WO1999000538A1 - Sic monocristallin et procede de preparation associe - Google Patents

Sic monocristallin et procede de preparation associe Download PDF

Info

Publication number
WO1999000538A1
WO1999000538A1 PCT/JP1998/002798 JP9802798W WO9900538A1 WO 1999000538 A1 WO1999000538 A1 WO 1999000538A1 JP 9802798 W JP9802798 W JP 9802798W WO 9900538 A1 WO9900538 A1 WO 9900538A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sic
plate
composite
crystal
Prior art date
Application number
PCT/JP1998/002798
Other languages
English (en)
French (fr)
Inventor
Kichiya Tanino
Original Assignee
Nippon Pillar Packing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17201797A external-priority patent/JP3254557B2/ja
Priority claimed from JP21541497A external-priority patent/JP3254559B2/ja
Application filed by Nippon Pillar Packing Co., Ltd. filed Critical Nippon Pillar Packing Co., Ltd.
Priority to EP98928638A priority Critical patent/EP0922792A4/en
Priority to CA002263339A priority patent/CA2263339C/en
Priority to US09/147,621 priority patent/US6153166A/en
Publication of WO1999000538A1 publication Critical patent/WO1999000538A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a single crystal SiC and a method for producing the same, and more particularly, to a high-temperature semiconductor electronic device such as a light emitting diode X-ray optical device, a switching device, an amplifying device, and an optical sensor.
  • the present invention relates to a single crystal SiC used as a substrate wafer or the like and a method for producing the same. Background art
  • SiC silicon carbide
  • Si silicon carbide
  • GaAs gallium arsenide
  • SiC silicon carbide
  • the conventional manufacturing methods described above not only have a very low crystal growth rate of 1 t / m / hr. In the case of the sublimation recrystallization method, they are called micropipe defects and produce semiconductor devices. There is a problem-causing pinholes having a diameter of several Mi click Ron penetrating in the crystal growth direction of the leakage current of when the is present in 1 0 0 ⁇ 1 0 0 0 Z cm 2 about the grown crystal, the As described above, although it has many excellent features compared to existing semiconductor materials such as Si and GaAs, it is a factor that hinders its practical use.
  • the substrate temperature is as high as 1700 to 1900 ° C, and a high-purity reducing atmosphere is required.
  • the disclosure of 0 invention there is a problem that there is a limit to the growth rate for Epitakishi catcher Le growth
  • the present invention has been made in view of the background of the prior art as described above, and has such a high-quality and large-size single crystal Si having very high quality and very few micropipe defects.
  • a single crystal SiC that can be manufactured easily and with high productivity both in terms of equipment and workability, and which can promote the practical use as a semiconductor material. It is intended to provide.
  • the single crystal S i C according to the first invention is a single crystal S i C
  • the polycrystal of the polycrystal plate is transformed into a single crystal by heat-treating a composite formed by laminating a polycrystal plate composed of i atoms and C atoms via a smooth surface. It is characterized by
  • power devices have superior high-temperature characteristics, high-frequency characteristics, withstand voltage characteristics, and environmental resistance characteristics compared to existing semiconductor materials such as Si (silicon) and GaAs (gallium arsenide). This has the effect of enabling the practical use of single crystal SiC, which is expected as a semiconductor material for use.
  • the single crystal SiC according to the present invention is obtained by laminating a plurality of SiC single crystal substrates arranged adjacent to each other with adjacent side surfaces in contact with each other and a polycrystalline plate composed of Si atoms and C atoms.
  • the polycrystalline body of the polycrystalline plate is transformed into a single crystal by heat treating the composite.
  • a method for producing a single crystal SiC according to the present invention, at least one surface of a polycrystalline plate composed of a SiC single crystal base material and Si and C atoms is smoothed, After laminating the SiC single crystal base material and the polycrystalline plate through these surfaces, the composite is subjected to heat treatment to transform the polycrystalline material of the polycrystalline plate into a single crystal and grow it. It is preferable.
  • a multi-layer comprising a plurality of SiC single crystal substrates arranged adjacent to each other with adjacent side surfaces in contact with each other and Si atoms and C atoms. After laminating with the crystal plate, the composite can be heat-treated to transform the polycrystal of the polycrystal plate into a single crystal and grow it.
  • an amorphous plate or a polycrystalline plate forming a complex is formed on a surface of a plurality of SiC single crystal substrates by a thermochemical vapor deposition method.
  • 3—SiC polycrystalline plate set the thermochemical vapor deposition temperature of this amorphous plate or y8—SiC polycrystalline plate in the range of 130 ° C to 190 ° C.
  • This also provides an effect that a high-purity, high-quality single crystal SiC with even less impurities and lattice defects can be obtained.
  • FIG. 1 is a schematic diagram showing a state before heat treatment of single crystal SiC in the first embodiment of the present invention
  • FIG. 2 is a heat treatment of single crystal SiC in the first embodiment of the present invention
  • FIG. 3 is a schematic view showing a state after the heat treatment
  • FIG. 3 shows the heat of the single crystal SiC in the second embodiment of the present invention
  • FIG. 4 is a plan view showing a state before the treatment
  • FIG. 4 is a schematic view showing a state before the heat treatment of the single crystal SiC in the third embodiment of the present invention
  • FIG. 5 is a schematic bottom view of FIG.
  • FIG. 6 is an enlarged view of a main part before heat treatment of single crystal Si C in the third embodiment of the present invention.
  • FIG. 7 is a heat treatment of single crystal Si i in the third embodiment of the present invention after heat treatment.
  • FIG. 8 is a schematic diagram showing a state before heat treatment of single crystal SiC in the fourth embodiment of the present invention.
  • Fig. 1 schematically shows a composite M before heat treatment of SiC.
  • 1 is a plate-like hexagonal system (6H type, 4H type) (a single SiC single crystal base material).
  • this a-SiC single crystal substrate 1 is manufactured by sublimation method or Acheson method, and its surface 1a is polished smoothly.2 is in the range of 1300 to 1900 ° C Is a cubic system ⁇ -SiC polycrystalline plate separately manufactured by a thermochemical vapor deposition method (hereinafter, referred to as a thermal CVD method), and its one surface 2a is polished smoothly.
  • a thermal CVD method thermochemical vapor deposition method
  • the whole of the above-mentioned complex M is brought to an atmosphere having a temperature of 180 ° C. or more, preferably 220 ° C. to 240 ° C., and an S i C saturated vapor pressure.
  • Heat treatment such as holding for about 8 hours
  • the yS—S i C polycrystalline plate 2 is transformed into a single crystal, and as shown in FIG. 2, the polycrystalline form of the yS_S i C polycrystalline plate 2
