酸化ィンジゥムを伝って流れるため、 スズ含有酸化インジウムの優れた導電性が 発揮され、 また光は粒子全体を通過するため、 酸化亜鉛の優れた紫外線遮蔽性が 発揮されるためであると考えられる。 その結果、 1種類の粒子で、 透明性と導電 性、 紫外線遮蔽性を同時に実現することができる。
さらに、 本発明の粒子は、 インジウムの使用量が少ないため、 低コストで製造 できるという利点をも有する。すなわち、 従来の透明導電性材料であるスズ含有 酸化ィンジゥム粒子は、 高価であることが広範囲での普及を妨げる原因の一つに なっていたが、 本発明の粒子は、 従来のスズ含有酸ィ匕ィンジゥム粒子と比較して、 導電性を同等以上に保ち、 かつインジウムの使用量を 2 0〜8 0 %減少させるこ とにより、 低コスト化をも実現したものである。
このように、 本発明によれば、 酸化亜鉛とスズ含有酸化ィンジゥムとを複合化 (より好ましくは、 酸化亜鉛をスズ含有酸化ィンジゥムで被覆) したことにより、 スズ含有酸化ィンジゥムが有する透明導電性と、 さらに酸化亜鉛が有する紫外線 遮蔽性および透明性とを併せもつた微粒子を実現できる。 この場合さらに酸化亜 鉛およびスズ含有酸化ィンジゥムの金属元素をアルミニウムやガリウム等の元素 で置換することにより、 透明性と紫外線遮蔽性を維持して、 より高い導電性を得 ることができる。 これは、 従来の透明導電性粒子と紫外線遮蔽性粒子とを混合し た粒子では得られない、 本発明の粒子を用いて初めて実現できるものである。 本 発明で得られた複合化酸化ィンジゥム粒子は、 紫外線遮蔽効果を併せ持つた透明 導電性塗膜用の導電性粒子として最適であり、 その産業上の利用価値は極めて大 きい。
以上のように、 本発明の複合化酸ィ匕インジウム粒子においては、 酸化亜鉛とス ズ含有酸化ィンジゥムとを複合化 (より好ましくは酸ィ匕亜鉛をスズ含有酸ィ匕ィン ジゥムで被覆して複合化) した。 これにより、 インジウムの使用量を著しく減少 させることができ、 その分だけ低コスト化を実現できる。 しかも、 本発明の複合 化酸化ィンジゥム粒子は、 優れた導電性を維持しながら酸化亜鉛の特性である優 れた紫外線遮蔽性をも有する。 したがって、 この粒子を用いた本発明の塗料や、 これを用いて形成された本発明の塗布膜、 さらには該塗布膜をシート状の透明な 基材の表面に形成してなる本発明の導電性シートは、 優れた透明性と導電性と紫 外線遮蔽性とを併せ持つたものとなる。
本発明の製造方法によれば、 粒子の平均粒子径が 5 nmから 1 0 0 nmの範囲 にあり、 スズ含有酸化ィンジゥムで酸化亜鉛を被覆した上記のような複合化酸化 インジウム粒子が得られる。 このような複合化酸ィ匕インジウム粒子は、 本発明に より初めて開発した、 新規な機能性粒子である。 図面の簡単な説明
図 1は、 実施例 1で得た、 酸化亜鉛濃度 5 0mol %である酸ィ匕亜鉛—スズ含有 酸ィ匕ィンジゥム複合化粒子の X線回折スぺクトルである。
図 2は、 実施例 1で得た、 酸化亜鉛濃度 5 0mol %である酸ィ匕亜鉛一スズ含有 酸化インジウム複合化粒子の透過電子顕微鏡写真 (倍率 3 0万倍) である。
図 3は、 実施例 6で得た、 酸化亜鉛濃度 1 8mol %、 アルミニウム濃度 5. 2 mol %である酸化亜鉛—スズ含有酸化ィンジゥム複合化粒子の透過型電子顕微鏡 写真 (倍率 3 0万倍) である。
図 4は、 実施例 5で得た、 酸ィ匕亜鉛濃度 4 5 mol %、 アルミニウム濃度 7 mol %である酸ィ匕亜鉛ースズ含有酸ィ匕ィンジゥム複合化粒子の光透過率スぺクト ル (2 0 0〜 2 5 0 0 nm) である。
発明を実施するための最良の形態
本発明の製造方法では、 まず第一工程として、 あらかじめスズ塩を溶解させた アル力リ水溶液に、 亜鉛化合物またはアルミニウム、 ガリウムなどの元素で置換 した亜鉛ィ匕合物を添加混合し、 この亜鉛ィ匕合物含有スズ塩水溶液に、 インジウム 塩の水溶液を添加する。 また、 最終生成物である複合化酸ィ匕インジウム粒子中の、 スズ含有酸化インジウム相をアルミニウム、 ガリウム等の元素で置換する場合に は、 さらにアルミニウム化合物、 ガリウム化合物等を混合し、 アルカリ水溶液を 調製し、 このアルカリ水溶液にインジウム塩の水溶液を添加する。 この工程によ り、 スズとィンジゥムの水酸化物あるいは水和物で被覆された亜鉛化合物が得ら れる。 またインジウム塩を添加して、 スズとインジウムの水酸化物あるいは水禾ロ 物で被覆された亜鉛化合物の沈殿物を含む懸濁液の p Hを 4〜 1 2の範囲になる ように調整することが好ましい。
次に、 このスズとィンジゥムの水酸ィ匕物あるいは水和物で被覆された亜鉛ィ匕合 物を、 水の存在下でオートクレープなどを使用して、 1 1 0〜3 0 0 °Cの温度範 囲で加熱処理することにより、 目的とする形状、 粒子径に整える。
その後、 第二工程として、 このスズとインジウムの水酸化物あるいは水和物で 被覆された亜鉛化合物を空気中加熱処理し、 水素還元処理することにより、 粒子 径分布が均一で、 焼結、 凝集が少ない複合化酸化インジウム粒子を得る。 このように酸ィ匕亜鉛とスズ含有酸化ィンジゥムの複合化粒子である複合化酸ィ匕 インジウム粒子を製造する工程において、 形状、 粒子径を整えることを目的とす る工程と、 その材料が本来有する物性を最大限に引き出すことを目的とする工程 とを分離するという発想により、 平均粒子径が 5 nmから 1 O O nmの範囲にあ る複合化酸ィ匕ィンジゥム粒子の開発に初めて成功したものである。
このような工程により製造した本発明の複合化酸化ィンジゥム粒子を用いた塗 膜は、 従来の導電性粒子を用いた塗膜では得られなかった、 高い透明性と導電性、 さらには紫外線遮蔽性を併せ持った優れた性能を発揮する。
以下に、 本発明の複合化酸化ィンジゥム粒子の製造方法を更に詳しく説明する。 (沈殿物の生成)
塩化インジウム、 硝酸インジウム、 硫酸インジウムなどのインジウム塩を水に 溶解させ、 インジウムイオンを含有する水溶解液を調製する。 これらインジウム 塩のうち、 微粒子の複合化酸化インジウム粒子を得る上で、 塩化物が最も好まし い。
これとは別に、 スズイオンを含有するアルカリ溶液に、 亜鉛化合物または元素 置換した亜鉛ィ匕合物を混合させた溶液を調製する。 すなわち、 水酸ィ匕ナトリウム、 水酸化力リウム、 水酸化リチウム、 アンモニア水溶液などのアル力リを水に溶角牟 した後、 塩化スズ、 硝酸スズ、 硫酸スズなどのスズ塩を溶解させ、 さらに水酸化 亜鉛、 酸化亜鉛などの亜鉛化合物、 あるいは、 アルミニウムやガリウムなどの 3 価の元素で置換された水酸化亜鉛、 酸化亜鉛などの、 元素置換した亜鉛化合物を 混合し、 アルカリ溶液とする。 なお、 前記スズ塩のうち、 微粒子の複合化酸化ィ ンジゥム粒子を得る上で、 塩化物が最も好ましい。
ここで、 前記アルカリ溶液に水酸化アルミニウム、 水酸ィ匕酸ィ匕アルミニウムな どのアルミニゥム化合物、 あるいは水酸化ガリゥム、 酸化ガリウムなどのガリゥ ム化合物等を混合してもよい。 このようにすると、 最終生成物である複合化酸ィ匕 ィンジゥム粒子中において、 そのスズ含有酸化ィンジゥム相中のスズまたはィン ジゥム原子の一部が、 アルミニウム、 ガリウム等の 3価の元素で置換され、 粒子 の導電性をさらに向上させることができる。
また、 最終生成物の複合化酸化ィンジゥム粒子の導電性および紫外線遮蔽効果 を向上させる上で、 混合させる亜鉛化合物の濃度は、 複合化酸化インジウム粒子 中、 酸化亜鉛濃度が 5〜7 Omol %、 より好ましくは 1 0〜5 Omol %となるよ うに調整するのが好ましく、 スズ含有酸化ィンジゥム相中のスズ濃度は好ましく は 3〜3 Omol %、 より好ましくは 5〜1 5mol %とする。
さらに導電性を向上させるために、 酸化亜鉛相にアルミニウムやガリウム等の
3価の元素を含有置換させる場合には、 含まれる 3価の元素濃度は、 複合化酸化 インジウム粒子中 3 Omol %以下が好ましい。 具体的には、 酸ィ匕亜鉛相に含まれ る 3価の元素濃度は、 酸化亜鉛に対して 0〜3 Omol %、 より好ましくは 2〜1 5mol %であり、 スズ含有酸化インジウム相に含まれる 3価の元素濃度は、 スズ 含有酸ィ匕インジウムに対して 0〜; 1 Omol %、 より好ましくは 2〜5mol %であ る。 なお、 本明細書および請求の範囲において 「0〜Xmol %」 と記載するとき は、 特に断らない限り、 下限値である 「0mol %」 を含まず、 上限値である X mol %を含むものとする。
