WO2003033560A1 - Resine de copolymere transparente modifiee au caoutchouc et composition de resine la contenant - Google Patents

Resine de copolymere transparente modifiee au caoutchouc et composition de resine la contenant Download PDF

Info

Publication number
WO2003033560A1
WO2003033560A1 PCT/JP2002/010537 JP0210537W WO03033560A1 WO 2003033560 A1 WO2003033560 A1 WO 2003033560A1 JP 0210537 W JP0210537 W JP 0210537W WO 03033560 A1 WO03033560 A1 WO 03033560A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
modified copolymer
copolymer resin
volume
mass
Prior art date
Application number
PCT/JP2002/010537
Other languages
English (en)
French (fr)
Inventor
Jun Takahashi
Jun Nakamoto
Hideki Watanabe
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to EP02772988A priority Critical patent/EP1447417B1/en
Priority to JP2003536296A priority patent/JP4101175B2/ja
Priority to US10/491,434 priority patent/US7019076B2/en
Priority to DE60215849T priority patent/DE60215849T8/de
Publication of WO2003033560A1 publication Critical patent/WO2003033560A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention provides a rubber-modified copolymer resin having excellent transparency, impact resistance, rigidity, and little dependence of transparency on molding conditions, and a rubber-modified copolymer resin having the above properties and excellent in practical strength.
  • Japanese Unexamined Patent Publication No. HEI 4-180907 discloses a rubber-modified copolymer resin having a toluene-insoluble content / swelling index and the like within a specific range.
  • problems such as the need to use a copolymer or a specific reactor, and an insufficient balance of transparency, impact resistance, rigidity, and the like.
  • Japanese Patent Application Laid-Open No. H8-2699142 discloses that a copolymer of a styrene monomer and a (meth) acrylate monomer is a continuous phase, and a rubber particle having bimodality is a dispersed phase.
  • a rubber-modified styrenic resin composition is disclosed, but the rubber particle size distribution, gel content, and swelling index are not sufficiently controlled, the transparency is greatly dependent on molding conditions, and the practical strength is low. Has limited its use.
  • Japanese Patent Application Laid-open No. H11-1497993 discloses that a copolymer of a styrene monomer and a (meth) acrylic acid ester monomer is used as a continuous phase, and rubber particles having bimodality are prepared.
  • a rubber-modified styrenic resin composition having a dispersed phase and a molecular weight distribution within a specific range is disclosed, but the impact resistance and rigidity are not sufficiently balanced due to a large number of small particles having low impact resistance. And so on. ''
  • the present invention is excellent in transparency, impact resistance, rigidity, and transparency It is an object of the present invention to provide a rubber-modified copolymer resin having a small amount, and to provide a rubber-modified copolymer resin composition having the above characteristics and excellent in practical strength. Disclosure of the invention
  • a rubber-modified copolymer resin having a specific rubber particle size distribution has excellent transparency, impact resistance, rigidity, and transparent molding.
  • the present inventors have found that there is little condition dependency and have led to the present invention.
  • a rubber-modified copolymer resin having a specific gel content, a swelling index, and a weight average molecular weight is more excellent in transparency, impact resistance, rigidity, and transparency. It was found that there was little condition dependency.
  • the rubber-modified copolymer resin composition comprising the rubber-modified copolymer resin and the emulsion graft copolymer is excellent in transparency, impact resistance, and rigidity, has little dependence on molding conditions for transparency, and has a practical strength. And found the present invention.
  • the present invention has the following features.
  • a rubber-modified copolymer comprising one or a mixture of two or more obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer in the presence of a rubbery polymer.
  • the polymer resin has a volume average particle diameter (hereinafter referred to as dv) of the rubber particles dispersed in the resin of 0.4 to 2.0 m, and has an integrated value of 7 in the rubber particle diameter volume integrated distribution curve.
  • the difference between the 5% diameter (hereinafter referred to as dV75) and the integrated value of 25% diameter (hereinafter referred to as dv25) is 0.2 to 2.0 m. It is a polymer resin.
  • rubber particles having a particle size of less than 0.8 m account for 95 to 30% by volume, and rubber particles having a particle size of 0.8 ⁇ m or more have a particle size of 5 to 70%.
  • the transparent rubber-modified copolymer resin according to the above (1) which occupies% by volume.
  • the particle diameter is less than 0.8 m and the particle diameter is 0.8 / im or more, each having at least one maximum value, or (1) or
  • a rubber-modified copolymer resin composition comprising 0.1 to 40% by mass of the copolymer (B).
  • rubber particle size volume integrated distribution curve refers to a volume integrated distribution curve of a rubber particle size distribution represented by a particle diameter on the horizontal axis and a volume fraction on the vertical axis.
  • rubber particle size volume frequency distribution curve refers to a volume frequency distribution curve of a rubber particle size distribution in which the horizontal axis represents particle diameter and the vertical axis represents volume fraction.
  • FIG. 1 is an example of a rubber particle diameter volume frequency distribution curve of the transparent rubber-modified copolymer resin (A).
  • the transparent rubber-modified copolymer resin of the present invention is obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer in the presence of a rubbery polymer.
  • the styrene-based monomer used in the present invention includes styrene, ⁇ methylstyrene, P-methylstyrene, pt-butylstyrene and the like, and is preferably styrene. These styrene monomers may be used alone or in combination of two or more.
  • the (meth) acrylate monomer used in the present invention includes methyl methacrylate, ethyl methyl acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, and 2-methylhexyl acrylate. And 2-ethylhexyl acrylate, octyl acrylate and the like, and preferably methyl methacrylate and n-butyl acrylate.
  • These (meth) acrylate monomers may be used alone or in combination of two or more. However, it is most preferable to use a combination of methyl methacrylate and n-butyl acrylate. preferable.
  • monomers other than styrene monomers and (meth) acrylate monomers such as acrylonitrile, maleic anhydride, and methacrylic acid, are also styrene monomers and (meth) acrylate esters. If it is less than 50 parts by mass with respect to 100 parts by mass of the total of the system monomers, it can be contained.
  • the proportions of the styrene monomer and the (meth) acrylate monomer are preferably 5 to 95 parts by mass of the styrene monomer and 95 to 5 parts by mass of the (meth) acrylate monomer. Parts by mass, more preferably 10 to 90 parts by mass of a styrene monomer and 90 to 10 parts by mass of a (meth) acrylate monomer. However, the total of the styrene monomer and the (meth) acrylate monomer is 100 parts by mass. When the styrene-based monomer and the (meth) acrylate-based monomer are out of the above range, transparency and the like may be poor.