  • the single crystal portion 2 ′ is oriented in the same direction as the crystal axis of the iC single crystal substrate 1, and this single crystal portion 2 ′ is integrated with the single crystal of the SiC single crystal substrate 1. Large single crystals are grown.
  • the interface 3 that clearly appeared before the heat treatment was fused and integrated, and disappeared.
  • a composite M composed of a — S i C single crystal base material 1 and / 8 _ S i C polycrystalline plate 2 adhered via the smooth polished surfaces 1 a and 2 a
  • lattice vibration occurs at the interface 3 and the interatomic arrangement is changed, causing crystal growth mainly by solid phase growth, which does not include micropipe defects at all. Almost no lattice defects (10 or less per cm 2 )
  • High-quality single crystal SiC can be manufactured with high productivity.
  • polishing or cutting off the ⁇ -SiC single crystal base material 1 used for the phase transformation to the ⁇ -type crystal in the SiC polycrystalline plate 2 a high-quality wafer for electronic devices can be obtained. it can.
  • a second embodiment will be described.
  • a plurality of ⁇ — S i C single crystal substrates 1... whose surfaces are polished smoothly are combined with the side surfaces 1 b of adjacent ⁇ _ S i C single crystal substrates 1, 1... as shown in FIG. , 1 b ... are arranged in close contact with each other, and the ⁇ -S i C polycrystalline plate 2 is placed on the polished surface of the plurality of ⁇ -S i C single crystal substrates 1.
  • the composite After laminating so that the polished surfaces are in close contact with each other, the composite is heated to a temperature of at least 180 ° C., preferably at a temperature of 220 to 240 ° C., as described above, and The heat treatment can be performed when it is held for about 8 hours in an atmosphere of S i C saturated vapor pressure.
  • the 3-SiC polycrystalline plate 2 is transformed into a single crystal, and the single crystals oriented in the same direction as the crystal axes of the plurality of ⁇ -SiC single-crystal substrates 1 are integrally formed.
  • the close side surfaces 1b of the adjacent ⁇ -SiC single-crystal substrates 1, 1 ... are fused and integrated, and a single-crystal SiC with a large area is obtained by repeating such processing.
  • Fig. 4 is a schematic diagram showing the state of the single crystal S i C before heat treatment
  • Fig. 5 is a schematic bottom view of the single crystal S i C.
  • a plurality of hexagonal (6H type, 4H type) sheets are shown.
  • the ⁇ -SiC single-crystal substrates 1 ... are arranged so that the adjacent side surfaces 1b, 1b- are in close contact with each other, and a plurality of the ⁇ -SiC single-crystal substrates 1 ...
  • a cubic 8-SiC polycrystalline plate 2 is formed into a layer on the surface of the substrate by a thermal CVD method in a temperature range of 130 to 190 ° C.
  • an ⁇ -SiC single crystal base including a lattice defect is shown.
  • a polycrystal 4 composed of a plurality of; 8—S i C columnar single crystals aligned without gaps on the surface of material 1 is grown, and ⁇ -S i C single crystal bases are formed on crystal planes with different crystal morphologies.
  • Composite M having interface 3 in contact with material 1 is formed.
  • the entire complex M is heated to a temperature range of 190 to 240 ° C., preferably 200 to 220 ° C., and at a saturated vapor pressure of SiC.
  • the adjacent ones of the plurality of ⁇ -SiC single-crystal substrates 1 are fused and integrated at the close side faces lb, 1b, and the above;
  • the polycrystal 4 of the S i C plate 2 is transformed into a—S i C single crystal, and the above cr _ S i C single crystal is formed.
  • the surface of a plurality of ⁇ -SiC single-crystal substrates 1, which are closely aligned with adjacent side surfaces, are formed on the surface of the 9- 1 SiC polycrystalline plate 2 by thermal CVD.
  • the complex M, on which the body 4 has been grown to heat treatment, it is mainly made of solid phase growth, in which the area is very large and lattice vibration occurs at the interface 3 to change the arrangement of atoms.
  • the cross-sectional etching photograph of FIG. 7 by a microscope there are almost no lattice defects and micropipe defects (less than 10 per cm). 1 'can be easily manufactured.
  • a fourth embodiment a plurality of high-quality single crystals S i C 1 ′ manufactured as described in the third embodiment are reused as a single S i C single crystal base material. is there. That is, as shown in FIG. 8, a plurality of the single crystals S i C 1 ′ are arranged and arranged so that adjacent side surfaces 1 ′ b, 1 ′ b... are close to each other.
  • Single crystal S i C 1 '... A composite formed by forming a polycrystalline plate 2 with orientation and composed of cubic ⁇ -S i C single crystals arranged on the entire surface by thermal CVD without any gaps After forming M ′, the entire complex M ′ was heated at 900 ° C.
  • the a-SiC single-crystal base material 1 was used as the SiC single-crystal base material.
  • S i C single crystal may be used, and in each of the above embodiments, a 3-Si C crystal plate 2 is used as a polycrystalline plate composed of S i atoms and C atoms.
  • an ⁇ - SiC polycrystalline plate for example, an ⁇ - SiC polycrystalline plate, a high-purity SIC sintered body, or an amorphous plate having a high purity (10 14 atm / cm 3 ) or less may be used. It is possible to obtain the same high-quality single crystal SiC as in each of the above embodiments.
  • ⁇ -SiC single crystal base material 1 in each of the above embodiments either 6H type or 4H type may be used, and when 6H type is used, heat treatment is performed. Accordingly, a single crystal that is converted from the polycrystal of the 3-SiC polycrystalline plate 2 to ⁇ _SiC is easily grown in the same form as a 6H-type single crystal, and a 4H-type When the single crystal substrate 1 is used, a single crystal having the same form as the 4H-type single crystal is likely to be converted and grown with the heat treatment.
  • the temperature condition for the heat treatment of the composite M may be in the range of 180 to 240 ° C., preferably in the range of 2000 to 220 ° C. I like it. If the heat treatment temperature is lower than 180 ° C., the kinetic energy of the atoms cannot be given to many SiC forming the interface. When the temperature exceeds 240 ° C., heat energy far exceeding the decomposition energy of SiC is supplied, and the SiC crystal itself is decomposed. Industrial applicability
  • the present invention relates to a SiC single crystal substrate and a polycrystalline plate.
  • a SiC single crystal substrate and a polycrystalline plate are laminated in close contact with each other via a smooth polished surface, or a polycrystalline plate is formed by thermal CVD on the surface of a plurality of SiC single-crystal substrates arranged side by side.
  • the film composite is heat-treated to transform the polycrystal of the polycrystalline plate into a single crystal, and a single crystal oriented in the same direction as the crystal axis of the SiC single crystal substrate grows in a large size Technology that not only excels in heat resistance and mechanical strength, but also makes it easy and efficient to produce high-quality, large-sized single-crystal SiC with very few mic opening pipe defects and lattice defects. It is.