すなわち、 一般式: { ( Ζ η^ Ay ) 0} !-x { ( I T O) !_z Az } xで表され る複合化酸化ィンジゥム粒子について、 酸化亜鉛あるいは元素置換酸化亜鉛の濃 度 (上記式中、 「1— x」 で表される) が 5〜7 Omol %、 置換する元素 Aがァ ルミ二ゥム、 ガリウム等の 3価の元素であり、 酸化亜鉛およびスズ含有酸化イン ジゥムに置換含有された元素 Aの総含有量が 3 O mol %以下、 かつ、 酸化亜鉛中 の元素 Aの濃度 (上記式中、 「y」 で表される) が 0〜3 0mol %、 スズ含有酸 化インジウム中の元素 Aの濃度 (上記式中、 「z」 で表される) が 0〜1 0 mol %であり、 I T O中のスズ濃度は 3〜3 Omol %であることが好ましい。 こ の場合、 酸化亜鉛濃度 (1— X ) が前記範囲より低いと、 導電性には影響を与え ないが紫外線遮蔽性が低下し、 これより高いと、 紫外線遮蔽性には影響を与えな いが、 逆に導電性が著しく低下する。 さらに、 導電性を向上させるために添加す る 3価の元素の総含有量が前記範囲より高いと、 逆に導電性が低下したり、 置換 しきれずに分離し、 最終生成物において例えば酸化アルミニゥムなどが生成して 混合物となってしまったりする。 また、 スズ含有酸化インジウム中のスズ濃度が 前記範囲より低いと充分な導電性が得られず、 これより高いと逆に導電性を損ね る結果となる。 前記 3価の元素を含有させる場合には、 内部の酸化亜鉛と表面に形成されたス ズ含有酸化ィンジゥムの少なくとも一方の酸ィ匕物に置換含有させることができる が、 より導電性を向上させるためには両方の酸ィ匕物に置換含有させることが好ま しく、 また 3価の元素としては、 アルミニウムを含有させることがより好ましい c 前記アル力リ溶液にはォキシアル力リァミンを加えても良い。 ォキシアルカリ アミンは、 アル力リ領域での p H緩衝剤であると同時に結晶成長制御剤としても 作用する。 この場合のォキシアル力リアミンとしては、 モノエタノールァミン、 トリエ夕ノールァミン、 イソブ夕ノ一ルァミン、 プロパノールァミン等が挙げら れるが、 中でも微粒子を得る上で、 結晶成長抑制剤となるモノエタノールァミン が最適である。
次に前記アル力リ溶液中に前記ィンジゥム塩水溶液を滴下して、 スズとィンジ ゥムの水酸ィ匕物あるいは水和物で被覆された亜鉛ィ匕合物 (沈殿物) を生成する。 この沈殿物を含む懸濁液の p Hを 4〜 1 2の範囲に調整し、 この懸濁液を 1 0〜 5 0 °Cの温度範囲において 1 0〜1 0 0時間熟成することが好ましい。 この p H 調整および熟成は、 この後の工程の水熱処理工程において、 比較的低い処理温度 で複合化酸化インジウム粒子を得る上で効果的である。 熟成時間は、 1 0時間よ り短いと、 熟成の効果は小さく、 一方、 長い場合は、 特に悪い影響は与えないが、 熟成の効果が飽和するため、 あまり意味がない。
(水熱処理)
スズとィンジゥムの水酸ィヒ物あるいは水和物で被覆された亜鉛化合物を含む懸 濁液に対し、 ォ一トクレーブ等を用いて水熱処理を行う。 この水熱処理において、 上記の沈殿物を含む懸濁液を水洗することにより、 上記沈殿物以外の生成物や残 存物を除去し、 その後、 N a O Hなどにより再度 p H調整しても良い。 この時の p Hの値は 4〜 1 2とすることが好ましい。 この p Hより低いと水熱処理時に水 酸化スズが再溶解したり、 また、 高すぎると粒子径分布が広くなつたり、 再溶解 することによりスズと亜鉛とインジウムさらにはアルミニウムなどが複合ィ匕せず に化合物となってしまうことがある。
水熱処理温度は、 1 1 0 °C〜3 0 0 °Cの範囲とすることが好ましい。 この温度 より低いと、 十分な結晶成長ができず、 またこの温度より高いと発生圧力が高く なるため、 装置が高価なものとなり、 メリヅトはない。
水熱処理時間は、 1時間から 4時間の範囲が好ましい。 水熱処理時間が短すぎ ると、 粒子の結晶成長が不十分になり、 水熱時間が長すぎても特に問題となるこ とはないが、 製造コストが高くなるだけで、 意味がない。
(加熱処理)
水熱処理後のスズとインジウムの水酸化物あるレ、は水和物で被覆された亜鉛化 合物は、 ろ過、 乾燥した後、 加熱処理を行うが、 ろ過する前に、 水洗により p H を 6〜 9付近の中性領域に調整しておくことが好ましい。 これは、 水洗により水 溶性の N aイオン、 あるいは、 ォキシアルカリアミンを加えた場合であればアミ ン含有物質が除去されるためである。 このような N aイオンゃァミン含有物質が 残存した状態で、 ろ過、 乾燥し、 加熱処理を行うと、 得られた粒子の導電性が低 下しやすいため、 前記 N aイオン等を極力除去しておくことが好ましい。
また、 上記のスズとィンジゥムの水酸ィ匕物あるいは水和物で被覆された亜鉛ィ匕 合物に、 さらに珪酸ナトリウムなどの珪素化合物を添加して、 シリカ処理を施こ しても良い。 このシリカ処理は、 最終生成物である複合化酸化インジウム粒子を 微粒子に保持する上で、 効果的である。 この処理により最終的に複合化酸ィ匕イン ジゥム粒子の表面にシリ力の被膜が形成されるため、 微粒子状態を保持するため にはシリ力は効果的であるが、 シリ力の被膜は複合化酸化ィンジゥム粒子の導電 性を低下させる傾向にあるため、 前記珪素化合物の添加量としては、 複合化酸ィ匕 インジウム粒子に対して、 0 . 1〜5重量%にすることが好ましい。
次に、 ろ過、 乾燥したスズとインジウムの水酸ィ匕物あるいは水和物で被覆され た亜鉛ィ匕合物に対して加熱処理を行う。 この加熱処理により複合化酸化ィンジゥ ム粒子とすることができる。加熱処理時の雰囲気は、 酸素濃度が 1 0 %以上であ れば特に限定されないが、 空気中加熱が、 最も製造コストがかからないため好ま しい。 加熱処理温度は、 3 0 0 °Cから 1 0 0 0 °Cの範囲が好ましい。 この温度よ り低いと、 被覆するスズ含有酸化インジウムにおいてスズが置換されにくく、 酸 化スズ、 酸化ィンジゥムと酸化亜鉛の混合物のような構造になったり、 あるいは 水酸化物の状態のまま酸化物へ変化しない場合があり、 十分な電気伝導性が得ら れにくい。 一方、 加熱処理温度が高すぎると、 粒子同士が焼結しやすくなるため、 得られた粒子を用いて塗料を作製する際に十分な分散性が得られにくくなり、 結 果、 該塗料を用いて塗膜を形成した場合に、 塗膜の透明性が低下しやすくなる。 この加熱処理後の複合化酸化ィンジゥム粒子を、 還元雰囲気中 1 5 0 °Cから 4 0 0 °Cの温度範囲で還元処理を行うことにより、 導電性を持つ黄灰色ないし青綠 白色の複合化酸化ィンジゥム粒子が得られる。
このようにして得られた複合化酸化インジゥム粒子は、 粒子径が 5 nmから 1 0 O nmの範囲であり、 透明導電膜用としては特に好ましい範囲である粒子径を 有する。粒子径がこれより小さいと、 粒子同士の凝集力が極端に強くなり、 分散 させることが困難となる。 また、 これより大きいと、 分散 .塗布した際に塗 j摸の 透明性が低下してしまう。 これらの理由から、 複合化酸ィ匕インジウム粒子の平均 粒子径は、 5〜; 1 0 O nmが好ましく、 1 0〜 6 0 nmがより好ましい。
(塗料 ·シートの作製)
本発明に係る導電性シートは、 結合剤と溶剤とを含んだ溶液中に、 上記のよう にして調製された複合化酸ィ匕ィンジゥム粒子を添加し、 これらを混合 ·分散して 導電性塗料を作製し、 これをシート状の 上に塗布することによって作製され る。 次に、 この導電性シートの作製について述べる。
