TWM587403U - Voltage level converter with low-power consumption - Google Patents

Voltage level converter with low-power consumption Download PDF

Info

Publication number
TWM587403U
TWM587403U TW108207304U TW108207304U TWM587403U TW M587403 U TWM587403 U TW M587403U TW 108207304 U TW108207304 U TW 108207304U TW 108207304 U TW108207304 U TW 108207304U TW M587403 U TWM587403 U TW M587403U
Authority
TW
Taiwan
Prior art keywords
node
nmos transistor
signal
voltage level
transistor
Prior art date
Application number
TW108207304U
Other languages
Chinese (zh)
Inventor
余建政
李泓頡
賴永瑄
邱崑霖
黃柏偉
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW108207304U priority Critical patent/TWM587403U/en
Publication of TWM587403U publication Critical patent/TWM587403U/en

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

本創作提出一種低功率電壓位準轉換器,其係由一電位轉換電路(1)、一輸入電路(2)以及一輸出電位控制電晶體(3)所組成,其中,該電位轉換電路(1)係用來做為電位轉換;該輸入電路(2)係用來提供差動輸入信號;而該輸出電位控制電晶體(3)係用以控制該電壓位準轉換器的輸出電壓位準。 This creation proposes a low-power voltage level converter, which is composed of a potential conversion circuit (1), an input circuit (2), and an output potential control transistor (3), where the potential conversion circuit (1 ) Is used for potential conversion; the input circuit (2) is used to provide a differential input signal; and the output potential control transistor (3) is used to control the output voltage level of the voltage level converter.

本創作提出之低功率電壓位準轉換器,不但能精確地將第一信號轉換為一第二信號,並且能有效地減少上拉路徑和下拉路徑之間的競爭現象,進而降低功率消耗。 The low power voltage level converter proposed in this creation can not only accurately convert the first signal into a second signal, but also effectively reduce the competition between the pull-up path and the pull-down path, thereby reducing power consumption.

Description

低功率電壓位準轉換器 Low power voltage level converter

本創作提出一種低功率電壓位準轉換器,其係由一電位轉換電路(1)、一輸入電路(2)以及一輸出電位控制電晶體(3)所組成,以求獲得精確電壓位準轉換且有效地抑制上拉路徑和下拉路徑之間的競爭,進而降低功率損耗之電子電路。 This creation proposes a low power voltage level converter, which is composed of a potential conversion circuit (1), an input circuit (2) and an output potential control transistor (3), in order to obtain accurate voltage level conversion An electronic circuit that effectively suppresses competition between the pull-up path and the pull-down path, thereby reducing power loss.

電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 The voltage level converter is an electronic circuit used to communicate signal transmission between different integrated circuits (ICs). In many applications, when the application system needs to transmit signals from core logic with lower voltage levels to peripheral devices with higher voltage levels, the voltage level converter is responsible for converting low-voltage working signals into high-voltage working signals. .

第1圖係顯示一先前技藝(prior art)之一閂鎖型電壓位準轉換器電路,其係使用一第一PMOS(P-channel metal oxide semiconductor,P通道金屬氧化物半導體)電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS(N-channel metal oxide semiconductor,N通道金屬氧化物半導體)電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一低功率電壓位準轉換器電路,其中,該反相器(INV)的偏壓是第二高電位電壓(VDDL)及地(GND),而輸入電壓(V(IN))的電位亦在地(GND)與第二高電位電壓(VDDL)之間。輸入電壓(V(IN))及經過反相器(INV)輸出的反相輸入電壓信 號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電壓位準轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電壓位準轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)截止(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而截止第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)截止時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而截止第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 FIG. 1 shows a latch-type voltage level converter circuit of a prior art, which uses a first PMOS (P-channel metal oxide semiconductor) transistor (MP1 ), A second PMOS transistor (MP2), a first NMOS (N-channel metal oxide semiconductor) transistor (MN1), a second NMOS transistor (MN2), and an inverter The inverter (INV) constitutes a low power voltage level converter circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and ground (GND), and the input voltage (V (IN )) Is also between ground (GND) and the second high potential voltage (VDDL). The input voltage (V (IN)) and the inverted input voltage signal output through the inverter (INV) Are connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2), respectively. Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned on. In addition, due to the cross-coupled mode of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the voltage level converter is in a stable state, the latch No static current is generated in the lock-type voltage level converter. In particular, when the first NMOS transistor (MN1) is turned off and the second NMOS transistor (MN2) is turned on, the gate potential of the first PMOS transistor (MP1) is pulled down and pulled down. The first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; further, when the first NMOS transistor is turned on When (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that the first PMOS transistor is pulled up The gate potential of the crystal (MP1) turns off the first PMOS transistor (MP1). Therefore, there will be no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).