Description

明細書 単結晶 S i Cおよびその製造方法 技術分野
本発明は、 単結晶 S i Cおよびその製造方法に関するもの で、 詳し く は、 発光ダイォー ドゃ X線光学素子、 スィ ッ チ ン グ素子、 増幅素子、 光セ ンサーなどの高温半導体電子素子の 基板ウェハなどと して用いられる単結晶 S i Cおよびその製 造方法に関する。 背景技術
S i C (炭化珪素) は、 S i (シ リ コ ン) や G a A s (ガ リ ウムヒ素) などの既存の半導体材料に比べて、 耐熱性およ び機械的強度に優れているだけでなく 、 放射線にも強く 、 さ らに不純物の添加によって電子や正孔の価電子制御が容易で ある上、 広い禁制帯幅を持つ (因みに、 6 H型の S i C単結 晶で約 3 . 0 e V、 4 H型の S i C単結晶で 3 . 2 6 e V ) ために、 上述したような既存の半導体材料では実現できない 大容量、 高周波特性、 耐圧特性、 耐環境特性を実現可能で、 次世代のパヮーデバイス用半導体材料と して注目され、 かつ 期待されている。
ところで、 この種の S i C単結晶の製造 (成長) 方法と し て、 従来、 種結晶を用いた昇華再結晶法によって S i C単結 晶を成長させる方法と、 高温度での場合はシ リ コ ン基板上に 化学気相成長法 ( C V D法) を用いてェピタキシャル成長さ せることにより立方晶の S i C単結晶 β — S i C ) を成長 させる方法とが知られている。
しかしながら、 上記したような従来の製造方法は共に結晶 成長速度が 1 t/ m/ h r . と非常に低いだけでなく 、 昇華再 結晶法の場合は、 マイク ロパイプ欠陥と呼ばれ半導体デバイ スを作製した際の漏れ電流等の原因となる結晶の成長方向に 貫通する直径数ミ ク ロンのピンホールが 1 0 0〜 1 0 0 0 Z c m2 程度成長結晶中に存在するという問題があり、 このこ とが既述のように S i や G a A s などの既存の半導体材料に 比べて多く の優れた特徴を有しながらも、 その実用化を阻止 する要因になっている。
また、 高温 C V D法の場合は、 基板温度が 1 7 0 0〜 1 9 0 0 °Cと高い上に、 高純度の還元性雰囲気を作ることが必要 であって、 設備的に非常に困難であり、 さ らに、 ェピタキシ ャル成長のため成長速度にも自ずと限界があるという問題が あった 0 発明の開示
本発明は上記のような従来技術の背景に鑑みてなされたも ので、 マイ ク ロパイプ欠陥などの非常に少ない高品位で、 か つ大型の単結晶 S i じと、 このような高品位かつ大型の単結 晶 S i Cを設備的にも作業面からも容易かつ生産性よく製造 することができ、 半導体材料と しての実用化を促進すること ができる単結晶 S i Cの製造方法を提供するこ とを目的とす るものである。
本第 1発明に係る単結晶 S i Cは、 S i C単結晶基材と S i 原子および C原子により構成される多結晶板とを平滑な面 を介して積層してなる複合体を熱処理することにより、 上記 多結晶板の多結晶体を単結晶に変態させているこ とを特徴と するものである。
このような構成によれば、 S i C単結晶基材と多結晶板と を積層させてなる複合体を熱処理するといつた設備的にも作 業面でも簡易な手段を施すだけで、 多結晶板の多結晶体を相 変態させて単結晶に効率よく成長させることができる。 しか も、 複合体を構成する S i C単結晶基材と多結晶板とが平滑 な面を介して熱処理することにより、 その熱処理時に両者の 界面に系外から不純物が入り込むことがないので、 格子欠陥 およびマイク ロパイプ欠陥だけでなく 、 不純物の侵入による 結晶粒界の発生などもない非常に高品位の単結晶 S i Cを得 ることができる。 これによつて、 S i (シ リ コ ン) や G a A s (ガリ ウムヒ素) などの既存の半導体材料に比べて高温特 性、 高周波特性、 耐圧特性、 耐環境特性などに優れパワーデ バイス用半導体材料と して期待されている単結晶 S i Cの実 用化を可能とすることができるという効果を奏する。
本発明に係る単結晶 S i Cは、 隣接する側面同士を接して 整列配置した複数枚の S i C単結晶基材と S i 原子と C原子 により構成される多結晶板とを積層してなる複合体を熱処理 することにより、 上記多結晶板の多結晶体を単結晶に変態さ せているこ とを特徴とするものである。
このような構成によれば、 複合体の熱処理によつて格子欠 陥、 マイク ロパイプ欠陥および結晶粒界の発生などが非常に 少ない高品位の単結晶 S i Cを得ることができるのみならず 、 複数枚の S i C単結晶基材の側面同士を融着一体化して面 積的に大型の単結晶 S i Cを容易に得ることができ、 既存の 半導体材料に比べて優れた各種性能を有する単結晶 S i Cを 小型製品から大型製品までの半導体材料と して幅広く適用す ることができるという効果を奏する。
また、 本発明に係る単結晶 S i Cの製造方法と して、 S i C単結晶基材と S i 原子および C原子により構成される多結 晶板の少なく と も一面を平滑にして、 それら面を介して S i C単結晶基材と多結晶板とを積層した後、 その複合体を熱処 理することにより上記多結晶板の多結晶体を単結晶に変態さ せて育成することが好ま しい。
このような製造方法においては、 上記したところの格子欠 陥、 マイク 口パイプ欠陥および結晶粒界などが非常に少ない 高品位の単結晶 S i Cを容易に、 かつ、 効率よく成長させて 、 性能的に非常に優れた半導体材料と して利用可能な単結晶 S i Cを工業的規模で安定よ く製造し供給するこ とができる といった効果を奏する。
また、 本発明に係る単結晶 S i Cの製造方法と して、 隣接 する側面同士を接して整列配置した複数枚の S i C単結晶基 材と S i 原子および C原子により構成される多結晶板とを積 層した後、 その複合体を熱処理することにより上記多結晶板 の多結晶体を単結晶に変態させて育成することもできる。