基材としては、 例えば樹脂フィルムまたはシートを用いることができる。 樹脂 フィルムまたはシートは、 例えば、 飽和ポリエステル系樹 S旨、 ポリカーボネート 系樹脂、 ポリアクリル酸エステル系樹脂、 脂環式ポリオレフイン系樹脂、 ポリス チレン系樹脂、 ポリ塩化ビニル系樹脂、 ポリ酢酸ビニル系樹脂等の樹脂を、 押し 出し成形、 カレンダ成形、 圧縮成形、 または射出成形等により溶融成形する方法 や、 溶剤に溶解させてキャスティングする方法等の公知の方法により、 製造する ことができる。基材の厚みは 1 0 m〜 5雇程度であることが好ましい。 なお、 これらの基材に、 酸化防止剤、 難燃剤、 耐熱防止剤、 紫外線吸収剤、 易滑剤、 帯 電防止剤等の添加剤が添加されていてもよい。 さらに、 膜の密着性を向上させる ために、 基材表面に易接着層 (プライマ一) を設けたり、 またはコロナ処理、 プ ラズマ処理などの公知の表面処理を行つても良い。
複合化酸化ィンジゥム粒子と結合剤とを含んだ分散体を作製する際の分散機は、 特に限定されるものではなく、 三本ロールミル、 ボールミル、 ペイントシエイカ ―、 超音波分散等、 公知の分散機が使用できる。
複合化酸化インジウム粒子と結合剤の比率は、 塗料中の固形分の重量含率 5 0 〜9 9 %が好ましく、 より好ましくは 7 0〜9 2 % (すなわち、 結合剤 1 0 0重 量部に対して、 複合化酸ィ匕インジウム粒子が 1 0 0〜9 9 0 0重量部が好ましく、 より好ましくは 2 3 0〜1 1 5 0重量部) である。 重量含率が 5 0 %より低いと、 粒子同士の接触確率が低下し導電パスの形成がなされにくいため、 導電性が低下 すると共に、 粒子が膜中の十分な物理的体積を占めることができないために、 紫 外線遮蔽性も低下する。 一方、 重量含率が 9 9 %以上になると、 結合剤と粒子の 結着性が低下し、 粉落ちや膜のひび割れが生じたり、 塗膜と基材との密着性の低 下が生じたりし、 結果として塗膜としての導電性が低下する。 また、 複合ィ匕酸ィ匕 インジウム粒子と共に、 他の導電性物質 (例えば、 Au、 A gなどの金属、 金属 コロイド、 カーボンナノチューブ等) を、 結合剤中に光学特性が低下しない程度 に添加した場合でも、 導電性物質の重量含率は、 上記の範囲であることが好まし い。
結合剤 (高分子バインダ) としては、 分散を阻害しないのであれば水系、 非水 系を問わず、 あらゆる結合剤を使用することができる。例えば、 アクリル樹脂、 ポリウレ夕ン、 ポリ塩化ビニル、 エポキシ樹脂、 ポリエステル、 ポリ酢酸ビニル、 ポリスチレン、 セルロース、 ポリビニルアルコール、 ポリプチラール等およびこ れらの樹脂を共重合させた樹脂を使用することができる。 また、 必要に応じて官 能基を有した結合剤や、 ポリチォフェン誘導体 ( P E D O T ) 、 N、 N—ジ (ナ フタレン一 1一二ル) 一 N、 N—ジフエニル一ペンジデン誘導体 (N P B ) ヽ ポ リ[ 2—メトキシ一 5— ( 2, ーェチルへキシルォキシ) 一 1、 4—フエ二レン ビニレン] (ME H— P P V) などの導電性高分子材料を使用することも可能で ある。 また、 塗料安定性を高めるために、 光学特性および導電性に影響がない程 度に公知の分散剤、 界面活性剤、 レべリング剤等を添加しても良い。
導電性塗料に使用する溶剤としては例えば、 アセトン、 メチルェチルケトン、 メチルイソプチルケトン、 ジイソプチルケトン、 シクロへキサノン、 イソホロン、 テトラヒドロフラン等のケトン類、 メタノール、 エタノール、 プロパノール、 プ 夕ノール、 イソプチルアルコール、 イソプロピルアルコール、 メチルシクロへキ サノールなどのアルコール類、 酢酸メチル、 酢酸プチル、 酢酸イソプチル、 酢酸 イソプロピル、 乳酸ェチル、 酢酸グリコ一ル等のエステル類、 グリコールジメチ ルエーテル、 グリコ一ルモノェチルエーテル、 ジォキサンなどのグリコールェ一 テル系、 ベンゼン、 トルエン、 キシレン、 クレゾ一ル、 クロルベンゼン等の芳香 族炭化水素類、 メチレンクロライ ド、 エチレンクロライ ド、 四塩化炭素、 クロ口 ホルム、 エチレンクロルヒドリン、 ジクロルべンゼン等の塩素化炭化水素類、 N, N—ジメチルホルムアミ ド、 へキサン等を挙げることができる。 これらは単独で、 もしくは任意の比率で混合して使用できる。
上記のような複合化酸化ィンジゥム粒子と結合剤と溶剤とを含有してなる塗料 をシート状の基材上に塗布することにより、 紫外線遮蔽性をもった透明な導電性 塗膜を表面に有する導電性シート (透明な基材を使用した場合には透明な導電性 シート) が得られる。 この場合の塗工法としては、 公知の塗工法 (ロールコート、 ダイコート、 エアナイフコート、 ブレードコート、 スピンコート、 リバ一スコー ト、 グラビアコート、 マイクログラビアコート) や印刷法 (グラビア印刷、 スク リーン印刷、 オフセット印刷、 インクジェヅト印刷) 等を用いることができる。 塗膜の乾燥膜厚は、 50 nm~ 15〃mが好ましく、 500nm〜5〃mがよ り好ましい。 乾燥膜厚が 5 Onmより薄いと十分な導電性、 紫外線遮蔽性が得ら れず、 15 m以上になると、 塗膜の可視光透過率が悪くなり透明性が低下した り、 塗膜にひび割れが生じる恐れがあるため、 好ましくない。
また、 作製した塗膜に対してカレンダ処理を施すことにより、 塗膜の導電性、 可視光透明性を向上させることできる。 その場合のカレンダ処理条件は、 処理速 度 lm/分〜 30 m/分、 熱処理温度は、 樹脂 (前記結合剤として使用した樹 脂) のガラス転移温度 (Tg) に対し、 Tg±50°Cの範囲内、 加圧条件は面 圧力 9.8x104〜 9.8X106 Pa (1-100 kg/cm2 ) の範囲である。 以下、 本発明の実施例および比較例について説明する。 なお、 以下の実施例お よび比較例における 「部」 は、 特に断らない限り 「重量部」 を示す。
実施例 1
(複合化酸化ィンジゥム粒子の作製)
15.4 gの水酸ィ匕ナトリウムを 80 Omlの水に溶解した後、 このアルカリ溶 液に 3 gの塩化スズ (IV) 五水和物を溶解し、 アルカリ水溶液を調整した。 この アルカリ水溶液に、 1 3 gの酸化亜鉛粉末を混合した。 これとは別に、 3 5 gの 塩化インジウム (III)四水和物を 4 0 0 m lの水に溶解して、 塩化インジウムの 水溶液を作製した。前者のスズイオンと酸ィヒ亜鉛とを含むアルカリ水溶液に、 後 者の塩化ィンジゥム溶液を滴下して、 スズとインジウムの水酸化物あるいは水和 物で被覆された酸ィ匕亜鉛の沈殿物を作製した。 このときの p Hは 8. 8であった。 さらに、 このスズとィンジゥムの水酸化物あるいは水和物で被覆された酸ィ匕亜鉛 の沈殿物を室温で懸濁液の状態で約 2 0時間熟成させた。
次に、 この沈殿物を含む懸濁液に水酸ィ匕ナトリウムの水溶液を添加して、 p H を 1 0 . 0に再調整し、 オートクレープに仕込み、 1 8 0 °Cで 4時間、 水熱処理 を施した。
得られた水熱処理生成物を P H7. 8になるまでろ過洗浄し、 9 0 °Cで空気中乾 燥した後、 乳鉢で軽く解砕し、 空気中 6 0 0 °Cで 2時間の加熱処理後、 2 5 0 °C、 水素雰囲気中で還元処理を行って酸化亜鉛とスズ含有酸化ィンジゥムとの複合化 粒子である複合化酸化ィンジゥム粒子とした。
得られた複合化酸化ィンジゥム粒子について、 透過型電子顕微鏡で形状観察を 行ったところ、 粒子径が 2 0〜3 0 nmの粒子であることがわかった。 この粒子 の組成は、 仕込み量から (Z n O) 0.5 ( I T O) 0.5で表される。 また、 蛍光 X 線分析法で調べた粒子中の亜鉛およびスズの含有量はそれぞれ、 5 0 mol %およ び 5mol %で、 ェ T O中のスズ濃度は 1 Omol %であった。
図 1に、 この複合化酸ィ匕インジウム粒子の X線回折スペクトルを示し、 図 2に 該粒子を 3 0万倍で撮影した透過型電子顕微鏡写真を示す。 透過型電子顕微鏡写 真による粒子形状が均一であるのに対し、 X線回折スぺクトルは酸化インジウム と酸化亜鉛との 2相から構成されていることを示しており、 スズ含有酸化ィンジ ゥムが酸化亜鉛を被覆していることがわかる。
(塗膜作製)
次に、 この複合ィ匕酸ィ匕ィンジゥム粒子粉を用い、 以下の塗布液成分を攪拌、 混 合した後、 ペイントシエイカ一を用いて 2 5分間分散させて塗布液を調整した。