  • the rubbery polymer used in the present invention is polybutadiene, styrene-butadiene Rubber, styrene-butadiene block rubber, partially hydrogenated polybutadiene, partially hydrogenated styrene-butadiene rubber, partially hydrogenated styrene-butadiene block rubber, and the like, preferably styrene having a styrene content of 20 to 50% by mass. It is a bush rubber and styrene-butadiene block rubber. The 5% by mass styrene solution viscosity of the rubbery polymer at a temperature of 25 ° C.
  • the proportion of 1,2-vinyl bonds in the unsaturated bonds based on butadiene is preferably from 8 to 25 mol%, more preferably from 12 to 16 mol%.
  • a polymer other than the rubbery polymer such as a styrene-butadiene-styrene resin may be contained if it is less than 50 parts by mass relative to 100 parts by mass of the rubbery polymer.
  • the proportion of the rubber-like polymer is preferably 0.1 to 30 parts by mass, more preferably 100 to 100 parts by mass of the total of the styrene monomer and the (meth) acrylate monomer. It is 3 to 15 parts by mass. If the rubber-like polymer is out of the above range, the intended purpose may not be achieved, such as poor impact resistance.
  • the rubber polymer when a styrene monomer and a (meth) acrylate monomer are polymerized in the presence of the rubber polymer, the rubber polymer is a styrene monomer, It is polymerized after dissolving in the acrylate monomer.
  • the polymerization is carried out at an elevated temperature.
  • the polymerization temperature is preferably from 80 to 170 ° (: more preferably from 100 to 160 ° C.)
  • t_butylperoxybenzoate and t_butylperoxybenzoate are used.
  • the amount of the polymerization initiator and the molecular weight modifier added is styrene monomer, (meth) acrylic
  • the amount is preferably 0.005 to 5 parts by mass, more preferably 0.01 to 1 part by mass, based on the total of 100 parts by mass of the acid ester monomer. If the ratio is out of the above range, the intended purpose may not be achieved such as inferior impact resistance.
  • a known crosslinking agent such as divinylbenzene or a known antioxidant such as octane decyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate may be added. Absent.
  • an organic solvent such as ethylbenzene or toluene is preferably used in an amount of 0.1 to 50 parts by mass based on a total of 100 parts by mass of the styrene monomer and the (meth) acrylate monomer. Parts by mass, more preferably 5 to 20 parts by mass. Use of a solvent may be preferable in some cases, such as lowering the viscosity during polymerization and improving polymerization controllability.
  • the mode of polymerization in the present invention is preferably a continuous polymerization mode.
  • a transparent rubber-modified copolymer resin containing rubber particles dispersed therein is produced.
  • the rubber particles are as follows: Made to have properties.
  • the rubber-modified copolymer resin containing rubber particles having such properties is obtained by copolymerizing a styrene monomer and a (meth) acrylate monomer in the presence of a rubbery polymer.
  • it may be composed of one kind of rubber-modified copolymer resin, it is also composed by mixing and melting two or more rubber-modified copolymer resins obtained from rubber particles having different particle diameters. May be.
  • the volume average particle diameter (dv) of the rubber particles dispersed and contained is 0.4 to 2 m, preferably 0.4 to 1.5 xm, and more preferably. Is from 0.5 to 1.2. If the volume average particle diameter (dV) of the rubber particles is less than 0.4 / 2m, the impact resistance is low, and if it exceeds 2m, the transparency is poor.
  • the volume average particle diameter (dv) of the present invention refers to the particle diameter (two (major axis + minor axis) Z2) of about 100 rubber particles in the photograph from an ultra-thin section transmission electron microscope photograph of the resin. Measure and determine the average particle size obtained by the following equation (1).
  • Average particle size ⁇ ni ⁇ D ini ⁇ D i 3
  • the rubber particles are produced as the rubber-modified copolymer resin is produced, as the polymerization proceeds.
  • the volume average particle diameter (dV) of the rubber particles is controlled, the number of stirring during polymerization, the amount of polymerization initiator and molecular weight modifier added, and the mixing of rubber-modified copolymer resins having different particle diameters are controlled. And so on.
  • the rubber particles dispersed in the transparent rubber-modified copolymer resin of the present invention have a difference between dv75 and dV25 (hereinafter referred to as dV75—dV25) of 0.2 to 2 0 ⁇ , preferably 0.4 to: L.7 im, more preferably 0.5 to 1.5 m.
  • dv 7 5 If dv 25 is less than 0.2 m, the balance of impact resistance and rigidity will be poor, and if it exceeds 2.0 m, the balance of transparency and rigidity will be poor, and the molding conditions of transparency will be worse. Dependencies increase.
  • control of dv75-dv25 is carried out by stirring conditions at the time of polymerization, types and amounts of polymerization initiators and molecular weight modifiers, mixing of rubber-modified copolymer resins having different particle diameters, and the like.
  • the particle diameters correspond to 75% and 25%.
  • the rubber particle diameter is determined by measuring the particle diameter from an ultra-thin section transmission electron micrograph of the resin, similarly to the volume average particle diameter (dv) of the rubber particles.
  • the volume fraction is represented by a volume fraction when the rubber particles obtained with the particle diameter are regarded as spheres.
  • the rubber particles dispersed in the transparent rubber-modified copolymer resin of the present invention have a particle diameter of less than 0.8 xm of 95 to 30% by volume and a particle diameter of 0.8 in the rubber particle diameter cumulative distribution curve.
  • m or more accounts for 5 to 70% by volume. More preferably, the particle size is 0.8 to 40% by volume when the particle size is less than 0.8 m, and 20 to 60% by volume when the particle size is 0.8 ⁇ m or more. 95 to 30% by volume when the particle size is less than 0.8 m,
  • the content of 8 zm or more is 5 to 70% by volume, transparency, impact resistance, and rigidity are further improved, and the transparency is more favorably dependent on molding conditions.
  • the control of the ratio between the particle diameter of less than 0.8 / xm and the particle diameter of 0.8_im or more depends on the stirring conditions during polymerization, the amount of the polymerization initiator and the amount of the molecular weight modifier added, and the rubber modified copolymer having different particle diameters. This is performed by mixing a polymer resin or the like.
  • the rubber particles dispersed in the transparent rubber-modified copolymer resin of the present invention have a particle diameter on the horizontal axis and a volume distribution on the vertical axis in a rubber particle diameter volume frequency distribution curve represented by a volume fraction on the vertical axis.