このような製造方法においては、 上記したところの格子欠 陥、 マイク 口パイプ欠陥および結晶粒界などが非常に少ない 高品位で、 かつ面積的にも大型の単結晶 S i Cを効率よく成 長させて、 性能的に非常に優れているとともに半導体材料と して適用範囲の大きい単結晶 S i Cを工業的規模で安定よく 製造し供給することができるといった効果を奏する。
なお、 上記各製造方法において、 複合体を形成する多結晶 板が複数枚の S i C単結晶基材の表面に熱化学的蒸着法によ り成膜された非晶質板もしく は)3— S i C多結晶板であり、 この非晶質板もしく は y8— S i C多結晶板の熱化学的蒸着温 度を 1 3 0 0〜 1 9 0 0 °C範囲に設定する場合は、 複数枚の S i C単結晶基材とその表面の多結晶板との間に不純物が入 り込むことおよびその不純物が拡散することを抑えて、 S i C単結晶基材ょり も不純物や格子欠陥などが一層少ない高純 度、 高品位の単結晶 S i Cを得ることができるという効果を 奏する。
また、 上記製造方法において、 側面同士を接して整列配置 される複数枚の S i C単結晶基材と して、 複合体の熱処理に より得られた単結晶 S i Cを用いる場合は、 一回の熱処理に より得られた面積的に大型の単結晶 S i Cを再使用し、 熱処 理を繰り返すことで、 最終製品と して面積および厚み共に非 常に大きい大型の単結晶 S i Cを容易に製造することができ 、 高品位な半導体材料としての適用範囲を一層拡大すること ができるという効果を奏する。 図面の簡単な説明
F i g . 1 は本発明の第 1実施例における単結晶 S i Cの 熱処理前の状態を.示す模式図、 F i g . 2は本発明の第 1実 施例における単結晶 S i Cの熱処理後の状態を示す模式図、 F i g . 3は本発明の第 2実施例における単結晶 S i Cの熱 処理前の状態を示す平面図、 F i g . 4は本発明の第 3実施 例における単結晶 S i Cの熱処理前の状態を示す模式図、 F i g . 5は F i g . 4の概略底面図、 F i g . 6は本発明の 第 3実施例における単結晶 S i Cの熱処理前の要部の拡大図 . F i g . 7は本発明の第 3実施例における単結晶 S i じの 熱処理後の要部の拡大図、 F i g . 8は本発明の第 4実施例 における単結晶 S i Cの熱処理前の状態を示す模式図である
発明を実施するための最良の形態 以下、 第 1実施例について説明する。 曰
F i g . 1は単結
S i Cの熱処理前における複合体 Mを模式的に示すもので、 同図において、 1は板状の六方晶系 ( 6 H型、 4 H型) ( a 一 S i C単結晶基材であり、 この a — S i C単結晶基材 1は 昇華法あるいはアチソン法により製作され、 その表面 1 aは 平滑に研磨されている。 2は 1 3 0 0〜 1 9 0 0 °Cの範囲の 熱化学的蒸着法 (以下、 熱 C V D法と称する) により別途製 作された立方晶系の ; δ — S i C多結晶板で、 その一面 2 aは 平滑に研磨されており、 この;9 一 S i C多結晶板 2 と上記 α - S i C単結晶基材 1 とをそれぞれの研磨表面 2 a , 1 aを 介して密着状態に積層させることにより、 結晶形態の互いに 異なる結晶面が接して直線状の明瞭な界面 3を有する複合体 Mが形成されている。
この後、 上記複合体 Mの全体を、 1 8 5 0 °C以上、 好ま し く は 2 2 0 0〜 2 4 0 0 °Cの温度範囲で、 かつ、 S i C飽和 蒸気圧の雰囲気に 8時間程度保持させるといった熱処理を施 すことにより、 上記 yS — S i C多結晶板 2が単結晶に変態さ れて F i g . 2に示すように、 この yS _ S i C多結晶板 2の 多結晶体が上記 α — S i C単結晶基材 1の結晶軸と同方位に 配向された単結晶部分 2 ' となり、 この単結晶部分 2 'が上 記ひ 一 S i C単結晶基材 1の単結晶と一体化して大きな単結 晶が育成される。 なお、 熱処理後、 熱処理前に明瞭に現れて いた界面 3は融合されて一体となり、 消失している。
上記のように、 平滑に研磨された面 1 a , 2 aを介して密 着された a — S i C単結晶基材 1 と /8 _ S i C多結晶板 2 と からなる複合体 Mに熱処理を施すこ とにより、 上記界面 3に 格子振動が起こつて原子間配列が変えられるといつた固相成 長を主体とする結晶成長を生じさせ、 マイクロパイプ欠陥を 全く含まず、 その他の格子欠陥もほとんどない ( 1 cm2 あた り 1 0以下) 高品位の単結晶 S i Cを生産性よく製造するこ とができる。 また、 - S i C多結晶板 2における α型結晶 への相変態に用いた α — S i C単結晶基材 1を研磨または切 除すれば、 電子素子用の高品位ゥェハを得ることができる。 次に、 第 2実施例について説明する。 表面を平滑に研磨し た複数枚の α — S i C単結晶基材 1…を、 F i g . 3に示す ように、 隣接する α _ S i C単結晶基板 1 , 1…の側面 1 b , 1 b…同士が密接するように整列配置し、 この整列配置さ せた複数枚の α - S i C単結晶基材 1…の研磨面上に、 β ― S i C多結晶板 2をその研磨面が密着するように積層させた 後、 その複合体を上記と同様に 1 8 5 0 °C以上、 好ま しく は 2 2 0 0〜 2 4 0 0 °Cの温度範囲で、 かつ、 S i C飽和蒸気 圧の雰囲気に 8時間程度保持させるといつた熱処理を施すこ とにより、 上記 ;3— S i C多結晶板 2を単結晶に変態させて 上記複数枚の α— S i C単結晶基板 1…の結晶軸と同方位に 配向された単結晶を一体に育成するとともに、 隣接する α— S i C単結晶基板 1, 1…同士の密接側面 1 bを融着一体化 し、 このような処理を繰り返すことによって大きな面積の単 結晶 S i Cを得る。