•複合化酸化ィンジゥム粒子 8 5部 •ポリメ夕クリル酸メチルァクリレート 1 5部
(三菱レイヨン (株) 製 B R 1 1 3 )
•メチルェチルケトン 5 0部
• トルエン 5 0部
この塗布液をポリエチレンテレフ夕レート (P E T ) 製の透明なシート状の基 材に、 バーコ一夕一を使用して乾燥後の厚さが 3〃mになるように塗布し、 乾燥 させることにより、 表面に紫外線遮蔽導電性塗膜を有する導電性シートを作製し た。
実施例 2
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 アル力リ水溶液に 酸ィ匕亜鉛を混合せずに、 亜鉛に対して l Omol %のアルミニウムで置換されたァ ルミニゥム置換酸ィ匕亜鉛を混合して、 アルカリ水溶液を調整した以外は、 実施例 1と同様にして、 スズとィンジゥムの水酸ィ匕物あるいは水和物で被覆されたアル ミニゥム置換酸化亜鉛を含有する沈殿を生成させ、 水洗、 ろ過、 乾燥後、 加熱処 理、 還元処理して、 複合化酸化インジウム粒子を作製した。 この粒子の組成は、 仕込み量から { ( Z n0.9 A l o. i ) 0} 0.5 ( I T O ) 。.5 で表される。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミニウムおよびスズの含有量はそれぞ れ、 4 5mol % 5mol %、 5mol %で、 I T O中のスズ濃度は 1 Omol %であ つた。
この複合化酸化インジウム粒子について、 X線回折スペクトルを測定したとこ ろスズ含有酸ィ匕ィンジゥムとアルミ二ゥム置換酸化亜鉛の 2相になっていること がわかった。 さらに、 透過電子顕微鏡観察を行ったところ実施例 1と同様、 粒子 径が 2 0〜3 O nmの一様な粒子であったことから、 実施例 1と同様に、 スズ含 有酸化ィンジゥムがアルミニゥム置換酸化亜鉛を被覆していることがわかった。 次に、 この複合ィ匕酸ィ匕ィンジゥム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3〃mの導電性塗膜を有する導電性シ一トを作製した。
実施例 3
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 24. 7 gの水酸ィ匕 ナトリウムを 8 0 0 m lの水に溶解した後、 このアル力リ溶液に 4. 8 gの塩化ス ズ (IV)五水和物を溶解し、 アルカリ水溶液を調整した。 このアルカリ水溶液に、 1 3 gの酸化亜鉛粉末を混合する代わりに、 亜鉛に対して 1 Omol %のアルミ二 ゥムで置換されたアルミニウム置換酸ィ匕亜鉛を 5 g混合した。 これとは別に、 5 6. 1 gの塩化インジウム (III )四水和物を 4 0 0 m lの水に溶解して、 塩化イン ジゥムの水溶液を作製した後、 実施例 1と同様にして、 スズとインジウムの水酸 化物あるいは水和物で被覆されたアルミニウム置換酸ィ匕亜鉛を含有する沈殿を生 成させ、 水洗、 ろ過、 乾燥後、 加熱処理、 還元処理して、 複合化酸化インジウム 粒子を作製した。 この粒子の組成は、 仕込み量から { ( Z n0.9 A l o.i ) 0} 0.2 ( I T O) 0.8で表される。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 ァ ルミニゥムおよびスズの含有量はそれぞれ、 1 8mol %、 2mol %、 8mol %で、 I T〇中のスズ濃度は 1 Omol %であった。
この複合化酸化インジウム粒子について、 X線回折スぺクトルを測定したとこ ろスズ含有酸化インジウムとアルミニウム置換酸化亜鉛の 2相になっていること がわかった。 さらに、 透過型電子顕微鏡観察を行ったところ、 実施例 1と同様、 粒子径が 2 0〜3 O nmの一様な粒子であったことから、 実施例 1と同じくスズ 含有酸化ィンジゥムがアルミニウム置換酸化亜鉛を被覆していることがわかった。 次に、 この複合化酸ィ匕インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3 mの導電性塗膜を有する導電性シートを作製した。
実施例 4
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 アル力リ水溶液に
0 . 3 2 gの水酸ィ匕酸ィ匕アルミニウムを混合し、 アル力リ水溶液を調整した以外 は実施例 1と同様にして、 スズ、 インジウムおよびアルミニウムから成る水酸ィ匕 物あるいは水和物に被覆された酸化亜鉛の沈殿物を作製した後、 熟成、 水熱処理 を行い、 ろ過洗浄、 乾燥、 加熱処理、 還元処理して、 複合化酸ィ匕インジウム粒子 を作製した。 この粒子の組成は、 仕込み量から ( Z n O) 0.5 { ( I T O ) 0.96A l o.oJ 0.5で表される。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミ ニゥムおよびスズの含有量はそれぞれ、 5 Omol %、 2mol %、 4. 8mol %で、 I T O中のスズ濃度は 1 Omol %であった。
この複合化酸ィ匕ィンジゥム粒子について、 透過型電子顕微鏡観察を行ったとこ ろ、 粒子径が 2 0〜3 O nmの一様な粒子であった。 さらに、 X線回折スぺクト ルを測定したところ、 実施例 1と同様のスぺクトルが得られ、 アルミニウムに関 するピークが独立して見られなかったことから、 スズ含有酸化ィンジゥム粒子が アルミニウムで置換され、 アルミニウム置換スズ含有酸化ィンジゥムで酸化亜鉛 が被覆されていることがわかった。
次に、 この複合化酸化ィンジゥム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3 mの導電性塗膜を有する導電性シートを作製した。
実施例 5
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 アル力リ水溶液に 酸化亜鉛を混合せずに、 1 Omol %のアルミニウムで置換されたアルミニウム置 換酸化亜鉛を混合し、 さらに 0 . 3 2 gの水酸ィ匕酸ィ匕アルミニウムを混合し、 ァ ルカリ水溶液を調整した以外は実施例 1と同様にして、 スズ、 インジウムおよび アルミニウムから成る水酸化物ある 、は水和物で被覆されたアルミニウム置換酸 化亜鉛の沈殿物を作製した後、 熟成、 水熱処理を行い、 ろ過、 洗浄、 乾燥、 加熱 処理、 還元処理して、 複合ィ匕酸ィ匕インジウム粒子を作製した。 この粒子の組成は、 仕込み量から { ( Z n0.9 A l o.i ) 0} 0.5 { ( I T O ) 6Α 10.04} 0.5 で表され る。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミニウムおよびスズの 含有量はそれぞれ、 4 5 mol %、 7 mol %、 4. 8mol %で、 I T O中のスズ濃度 は 1 Omol %であった。
この複合化酸化インジウム粒子について、 X線回折スベクトルを測定したとこ ろ、 実施例 2と同様のスペクトルが得られ、 アルミニウムに関するピークが独立 して見られないことから、 アルミニウム置換スズ含有酸ィ匕ィンジゥムとアルミ二 ゥム置換酸ィ匕亜鉛の 2相になっていることがわかった。 さらに、 透過型電子顕微 鏡観察を行つたところ、 粒子径が 2 0〜 3 0 nmの一様な粒子であつたことから、 アルミニウム置換スズ含有酸ィ匕ィンジゥムで被覆されたアルミニウム置換酸ィ匕亜 鉛粒子が得られたことがわかった。
次に、 この複合化酸ィ匕ィンジゥム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3 mの導電性塗膜を有する導電性シ一トを作製した。