  • the particle size is less than 0.8 ⁇ m and the particle size is more than 0. It is preferred that each has at least one local maximum. Particle size of less than 0.8 zm and particle size of 0.8 / im or more, each having at least one maximal value, furthermore excellent in transparency, impact resistance, rigidity, and dependence of transparency on molding conditions And it is good.
  • the control to produce at least one maximum value for each of the particle diameter of less than 0.8 m and the particle diameter of 0.8 m or more depends on the stirring conditions during polymerization and the start of polymerization.
  • the method is carried out by mixing the types and amounts of agents and molecular weight modifiers, and mixing rubber-modified copolymer resins having different particle diameters.
  • FIG. 1 shows an example of a volume-based frequency distribution with respect to the logarithm of the rubber particle diameter.
  • the gel content of the transparent rubber-modified copolymer resin of the present invention is preferably 5 to 25% by mass, and more preferably 15 to 23% by mass. If the gel content is less than 5% by mass, the impact resistance is poor. If the gel content exceeds 25% by mass, the transparency and rigidity are poor, and the transparency is greatly dependent on the molding conditions.
  • the gel content is adjusted by the stirring conditions at the time of polymerization, the type and amount of the polymerization initiator and the molecular weight modifier, and the like.
  • the gel content in the present invention is measured as follows.
  • a sample (1 g) is precisely weighed (a) and dissolved in 100 ml of methyl ethyl ketone (MEK) at a temperature of 25 ° C for 24 hours, and the solution is transferred to a centrifuge tube whose mass (b) is measured. Transfer, centrifuge at 14000 rpm for 40 minutes at a temperature of 10 ° C or less, remove the supernatant by decantation, dry in a vacuum dryer at a temperature of 70 ° C for 24 hours, and dry the centrifuge tube. (C) is measured, and the gel content is calculated by the following equation (2).
  • MEK methyl ethyl ketone
  • the swelling index of the transparent rubber-modified copolymer resin of the present invention is preferably 9 to 17, more preferably 10 to 14.
  • the swelling index can be adjusted by adding an antioxidant or heating conditions in the devolatilization tank.
  • the swelling index in the present invention is measured as follows.
  • the weight average molecular weight (Mw) of the transparent rubber-modified copolymer resin of the present invention is preferably 80,000 to 200,000, and more preferably 100,000 to 160,000. If the Mw is less than 80,000, the impact resistance is poor, and if it exceeds 200,000, the transparency is reduced, and the dependence of the transparency on the molding conditions is increased.
  • the Mw can be adjusted by the type and amount of the polymerization initiator and the molecular weight modifier, the polymerization temperature conditions, and the like.
  • the transparent rubber-modified copolymer resin of the present invention can optionally contain additives such as antioxidants, weathering agents, lubricants, plasticizers, coloring agents, antistatic agents, mineral oil, and flame retardants. It can be added at any stage during production.
  • the method for adding the additive is not particularly limited, and examples thereof include a method of adding during polymerization and a method of melt-kneading with an extruder.
  • the transparent rubber-modified copolymer resin of the present invention is processed into various molded articles by a known method such as injection molding, extrusion molding, compression molding, and vacuum molding, and is put to practical use.
  • composition containing the rubber-modified copolymer resin of the present invention will be described in detail.
  • the rubber-modified copolymer resin composition of the present invention contains the transparent rubber-modified copolymer resin (A) and the emulsion graft copolymer (B) described above.
  • the emulsion graft copolymer (B) for example, those available on the market as Kureha BTA manufactured by Kureha Chemical Industry Co., Ltd. and Kaneace manufactured by Kanegafuchi Chemical Industry Co., Ltd. may be used. It may be obtained by an emulsion polymerization technique.
  • the latex of the rubbery polymer described in the transparent rubber-modified copolymer resin (A), that is, butadiene or styrene-butadiene latex, styrene monomer and / or (meth) acrylate monomer Can be adopted by emulsion graft polymerization.
  • vinyl A method obtained by graft-polymerizing a toluene-based monomer can also be employed.
  • Emulsion graft polymerization using Z or (meth) acrylate monomers The rubbery polymer is used in an amount of more than 30 parts by mass and 500 parts by mass or less based on 100 parts by mass of the total of the styrene monomer and the z or (meth) acrylate monomer. May be obtained.
  • the amount of the rubber-like polymer is less than 30 parts by mass, the practical strength of the rubber-modified copolymer resin composition decreases. On the other hand, when the amount of the rubber-like polymer exceeds 500 parts by mass, the dependency of the transparency on the molding tends to occur.
  • the ratio of the transparent rubber-modified copolymer resin (A) to the emulsion graft copolymer (B) is 99.9 to 60% by mass: 0.1 to 40% by mass, preferably 95 to 70% by mass: 5 to 30%. % By mass, more preferably 90 to 75% by mass: 10 to 25% by mass.
  • amount of the emulsion graft copolymer (B) is less than 0.1% by mass, the practical strength is poor, and when it exceeds 40% by mass, the rigidity is reduced.
  • the rubber-modified copolymer resin composition may be composed of two or more transparent rubber-modified copolymer resins (A) and an emulsion graft copolymer (B).
  • the transparent rubber-modified copolymer resin (A) constituting the resin composition of the present invention has a volume average particle diameter (dv) of 0.5 to 2 for rubber particles dispersed in the rubber-modified copolymer resin. 0 m, and the difference between the 75% diameter (dv75) of the integrated value and the 25% diameter (dv25) of the integrated value in the rubber particle size volume integrated distribution curve is 0.2 to 2.0.
  • the rubber-modified copolymer resin (A) of m is selected.
  • the volume average particle diameter of the rubber particles dispersed in the transparent rubber-modified copolymer resin (A) is preferably from 0.6 to 1.5 nm, more preferably from 0.7 to 1.5 m. If the volume average particle diameter of the rubber particles is less than 0.5 im, the impact resistance and practical strength of the rubber-modified copolymer resin composition will be low, and if it exceeds 2.0 im, the transparency will be poor. Become.
  • the difference between dV75 and dV25 is preferably 0.4 to 1.7 im, more preferably 0.5 to 1.5 xm.
  • the dv 75—dv 25 is less than 0.2 xm, the impact resistance, rigidity balance and practical strength of the rubber-modified copolymer resin composition are poor, and when it exceeds 2.0 m, the transparency and rigidity are poor. Poor balance, more transparent Of molding properties is greatly increased.