次に、 第 3実施例について説明する。 F i g. 4は単結晶 S i Cの熱処理前の状態を示す模式図、 F i g. 5はその概 略底面図であり、 六方晶系 ( 6 H型、 4 H型) の複数枚の α - S i C単結晶基材 1…を互いに隣接する側面 1 b, 1 b - 同士が密接するように整列配置するとともに、 それら複数枚 の α— S i C単結晶基材 1…全体の表面に 1 3 0 0〜 1 9 0 0 °Cの範囲の熱 C V D法により立方晶系の 8— S i C多結晶 板 2を層状に成膜する。 この ; 8— S i C多結晶板 2の成膜段 階では、 F i g. 6の顕微鏡による断面エッチング写真で明 示されているように、 格子欠陥を含む α— S i C単結晶基材 1…の表面に隙間なく整列した複数の ;8— S i C柱状単結晶 から構成される多結晶体 4が成長され、 結晶形態が互いに異 なる結晶面で α— S i C単結晶基材 1 と接して界面 3を有す る複合体 Mが形成されている。
この後、 上記複合体 Mの全体を、 1 9 0 0〜 2 4 0 0 °C、 好ま しく は 2 0 0 0〜 2 2 0 0 °Cの温度範囲で、 かつ S i C 飽和蒸気圧中で熱処理することにより、 上記複数枚の α— S i C単結晶基材 1…の隣接するもの同士が密接側面 l b , 1 bで融着し一体化されるとと もに、 上記;3— S i C板 2の多 結晶体 4が a— S i C単結晶に変態され上記 cr _ S i C単結 晶基材 1…の結晶軸と同方位に配向されて基材 1の単結晶と 一体化した大きな単結晶 5が育成される。
上記のように隣接する側面同士を密接させて整列配置した 複数枚の α — S i C単結晶基材 1…の表面に熱 C V D法によ り 9一 S i C多結晶板 2の多結晶体 4が成長された複合体 M に熱処理を施すことにより、 面積的に非常に大きい上に、 上 記界面 3に格子振動が起こつて原子間配列が変えられるとい つた固相成長を主体とする結晶成長を生じさせて F i g . 7 の顕微鏡による断面エツチング写真で明示されているように 、 格子欠陥及びマイクロパイプ欠陥がほとんどない ( 1 cm " あたり 1 0以下) 高品位の単結晶 S i C 1 ' を容易に製造す ることができる。
次に、 第 4実施例について説明する。 この第 4実施例では 上記第 3実施例で説明したようにして製造された複数枚の高 品位単結晶 S i C 1 'をな一 S i C単結晶基材と して再使用 するものである。 すなわち、 複数枚の上記単結晶 S i C 1 ' …を F i g . 8に示すように、 隣接する側面 1 ' b, 1 ' b …同士が密接するように整列配置するとともに、 それら複数 枚の単結晶 S i C 1 ' …全体の表面に熱 C V D法により隙間 なく並んだ立方晶系の β — S i C単結晶から構成される配向 性を有する多結晶板 2を成膜して複合体 M ' を形成した後、 その複合体 M ' の全体を、 上記実施例 3と同様に 1 9 0 0〜 2 4 0 0 °C、 好ま しく は 2 0 0 0〜 2 2 0 0 °Cの温度範囲で 、 かつ S i C飽和蒸気圧中で熱処理することにより、 最終製 品として所望する大きさの高品位単結晶 S i Cを容易に製造 することが可能となる。 なお、 S i C単結晶基材と して、 上記各実施例では、 a― S i C単結晶基材 1を用いたが、 これ以外に、 例えば α— S i C焼結体や /9— S i C単結晶体などを用いてもよく、 また 、 S i 原子と C原子により構成される多結晶板と して、 上記 各実施例では、 ;3— S i C結晶板 2を用いたが、 これ以外に 、 例えば α— S i C多結晶板や、 高純度の S I C焼結体、 高 純度 ( 1 014atm / c m3 ) 以下の非晶質板を使用してもよ く 、 上記各実施例と同様な高品位の単結晶 S i Cを得るこ と が可能である。
また、 上記各実施例における α— S i C単結晶基材 1 と し ては、 6 H型、 4 H型のいずれを使用してもよく、 6 H型の ものを使用するときは、 熱処理に伴って;3— S i C多結晶板 2の多結晶体から α _ S i Cに転化される単結晶が 6 H型の 単結晶と同じ形態で育成されやすく 、 また、 4 H型の単結晶 基材 1を使用するときは、 熱処理に伴ってその 4 H型の単結 晶と同じ形態の単結晶が転化育成されやすいことになる。
さ らに、 上記複合体 Mの熱処理の温度条件と しては、 1 8 5 0〜2 4 0 0 °C、 好ま しく は 2 0 0 0〜 2 2 0 0 °Cの範囲 であることが好ま しい。 も し、 熱処理温度が 1 8 5 0 °C未満 であると、 原子の運動エネルギーを界面を形成する多く の S i Cに与えることができない。 また、 2 4 0 0 °Cを超えると 、 S i Cの分解エネルギーをはるかに超える熱エネルギーが 供給され、 S i Cの結晶そのものが分解される。 産業上の利用可能性
以上のように、 この発明は、 S i C単結晶基材と多結晶板 とを平滑な研磨面を介して密着状態に積層してなる、 あるい は、 側面を接して整列配置した複数枚の S i C単結晶基材の 表面に熱 C V D法により多結晶板を成膜してなる複合体を熱 処理して、 多結晶板の多結晶体を単結晶に変態させ S i C単 結晶基材の結晶軸と同方位に配向された単結晶を一体に大き く成長させることによって、 耐熱性および機械的強度に優れ ているだけでなく、 マイク口パイプ欠陥や格子欠陥の非常に 少ない高品位で大型の単結晶 S i Cを容易かつ効率よく製造 できるようにした技術である。