実施例 6 実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 24. 7 gの水酸化 ナトリウムを 8 0 0 m lの水に溶解した後、 このアル力リ溶液に 4. 8 gの塩化ス ズ ( IV)五水和物を溶解し、 アル力リ水溶液を調整した。 このアル力リ水溶液に、 1 3 gの酸化亜鉛粉末を混合する代わりに、 亜鉛に対して 1 Oinol %のアルミ二 ゥムで置換されたアルミニウム置換酸化亜鉛を 5 g混合し、 さらに 0 . 5 l gの 水酸化酸化アルミニウム粉末を混合した。 これとは別に、 56. 1 gの塩化インジ ゥム (III )四水和物を 4 0 0 m lの水に溶解して、 塩化ィンジゥムの水溶液を作 製した後、 実施例 1と同様にして、 スズとインジウムの水酸化物あるいは水和物 で被覆されたアルミニウム置換酸ィ匕亜鉛を含有する沈殿を生成させ、 水洗、 ろ過、 乾燥後、 加熱処理、 還元処理して、 複合化酸ィ匕インジウム粒子を作製した。 この 粒子の組成は、 仕込み量から { ( Ζ η。·9 A l o.i ) 0} 0.2 { ( I T O) 。.g6A l 0.04} 0.8で表される。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミ二 ゥムおよびスズの含有量はそれぞれ、 1 8mol %、 5. 2mol %であり、 スズ含有 量は 7 . 7 mol %で、 I T O中のスズ濃度は 1 Omol %であった。
この複合化酸ィ匕インジウム粒子について、 X線回折スペクトルを測定したとこ ろアルミ二ゥム置換スズ含有酸化ィンジゥムとアルミ二ゥム置換酸化亜鉛の 2相 になっていることがわかった。 さらに、 透過電子顕微鏡観察を行ったところ実施 例 1と同様、 粒子径が 2 0〜3 O nmの一様な粒子であったことから、 アルミ二 ゥム置換スズ含有酸化インジウムで被覆されたアルミニウム置換酸化亜鉛粒子が 得られたことがわかった。 この複合化酸化インジウム粒子の透過型電子顕微鏡写 真を図 3に示す。
次に、 この複合ィ匕酸化インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3〃mの導電性塗膜を有する導電性シートを作製した。
実施例 7
実施例 1の複合ィ匕酸ィ匕ィンジゥム粒子の合成方法において、 スズイオンと酸化 亜鉛を含むアル力リ水溶液に塩化ィンジゥム溶液を滴下して、 スズとィンジゥム の水酸化物あるいは水和物で被覆された酸化亜鉛の沈殿物を作製し、 これを室温 で懸濁液の状態で約 2 0時間熟成させる代わりに、 9 0 °Cで懸濁液の状態で約 2 0時間熟成させた。 次に、 この沈殿物の懸濁液に水酸ィ匕ナトリウムの水溶液を添加して、 11を1 0.0に調整する代わりに 13.0に調整し、 オートクレープに仕込み、 180°C で 4時間、 水熱処理を施した以外は、 実施例 1と同様にして、 スズとインジウム の水酸化物あるいは水和物で被覆されたアルミニウム置換酸化亜鉛を含有する沈 殿物を生成させ、 水洗、 ろ過、 乾燥後、 加熱処理、 還元処理して、 複合化酸化ィ ンジゥム粒子を作製した。 この粒子の組成、 および蛍光 X線分析法で調べた粒子 中の、 亜鉛、 アルミニウムおよびスズの含有量は、 実施例 1と同じであった。 この複合化酸化インジウム粒子について、 X線回折スぺクトルを測定したとこ ろ、 実施例 1と同様、 スズ含有酸ィ匕インジウムとアルミニウム置換酸ィ匕亜鉛の 2 相になっていることがわかった。 さらに、 透過電子顕微鏡観察を行ったところ、 粒子径が 50〜60 nmの一様な粒子であったことから、 スズ含有酸化ィンジゥ ムがアルミニゥム置換酸ィ匕亜鉛を被覆していることがわかった。
次に、 この複合化酸ィ匕インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3 /mの導電性塗膜を有する導電性シートを作製した。
実施例 8
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 アル力リ水溶液に 酸化亜鉛を混合せずに、 1 Omol %のアルミニウムで置換されたアルミニウム置 換酸化亜鉛を混合し、 さらに 0.32 gの水酸ィ匕酸化アルミニウムを混合し、 ァ ルカリ水溶液を調整し、 実施例 1と同様にして、 スズ、 インジウムおよびアルミ ニゥムから成る水酸化物あるレヽは水和物で被覆されたアルミニウム置換酸化亜鉛 の沈殿物を作製した後、 懸濁液の p Hを 5.0に調整し、 室温で 20時間熟成を 行い、 pH 5.0の条件下で水熱処理を行い、 ろ過、 洗浄、 乾燥、 加熱処理、 還 元処理して、 複合化酸ィ匕インジウム粒子を作製した。 この粒子の組成は、 仕込み 量から { (Zn0.g Al0.! ) 〇}。·5 { (I TO) 。.96A10.M} 0.5で表される。 ま た、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミニウムおよびスズの含有量 はそれぞれ、 45mol %s 7mol %、 4.8mol %で、 I TO中のスズ濃度は 1 Omol %であった。
この複合化酸ィ匕インジウム粒子について、 X線回折スぺクトルを測定したとこ ろ、 実施例 2と同様のスペクトルが得られ、 アルミニウムに関するピークが独立 して見られないことから、 アルミニウム置換スズ含有酸化ィンジゥムとアルミ二 ゥム置換酸ィ匕亜鉛の 2相になっていることがわかった。 さらに、 透過型電子顕微 鏡観察を行つたところ、 粒子径が 4 0〜 5 0 n mの一様な粒子であったことから、 アルミニウム置換スズ含有酸化インジウムで被覆されたアルミニウム置換酸化亜 鉛粒子が得られたことがわかった。
次に、 この複合化酸化インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3 mの導電性塗膜を有する導電性シ一トを作製した。
実施例 9
実施例 6の複合化酸ィ匕ィンジゥム粒子の合成方法において、 アル力リ溶液の温 度を 6 0 °Cに保ったままスズとィンジゥムの水酸ィ匕物あるいは水和物で被覆され たアルミニウム置換酸化亜鉛を含有する沈殿物を生成させた後、 懸濁液の p Hを 5. 0に調整し、 室温で熟成し、 水熱処理を施した以外は実施例 6と同様にして、 水洗、 ろ過、 乾燥後、 加熱処理、 還元処理して、 複合化酸化インジウム粒子を作 製した。 この粒子の組成は、 仕込み量から { ( Z n0.9 A l o.i ) 〇} 0.2 { ( I T 0 ) 。.96A 1 4} 0.8 で表される。 また、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミニウムおよびスズの含有量はそれぞれ、 1 8mol %、 5. 2mol %であり、 スズ含有量は 7 . 7mol %で、 I T〇中のスズ濃度は 1 Omol %であった。
この複合化酸ィ匕インジウム粒子について、 X線回折スぺクトルを測定したとこ ろアルミニウム置換スズ含有酸化ィンジゥムとアルミニウム置換酸化亜鉛の 2相 になっていることがわかった。 さらに、 透過電子顕微鏡観察を行ったところ、 粒 子径が 4 0〜6 O nmの一様な粒子であったことから、 アルミニウム置換スズ含 有酸化ィンジゥムで被覆されたアルミ二ゥム置換酸ィ匕亜鉛粒子が得られたことが わかった。
次に、 この複合化酸化インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3〃mの導電性塗膜を有する導電性シートを作製した。
[比較例 1 ]
実施例 1の複合化酸ィ匕ィンジゥム粒子の合成方法において、 あらかじめ塩化ス ズを溶解したアルカリ溶液に、 塩ィ匕インジウム溶液を滴下し、 スズとインジウム を含む水和物あるいは水酸化物を熟成後、 水熱処理を行い実施例 1と同様にして、 ろ過洗浄、 乾燥した後、 加熱処理、 還元処理して、 スズ含有酸化インジウム粒子 を作製した。
このスズ含有酸化ィンジゥム粒子は、 X線回折の結果から、 スズ含有酸化イン ジゥムとなっていることが認められ、 透過型電子顕微鏡観察を行ったところ、 粒 子径が 4 0〜 7 0 nmの四角板状の粒子であった。 また、 蛍光 X線分析法により 調べたスズ含有量は 1 Omol %であった。
次に、 この粒子を用い、 実施例 1と同様にして表面に乾燥後の厚さが 3 / mの 導電性塗膜を有する導電性シートを作製した。
[比較例 2 ]