然而,上述習知電壓位準轉換器在第二PMOS電晶體(MP2)趨近於導通(或截止)與在第二NMOS電晶體(MN2)趨近於截止(或導通)的過程中,對於輸出節點(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此輸出電壓信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當輸入電壓(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位電壓(VDDH)。但是,由於0伏特 無法瞬間轉換至1.8伏特,因此,在轉換期間的較低輸入電壓(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全截止,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, in the process of the conventional voltage level converter described above, when the second PMOS transistor (MP2) is approaching on (or off) and when the second NMOS transistor (MN2) is approaching off (or on), There is a phenomenon of contention between the pull-up and pull-down of the potential at the output node (OUT), so the output voltage signal (V (OUT)) is slower when it is converted to a low potential. In addition, it is considered that when the input voltage (V (IN)) is changed from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes low, so that the first Two PMOS transistors (MP2) are turned on. Therefore, the output is a first high potential voltage (VDDH). But since 0 volts It cannot be instantly switched to 1.8 volts, so the lower input voltage (V (IN)) during the conversion may not make the first PMOS transistor (MP1), the second PMOS transistor (MP2), the first NMOS transistor ( MN1) and the second NMOS transistor (MN2) are fully turned on or completely turned off. This will cause a static current between the first high potential voltage (VDDH) and ground (GND). This static current will Increase power loss.

再者,閂鎖型的電壓位準轉換器的性能是受到第一高電位電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電位電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型電壓位準轉換器正常運作的第一高電位電壓(VDDH)的範圍。 In addition, the performance of the latch-type voltage level converter is affected by the first high potential voltage (VDDH), because the gate-source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) The voltage is the first high-potential voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second high-potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) that can make the latch-type voltage level converter operate normally is limited.

第2圖係顯示另一先前技藝之一鏡像型電壓位準轉換器電路,該電壓位準轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型電壓位準轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電位電壓(VDDH)改變,電壓位準轉換器的性能也不會有太大的改變。因此,鏡像型的電壓位準轉換器可以適用在各種輸出電壓電路。 Figure 2 shows a mirrored voltage level converter circuit, which is one of the other prior art. The voltage level converter is connected by the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2). Together and connected to the drain of the first PMOS transistor (MP1), the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit. The first PMOS transistor (MP1) is in The saturation region, and its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are also equal. Since the performance of the mirror-type voltage level converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output first high-potential voltage (VDDH) changes, the voltage The performance of the level converter will not change much. Therefore, the mirror-type voltage level converter can be applied to various output voltage circuits.

然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)截止時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that Both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).

有鑑於此,本創作之主要目的係提出一種低功率電壓位準轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地抑制上拉路徑和下拉路徑之間的競爭,進而降低功率損耗。 In view of this, the main purpose of this creation is to propose a low-power voltage level converter, which can accurately and quickly convert the first signal to a second signal, and can effectively suppress the pull-up path and pull-down path. Competition between them, which in turn reduces power loss.

本創作提出一種低功率電壓位準轉換器,其係由一電位轉換電路(1)、一輸入電路(2)以及一輸出電位控制電晶體(3)所組成,其中,該電位轉換電路(1)係用來做為電位轉換;該輸入電路(2)係用來提供差動輸入信號;而該輸出電位控制電晶體(3)係用以控制該電壓位準轉換器的輸出電壓位準。 This creation proposes a low-power voltage level converter, which is composed of a potential conversion circuit (1), an input circuit (2), and an output potential control transistor (3), where the potential conversion circuit (1 ) Is used for potential conversion; the input circuit (2) is used to provide a differential input signal; and the output potential control transistor (3) is used to control the output voltage level of the voltage level converter.