Claims

請求の範囲
( 1 ) S i C単結晶基材と S i原子および C原子により構 成される多結晶板とを平滑にされた面を介して積層してなる 複合体を熱処理することにより、 上記多結晶板の多結晶体を 単結晶に変態させていることを特徴とする単結晶 S i c。
( 2 ) 上記複合体を形成する S i C単結晶基材が、 α— S i C単結晶である請求の範囲第 1項記載の単結晶 S i C。
( 3 ) 上記複合体を形成する多結晶板が、 非晶質板もしく は yS— S i C多結晶板である請求の範囲第 1項記載の単結晶 S i C。
( 4 ) 隣接する側面同士を接して整列配置した複数枚の S i C単結晶基材と S i原子および C原子により構成される多 結晶板とを積層してなる複合体を熱処理することにより、 上 記多結晶板の多結晶体を単結晶に変態させていることを特徴 とする単結晶 S i c。
( 5 ) 上記複合体を形成する複数枚の S i C単結晶基材と 上記多結晶板とは、 平滑にされた面を介して積層されている 請求の範囲第 4項記載の単結晶 S i C。
( 6 ) 上記複合体を形成する複数枚の S i C単結晶基材の それぞれが、 α— S i C単結晶である請求の範囲第 4項記載 の単結晶 S i C。
( 7 ) 上記複合体を形成する多結晶板が、 複数枚の S i C 単結晶基材の表面に熱化学的蒸着法により成膜された非晶質 板もしく は >8— S i C多結晶板である請求の範囲第 4項記載 の単結晶 S i C。
( 8 ) S i C単結晶基材と S i原子および C原子により構 成される多結晶板の少なく とも一面を平滑にして、 それら面 を介して S i C単結晶基材と多結晶板とを積層した後、
その複合体を熱処理するこ とにより上記多結晶板の多結晶 体を単結晶に変態させて育成することを特徴とする単結晶 s i Cの製造方法。
( 9 ) 上記複合体を形成する S i C単結晶基材として、 a 一 S i C単結晶を用いる請求の範囲第 8項記載の単結晶 S i Cの製造方法。
( 1 0 ) 上記複合体を形成する多結晶板と して、 非晶質板 もしく は ;3— S i C多結晶板を用いる請求の範囲第 8項記載 の単結晶 S i Cの製造方法。
( 1 1 ) 上記熱処理が、 1 8 5 0 °C以上の温度下で、 かつ S i Cの飽和蒸気圧またはその近傍の雰囲気中で行われる請 求の範囲第 8項記載の単結晶 S i Cの製造方法。
( 1 2 ) 上記複合体の熱処理が、 2 2 0 0〜 2 4 0 0での 温度範囲で、 かつ S i Cの飽和蒸気圧またはその近傍の雰囲 気中で行われる請求の範囲第 8項記載の単結晶 S i Cの製造 方法。
( 1 3 ) 隣接する側面同士を接して整列配置した複数枚の S i C単結晶基材と S i原子および C原子により構成される 多結晶板とを積層した後、
その複合体を熱処理することにより上記多結晶板の多結晶 体を単結晶に変態させて育成することを特徴とする単結晶 S i Cの製造方法。
( 1 4 ) 上記複合体を形成する複数枚の S i C単結晶基材 と上記多結晶板とは、 それらの少なく とも一面を平滑にして 、 それら面を介して積層されている請求の範囲第 1 3項記載 の単結晶 S i Cの製造方法。
( 1 5) 上記複合体を形成する複数枚の S i C単結晶基材 として、 ひ 一 S i C単結晶を用いる請求の範囲第 1 3項記載 の単結晶 S i Cの製造方法。
( 1 6) 上記側面同士を接して整列配置される複数枚の S i C単結晶基材として、 複合体の熱処理により得られた単結 晶 S i Cを用いる請求の範囲第 1 3項記載の単結晶 S i じの 製造方法。
( 1 7 ) 上記複合体を形成する多結晶板として、 複数枚の S i C単結晶基材の表面に熱化学的蒸着法により成膜された 非晶質板もしく は ;3— S i C多結晶板を用いる請求の範囲第 1 3項記載の単結晶 S i Cの製造方法。
( 1 8) 上記非晶板もしく は ;9一 S i C多結晶板が、 1 3 0 0〜 1 9 0 0 °C範囲の熱化学的蒸着法により複数枚の S i C単結晶基材の表面に成膜されるものである請求の範囲第 1 7項記載の単結晶 S i Cの製造方法。
( 1 9) 上記複合体の熱処理温度が、 非晶板もしく は )8— S i C多結晶板を成膜するときの熱化学的蒸着温度より も高 温で、 かつ、 S i C飽和蒸気圧中で行なわれる請求の範囲第 1 7項記載の単結晶 S i Cの製造方法。
( 2 0) 上記複合体の熱処理が、 1 8 5 0 °C以上の温度下 で、 かつ S i Cの飽和蒸気圧またはその近傍の雰囲気中で行 われる請求の範囲第 1 3項記載の単結晶 S i Cの製造方法。
( 2 1 ) 上記複合体の熱処理が、 2 2 0 0〜 2 4 0 0での 温度範囲で、 かつ S i Cの飽和蒸気圧またはその近傍の雰囲 気中で行われる請求の範囲第 1 3項記載の単結晶 S i Cの製 造方法。
PCT/JP1998/002798 1997-06-27 1998-06-23 Sic monocristallin et procede de preparation associe WO1999000538A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98928638A EP0922792A4 (en) 1997-06-27 1998-06-23 SINGLE CRYSTAL SIC AND PROCESS FOR PREPARING THE SIC
CA002263339A CA2263339C (en) 1997-06-27 1998-06-23 Single crystal sic and process for preparing the same
US09/147,621 US6153166A (en) 1997-06-27 1998-06-23 Single crystal SIC and a method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17201797A JP3254557B2 (ja) 1997-06-27 1997-06-27 単結晶SiCおよびその製造方法
JP9/172017 1997-06-27
JP9/215414 1997-07-04
JP21541497A JP3254559B2 (ja) 1997-07-04 1997-07-04 単結晶SiCおよびその製造方法