  • the rubber particles dispersed in the transparent rubber-modified copolymer resin (A) have a particle diameter of less than 0.8 im, 95 to 30 vol%, and a particle diameter of 0.8 m or more in the rubber particle diameter volume integrated distribution curve. Occupies 5 to 70% by volume, more preferably 80 to 40% by volume with a particle size of less than 0.8 / zm, and 20 to 60% by volume with a particle size of 0.8 ⁇ m or more. is there. When the particle diameter is less than 0.8 xm is 95 to 30% by volume and the particle diameter is not less than 0.8 m is 5 to 70% by volume, the transparency, impact resistance, It has excellent rigidity, good transparency dependency on molding conditions, and high practical strength.
  • the rubber particles dispersed in the transparent rubber-modified copolymer resin (A) have a rubber particle diameter on the horizontal axis, and a particle diameter volume frequency distribution on the vertical axis, which is expressed by a volume fraction on the vertical axis.
  • the particle diameter has at least one maximum value at less than 0.8 m and at least 0.8 xm.
  • the rubber-modified copolymer resin composition is further excellent in transparency, impact resistance, rigidity, and transparency. It has good molding condition dependency and high practical strength.
  • the difference in refractive index between the transparent rubber-modified copolymer resin (A) and the emulsion graft copolymer (B) at a temperature of 25 is preferably less than 0.03, more preferably less than 0.02. It is. If the difference in refractive index is 0.03 or more, the transparency is significantly reduced, which is not preferable.
  • the refractive index of the present invention is obtained by measuring the composition ratio of the monomer units constituting the composition by composition analysis and calculating the refractive index by using the following equation (4).
  • n X A Xn A + X B Xn B + X c Xn c +
  • composition of the monomer units, Am monomer: X A, Bm monomer: X B and Cm monomer: If made of X c (where, X A + X B + X C in a weight ratio 1), ⁇ ⁇ is the refractive index of the polymer consisting Am monomer, n B is refractive Oriritsu, n c of the polymer consisting of Bm monomer denote the refractive index of the polymer consisting of Cm monomer It is calculated by substituting into the above equation.
  • the composition analysis can be performed by a known method, for example, thermal decomposition gas chromatography or the like.
  • the transparent rubber-modified copolymer resin (A) and the emulsion graft copolymer (B) can be mixed by a known method to obtain a rubber-modified copolymer resin composition. For example, there is a method of melt-kneading using an extruder.
  • the rubber-modified copolymer resin composition of the present invention can optionally contain additives such as antioxidants, weathering agents, lubricants, plasticizers, coloring agents, antistatic agents, mineral oils, and flame retardants. It can be added at any stage during production.
  • the method for adding the additives is not particularly limited, and examples thereof include a method of adding each of the resins or copolymers during polymerization, and a method of melt-kneading with an extruder during the production of the resin composition.
  • the rubber-modified copolymer resin composition of the present invention is processed into various molded articles by known methods such as injection molding, extrusion molding, compression molding, and vacuum molding, and is put to practical use.
  • Asaprene 67 OA manufactured by Asahi Kasei Corporation (styrene-butadiene rubber, styrene content: 40% by mass, styrene solution viscosity at 25T: 5% by mass at a temperature of 25T: 33 mPa ⁇ s, ratio of 1,2-vinyl bond) 1 3.9 mol%) in 8 parts by mass, 56 parts by mass of styrene, 39 parts by mass of methyl methacrylate (MMA) 39 parts by mass, and 5 parts by mass of n-butyl acrylate (hereinafter n-BA) 14 parts by mass of ethylbenzene, 0.05 part by mass of t-butyl peroxyisopropyl monocarbonate (1 hour half-life temperature: 118 ° C), 0-5 parts by mass, and 0-1 part by mass of t-dodecyl mercaptan Then, 0.1 part by mass of octyl decyl
  • the raw material solution was introduced at a rate of 7 kg / h into a first complete mixing type reactor controlled at a temperature of 110 ° C., and then continuously supplied to a second complete mixing type reactor controlled at a temperature of 130 ° C. Then the polymerization liquid is While continuously withdrawing from the mixed-type reactor, the mixture was introduced into a tower-type plug-flow type reactor adjusted to have a temperature of 130 ° C. to 150 ° C. in the flow direction. While heating this polymerization solution with a preheater, it was introduced into a devolatilization tank depressurized to 1.3 kPa, and volatiles such as unreacted monomers were removed at 230 ° C in the devolatilization tank. Removed.
  • This resin liquid was drawn out with a gear pump, and extruded and cut into a strand to obtain a pellet-shaped resin.
  • Samples A to E were obtained by changing the stirring number of the second complete mixing type reactor and controlling the rubber particle diameter. Table 1 shows the physical property evaluation results.
  • Example 1 Example 2
  • Example 3 Formulation type B / DB / DB / D Mixing ratio (parts by mass) 60/40 40/60 80/20 dV (zm) 0.8 1.0.0 0.7 dv 75 2 m) 1.1 1.2 1.0 dv 25 ⁇ ⁇ ) 0.4 0.5 0.5 dv 75-d v25 (urn) 0.7 0.7 0.7 0.6
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Rooster 3 go types c EA / EA / D West P go ratio ( ⁇ * part) 1 00 1 0 0 6 0/40 Q 5/5 lv (, if ⁇ i 0 7 2 8 0 9 0 v 7 SJ (nm) n 7 9 Q Li 0 4
  • Asaprene 67 OA styrene-butadiene rubber, styrene-butadiene rubber, styrene content: 40% by mass, 5% by mass styrene solution viscosity at a temperature of 25 ° C, 25 mC) 33 mPa ⁇ s, 1,2—vinyl bond (Proportion: 13.9 mol%) was changed to 10 parts by mass, 56 parts by mass of styrene, 39 parts by mass of methyl methacrylate (hereinafter, MMA), and 5 parts by mass of n-butyl acrylate (hereinafter, n-BA).
  • MMA methyl methacrylate
  • n-BA n-butyl acrylate
  • the polymerization liquid was continuously withdrawn from the second complete mixing type reactor, and a tower type plug flow type reactor was adjusted so that a gradient of 150 ° C to 150 ° C was obtained in the direction of flow. Introduced.
  • This polymerization solution was introduced into a devolatilization tank depressurized to 1.3 kPa while heating with a preheater, and volatile components such as unreacted monomers were removed at a temperature of 230 ° C in the devolatilization tank. .
  • This resin liquid was drawn out with a gear pump and extruded and cut into strands to obtain a pellet-shaped resin. Samples ⁇ ′ to ⁇ ′ were obtained by changing the stirring number of the second complete mixing type reactor and controlling the rubber particle diameter. Table 5 shows the physical property evaluation results.
  • Tables 6 and 7 show the physical property evaluation results.
  • the refractive index calculated from the composition of the monomer units constituting the obtained resin was determined by measuring the composition ratio of the monomer units constituting the rubber-modified copolymer resin (A) by a composition analysis, and Using Equation 4, the refractive indices of styrene, methyl methacrylate, n-butyl acrylate, and butadiene monomer were calculated as 1.595, 1.494, 1.463, and 1.518, respectively. was used to determine the refractive index. Both were 1.548. Table 6
  • the reaction was carried out at C for 16 hours to complete the polymerization, and a rubbery polymer latex was obtained.