由模擬結果證實,本創作所提出之低功率電壓位準轉換器,不但能精確且快速地將一第一信號轉換為一第二信號,並且可以有效地抑制上拉路徑和下拉路徑之間的競爭,同時亦能有效地減少功率損耗。 The simulation results confirm that the low power voltage level converter proposed in this creation can not only accurately and quickly convert a first signal to a second signal, but also effectively suppress the difference between the pull-up path and the pull-down path. Competition can also effectively reduce power loss.

1‧‧‧電位轉換電路 1‧‧‧potential conversion circuit

2‧‧‧輸入電路 2‧‧‧input circuit

3‧‧‧輸出電位控制電晶體 3‧‧‧Output potential control transistor

I1‧‧‧第一反相器 I1‧‧‧first inverter

N1‧‧‧第一節點 N1‧‧‧First Node

N2‧‧‧第二節點 N2‧‧‧Second Node

N3‧‧‧第三節點 N3‧‧‧ third node

N4‧‧‧第四節點 N4‧‧‧ fourth node

MP1‧‧‧第一PMOS電晶體 MP1‧‧‧The first PMOS transistor

MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor

MP3‧‧‧第三PMOS電晶體 MP3‧‧‧Third PMOS Transistor

GND‧‧‧地 GND‧‧‧ Ground

MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor

MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor

MN3‧‧‧第三NMOS電晶體 MN3‧‧‧The third NMOS transistor

MN4‧‧‧第四NMOS電晶體 MN4‧‧‧Fourth NMOS transistor

IN‧‧‧第一輸入端 IN‧‧‧first input

V(IN)‧‧‧第一信號 V (IN) ‧‧‧First Signal

OUT‧‧‧輸出端 OUT‧‧‧output

V(OUT)‧‧‧第二信號 V (OUT) ‧‧‧Second signal

INB‧‧‧第二輸入端 INB‧‧‧Second Input

VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The first highest power supply voltage

VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage

第1圖 係顯示第一先前技藝中電壓位準轉換器之電路圖;第2圖 係顯示第二先前技藝中電壓位準轉換器之電路圖;第3圖 係顯示本創作較佳實施例之低功率電壓位準轉換器之電路圖; 第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Figure 1 shows the circuit diagram of the voltage level converter in the first prior art; Figure 2 shows the circuit diagram of the voltage level converter in the second prior art; Figure 3 shows the low power of the preferred embodiment of this creation Circuit diagram of voltage level converter; FIG. 4 is a timing diagram showing the transient analysis of the first signal and the second signal in the preferred embodiment of the present invention;