5 3 gの水酸化ナトリウムを 6 4 0 m 1の水に溶解してアル力リ水溶液を調整 した。 これとは別に、 9 0 gの塩ィ匕亜鉛を 3 2 0 m lの水に溶解して、 塩化亜鉛 の水溶液を作製した。前者のアルカリ水溶液に、 後者の塩化亜鉛溶液を滴下して、 亜鉛の水酸化物あるいは水和物の沈殿物を作製した。 このときの p Hは 12. 3で あった。 さらに、 この亜鉛の水酸化物あるいは水和物の沈殿物を室温で懸濁液の 状態で約 2 0時間熟成させた後、 水酸化ナトリゥムの水溶液を添加して、 p Hを 1 2 . 5に再調整し、 ォ一トクレーブに仕込み、 1 8 0 °Cで 4時間、 水熱処理を 施した。得られた水熱処理生成物を p H 7 . 8になるまでろ過洗浄し、 9 0 °Cで 空気中乾燥したのち乳鉢で軽く解砕し、 空気中 6 0 0 °Cで 2時間の加熱処理を行 つて酸ィ匕亜錯粒子とした。
次に、 前記で得られた酸化亜鉛粒子と、 比較例 1で得られたスズ含有酸化イン ジゥム粒子とを、 モル比で 1対 1となるように混合し、 酸化亜鉛とスズ含有酸化 インジウムの混合粉を作製した。 蛍光 X線分析法で測定した構成元素量は、 実施 例 1の結果と同様であった。
次に、 この酸化亜鉛粒子とスズ含有酸ィ匕インジウム粒子との混合粉を用い、 実 施例 1と同様にして表面に乾燥後の厚さが 3〃mの導電性塗膜を有する導電性シ ートを作製した。
[比較例 3 ]
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 アル力リ水溶液に 塩ィ匕スズを溶解せずに、 アルカリ水溶液を調整した以外は、 実施例 1と同様にし て、 ィンジゥムから成る水酸化物あるいは水和物に被覆された酸化亜鉛の沈殿物 を作製した後、 熟成、 水熱処理を行い、 ろ過洗浄、 乾燥、 加熱処理、 還元処理し て、 複合化酸化インジウム粒子を作製した。 この粒子の組成は、 仕込み量から ( Z n O ) 0.5 ( I n 03/2 ) 0.5で表されると考えられる。 また、 蛍光 X線分析 法で調べた粒子中の、 亜鉛の含有量は 5 0mol %であった。
この複合化酸化ィンジゥム粒子について、 透過型電子顕微鏡観察を行ったとこ ろ、 粒子径が 2 0〜3 0 nmの一様な粒子であった。 さらに、 X線回折スぺクト ルを測定したところ、 酸化亜鉛と酸ィ匕インジウムの 2相から構成されていた。 次に、 この複合化酸化インジウム粒子を用い、 実施例 1と同様にして表面に乾 燥後の厚さが 3〃mの導電性塗膜を有する導電性シ一トを作製した。
[比較例 4 ]
実施例 1の複合化酸化ィンジゥム粒子の合成方法において、 酸化亜鉛の代わり に、 4 0mol %のアルミニウムで置換されたアルミニウム置換酸ィ匕亜鉛を混合し、 さらに 3. 2 gの水酸化酸化アルミニウムを混合して、 アル力リ水溶液を調整した 以外は、 実施例 1と同様にして、 スズとインジウムの水酸化物あるいは水和物で 被覆されたアルミニウム置換酸ィ匕亜鉛を含有する沈殿物を生成させ、 水洗、 ろ過、 乾燥後、 加熱処理、 還元処理して、 粒子を作製した。 この粒子の組成は、 仕込み 量から { ( Z n0.6 A l o.4 ) 0 } 0.5 { ( I T O ) 。.6 A l o.4 } D.5で表される。 ま た、 蛍光 X線分析法で調べた粒子中の、 亜鉛、 アルミニウムおよびスズの含有量 はそれぞれ、 3 Omol %、 4 O mol %、 3mol %で、 I T O中のスズ含有量は 1 O mol %であった。
この粒子について、 X線回折スぺクトルを測定したところスズ含有酸化インジ ゥムとアルミニウム置換酸ィ匕亜鉛に加えて、 ァー酸ィ匕アルミニウムの構造が現れ、 3相に分離していることがわかった。 さらに、 透過型電子顕微鏡観察を行ったと ころ、 実施例 1と同様の粒子径が 2 0〜3 O nmの粒子と、 酸化アルミニウムと 見られる粒子径 4 0〜5 0 nmの四角板状粒子との混合物であつた。
次に、 この粒子を用いて、 実施例 1と同様にして表面に乾燥後の厚さが 3〃 m の導電性塗膜を有する導電性シートを作製した。
表 1に、 上記の各実施例および比較例で得られた粒子の構成をまとめて示す。 表 1
Figure imgf000026_0001
注) * 1 : ITO:スズ含有酸化ィンジゥム。
*2: AZ0:アルミニウム置換酸化亜鉛 ( — XA1X0)。
*3: A1-IT0: アルミニウム置換スズ含有酸化ィンジゥム。
《評価》
(粉末体積抵抗率)
各実施例および比較例でそれぞれ得られた粒子について、 体積抵抗率を調べた 体積抵抗率は、 三菱化学株式会社製の口レス夕 P Aシステム (MCP— PD4 1) を用いて、 四端子法により測定した。 測定条件は、 粉体密度 2.7 gZcm3 - 容器内径 2 cm ·端子間距離 3腿である。
(塗膜表面抵抗率)
各実施例および比較例でそれぞれ得られた導電性シートにおける導電性塗膜に ついて、 表面抵抗率 (J I S K7194- 1994準拠) を調べた。 表面抵抗 率は、 三菱化学株式会社製の口レス夕 APシステム (MCP-PD41) を用い て、 四端子法により測定した。 光透過率の波長依存性を調べるため、 実施例 5で得られた導電性塗膜について、 上記の表面抵抗率評価の際に用いた塗膜と同様のものを用いて、 光の波長 2 0 0 〜2 5 0 0 nmの範囲における光透過率スぺクトルを、 分光光度計 (日本分光社 製 ru b e s t V - 5 7 0型」 ) を用いて測定した。 この光透過率スぺクトル を図 4に示す。
また、 各実施例および比較例でそれぞれ得られた導電性シートにおける導電性 塗膜について、 上記と同様の測定を行い波長 2 0 0〜2 5 0 0 nmの範囲におけ る光透過率スぺクトルを測定した後、 その光透過率スぺクトル中、 波長 3 5 0 η mにおける透過率の値を読み取つた。
表 2に、 以上の測定結果をまとめて示す。表 2では、 体積抵抗率の値が小さい ほど、 導電性が高いことを示しており、 導電性塗膜として優れていることを示し ている。 また、 紫外線透過率 (表 2では「3 5 0 nm透過率」 と記載した) の値 が小さいほど、 紫外線遮蔽性に優れていることを示している。従って、 体積抵抗 率、 紫外線透過率、 共に値が小さいものが優れた特性を持つ。
表 2
複合ィ匕酸ィ匕インジウム
Figure imgf000027_0001
注) *比較例 3は、 複合ィ匕粒子の組成中 IT0ではなく(In203)1/2となり、 スズを 含まない。 表 2から明らかなように、 各実施例で得られた複合化酸化ィンジゥム粒子は、 比較例 1で得られたスズ含有酸化ィンジゥム粒子単体の場合と比べて、 酸化亜鉛 が含まれているために紫外線遮蔽効果が現れている。
また、 各実施例で得られた複合化酸化インジウム粒子は、 比較例 2で得られた スズ含有酸化ィンジゥム粒子および酸ィ匕亜鉛を単に混合した粒子や、 比較例 3で 得られたスズを含有しない複合化酸化ィンジゥム粒子、 比較例 4で得られた酸ィ匕 アルミニウムと複合化酸ィ匕ィンジゥム粒子との混合物に比べて、 紫外線遮蔽性に については大きな変化が見られないものの、 導電性については飛躍的に高い値を 示す。 これは、 比較例 2においては、 酸ィ匕インジウムと酸ィ匕亜鉛とが複合化する ことなく独立に存在しているために、 絶縁体である酸化亜鉛が、 粉末中の電気伝 導を妨げ、 各実施例における複合化酸化ィンジゥム粒子の場合と比べて導電性が 低下したと考えられる。
比較例 3では、 酸化インジウムにスズが置換されていないために、 被覆体であ る酸ィ匕インジウムに導電性が現れず、 そのため、 生成した粒子においても導電性 が現れていない。 比較例 4においては、 置換するアルミニウムの量が多すぎたた め、 余剰アルミニウムが酸化アルミニウムとして析出し、 導電性が損なわれる結 果となっている。 一方、 各実施例の粒子においては、 スズ含有酸化インジウムで 酸化亜鉛を被覆することにより、 異種粒子が電気伝導を妨げることもなく、 表面 のスズ含有酸ィ匕インジウムを伝い電気伝導が起こる。 さらには、 適量のアルミ二 ゥム置換により、 従来のスズ含有酸ィ匕インジウム粒子単体 (比較例 1 ) の場合と 同等以上の導電率を保つことが可能となった。