  • a rubbery polymer latex was obtained.
  • 0.2% hydrochloric acid aqueous solution and 2% caustic soda aqueous solution were added to the latex PH from separate nozzles.
  • the latex was added so as to maintain 8 to 9, and the latex was coagulated and enlarged to obtain a rubber-like elastic latex having an average particle diameter of 0.42 xm.
  • composition ratio of the monomer units constituting the obtained emulsion graft copolymer (B) was measured, and the refractive index calculated using the above-mentioned formula (4) was 1.548.
  • Example 7 Example 8
  • Example 9 Example 10
  • Example 11 Example 12
  • Example 13 Experiment 2-1 2-2 2-3 2-4 2-5 2-6 2-1 Rubber-modified copolymer resin
  • the evaluation was performed by the following method.
  • an image processing / measurement apparatus Kal400 was used for the measurement of the particle diameter.
  • Average particle size ⁇ ni ⁇ D i V ⁇ ni ⁇ D i 3
  • the dV 75% diameter and dV 25% diameter could also be obtained by sorting the particle diameters obtained in the above measurement using an image processing and measuring apparatus.
  • the measurement was performed under the following GPC measurement conditions.
  • the rubber-modified copolymer resin of the present invention is excellent in transparency, impact resistance and rigidity, and has good transparency with little dependency on molding conditions.
  • the rubber-modified copolymer resin composition of the present invention has excellent transparency, impact resistance, and rigidity, has little dependence on molding conditions for transparency, has high practical strength, and is used in home appliances and packaging materials. Useful for various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 透明なゴム変性共重合樹脂およびその樹脂組成物 技術分野
本発明は、 透明性、 耐衝撃性、 剛性に優れ、 かつ透明性の成形条件依存性が 少ないゴム変性共重合樹脂、 並びに上記の特性を有しさらに実用強度に優れた ゴム変性共重合樹脂組成物に関する。 背景技術
従来より透明なゴム変性共重合樹脂は、 家電製品、 包装材料、 光学用途を始 め様々な用途に用いられている。 しかしこれらは、 透明性、 耐衝撃性、 剛性が 充分なものではなく、 また、 透明性の成形条件依存性がみられ満足なものでは なかった。 さらに最近の市場の要求である実用強度が高いこと等に対し充分な ものではなかった。
例えば特開平 4一 1 8 0 9 0 7号公報には、 トルエン不溶分ゃ膨潤指数等を 特定の範囲内にしたゴム変性共重合樹脂が開示されているが、 該樹脂では特定 のスチレン一ブタジエン共重合体や特定の反応器を使用する必要があり、かつ、 透明性、 耐衝撃性、 剛性等のバランスが充分でない等の問題があった。
特開平 8 _ 2 6 9 1 4 2号公報には、 スチレン系単量体と (メタ) アクリル 酸エステル系単量体の共重合体を連続相、 二峰性を有するゴム粒子を分散相と したゴム変性スチレン系樹脂組成物が開示されているが、 ゴム粒子径分布やゲ ル分、 膨潤指数の制御が充分でなく、 透明性の成形条件依存性が大きく、 また 実用強度が低いこと等により使用に制限があった。
特開平 1 1— 1 4 7 9 9 3号公報には、 スチレン系単量体と (メタ) ァクリ ル酸エステル系単量体の共重合体を連続相に、 二峰性を有するゴム粒子を分散 相とし、 かつ分子量分布を特定の範囲内としたゴム変性スチレン系樹脂組成物 が開示されているが、 耐衝撃性の低い小粒子径が多く、 耐衝撃性と剛性のバラ ンスが充分でない等の問題があった。 ' '
本発明は、 透明性、 耐衝撃性、 剛性に優れ、 かつ透明性の成形条件依存性が 少ないゴム変性共重合樹脂の提供、 並びに上記の特性を有しさらに実用強度に 優れたゴム変性共重合樹脂組成物を提供することを目的とする。 発明の開示
本発明者らは、 かかる課題を解決すべく鋭意研究を重ねた結果、 特定のゴム 粒子径分布を有するゴム変性共重合樹脂が透明性、 耐衝撃性、 剛性に優れ、 か つ透明性の成形条件依存性が少ないことを見出し本発明に至った。 また、 該ゴ ム変性共重合樹脂にあって、 特定のゲル分、 膨潤指数、 重量平均分子量を有す るゴム変性共重合樹脂がさらに透明性、 耐衝撃性、 剛性に優れ、 透明性の成形 条件依存性が少ないことを見出した。
また、 該ゴム変性共重合樹脂と乳化グラフト共重合体よりなるゴム変性共重 合樹脂組成物が透明性、 耐衝撃性、 剛性に優れ、 透明性の成形条件依存性が少 なく、 さらに実用強度の高いことを見出し本発明に至った。
即ち、 本発明は、 以下の特徴を有する。
(1) ゴム状重合体の存在下、 スチレン系単量体と (メタ) アクリル酸エステ ル系単量体とを共重合して得られる、 1種又は 2種以上の混合物からなるゴム 変性共重合樹脂であって、 樹脂中に分散するゴム粒子の体積平均粒子径 (以下 d vとする) が 0. 4〜2. 0 mで、 かつ、 ゴム粒子径体積積算分布曲線に おける積算値の 7 5 %径 (以下 d V 75とする) と積算値の 2 5 %径 (以下 d v 2 5とする) の差が 0. 2〜2. 0 mであることを特徴とする透明なゴム 変性共重合樹脂である。
(2) ゴム粒子径体積積算分布曲線において、 粒子径 0. 8 m未満のゴム粒 子が 9 5〜 3 0体積%を占め、 粒子径 0. 8 ^m以上のゴム粒子が 5〜7 0体 積%を占める上記 (1) に記載の透明なゴム変性共重合樹脂。
(3) ゴム粒子径体積頻度分布曲線において、 粒子径 0. 8 m未満と粒子径 0. 8 /im以上に、 それぞれ少なくとも一つの極大値を有する上記 (1) 又は
(2) に記載のゴム変性共重合樹脂。
(4) ゲル分が 5〜2 5質量%である上記 (1) 〜 (3) のいずれかに記載の ゴム変性共重合樹脂。
(5) 膨潤指数が 9〜 1 7である上記 (1) 〜 (4) のいずれかに記載のゴム 変性共重合樹脂。
(6) 重量平均分子量 (Mw) が 8万〜 2 0万である上記 ( 1) 〜 (5) のい ずれかに記載のゴム変性共重合樹脂。
(7) ゴム状重合体の存在下、 スチレン系単量体と (メタ) アクリル酸エステ ル系単量体とを共重合して得られる、 1種又は 2種以上の混合物からなるゴム 変性共重合樹脂であって、 樹脂中に分散するゴム粒子の体積平均粒子径 (d v) が 0. 5〜2. 0 mで、 かつゴム粒子径体積積算分布曲線において積算値の 7 5 %径 (d 7 5) と 2 5 %径 (d 2 5) の差が 0. 2〜 2. 0 mである透 明なゴム変性共重合体 (A) の 60〜9 9. 9質量%と、 乳化グラフト共重合 体 (B) の 0. 1〜40質量%とを含むことを特徴とするゴム変性共重合樹脂 組成物。 ·
(8) 透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子の粒子径体積積 算分布曲線において、 粒子径 0. 8 m未満のゴム粒子が 9 5〜 30体積%を 占め、 粒子径 0. 8 m以上のゴム粒子が 5〜 7 0体積%である上記 (7) に 記載の透明なゴム変性共重合樹脂組成物。
(9) 透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子の粒子径体積頻 度分布曲線において、 粒子径 0. 8 m未満と粒子径 0. 以上に、 それ ぞれ少なくとも一つの極大値を有する上記 (7) 又は (8) に記載の透明なゴ ム変性共重合樹脂組成物。
(1 0) 透明なゴム変性共重合樹脂 (A) と乳化グラフト共重合体 (B) の温 度 2 5°Cにおける屈折率差が、 0. 0 3未満である上記 (7) 〜 (9) のいず れかに記載のゴム変性共重合樹脂組成物。
なお、 本発明において、 ゴム粒子径体積積算分布曲線とは、 横軸に粒子径、 縦軸に体積分率で表示するゴム粒子径分布の体積積算分布曲線をいう。 また、 ゴム粒子径体積頻度分布曲線とは、 横軸に粒子径、 縦軸に体積分率で表示する ゴム粒子径分布の体積頻度分布曲線をいうものとする。 図面の簡単な説明
図 1は、 透明なゴム変性共重合樹脂 (A) のゴム粒子径体積頻度分布曲線の 一例である。 発明を実施するための最良の態様
以下に本発明を詳細に説明する。
まず、 本発明の透明なゴム変性共重合樹脂について説明する。
本発明の透明なゴム変性共重合樹脂は、 ゴム状重合体の存在下にスチレン系 単量体と (メタ) アクリル酸エステル系単量体とを共重合して得られる。 本発 明で使用するスチレン系単量体は、 スチレン、 《—メチルスチレン、 P—メチ ルスチレン、 p― t—プチルスチレン等をあげることができるが、 好ましくは スチレンである。 これらスチレン系単量体は、 単独で用いてもよいし、 2種類 以上を併用してもよい。
本発明で使用する (メタ) アクリル酸エステル系単量体は、 メチルメタクリ レート、 ェチルメ夕クリレー卜、 メチルァクリレート、 ェチルァクリレート、 n—プチルァクリレー卜、 2—メチルへキシルァクリレート、 2ーェチルへキ シルァクリレート、 ォクチルァクリレート等があげられるが、 好ましくは、 メ チルメタクリレート、 n—ブチルァクリレートである。 これら (メタ) ァクリ ル酸エステル系単量体は、単独で用いてもよく 2種類以上を併用してもよいが、 メチルメタクリレート、 n—ブチルァクリレートを併用して使用することが最 も好ましい。
本発明では、 スチレン系単量体、 (メタ) アクリル酸エステル系単量体以外 の単量体、 例えばアクリロニトリル、 無水マレイン酸、 メタクリル酸等もスチ レン系単量体、 (メタ) アクリル酸エステル系単量体の合計 1 0 0質量部に対 し、 5 0質量部未満であれば含有させることができる。
スチレン系単量体および (メタ) アクリル酸エステル系単量体の割合は、 好 ましくはスチレン系単量体 5〜9 5質量部および (メタ) アクリル酸エステル 系単量体 9 5〜 5質量部、 さらに好ましくは、 スチレン系単量体 1 0〜 9 0質 量部および (メタ) アクリル酸エステル系単量体 9 0〜 1 0質量部である。 但 しスチレン系単量体、 (メタ) アクリル酸エステル系単量体の合計を 1 0 0質 量部とする。 スチレン系単量体および (メタ) アクリル酸エステル系単量体が 該範囲外の場合は透明性等が劣る場合がある。
本発明で使用するゴム状重合体は、 ポリブタジエン、 スチレン一ブタジエン ゴム、 スチレン一ブタジエンブロックゴム、 部分水添ポリブタジエン、 部分水 添スチレン一ブタジエンゴム、 部分水添スチレン一ブタジエンブロックゴム等 があげられるが、 好ましくはスチレン含量が 2 0〜 5 0質量%のスチレン—ブ 夕ジェンゴム、 スチレン一ブタジエンブロックゴムである。 また、 ゴム状重合 体の温度 2 5 °Cにおける 5質量%スチレン溶液粘度が、 好ましくは 1 5〜2 0 0 m P a · s、 さらに好ましくは 2 0〜6 0 m P a ' sである。 ブタジエンに 基づく不飽和結合のうちの 1 , 2 _ビニル結合の割合は、 好ましくは 8〜2 5 モル%、 さらに好ましくは 1 2〜 1 6モル%である。
本発明では、 スチレン—ブタジエン一スチレン樹脂等のゴム状重合体以外の 重合体もゴム状重合体 1 0 0質量部に対し、 5 0質量部未満であれば含有させ ることができる。
ゴム状重合体の割合は、 スチレン系単量体、 (メタ) アクリル酸エステル系 単量体の合計 1 0 0質量部に対し、 好ましくは 0 . 1〜3 0質量部、 さらに好 ましくは 3〜1 5質量部である。 ゴム状重合体が該範囲外の場合は耐衝撃性等 が劣る等目的を達しない場合がある。
本発明で、 ゴム状重合体の存在下にスチレン系単量体と (メタ) アクリル酸 エステル系単量体とを重合する場合、ゴム状重合体は、スチレン系単量体、 (メ 夕) アクリル酸エステル系単量体に溶解した後重合する。 重合は高温下で実施 する。 重合温度は、 好ましくは 8 0〜1 7 0 ° (:、 さらに好ましくは 1 0 0〜 1 6 0 °Cである。 また、 重合時において、 t _ブチルパーォキシベンゾエー卜、 t _ブチルパーォキシ _ 2—ェチルへキサノエ一卜、 1, 1—ビス ( t 一プチ ルパーォキシ) - 3 , 3 , 5—トリメチルシクロへキサン、 1 , 1一ビス ( t 一ブチルパーォキシ) —シクロへキサン、 2 , 2—ビス (4 , 4—ジ一ブチル パーォキシシクロへキシル) プロパン、 t 一ブチルパーォキシイソプロピルモ ノカーボネート、 ジー tーブチルパ一オキサイド、 ジクミルバ一オキサイド、 ェチルー 3 , 3—ジー ( t 一プチルパ一ォキシ) プチレート等の公知の重合開 始剤や、 4ーメチルー 2, 4ージフエ二ルペンテン一 1、 t 一ドデシルメル力 プタン、 n—ドデシルメル力プ夕ン等の公知の分子量調整剤を添加することが 好ましい。
重合開始剤、 分子量調整剤の添加量はスチレン系単量体、 (メタ) アクリル 酸エステル系単量体の合計 1 0 0質量部に対し、 好ましくは 0. 00 5〜5質 量部、 さらに好ましくは 0. 0 1〜 1質量部である。 該範囲外の場合は耐衝撃 性が劣る等目的を達しない場合がある。
また重合時、 ジビニルベンゼン等の公知の架橋剤、ォク夕デシルー 3— (3, 5—ジー t—ブチルー 4ーヒドロキシフエニル) プロピオネート等の公知の酸 化防止剤等を添加しても差し支えない。
本発明では重合時、 ェチルベンゼン、 トルエン等の有機系溶剤をスチレン系 単量体、 (メタ) アクリル酸エステル系単量体の合計 1 0 0質量部に対して好 ましくは 0. 1〜50質量部、 さらに好ましくは 5〜20質量部使用する。 溶 剤の使用により重合時の粘度が下がり、 重合制御性が向上する等好ましい場合 がある。 また、 本発明における重合の様式は連続重合様式が好ましい。
上記のようにして、 ゴム粒子が分散して含有される透明なゴム変性共重合樹 脂が製造されるが、 本発明の透明なゴム変性共重合樹脂中では、 ゴム粒子は以 下のような特性を有するようにされる。 なお、 かかる特性を有するゴム粒子を 含有するゴム変性共重合樹脂は、 ゴム状重合体の存在下にスチレン系単量体と (メタ) アクリル酸エステル系単量体とを共重合して得られる、 1種類のゴム 変性共重合樹脂から構成してもよいが、 また、 ゴム粒子の粒子径の異なる、 別 個に得られた 2種以上のゴム変性共重合榭脂を混合、溶融して構成してもよい。