Publications (1)

Publication Number Publication Date
WO1999000538A1 true WO1999000538A1 (fr) 1999-01-07

Family

ID=26494525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002798 WO1999000538A1 (fr) 1997-06-27 1998-06-23 Sic monocristallin et procede de preparation associe

Country Status (7)

Country Link
US (1) US6153166A (ja)
EP (1) EP0922792A4 (ja)
KR (1) KR100287792B1 (ja)
CN (1) CN1231003A (ja)
CA (1) CA2263339C (ja)
RU (1) RU2160329C1 (ja)
WO (1) WO1999000538A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967304A1 (en) * 1998-05-29 1999-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing single crystal of silicon carbide
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
WO2010131569A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 半導体基板の製造方法
WO2017047478A1 (ja) * 2015-09-14 2017-03-23 信越化学工業株式会社 SiC複合基板及びその製造方法
RU213493U1 (ru) * 2022-06-24 2022-09-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Московский государственный строительный университет" (НИУ МГСУ) Конструкция усиленного растянутого металлического элемента

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296998B2 (ja) * 1997-05-23 2002-07-02 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
JP3003027B2 (ja) * 1997-06-25 2000-01-24 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
JP3248071B2 (ja) * 1998-10-08 2002-01-21 日本ピラー工業株式会社 単結晶SiC
JP2001048649A (ja) * 1999-07-30 2001-02-20 Asahi Glass Co Ltd 炭化ケイ素およびその製造方法
WO2001009412A1 (fr) * 1999-07-30 2001-02-08 Nippon Pillar Packing Co., Ltd. Materiau de tirage de sic monocristallin et procede de preparation associe
US6936102B1 (en) * 1999-08-02 2005-08-30 Tokyo Electron Limited SiC material, semiconductor processing equipment and method of preparing SiC material therefor
JP3087070B1 (ja) * 1999-08-24 2000-09-11 日本ピラー工業株式会社 半導体デバイス製作用単結晶SiC複合素材及びその製造方法
JP4716558B2 (ja) 2000-12-12 2011-07-06 株式会社デンソー 炭化珪素基板
US6706114B2 (en) * 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
TW583354B (en) * 2001-05-25 2004-04-11 Mitsui Shipbuilding Eng Method for producing amorphous SiC wafer
EP1403404A4 (en) * 2001-06-04 2007-08-01 New Ind Res Organization SINGLE CRYSTAL SILICON CARBIDE AND PROCESS FOR PRODUCING THE SAME
JP5415853B2 (ja) * 2009-07-10 2014-02-12 東京エレクトロン株式会社 表面処理方法
CN102449733A (zh) * 2009-10-13 2012-05-09 住友电气工业株式会社 制造碳化硅衬底的方法、碳化硅衬底和半导体器件
US20120032191A1 (en) * 2009-10-30 2012-02-09 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide substrate and silicon carbide substrate
US20120003812A1 (en) * 2009-11-24 2012-01-05 Sumitomo Electric Industries, Ltd. Method of manufacturing semiconductor substrate
EP2532773A4 (en) 2010-02-05 2013-12-11 Sumitomo Electric Industries PROCESS FOR PRODUCING SILICON CARBIDE SUBSTRATE
JP2011210864A (ja) * 2010-03-29 2011-10-20 Sumitomo Electric Ind Ltd 半導体基板
JP2011243619A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP2011243771A (ja) * 2010-05-19 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP2011246315A (ja) * 2010-05-28 2011-12-08 Sumitomo Electric Ind Ltd 炭化珪素基板およびその製造方法
JP5447206B2 (ja) * 2010-06-15 2014-03-19 住友電気工業株式会社 炭化珪素単結晶の製造方法および炭化珪素基板
JP2012089639A (ja) * 2010-10-19 2012-05-10 Sumitomo Electric Ind Ltd 単結晶炭化珪素基板を有する複合基板
JP2012201543A (ja) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd 炭化珪素基板
KR102062381B1 (ko) 2012-11-30 2020-01-03 서울바이오시스 주식회사 질화물 반도체층 성장 방법 및 질화물 반도체 소자 제조 방법
JP6515757B2 (ja) * 2015-09-15 2019-05-22 信越化学工業株式会社 SiC複合基板の製造方法
CN105525351A (zh) * 2015-12-24 2016-04-27 中国科学院上海硅酸盐研究所 一种高效SiC晶体扩径方法
CN105679647B (zh) * 2015-12-31 2018-06-29 清华大学 具有原子级平整表面的衬底的制备方法
JP2019151896A (ja) * 2018-03-05 2019-09-12 日本特殊陶業株式会社 SiC部材及びこれからなる基板保持部材並びにこれらの製造方法
CN110919465A (zh) * 2019-11-08 2020-03-27 中国科学院上海硅酸盐研究所 无损伤、高平面度单晶碳化硅平面光学元件及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130517A (ja) * 1982-01-29 1983-08-04 Hitachi Ltd 単結晶薄膜の製造方法
JPS5939711A (ja) * 1982-08-26 1984-03-05 Ushio Inc ウエハ−上のアモルファスシリコンもしくは多結晶シリコンをエピタキシアル成長させる方法
US4590130A (en) * 1984-03-26 1986-05-20 General Electric Company Solid state zone recrystallization of semiconductor material on an insulator
JPH0770474B2 (ja) * 1985-02-08 1995-07-31 株式会社東芝 化合物半導体装置の製造方法
JPH07101679B2 (ja) * 1988-11-01 1995-11-01 三菱電機株式会社 電子デバイス用ウエハ,ウエハ用棒状基材および電子デバイス
DE4234508C2 (de) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Verfahren zur Herstellung eines Wafers mit einer monokristallinen Siliciumcarbidschicht
JP3296998B2 (ja) * 1997-05-23 2002-07-02 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
JP3003027B2 (ja) * 1997-06-25 2000-01-24 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