Claims

請 求 の 範 囲
1 . 平均粒子径が 5 nm以上 1 0 0 nm以下である、 スズおよび亜鉑を含有す る複合化酸化ィンジゥム粒子。
2 . 平均粒子径が 5 nm以上 1 0 0 nm以下であり、 酸化亜鉛とスズ含有酸化 インジウムとを含んでなる複合化酸化ィンジゥム粒子。
3 . 平均粒子径が 5 nm以上 1 0 0 nm以下であり、 それぞれの結晶構造を保 持した酸化亜鉛とスズ含有酸化ィンジゥムとを含んでなり、 圧力 14. 7 M P a
( 1 5 O k g f /cm2 ) 下の圧粉体の体積抵抗率が 1 0— 3〜 1 0 Ω cmであること を特徴とする複合化酸化ィンジゥム粒子。
4 . 酸化亜鉛がスズ含有酸ィ匕インジウムで被覆されている、 請求項 2または 3 記載の複合化酸ィ匕ィンジゥム粒子。
5 . 酸化亜鉛の含有量が 5〜7 Omol %である、 請求項 2〜4のいずれかに記 載の複合化酸化ィンジゥム粒子。
6 . スズ含有酸化インジウム相に含まれるスズの含有量が 3〜3 Omol %であ る、 請求項 2〜 5のいずれかに記載の複合化酸化インジウム粒子。
7 . 酸化亜鉛およびスズ含有酸化ィンジゥムの少なくとも一方に含まれる金属 元素の一部がアルミニウムおよびガリウムからなる群から選ばれる少なくとも 1 種の元素により置換されている、 請求項 2〜 6のいずれかに記載の複合化酸化ィ ンジゥム粒子。
8 . アルミニウムおよびガリウムからなる群からら選ばれる少なくとも 1種の 元素の含有量が 0〜 3 Omol %である、 請求項 7記載の複合化酸化インジウム粒 子。
9 . 酸ィ匕亜鉛中の亜鉛原子の一部がアルミニゥムおよびガリウムからなる群か ら選ばれる少なくとも一種の元素により置換されており、 当該置換元素の含有量 が、 酸ィ匕亜鉛相中の亜鉛元素に対して 0〜3 O mol %である、 請求項 7記載の複 合化酸化インジウム粒子。
1 0 . スズ含有酸化ィンジゥム中のスズまたはィンジゥム原子の一部がアルミ ニゥムおよびガリウムからなる群から選ばれる少なくとも一種の元素により置換 されており、 当該置換元素の含有量が、 スズ含有酸化インジウム相中のスズおよ びインジウム元素の総量に対して 0〜1 Omol %である、 請求項 7記載の複合ィ匕 酸化インジウム粒子。
1 1 . 溶解されたスズ塩を含むアルカリ水溶液に、 亜鉛を主成分とする亜鉛化 合物を加え、 この亜鉛化合物含有スズ塩水溶液にィンジゥム塩の水溶液を添カロし、 得られたスズとインジウムの水酸化物あるいは水和物の沈殿物を含む懸濁液の p Hを 4〜1 2の範囲になるように調整した後、 該懸濁液を水の存在下で 1 1 0 ~ 3 0 0 °Cの温度範囲で加熱処理し、 ろ過、 乾燥後、 さらに空気中 3 0 0〜1 0 0 0 °Cの温度範囲で加熱処理し、 次いで、 還元雰囲気中 1 5 0〜4 0 0 °Cの温度範 囲で加熱処理することを特徴とする、 複合化酸化ィンジゥム粒子の製造方法。
1 2 . 前記亜鉛ィ匕合物含有スズ塩水溶液にインジウム塩の水溶液を添加するェ 程において、 さらにアルミニウム化合物およびガリウム化合物からなる群から選 ばれた少なくとも 1種の化合物を、 亜鉛ィ匕合物含有スズ塩水溶液に添カ卩する、 請 求項 1 1記載の複合化酸化ィンジゥム粒子の製造方法。
1 3 . 請求項 1ないし 1 0のいずれかに記載の複合化酸ィ匕インジウム粒子と、 結合剤と、 溶剤とを含んでなる導電性塗料。
1 4 . 請求項 1 3に記載した導電性塗料を塗布し、 乾燥してなる導電性塗膜。
1 5 . シート状の基材と、 その上に塗布形成された透明な導電性塗膜とを有し、 このうちの導電性塗膜に、 請求項 1〜; L 0のいずれかに記載の複合化酸ィ匕ィンジ ゥム粒子が含有されてなる導電性シート。
PCT/JP2004/004655 2003-04-01 2004-03-31 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート WO2004089829A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0520075A GB2415191B (en) 2003-04-01 2004-03-31 Composite indium oxide particles and process for manufacturing the same, and conductive coating composition, conductive coating film and conductive sheet
US10/551,188 US7449235B2 (en) 2003-04-01 2004-03-31 Composite indium oxide particle which contains tin (Sn) and zinc (Zn), method for producing same, conductive coating material, conductive coating film, and conductive sheet
JP2005505224A JPWO2004089829A1 (ja) 2003-04-01 2004-03-31 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-098612 2003-04-01
JP2003098612 2003-04-01
JP2003165506 2003-06-10
JP2003-165506 2003-06-10

Publications (1)

Publication Number Publication Date
WO2004089829A1 true WO2004089829A1 (ja) 2004-10-21

Family

ID=33161485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004655 WO2004089829A1 (ja) 2003-04-01 2004-03-31 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート

Country Status (4)