本発明の透明なゴム変性共重合樹脂中では、分散して含有されるゴム粒子の 体積平均粒子径 (d v) は 0. 4〜2 m、 好ましくは 0. 4〜 1. 5 xm、 さらに好ましくは 0. 5〜 1. 2 である。 ゴム粒子の体積平均粒子径 (d V) が 0. 4 /2m未満の場合は耐衝撃性が低いものとなり、 2 mを越えた場 合は透明性の劣るものとなる。
本発明の体積平均粒子径 (d v) とは、 樹脂の超薄切片法透過型電子顕微鏡 写真より、 写真中のゴム粒子約 1 00 0個の粒子径 (二(長径 +短径) Z2) を 測定し、 次式数 1により得られる平均粒子径とする。
数 1
平均粒子径=∑ n i · D i n i · D i 3
(n iは粒子径 D iを有するゴム粒子の個数)
なお、 ゴム粒子は、 ゴム変性共重合樹脂が製造される際、 重合の進行に伴い 形成されるが、 ゴム粒子の体積平均粒子径(d V) の制御は、重合時の撹拌数、 重合開始剤や分子量調整剤の添加量、 異なる粒子径を有するゴム変性共重合樹 脂の混合等で行われる。
また、 本発明の透明なゴム変性共重合樹脂中に分散するゴム粒子は、 d v 7 5と d V 2 5の差 (以下 d V 7 5— d V 2 5とする) が 0. 2〜2. 0 τη, 好ましくは 0. 4〜: L . 7 im、 さらに好ましくは 0. 5〜 1. 5 mである。 d v 7 5— d v 2 5が 0. 2 m未満であると耐衝撃性、 剛性のバランスが劣 り、 2. 0 mを越えると透明性、 剛性のバランスが劣り、 さらに透明性の成 形条件依存性が大きくなる。 d v 7 5— d v 2 5の制御は、重合時の撹拌条件、 重合開始剤や分子量調整剤の種類や添加量、 異なる粒子径を有するゴム変性共 重合樹脂の混合等で行われる。
なお、 d v 7 5、 d V 2 5は、 前掲したように横軸に粒子径、 縦軸に体積分 率で表示するゴム粒子径分布の体積積算分布曲線において、 積算値がそれぞれ
7 5 %、 2 5 %に対応する粒子径である。 なお、 ゴム粒子径は、 ゴム粒子の体 積平均粒子径 (d v) と同様、 樹脂の超薄切片法透過型電子顕微鏡写真より粒 子径を測定し求めるものとする。 また、 体積分率は、 該粒子径で得られたゴム 粒子を球体とみなしたときの体積分率で示したものである。
本発明の透明なゴム変性共重合樹脂中に分散するゴム粒子は、 ゴム粒子径体 積積算分布曲線において、 粒子径 0. 8 xm未満が 9 5〜3 0体積%で、 粒子 径 0. 8 m以上が 5〜 7 0体積%を占めることが好ましい。 さらに好ましく は、 粒子径 0. 8 m未満が 8 0〜4 0体積%で、 粒子径 0. 8 ^m以上が 2 0〜6 0体積%である。粒子径 0. 8 m未満が 9 5〜3 0体積%、粒子径 0.
8 zm以上が 5〜 7 0体積%であると、 さらに透明性、耐衝撃性、剛性に優れ、 透明性の成形条件依存性の良好なものとなる。 なお、 粒子径 0. 8 /xm未満と 粒子径 0. 8 _im以上の比率の制御は、 重合時の撹拌条件、 重合開始剤や分子 量調整剤の添加量、 異なる粒子径を有するゴム変性共重合樹脂の混合等で行わ れる。
本発明の透明なゴム変性共重合樹脂中に分散するゴム粒子は、 前掲したよう に横軸に粒子径、 縦軸に体積分率で表示するゴム粒子径分布のゴム粒子径体積 頻度分布曲線において、 粒子径 0. 8 ^m未満と粒子径 0. 以上に、 そ れぞれ少なくとも一つの極大値を有することが好ましい。 粒子径 0. 8 zm未 満と粒子径 0. 8 /im以上に、 それぞれ少なくとも一つの極大値を有するとさ らに透明性、 耐衝撃性、 剛性に優れ、 かつ透明性の成形条件依存性が少なく良 好なものとなる。 ゴム粒子径体積頻度分布曲線において、 粒子径 0. 8 m未 満と粒子径 0. 8 m以上に、 それぞれ少なくとも一つの極大値をもたらしめ るための制御は、 重合時の撹拌条件、 重合開始剤や分子量調整剤の種類や添加 量、 異なる粒子径を有するゴム変性共重合樹脂の混合等で行われる。
なお、 ゴム粒子径体積頻度分布曲線の例として、 ゴム粒子径の対数に対する 体積基準の頻度分布である一例を図 1に示す。
本発明の透明なゴム変性共重合樹脂のゲル分は好ましくは 5〜 2 5質量%、 さらに好ましくは 1 5〜2 3質量%である。 ゲル分が 5質量%未満であると耐 衝撃性が劣り、 ゲル分が 2 5質量%を越えると透明性、 剛性が劣り、 さらに透 明性の成形条件依存性が大きくなる。 ゲル分の調整は、 重合時の撹拌条件、 重 合開始剤や分子量調整剤の種類や添加量等で行われる。
なお、 本発明におけるゲル分は以下の様に測定する。
試料 1 gを精秤(a) しメチルェチルケトン(MEK) 1 0 0m lに温度 2 5 °C で 24時間かけて溶解させた後、溶解液を質量(b)を測定した遠心管に移し、 温度 1 0°C以下、 14000 r pmで 40分間遠心分離し、 上澄み液をデカン テーシヨンにより取り除いた後、温度 70°Cの真空乾燥器で 24時間乾燥させ、 乾燥後の遠心管の質量 (c) を測定し、 下式数 2によりゲル分を算出する。
数 2
ゲル分 (質量%) = { (c -b) /a} X 1 00
また、本発明の透明なゴム変性共重合樹脂の膨潤指数は好ましくは 9〜 1 7、 さらに好ましくは 1 0〜 14である。 膨潤指数が 9未満であると耐衝撃性が劣 り、 膨潤指数が 1 7を越えると透明性、 剛性が劣り、 さらに透明性の成形条件 依存性が大きくなる。 膨潤指数の調整は、 酸化防止剤の添加や、 脱揮槽内の加 熱条件等で調整できる。
なお、 本発明における膨潤指数は以下の様に測定する。
試料約 1 gをトルエン 1 00m lに温度 2 5°Cで 24時間かけて溶解させた 後、 溶解液を質量 (d) を測定した遠心管に移し、 温度 1 0°C以下、 140 0 0 r p mで 4 0分間遠心分離し、 上澄み液をデカンテーシヨンにより取り除い た後、 乾燥前の遠心管の質量 (e ) を測定する。 温度 7 0 °Cの真空乾燥器で 2 4時間乾燥させ、 乾燥後の遠心管の質量 (f ) を測定し下式数 3によりゲル分 を算出する。
数 3
膨潤指数 = ( e - d ) / ( f — d )
本発明の透明なゴム変性共重合樹脂の重量平均分子量 (Mw) は好ましくは 8万〜 2 0万、 さらに好ましくは 1 0万〜 1 6万である。 Mwが 8万未満であ ると耐衝撃性が劣り、 2 0万を越えると透明性が低下し、 さらに透明性の成形 条件依存性が大きくなる。 Mwの調整は、 重合開始剤や分子量調整剤の種類や 添加量、 重合温度条件等で調整できる。
本発明の透明なゴム変性共重合樹脂には、必要に応じて酸化防止剤、耐候剤、 滑剤、 可塑剤、 着色剤、 帯電防止剤、 鉱油、 難燃剤等の添加剤を添加すること ができ、 製造時任意の段階で添加することができる。 添加剤を添加する方法に ついては特に規定はないが、 たとえば、 重合時添加する方法や押出機にて溶融 混練する方法等があげられる。
本発明の透明なゴム変性共重合樹脂は、 射出成形、 押出成形、 圧縮成形、 真 空成形等の公知の方法により各種成形体に加工され実用に供される。
次に、 本発明のゴム変性共重合樹脂を含む組成物について詳述する。
本発明におけるゴム変性共重合樹脂組成物は、 前掲した透明なゴム変性共重合 樹脂 (A) と乳化グラフト共重合体 (B ) とを含むものである。
透明なゴム変性共重合樹脂 (A) は、 既に詳述したので、 乳化グラフト共重 合体 (B ) について説明する。
乳化グラフト共重合体 (B ) は、 例えば、 呉羽化学工業 (株) 会社製クレハ B T A、 鐘淵化学工業 (株) 会社製カネエースとして市場に入手し得るものを 用いても良く、 また、 公知の乳化重合手法により得たものであっても良い。 例えば、 透明なゴム変性共重合樹脂 (A) で述べたゴム状重合体のラテック ス、 即ちブタジエンやスチレン一ブタジエンラテックスにスチレン系単量体お よび/または (メタ) アクリル酸エステル系単量体を乳化グラフト重合して得 る方法が採用できる。 また、 必要に応じてこれらの単量体と共重合可能なビニ ル系単量体をグラフト重合して得る方法も採用できる。
具体的には、 ゴム状重合体ラテックスの存在下で、 スチレン系単量体および
Zまたは (メタ) アクリル酸エステル系単量体を使用し、 乳化グラフト重合す る。 ゴム状重合体量はスチレン系単量体および zまたは (メタ) アクリル酸ェ ステル系単量体の合計 1 00質量部に対し、 30質量部を越え 500質量部以 下の存在下で使用して得たものでよい。
ゴム状重合体が 3 0質量部未満だとゴム変性共重合樹脂組成物の実用強度が 低下する。 また、 ゴム状重合体が 500質量部を超えると透明性の成形依存性 が生じ易くなる。
透明なゴム変性共重合樹脂 (A) と乳化グラフト共重合体 (B) の比率は 9 9. 9〜60質量% : 0. 1〜40質量%、 好ましくは 95〜70質量% : 5 〜30質量%、さらに好ましくは 90〜7 5質量%: 1 0〜2 5質量%である。 乳化グラフト共重合体 (B) が 0. 1質量%未満であると実用強度に劣るもの となり、 また、 40質量%を超えると剛性が低下する。
なおゴム変性共重合樹脂組成物はそれぞれ 2種類以上の透明なゴム変性共重 合樹脂 (A) と乳化グラフト共重合体 (B) からなつても差し支えない。 なお、 本発明の樹脂組成物を構成する透明なゴム変性共重合樹脂 (A) とし ては、 ゴム変性共重合樹脂中に分散するゴム粒子の体積平均粒子径 (d v) が 0. 5〜2. 0 mで、 かつ、 ゴム粒子径体積積算分布曲線における積算値の 7 5 %径 (d v 7 5) と積算値の 2 5 %径 (d v 2 5) の差が 0. 2〜2. 0 mであるゴム変性共重合樹脂 (A) が選択される。
透明なゴム変性共重合樹脂(A)中に分散するゴム粒子の体積平均粒子径は、 好ましくは 0. 6〜 1. マ nm、 さらに好ましくは 0. 7〜1. 5 mである。 ゴム粒子の体積平均粒子径が 0. 5 im未満の場合はゴム変性共重合樹脂組成 物の耐衝撃性や実用強度が低いものとなり、 2. 0 imを越えた場合は透明性 の劣るものとなる。
また、 d V 7 5と d V 2 5の差は、 好ましくは 0. 4〜1. 7 im、 さらに 好ましくは 0. 5〜1. 5 xmである。 dv 7 5— d v 25が 0. 2 xm未満 であるとゴム変性共重合榭脂組成物の耐衝撃性、 剛性のバランスおよび実用強 度が劣り、 2. 0 mを越えると透明性、 剛性のバランスが劣り、 さらに透明 性の成形条件依存性が大きくなる。
透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子は、 ゴム粒子径体積 積算分布曲線において、 粒子径 0. 8 im未満が 9 5〜30体積%で、 粒子径 0. 8 m以上が 5〜 70体積%を占めることが好ましレ^さらに好ましくは、 粒子径 0. 8 /zm未満が 80〜40体積%で、 粒子径 0. 8 ^m以上が 2 0〜 60体積%である。 粒子径 0. 8 xm未満が 9 5〜 30体積%で、 粒子径 0. 8 m以上が 5〜 70体積%であると、 さらにゴム変性共重合樹脂組成物の透 明性、 耐衝撃性、 剛性に優れ、 透明性の成形条件依存性が良好で実用強度が高 いものとなる。
また、 透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子は、 前掲した ように横軸にゴム粒子径、 縦軸に体積分率で表示するゴム粒子径分布の粒子径 体積頻度分布曲線において、粒子径 0. 8 m未満と粒子径 0. 8 xm以上に、 それぞれ少なくとも一つの極大値を有することが好ましい。 粒子径 0. 8 m 未満と粒子径 0. 8 m以上に、それぞれ少なくとも一つの極大値を有すると、 さらにゴム変性共重合樹脂組成物の透明性、 耐衝撃性、 剛性に優れ、 透明性の 成形条件依存性が良好で実用強度が高いものとなる。
さらには、 本発明では透明なゴム変性共重合樹脂 (A) と乳化グラフト共重 合体 (B) の温度 2 5 における屈折率差が、 好ましくは 0. 03未満、 さら に好ましくは 0. 02未満である。 屈折率差が 0. 03以上であると大幅に透 明性が低下するので好ましくない。
なお、 本発明の屈折率は、 組成分析により構成する単量体単位の組成比を測 定し、 次式数 4を用いて計算により屈折率を求めるものとする。
数 4
n=XAXnA+XBXnB+XcXnc+ · · ·
すなわち、 単量体単位の組成が、 Am単量体: XA、 Bm単量体: XBおよび Cm単量体: Xc からなる場合 (但し、 質量比で XA+XB+XC= 1 ) 、 ηΛは Am単量体からなるポリマーの屈折率、 nBは Bm単量体からなるポリマーの屈 折率、 ncは Cm単量体からなるポリマーの屈折率を示すものとし、 上式に代入 して計算より求めるものである。 なお、 組成分析は公知の手法、 例えば、 熱分 解ガスクロマトグラフィー等で行うことができる。 透明なゴム変性共重合樹脂 (A) と乳化グラフト共重合体 (B) は、 公知の 手法により混合しゴム変性共重合樹脂組成物とすることができる。 例えば押出 機を用い溶融混練する方法があげられる。
本発明のゴム変性共重合樹脂組成物には、必要に応じて酸化防止剤、耐候剤、 滑剤、 可塑剤、 着色剤、 帯電防止剤、 鉱油、 難燃剤等の添加剤を添加すること ができ、 製造時任意の段階で添加することができる。 添加剤を添加する方法に ついては特に規定はないが、 たとえば、 各々の樹脂または共重合体の重合時に 添加する方法や樹脂組成物の製造時に押出機にて溶融混練する方法等があげら れる。
本発明のゴム変性共重合樹脂組成物は、 射出成形、 押出成形、 圧縮成形、 真 空成形等の公知の方法により各種成形体に加工され実用に供される。
実施例
次に実施例をもって本発明をさら説明するが、 本発明はこれらの例によって 限定されるものではない。
(1) 透明なゴム変性共重合体樹脂の実施例
参考例 1
撹拌機を付した容積約 5 Lの第 1完全混合型反応器、 撹拌機を付した容積約 1 5 Lの第 2完全混合型反応器、 容積約 40 Lの塔式プラグフロー型反応器、 予熱器を付した脱揮槽を直列に接続して構成した。 ゴム状重合体として旭化成 社製アサプレン 67 OA (スチ ン—ブタジエンゴム、 スチレン含量が 40質 量%、 温度 2 5T:における 5質量%スチレン溶液粘度 33mP a · s、 1 , 2 一ビニル結合の割合 1 3. 9モル%) を 8質量部、 スチレン 56質量部、 メチ ルメタァクリレート (以下 MMA) 3 9質量部、 n—プチルァクリレー卜 (以 下 n— BA) 5質量部で構成する単量体溶液に対し、 ェチルベンゼン 14質量 部、 t一ブチルパーォキシイソプロピルモノカーボネート (1時間半減期温度: 1 1 8°C) 0. 0 5質量部、 t一ドデシルメルカブタンを 0 - 1質量部、 ォク 夕デシルー 3— (3, 5—ジ一 t—プチル— 4ーヒドロキシフエニル) プロピ ォネートを 0. 1質量部を混合し原料溶液とした。 この原料溶液を毎時 7 k g で温度 1 10°Cに制御した第 1完全混合型反応器に導入した後連続的に温度 1 30°Cに制御した第 2完全混合型反応器に供給した。 次いで重合液を第 2完全 混合型反応器より連続的に抜き出しながら、 流れの方向に向かって温度 1 3 0 °Cから 1 5 0 °Cの勾配がつくように調整した塔式プラグフロー型反応器に導 入した。 この重合液を予熱器で加温しながら、 1 . 3 k P aに減圧した脱揮槽 に導入し、 脱揮槽内温度 2 3 0 °Cにて未反応単量体等の揮発分を除去した。 こ の樹脂液をギアポンプで抜き出し、 ストランド状に押出し切断することにより ペレット形状の樹脂を得た。 第 2完全混合型反応器の撹拌数を変更し、 ゴム粒 子径を制御することによりサンプル A〜Eを得た。 表 1に物性評価結果を示し た。
参考例 2
第 1完全混合型反応器を用いず、 かつ t—プチルパーォキシイソプロピルモ ノカーボネートを添加しない原料溶液を第 2完全混合型反応器に直接供給した 以外は参考例 1と同様に行った。 第 2完全混合型反応器の撹拌数を変更し、 ゴ ム粒子径を制御することによりサンプル F〜 Gを得た。 表 1に物性評価結果を 示した。
参考例 3
t一ドデシルメルカブタンを 0 . 0 2質量部とし、ォクタデシル— 3—(3, 5—ジ一 t一プチルー 4ーヒドロキシフエニル)プロピオネー卜の代わりに 4 , 6—ビス (ォクチルチオメチル) - 0 -クレゾールを 0 . 1質量部を混合し原料 溶液とした以外は参考例 1と同様に行い、 サンプル Hを得た。 表 1に物性評価 結果を示した。
表 1
Figure imgf000016_0001
実施例 1〜6、 比較例:!〜 4