JP3043689B2 (ja) * 1997-11-17 2000-05-22 日本ピラー工業株式会社 単結晶SiC及びその製造方法
JP2884085B1 (ja) * 1998-04-13 1999-04-19 日本ピラー工業株式会社 単結晶SiCおよびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 78, No. 18, 7 May 1973, (Columbus, Ohio, USA), page 337, Abstract No. 116269j, BERMAN I. et al., "Influence of Annealing on Thin Films of beta SiC"; & U.S. AIR FORCE CAMBRIDGE RES. LAB., PHYS. SCI. RES. PAP., 1972, No. 516, 11 pp. (Eng). *
CHEMICAL ABSTRACTS, Vol. 81, No. 24, 16 Dec. 1974, (Columbus, Ohio, USA), page 462, Abstract No. 160152b, BERMAN I. et al., "Annealing of Sputtered beta-Silicon Carbide", SILICON CARBIDE; & PROC. INT. CONF., 3rd, 1973 (Pub. 1974), 42-50 (Eng). *
See also references of EP0922792A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214108B1 (en) 1998-05-19 2001-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of manufacturing silicon carbide single crystal and silicon carbide single crystal manufactured by the same
EP0967304A1 (en) * 1998-05-29 1999-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing single crystal of silicon carbide
US7311774B2 (en) 1998-11-25 2007-12-25 The Regents Of The University Of California Shaped nanocrystal particles and methods for working the same
US8608848B2 (en) 2001-11-30 2013-12-17 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US8062421B2 (en) 2001-11-30 2011-11-22 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
JP5477380B2 (ja) * 2009-05-11 2014-04-23 住友電気工業株式会社 半導体基板の製造方法
US8168515B2 (en) 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
WO2010131569A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 半導体基板の製造方法
WO2017047478A1 (ja) * 2015-09-14 2017-03-23 信越化学工業株式会社 SiC複合基板及びその製造方法
JP2017059574A (ja) * 2015-09-14 2017-03-23 信越化学工業株式会社 SiC複合基板及びその製造方法
US10711373B2 (en) 2015-09-14 2020-07-14 Shin-Etsu Chemical Co., Ltd. SiC composite substrate and method for manufacturing same
US11208719B2 (en) 2015-09-14 2021-12-28 Shin-Etsu Chemical Co., Ltd. SiC composite substrate and method for manufacturing same
RU213493U1 (ru) * 2022-06-24 2022-09-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Московский государственный строительный университет" (НИУ МГСУ) Конструкция усиленного растянутого металлического элемента
RU213498U1 (ru) * 2022-06-24 2022-09-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Московский государственный строительный университет" (НИУ МГСУ) Конструкция усиленного растянутого металлического элемента
RU213500U1 (ru) * 2022-06-24 2022-09-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Московский государственный строительный университет" (НИУ МГСУ) Конструкция усиленного растянутого металлического элемента

Also Published As

Publication number Publication date
CN1231003A (zh) 1999-10-06
EP0922792A1 (en) 1999-06-16
EP0922792A4 (en) 2000-08-16
CA2263339C (en) 2002-07-23
KR100287792B1 (ko) 2001-04-16
US6153166A (en) 2000-11-28
KR20000068096A (ko) 2000-11-25
RU2160329C1 (ru) 2000-12-10
CA2263339A1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
WO1999000538A1 (fr) Sic monocristallin et procede de preparation associe
JP3043689B2 (ja) 単結晶SiC及びその製造方法
JP3254559B2 (ja) 単結晶SiCおよびその製造方法
WO1998053125A1 (fr) Carbure de silicium monocrystallin et son procede de preparation
KR100287793B1 (ko) 단결정 탄화규소 및 그 제조방법
JP2884085B1 (ja) 単結晶SiCおよびその製造方法
KR100288473B1 (ko) 단결정탄화규소 및 그 제조방법
EP1130137B1 (en) Material for raising single crystal sic and method of preparing single crystal sic
JP3254557B2 (ja) 単結晶SiCおよびその製造方法
JP2001253799A (ja) 単結晶SiC及びその製造方法
JPH11147795A (ja) 単結晶SiCおよびその製造方法
JP2896667B1 (ja) 単結晶SiC及びその製造方法
JP3087030B2 (ja) SiC複合体およびその製造方法ならびに単結晶SiC
JP2936481B1 (ja) 単結晶SiCおよびその製造方法
JP2939615B2 (ja) 単結晶SiC及びその製造方法
JP2876122B1 (ja) 単結晶SiCおよびその製造方法
JP2002261011A (ja) デバイス用多層構造基板
JP3043687B2 (ja) 単結晶SiC及びその製造方法
JP2003026500A (ja) 結晶性SiC薄膜の構造およびその製造方法
JP2001220297A (ja) 単結晶SiC及びその育成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800898.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09147621

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2263339

Country of ref document: CA

Ref document number: 2263339

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997001108

Country of ref document: KR

Ref document number: 1998928638

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998928638

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001108

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997001108

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998928638

Country of ref document: EP