Country Link
US (1) US7449235B2 (ja)
JP (1) JPWO2004089829A1 (ja)
GB (1) GB2415191B (ja)
WO (1) WO2004089829A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012887A1 (de) * 2004-07-30 2006-02-09 Air Products And Chemicals, Inc. Multifunktionsadditiv
EP1746126A1 (en) * 2005-07-22 2007-01-24 Toshiba Lighting & Technology Corporation UV blocking material, UV blocking visible selectively transmitting filter, visible selectively transmitted resin material, light source and lighting fixture
JP2009114013A (ja) * 2007-11-05 2009-05-28 Sumitomo Metal Mining Co Ltd 酸化インジウムを主成分とする粉末およびその製造方法
JP2011251911A (ja) * 2011-09-22 2011-12-15 Sumitomo Metal Mining Co Ltd 酸化インジウムを主成分とする粉末

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130442A2 (en) * 2006-10-31 2008-10-30 Wisconsin Alumni Research Foundation Nano porous composite electrode for use in a capacitor, capacitor, stacked cell, coiled cell and methods of manufacture and use thereof
JP2009302029A (ja) * 2008-02-13 2009-12-24 Sumitomo Metal Mining Co Ltd フレキシブル透明導電フィルムとフレキシブル機能性素子およびこれ等の製造方法
US8258685B2 (en) * 2009-06-26 2012-09-04 Prysm, Inc. Multi-panel display screen having a supporting film layer
JP2012066990A (ja) * 2010-08-25 2012-04-05 Fuji Xerox Co Ltd スズ−亜鉛複合酸化物粉体、スズ−亜鉛複合酸化物粉体の製造方法、電子写真用キャリアおよび電子写真用現像剤
US9365939B2 (en) 2011-05-31 2016-06-14 Wisconsin Alumni Research Foundation Nanoporous materials for reducing the overpotential of creating hydrogen by water electrolysis
KR101429042B1 (ko) 2011-11-11 2014-08-12 한국세라믹기술원 청정공정 이용 아연과 주석이 인듐에 고용된 인듐산화물(인듐-아연-주석 산화물)의 나노 분말 합성 방법
JP2014040331A (ja) * 2012-08-21 2014-03-06 Fujifilm Corp 亜鉛錫酸化物の製造方法
CA2787584A1 (en) 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
WO2015120545A1 (en) * 2014-02-14 2015-08-20 Hy-Power Nano Inc. Processes for producing precipitated precursor metal oxide nanoparticles, particulate metal oxide solids and uses therefor
CN116177592B (zh) * 2022-12-15 2024-05-17 先导薄膜材料(广东)有限公司 一种蓝色氧化铟锌粉末及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333185A (ja) * 1989-06-29 1991-02-13 Nichia Chem Ind Ltd 蛍光体及びその製造方法
JP2000119018A (ja) * 1998-10-15 2000-04-25 Nippon Shokubai Co Ltd 酸化亜鉛系粒子、その製造方法および用途
JP2001332134A (ja) * 2000-05-21 2001-11-30 Tdk Corp 透明導電フィルム
JP2002179948A (ja) * 2000-12-15 2002-06-26 Titan Kogyo Kk 白色導電性粉末及びその応用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253112A (ja) 1984-05-30 1985-12-13 触媒化成工業株式会社 光透過性の平板状導電性素材の製造法
JPS627527A (ja) 1985-07-03 1987-01-14 Takiron Co Ltd 管内面ライニング装置
JP3019551B2 (ja) 1991-10-15 2000-03-13 三菱マテリアル株式会社 超微粒低抵抗スズドープ酸化インジウム粉末とその製法
JP2959927B2 (ja) 1993-05-27 1999-10-06 チタン工業株式会社 白色導電性粉末およびその製造方法
JP2002533291A (ja) * 1998-12-01 2002-10-08 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 超微粉末及びレージング媒質としてのその使用
JP2002167576A (ja) 2000-12-04 2002-06-11 Nof Corp 高屈折率導電性材料用組成物、透明導電性材料ならびに減反射材
JP4756738B2 (ja) 2000-12-27 2011-08-24 ハクスイテック株式会社 紫外線遮蔽用酸化亜鉛微粒子
JP4984204B2 (ja) * 2005-03-22 2012-07-25 Dowaエレクトロニクス株式会社 酸化インジウム粉末およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333185A (ja) * 1989-06-29 1991-02-13 Nichia Chem Ind Ltd 蛍光体及びその製造方法
JP2000119018A (ja) * 1998-10-15 2000-04-25 Nippon Shokubai Co Ltd 酸化亜鉛系粒子、その製造方法および用途
JP2001332134A (ja) * 2000-05-21 2001-11-30 Tdk Corp 透明導電フィルム
JP2002179948A (ja) * 2000-12-15 2002-06-26 Titan Kogyo Kk 白色導電性粉末及びその応用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012887A1 (de) * 2004-07-30 2006-02-09 Air Products And Chemicals, Inc. Multifunktionsadditiv
EP1746126A1 (en) * 2005-07-22 2007-01-24 Toshiba Lighting & Technology Corporation UV blocking material, UV blocking visible selectively transmitting filter, visible selectively transmitted resin material, light source and lighting fixture
JP2009114013A (ja) * 2007-11-05 2009-05-28 Sumitomo Metal Mining Co Ltd 酸化インジウムを主成分とする粉末およびその製造方法
JP2011251911A (ja) * 2011-09-22 2011-12-15 Sumitomo Metal Mining Co Ltd 酸化インジウムを主成分とする粉末

Also Published As

Publication number Publication date
JPWO2004089829A1 (ja) 2006-07-06
US20060266980A1 (en) 2006-11-30
GB0520075D0 (en) 2005-11-09
US7449235B2 (en) 2008-11-11
GB2415191B (en) 2007-08-08
GB2415191A (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US10481301B2 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
WO2004089829A1 (ja) 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート
WO2012057053A1 (ja) インジウム錫酸化物粉末、その製造方法、分散液、塗料、及び機能性薄膜
JPWO2010055570A1 (ja) 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
JP4801617B2 (ja) 導電性酸化亜鉛粒子及びその製造方法
US7157024B2 (en) Metal oxide particle and process for producing same
WO2021200135A9 (ja) ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途
JP4906027B2 (ja) 複合化酸化インジウム粒子およびその製造方法、ならびに導電性塗料、導電性塗膜および導電性シート
US10893578B2 (en) Composition for forming a heating element and method of preparing the composition
JP2001332123A (ja) 導電性顔料粉末及びこれを用いて作られた透明導電膜
JP3609159B2 (ja) 針状導電性アンチモン含有酸化錫微粉末及びその製造方法
JP4251448B2 (ja) アルミニウム置換スズ含有酸化インジウム粒子とその製造方法、ならびに該粒子を用いた導電性塗料、導電性塗膜および導電性シート
JP2003054949A (ja) Sn含有In酸化物とその製造方法およびそれを用いた塗料ならびに導電性塗膜
JP6952051B2 (ja) 赤外線遮蔽材、及び酸化スズ粒子の製造方法
JP2009274897A (ja) 酸化ジルコニウム水和物粒子及びそれを用いた分散体と分散膜
US5501907A (en) Fibrous electrically conductive filler
JP4424582B2 (ja) スズ含有酸化インジウム粒子とその製造方法、ならびに導電性塗膜と導電性シート
JP5674354B2 (ja) 導電性針状酸化アンチモン錫微粉末およびその製造方法
US20210070961A1 (en) Near-infrared absorbing material fine particle dispersion body, near-infrared absorbing body, near-infrared absorbing substance laminated body and combined structure for near infrared absorption
US7172817B2 (en) Indium particle containing tin, method for producing the same and electroconductive sheet comprising the same
JP3515625B2 (ja) 針状導電性酸化錫微粉末およびその製造方法
JP2005194125A (ja) 銀添加スズ含有酸化インジウム粒子とその製造方法、ならびに導電性塗料、導電性塗膜および導電性シート
JP2004307221A (ja) スズ亜鉛アルミニウム含有酸化インジウム粒子とその製造方法
JP4171871B2 (ja) 導電性酸化物粒子及びその製造方法
JP3140576B2 (ja) 導電性硫酸バリウムフィラー及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006266980

Country of ref document: US

Ref document number: 10551188

Country of ref document: US

Ref document number: 2005505224

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0520075

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20040331

WWE Wipo information: entry into national phase

Ref document number: 0520075.3

Country of ref document: GB

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10551188

Country of ref document: US