表 2、 3、 4に示す配合で 4 0 mm単軸押出機を用い温度 2 3 0 °Cでストラ ンド状に押出し、 ペレタイザ一にて切断することによりペレツト形状のゴム変 性共重合樹脂を得た。 また、 表 2、 3、 4に物性評価結果を示した。
表 2
実施例 1 実施例 2 実施例 3 配合種類 B/ D B/ D B/ D 配合比率 (質量部) 6 0/40 40/60 80/20 d V ( zm) 0. 8 1. 0 0. 7 d v 75 2 m) 1. 1 1. 2 1. 0 d v 25 ^ τ ) 0.4 0. 5 0. 4 dv 75-d v25 (urn) 0. 7 0. 7 0. 6
0. 8 m未満 (体積%) 70 45 82
0. 8 m以上 (体積%) 30 55 1 8
0. 8 xm未満のピーク 1つ有り 1つ有り 1つ有り
0. 8 m以上のピーク 1つ有り 1つ有り なし ゲル分 (質量%) 16 17 1 5 膨潤指数 12 12 1 2 重量平均分子量 (Mw) 14万 14万 14万
20 O 全光線透過率 (%) 91 91 91 成形物 曇価 (%) 2. 8 3. 9 2. 6
230。C 全光線透過率 (%) 91 91 9 1 成形物 曇価 (%) 1. 9 2. 5 1. 9 アイゾット衝撃強度 (J/m) 1 1 1 120 99 曲げ弾性率 (MP a) 2560 2520 2570
Figure imgf000018_0001
表 4
比較例 1 比較例 2 比較例 3 比較例 4 酉 3合種類 c E A/ E A/ D 西 P合比率 (晳 *部) 1 00 1 0 0 6 0/40 Q 5 / 5 l v (、 if τη i 0 7 2 8 0 9 0 v 7 SJ ( n m) n 7 9 Q リ 0 4
( V J D f \J . Ό , Π 9
Q V O LI V ώ Q V 0 1 0 u . 乙 9 乙 . 0 u . 1
7 n Q
U . O TIlTt ii^ 、 个貝 Ό U
リ Q Q
. O I II1^A_L. 、1 个貝 bノ O U
1 つ右 十で 7 つ六 in
U . o m木偶 t_ ソ y V V
0. 8 m以上のピーク /ck つ右 ΐΠ つ古 1 つ古 レ 丄 リ V 丄 リ V 丄 リ U ゲル分 (質量%) o a ο 0 膨潤指数 Δ 1 乙 重量平均分子量 (Mw) J 1 A 7 t j 丄 4ノ」
20 0°C 全光線透過率 (%) Q 1 リ P Q Q 1 成形物 曇価 (%) 2. 6 1 5. 5 9. 1 2. 6
230°C 全光線透過率 (%) 9 1 9 0 9 0 9 1 成形物 曇価 (%) 1. 9 9. 8 4. 3 1. 9 アイゾッ卜衝撃強度 ( JZm) 5 8 9 7 1 04 5 2 曲げ弾性率 (MP a) 2550 2550 2550 2560 本発明の透明なゴム変性共重合樹脂に係わる実施例は、 何れも、 透明性、 耐 衝撃性、 剛性に優れ、 かつ透明性の成形条件依存性が少なく、 本発明の条件に 合わない比較例では、 透明性、 耐衝撃性、 剛性、 透明性の成形条件依存性のう ちいずれかの物性において劣るものであった。
(2) ゴム変性共重合樹脂組成物の実施例
参考例 4
撹拌機を付した容積約 5 Lの第 1完全混合型反応器、 撹拌機を付した容積約 1 5 Lの第 2完全混合型反応器、 容積約 40 Lの塔式プラグフロー型反応器、 予熱器を付した脱揮槽を直列に接続して構成した。 ゴム状重合体として旭化成 社製アサプレン 67 OA (スチレン一ブタジエンゴム、 スチレン含量が 40質 量%、 温度 2 5°Cにおける 5質量%スチレン溶液粘度 3 3mP a · s、 1 , 2 —ビニル結合の割合 1 3. 9モル%) を 1 0質量部、 スチレン 56質量部、 メ チルメタクリレー卜 (以下 MMA) 3 9質量部、 n—ブチルァクリレート (以 下 n— BA) 5質量部で構成する単量体溶液に対し、 ェチルベンゼン 1 5質量 部、 t一プチルパーォキシイソプロピルモノカーボネート 0. 05質量部、 t —ドデシルメルカブタンを 0. 1 5質量部、 ォクタデシルー 3— (3, 5—ジ — t—ブチルー 4ーヒドロキシフエニル) プロピオネートを 0. 1質量部を混 合し原料溶液とした。 この原料溶液を毎時 7 k gで温度 1 1 0°Cに制御した第 1完全混合型反応器に導入した後連続的に温度 1 30°Cに制御した第 2完全混 合型反応器に供給した。 第 2完全混合型反応器の撹拌数によりゴム粒子径を制 御した。 次いで重合液を第 2完全混合型反応器より連続的に抜き出しながら、 流れの方向に向かって温度 1 3 0でから 1 50°Cの勾配がつくように調整した 塔式プラグフロー型反応器に導入した。 この重合液を予熱器で加温しながら、 1. 3 kP aに減圧した脱揮槽に導入し、 脱揮槽内温度 23 0°Cにて未反応単 量体等の揮発分を除去した。 この樹脂液をギアポンプで抜き出し、 ストランド 状に押出し切断することによりペレツト形状の樹脂を得た。 第 2完全混合型反 応器の撹拌数を変更し、 ゴム粒子径を制御することによりサンプル Α' 〜Ε' を得た。 表 5に物性評価結果を示した。
参考例 5
第 1完全混合型反応器を用いず、 かつ t一ブチルパーォキシィソプロビルモ ノカーボネー卜を添加しない原料溶液を第 2完全混合型反応器に直接供給した 以外は参考例 4と同様に行った。 第 2完全混合型反応器の撹拌数を変更し、 ゴ ム粒子径を制御することによりサンプル F ' 〜G ' を得た。 表 5に物性評価結 果を示した。
参考例 6
ォク夕デシルー 3— ( 3, 5—ジー t _ブチル一 4ーヒドロキシフエニル) プロピオネートの代わりに 4, 6—ビス (ォクチルチオメチル) - 0 -クレゾ一 ルを 0 . 1質量部を混合し原料溶液とした以外は参考例 4と同様に行い、 サン プル Hを得た。 表 5に物性評価結果を示した。
表 5
Figure imgf000022_0001
参考例 7
表 6、 表 7に示す配合で 40mmの単軸押出機を用い温度 230ででストラ ンド状に押出し、 ペレタイザ一にて切断することによりペレツト形状のゴム変 性共重合樹脂 (A) を得た。 表 6、 表 7に物性評価結果を示した。
なお、 得られた樹脂を構成する単量体単位の組成より算出された屈折率は、 組成分析によりゴム変性共重合樹脂 (A) を構成する単量体単位の組成比を測 定し、 前掲した式数 4を用いてスチレン、 メチルメタクリレート、 n—ブチル ァクリレート、 ブタジエン単量体の屈折率をそれぞれ、 1. 59 5、 1. 49 4、 1. 46 3、 1. 5 1 8として、 計算により屈折率を求めた。 いずれも 1. 548であった。 表 6
9 ― Q 芙'! ¾杳 厶—— 1丄
ίϊΕコ ^ S
n 星突貝 O / U J3 / JJ T) / / T U Γ コ A レ 旦; ίε ヽ
Ό U / 4 U 4 U / D U O Π / π d v 、11 mノ 丄 . U U .
Q V 1 / O d (、 jl lil、j 丄 . 丄 丄 . 乙 1 Π
Λ
Q V D 、11111) W . D U . o Q
U , ί A 7 Π 7
Λ U . Q O f〃l linl ^i "、1太請个貝 9/ b、ノ Ό O o
O
. O K ^T^ D u 1 7
0. 8 m未満のピ一ク 1つ有り 1つ有り 1つ有り
0. 8 xm以上のピーク 1つ有り 1つ有り なし ゲル分 (質量%) 1 8 1 9 1 8 膨潤指数 1 2 1 2 1 2
Mw 1 3万 1 3万 1 3万
表 7
実験 2-6 2-7 2-8 2-9 2- 10 配合種類 B' / D, / E' C E' A' / E' A' 1 D' 配合比率 (質量部) 60/20/20 100 100 60/40 95/ 5 d V ίΙ Ά) 1.0 0.7 2. 8 0. 9 0. 3 d ν 75 (ii ) 1.6 0.7 2. 9 2. 6 0.4 d v 25 (iim) 0.4 0.6 2. 7 0. 2 0·' 2 dv 75-dv25 ( ) 1. 2 0. 1 0.2 2.4 0. 1
0. 8 / m未満 (体積%) 65 68 1 60 96
0. 8 以上 (体積%) 35 32 99 40 4
0. 8 /im未満のピーク 1つ有り 1つ有り なし 1つ有り 1つ有り
0. 8 m以上のピーク 2つ有り なし 1つ有り 1つ有り 1つ有り ゲル分 (質量%) 19 17 18 18 15 膨潤指数 12 12 12 12 12
Mw 13万 13万 13万 13万 13万
参考例 8
容積 2 0 0リツトルのオートクレープに純水 1 1 5 k g、 ォレイン酸カリゥ ム 5 0 0 g、 ピロリン酸ナトリウム 7 5 g、 硫酸第一鉄 1 . 5 g、 エチレンジ アミンテトラ酢酸ナトリウム 2 . 2 g、 ロンガリット 2 2 gを加えて撹拌下で 均一に溶解した。 次いでスチレン 2 0 . 0 k g , ブタジエン 3 0 . 0 k , t —ドデシルメルカプタン 1 4 8 g、 ジビニルベンゼン 3 0 g、 ジイソプロピル ベンゼンハイドロパーォキサイド 9 6 gを加え、 撹拌しながら温度 5 0 °Cで 1 6時間反応を行って重合を完結し、 ゴム状重合体ラテックスを得た。 得られた ゴム状重合体ラテックスにナトリゥムスルホサクシネート 4 5 gを添加して充 分安定化した後、 0 . 2 %塩酸水溶液と 2 %苛性ソーダ水溶液を別々のノズル から、 ラテックスの P Hが 8〜 9を保つように添加し、 ラテックスを凝集肥大 化させ、 平均粒径 0 . 4 2 x mのゴム状弾性体ラテックスを得た。 ゴム状弾性 体ラテックスを固形分換算で 3 0 k g計量して容積 2 0 0 Lのォ一トクレーブ に移し、 純水 8 0 k gを加え、 攪拌しながら窒素気流下で温度 5 0 °Cに昇温し た。 ここに硫酸第一鉄 1 . 2 5 g、エチレンジアミンテトラ酢酸ナトリウム 2 . 5 g、ロンガリット 1 0 0 gを溶解した純水 2 k gを加え、スチレン 1 6 k g、 メチルメタクリレート 1 4 k g、 t一ドデシルメルカブタン 6 0 gからなる混 合物と、 ジィソプロピルベンゼンハイドロパーォキサイド 1 2 0 gをォレイン 酸カリウム 4 5 0 gを含む純水 8 k gに分散した溶液とを、 別々に 6時間かけ て連続添加した。 添加終了後、 温度を 7 0でに昇温して、 さらにジイソプロピ ルベンゼンハイドロパーォキサイド 3 0 g添加した後 2時間放置して重合を終 了した。
得られた乳化液に酸化防止剤を加え、 純水で固形分を 1 5質量%に希釈した 後に温度 6 0 °Cに昇温し、 激しく撹拌しながら希硫酸を加えて塩析を行い、 そ の後温度を 9 0でに昇温して凝固させ、 次に脱水、 水洗、 乾燥して粉末状の乳 化グラフト共重合体 (B ) を得た。
得られた乳化グラフト共重合体 (B ) を構成する単量体単位の組成比を測定 し、 前掲した式数 4を用いて算出された屈折率は 1 . 5 4 8であった。
実施例 7〜 1 3、 比較例 5〜 9
表 8、 9に示す配合で 3 5 mmの 2軸押出機を用い温度 2 3 0 °Cでストラン ド状に押出し、 ペレタイザ一にて切断することによりペレツト形状のゴム変性 共重合樹脂組成物を得た。 表 8、 9に物性評価結果を示した。
表 8 実施例 7 実施例 8 実施例 9 実施例 10 実施例 11 実施例 12 実施例 13 実験 2-1 2-2 2-3 2-4 2-5 2-6 2-1 ゴム変性共重合樹脂
哲貝昼里 90 90 90 90 90 90 80 乳化グラフト量 (質量%) 10 10 10 10 10 10 20
200°C 全光線透過率 (%) 90 90 90 90 89 90 90 成形物 曇価 (%) 3. 2 4. 5 3. 0 4. 5 4. 9 3. 9 3. 0
230°C 全光線透過率 (%) 91 90 9 1 91 90 9 1 9 1 成形物 曇価 (%) 2.4 3. 0 2. 3 2. 5 3. 3 2. 7 2. 2 アイゾット衝撃強度 (J/m) 152 154 134 130 141 150 195 落錐強度 (cm) 45 47 38 35 40 43 75 曲げ弾性率 (MP a) 2410 2380 2400 2450 2450 2380 2280
表 9 比較例 5 比較例 6 比較例 7 比較例 8 比較例 9 験番"^ 2-1 2-7 2-8 2-9 2-10 ゴム変性共重合樹脂
具 ¾ 100 90 90 90 90 乳化グラフト量 (質量%) 0 10 10 10 10
200°C 全光線透過率 ( ) 90 90 88 88 90 成形物 曇価 (%) 3. 2 3. 2 17. 3 10. 3 3. 2
230°C 全光線透過率 (%) 91 91 89 89 91 成形物 曇価 (%) 2.4 2.4 8.6 5. 6 2.4 アイゾッ卜衝撃強度 (J/m) 112 61 95 105 58 落錐強度 (cm) 8 23 29 30 23 曲げ弾性率 (MP a) 2410 2400 2380 2370 2400
本発明のゴム変性共重合樹脂組成物に係わる実施例は、 表 8に示すとおり何 れも、 透明性、 耐衝撃性、 剛性に優れ、 透明性の成形条件依存性が少なく、 か つ実用強度に優れている。 本発明の条件に合わない比較例では、 表 9に示すと おり透明性、 耐衝撃性、 剛性、 透明性の成形条件依存性、 実用強度のうちいず れかの物性において劣るものであった。
なお、 評価は下記の方法によった。
(1) ゴム粒子の体積平均粒子径 (d v)
ォスミゥム酸で染色した樹脂の超薄切片法透過型電子顕微鏡写真より、 写真 中の粒子約 1 000個の粒子径 (= (長径 +短径) Z2) を測定し、 次式数 5に より得られる平均粒子径として求めた。 粒子径の計測には、 画像処理測定装置 C a r l Z e i s s V i s i o n社製 K S 400を使用した。
数 5
平均粒子径=∑ n i · D i V∑ n i · D i 3
(n iは粒子径 D iを有するゴム粒子の個数)
なお、 d V 75 %径と d V 2 5 %径も上記の測定で得られた粒子径を画像処 理測定装置を使用して、 整理し得た。
(2) ゲル分、 膨潤指数は前掲した方法で測定した。
(3) 重量平均分子量 (Mw)
下記記載の G P C測定条件で測定した。
装置名 : SYSTEM— 2 1 S h o d e x (昭和電工社製)
カラム : PL g e l M I XED— Bを3本直列
温度: 40 °C
検出:示差屈折率
テトラハイ ドロフラン
2質量%
検量線:標準ポリスチレン (P S) (PL社製) を用いて作製し、 重量平均分 子量は P S換算値で表した。
(4) 透明性
東芝機械 (株) 社製射出成形機 ( I S— 5 0 EPN) を用いて、 シリンダー 温度 2 00°Cおよび 2 3 0°Cで厚さ 1 mm、 2 mm, 3 mmの 3段プレートを 成形した。 この 3段プレートの 2mm部を用い、 ASTM D 1 0 03に準拠 し、 日本電色工業社製 HAZ Eメーター (NDH— 10 0 1 D P型) を用いて 全光線透過率および曇価を測定した (単位: %) 。
(5) 耐衝撃性
東芝機械 (株) 社製射出成形機 ( I S— 8 0 CNV) を用いて、 シリンダー 温度 200°Cで 1 2. 7 X 64 X 6. 4 mm寸法の弒験片を成形した。 この試 験片を用い、 AS TM D 2 56に準拠してアイゾット衝撃強度を測定した(単 位: J /m) 。
(6) 剛性
東芝機械 (株) 社製射出成形機 ( I S— 8 0 CNV) を用いて、 シリンダー 温度 200 °Cで 1 2. 7 X 1 2 7 X 6. 4 mm寸法の試験片を成形した。 この 試験片を用い、 AS TM D 7 90に準拠して曲げ弾性率を測定した (単位: MP a)
(7) 実用強度
東芝機械 (株) 社製射出成形機 ( I S— 8 0 CVN) を用いて、 シリンダー 温度 230 °Cで厚さ 1 mm、 2 mm, 3 mmの 3段プレートを成形した。 この 試験片の lmm部を用い、 J I S K 72 1 1に準拠して、 錘先端 5 R、 錘径 14ιηιηφ、 重量 2 00 g f の錘を用い、 5 0 %破壊高さを測定した (単位: c m) 。 産業上の利用可能性
本発明のゴム変性共重合樹脂は、 透明性、 耐衝撃性、 剛性に優れ、 かつ透明 性の成形条件依存性が少なく良好である。
また、 本発明のゴム変性共重合樹脂組成物は、 透明性、 耐衝撃性、 剛性に優 れ、 透明性の成形条件依存性が少なく、 さらに実用強度が高く、 家電製品、 包 装材料を始め様々な用途に有用である。

Claims

請求の範囲
1. ゴム状重合体の存在下、 スチレン系単量体と (メタ) アクリル酸エステル 系単量体とを共重合して得られる、 1種又は 2種以上の混合物からなるゴム変 性共重合樹脂であって、 樹脂中に分散するゴム粒子の体積平均粒子径 (d v) が 0. 4:〜 2. 0 で、 かつゴム粒子径体積積算分布曲線において積算値の 7 5 %径 (d 75 ) と 2 5 %径 (d 2 5 ) の差が 0. 2〜 2 · 0 mであるこ とを特徴とする透明なゴム変性共重合樹脂。
2. ゴム粒子径体積積算分布曲線において、 粒子径 0. 8 m未満のゴム粒子 が 9 5〜30体積%を占め、粒子径 0. 8 m以上のゴム粒子が 5〜 70体積% を占める請求項 1に記載の透明なゴム変性共重合樹脂。
3. ゴム粒子径体積頻度分布曲線において、粒子径 0. 8 ^111未満と粒子径0.
8 xm以上に、 それぞれ少なくとも一つの極大値を有する請求項 1または 2に 記載のゴム変性共重合樹脂。
4. ゲル分が 5〜25質量%である請求項 1〜 3のいずれかに記載のゴム変性 共重合樹脂。
5. 膨潤指数が 9〜 1 7である請求項 1〜4のいずれかに記載のゴム変性共重 合樹脂。
6. 重量平均分子量 (Mw) が 8万〜 20万である請求項 1〜5のいずれかに 記載のゴム変性共重合樹脂。
7. ゴム状重合体の存在下、 スチレン系単量体と (メタ) アクリル酸エステル 系単量体とを共重合して得られる、 1種又は 2種以上の混合物からなるゴム変 性共重合樹脂であって、 樹脂中に分散するゴム粒子の体積平均粒子径 (d v) が 0. 5〜2. 0 / mで、 かつゴム粒子径体積積算分布曲線において積算値の 7 5 %径 (d 7 5) と 2 5 %径 (d 2 5) の差が 0. 2〜2. 0 mである透 明なゴム変性共重合体 (A) の 60〜9 9. 9質量%と、 乳化グラフ卜共重合 体 (B) の 0. 1〜40質量%とを含むことを特徴とするゴム変性共重合樹脂 組成物。
8. 透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子の粒子径体積積算 分布曲線において、 粒子径 0. 8 zm未満のゴム粒子が 9 5〜 30体積%を占 め、 粒子径 0. 8 以上のゴム粒子が 5〜 70体積%である請求項 7に記載 の透明なゴム変性共重合樹脂組成物。
9. 透明なゴム変性共重合樹脂 (A) 中に分散するゴム粒子の粒子径体積頻度 分布曲線において、 粒子径 0. 8 xm未満と粒子径 0. 8 zm以上に、 それぞ れ少なくとも一つの極大値を有する請求項 7又は 8に記載の透明なゴム変性共 重合樹脂組成物。
1 0. 透明なゴム変性共重合樹脂 (A) と乳化グラフト共重合体 (B) の温度 2 5°Cにおける屈折率差が、 0. 0 3未満である請求項 7〜 9のいずれかに記 載のゴム変性共重合樹脂組成物。
PCT/JP2002/010537 2001-10-11 2002-10-10 Resine de copolymere transparente modifiee au caoutchouc et composition de resine la contenant WO2003033560A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02772988A EP1447417B1 (en) 2001-10-11 2002-10-10 TRANSPARENT RUBBER−MODIFIED COPOLYMER RESIN AND RESIN COMPOSITION CONTAINING THE SAME
JP2003536296A JP4101175B2 (ja) 2001-10-11 2002-10-10 透明なゴム変性共重合樹脂およびその樹脂組成物
US10/491,434 US7019076B2 (en) 2001-10-11 2002-10-10 Transparent rubber-modified copolymer resin and resin composition containing the same
DE60215849T DE60215849T8 (de) 2001-10-11 2002-10-10 Transparentes Kautschuk-modifiziertes Copolymerharz und Harzzusammensetzung davon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-313618 2001-10-11
JP2001313618 2001-10-11
JP2001326163 2001-10-24
JP2001-326163 2001-10-24

Publications (1)

Publication Number Publication Date
WO2003033560A1 true WO2003033560A1 (fr) 2003-04-24

Family

ID=26623846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010537 WO2003033560A1 (fr) 2001-10-11 2002-10-10 Resine de copolymere transparente modifiee au caoutchouc et composition de resine la contenant

Country Status (8)

Country Link
US (1) US7019076B2 (ja)
EP (1) EP1447417B1 (ja)
JP (1) JP4101175B2 (ja)
KR (1) KR100884513B1 (ja)
CN (1) CN1300204C (ja)
DE (1) DE60215849T8 (ja)
TW (1) TWI302538B (ja)
WO (1) WO2003033560A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077757A (ja) * 2017-10-23 2019-05-23 Psジャパン株式会社 ゴム変性スチレン系樹脂組成物及びその成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234246A1 (de) * 2002-07-27 2004-02-05 Tesa Ag Haftklebemassen mit hohem Brechungsindex auf Basis von Acrylatblockcopolymeren
JP2007324236A (ja) * 2006-05-30 2007-12-13 Nof Corp プリント配線板用フィルムに用いる樹脂組成物及びその用途
TWI455986B (zh) * 2012-12-28 2014-10-11 Chi Mei Corp 透明橡膠變性苯乙烯系樹脂
EP4219623A4 (en) * 2021-07-26 2024-05-01 Lg Chem, Ltd. THERMOPLASTIC RESIN COMPOSITION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269142A (ja) * 1995-04-04 1996-10-15 Daicel Chem Ind Ltd 透明なゴム変性スチレン系樹脂組成物
JPH11147993A (ja) * 1997-11-17 1999-06-02 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
JPH11322863A (ja) * 1998-05-12 1999-11-26 Denki Kagaku Kogyo Kk ゴム変性スチレン系重合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146589A (en) * 1978-05-19 1979-03-27 Monsanto Company Method for preparing a monoalkenyl aromatic polyblend having a dispersed rubber phase as particles with a bimodal particle size distribution
US4785051A (en) * 1983-11-21 1988-11-15 The Dow Chemical Company Rubber-modified monovinylidene aromatic polymer compositions
CN1152005A (zh) * 1995-12-14 1997-06-18 奇美实业股份有限公司 苯乙烯系树脂组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269142A (ja) * 1995-04-04 1996-10-15 Daicel Chem Ind Ltd 透明なゴム変性スチレン系樹脂組成物
JPH11147993A (ja) * 1997-11-17 1999-06-02 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
JPH11322863A (ja) * 1998-05-12 1999-11-26 Denki Kagaku Kogyo Kk ゴム変性スチレン系重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1447417A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077757A (ja) * 2017-10-23 2019-05-23 Psジャパン株式会社 ゴム変性スチレン系樹脂組成物及びその成形品
JP7001424B2 (ja) 2017-10-23 2022-01-19 Psジャパン株式会社 ゴム変性スチレン系樹脂組成物及びその成形品

Also Published As

Publication number Publication date
US20040249073A1 (en) 2004-12-09
EP1447417A1 (en) 2004-08-18
KR100884513B1 (ko) 2009-02-18
KR20050035126A (ko) 2005-04-15
CN1300204C (zh) 2007-02-14
DE60215849D1 (de) 2006-12-14
DE60215849T2 (de) 2007-02-15
US7019076B2 (en) 2006-03-28
TWI302538B (ja) 2008-11-01
JP4101175B2 (ja) 2008-06-18
JPWO2003033560A1 (ja) 2005-02-03
EP1447417A4 (en) 2005-08-24
EP1447417B1 (en) 2006-11-02
CN1564833A (zh) 2005-01-12
DE60215849T8 (de) 2007-05-31

Similar Documents

Publication Publication Date Title
JP7176122B2 (ja) 熱可塑性樹脂組成物、その製造方法及びそれを含む成形品
KR101743326B1 (ko) 저온 내백화 특성이 개선되고 내충격성이 우수한 투명 열가소성 수지 조성물
JP4340421B2 (ja) ゴム変性スチレン系樹脂組成物及びその成形品
JP4416190B2 (ja) ゴム変性共重合樹脂組成物及びその製法
WO2003033560A1 (fr) Resine de copolymere transparente modifiee au caoutchouc et composition de resine la contenant
JP2003335827A (ja) ゴム強化熱可塑性樹脂及びゴム強化熱可塑性樹脂組成物
JP3283461B2 (ja) ゴム変性スチレン系樹脂組成物
JP4731948B2 (ja) 複合ゴム粒子、複合ゴム強化ビニル系樹脂及び熱可塑性樹脂組成物
JP2003327639A (ja) ゴム強化樹脂ならびにその樹脂組成物
KR100528779B1 (ko) 내열성 및 무광택성이 우수한 열가소성 수지 조성물
JP4220273B2 (ja) 透明なゴム変性共重合樹脂組成物
JPH0616744A (ja) ゴム変性共重合樹脂の製法およびゴム変性共重合樹脂組成物
JPH0649145A (ja) グラフト共重合体の製造法およびその組成物
JP4727116B2 (ja) ゴム変性共重合樹脂組成物
JP2000204220A (ja) メタクリル系樹脂用改質剤
JP5177466B2 (ja) ゴム変性共重合樹脂の製造方法
JP2000178405A (ja) 樹脂組成物及びその製造方法
JP2004339357A (ja) 透明ゴム変性ポリスチレン系樹脂
JP4776148B2 (ja) ゴム変性共重合樹脂およびその成形体
JP2000103933A (ja) スチレン系樹脂組成物及びその製造方法
US20230167218A1 (en) Method for preparing graft copolymer, graft copolymer, and resin composition comprising the same
JP2005264003A (ja) ゴム変性共重合樹脂及び製造方法
JP2001072825A (ja) 熱可塑性樹脂組成物
JPH09202839A (ja) 透明なゴム変性スチレン系樹脂
JPH0649147A (ja) 耐衝撃性樹脂の製造法およびその組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003536296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028198972

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047005212

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10491434

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002772988

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002772988

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002772988

Country of ref document: EP