根據上述之目的,本創作提出一種低功率電壓位準轉換器,如第3圖所示,其係由一電位轉換電路(1)、一輸入電路(2)以及一輸出電位控制電晶體(3)所組成,其中,該電位轉換電路(1)係用來做為電位轉換;該輸入電路(2)係用來提供差動輸入信號;而該輸出電位控制電晶體(3)係用以控制該電壓位準轉換器的輸出電壓位準;該電位轉換電路(1)係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)以及一第二NMOS電晶體(MN2)所組成;其中,該第一PMOS電晶體(MP1)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;該第一NMOS電晶體(MN1)的源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第一節點(N1)相連接;而該第二NMOS電晶體(MN2)的源極連接至該第四節點(N4),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接;該輸入電路(2)係由一第三NMOS電晶體(MN3)、一第四NMOS電晶體(MN4)以及一第一反相器(I1)所組成,其中,該第三NMOS電晶體(MN3)的源極連接至地(GND),其閘極連接至該第 一輸入端(IN),而其汲極則與該第三節點(N3)相連接;該第四NMOS電晶體(MN4)的源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;而該第一反相器(I1)係耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該輸出電位控制電晶體(3)係由一第三PMOS電晶體(MP3)所組成,其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接;該第一高電源供應電壓(VDDH)係用以提供該低功率電壓位準轉換器所需之第一高電源電壓,該第二高電源供應電壓(VDDL)係用以提供該低功率電壓位準轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準,該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above purpose, this creation proposes a low power voltage level converter, as shown in FIG. 3, which is composed of a potential conversion circuit (1), an input circuit (2), and an output potential control transistor (3 ), Where the potential conversion circuit (1) is used for potential conversion; the input circuit (2) is used to provide a differential input signal; and the output potential control transistor (3) is used to control The output voltage level of the voltage level converter; the potential conversion circuit (1) is composed of a first PMOS transistor (MP1), a second PMOS transistor (MP2), and a first NMOS transistor (MN1) And a second NMOS transistor (MN2); wherein the source of the first PMOS transistor (MP1) is connected to the first high power supply voltage (VDDH), and its gate is connected to the fourth node ( N4), and its drain is connected to the first node (N1); the source of the second PMOS transistor (MP2) is connected to the first high power supply voltage (VDDH), and its gate is connected to the The third node (N3), and its drain is connected to the second node (N2); the source of the first NMOS transistor (MN1) is connected to the third node (N3) Its gate is connected to the second input terminal (INB), and its drain is connected to the first node (N1); and the source of the second NMOS transistor (MN2) is connected to the fourth node ( N4), whose gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2); the input circuit (2) is a third NMOS transistor (MN3) A fourth NMOS transistor (MN4) and a first inverter (I1), wherein the source of the third NMOS transistor (MN3) is connected to the ground (GND), and its gate is connected to the First An input terminal (IN), and its drain is connected to the third node (N3); the source of the fourth NMOS transistor (MN4) is connected to the ground (GND), and its gate is connected to the second Input terminal (INB), and its drain is connected to the fourth node (N4); and the first inverter (I1) is coupled to the first input terminal (IN) for receiving the first A signal (V (IN)) and provides a signal opposite to the first signal (V (IN)); the output potential control transistor (3) is composed of a third PMOS transistor (MP3) , Its source is connected to the first high power supply voltage (VDDH), its gate is connected to the second input terminal (INB), and its drain is connected to the second node (N2); the first The high power supply voltage (VDDH) is used to provide a first high power supply voltage required by the low power voltage level converter, and the second high power supply voltage (VDDL) is used to provide the low power voltage level converter The required second high power supply voltage, the level of the second high power supply voltage (VDDL) is less than the level of the first high power supply voltage (VDDH), and the first signal is between 0 volts and 1.2 volts Rectangular wave The second signal is a corresponding waveform between 0 volts and 1.8 volts. The first high power supply voltage (VDDH) is 1.8 volts, and the second high power supply voltage (VDDL) is 1.2 volts. The signal (V (IN)) is a rectangular wave between 0 volts and 1.2 volts, and the second signal (V (OUT)) is a corresponding waveform between 0 volts and 1.8 volts.

請再參閱第3圖,現在考慮第一信號(V(IN))為邏輯低位準(0伏特)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯低位準同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都截止(OFF),而該第一反相器(I1)傳送 邏輯高位準(VDDL)到該第一NMOS電晶體(MN1)、該第四NMOS電晶體(MN4)以及該第三PMOS電晶體(MP3)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體(MN4)都導通(ON),該第三PMOS電晶體(MP3)截止,此時,由於該第四NMOS電晶體(MN4)導通,該第四節點(N4)的電位會被拉降至一邏輯低位準(0伏特),而該第四節點(N4)上的邏輯低位準傳送到該第一PMOS電晶體(MP1)的閘極,使得該第一PMOS電晶體(MP1)導通,此時由於該第一NMOS電晶體(MN1)和該第一PMOS電晶體(MP1)都導通,該第三NMOS電晶體(MN3)截止,因此,該第三節點(N3)的電位會被拉升至一邏輯高位準,該第三節點(N3)的邏輯高位準使得該第二PMOS電晶體(MP2)截止,由於該第三PMOS電晶體(MP3)和該第二NMOS電晶體(MN2)也都截止,而該第四NMOS電晶體(MN4)導通,因此,該第四節點(N4)的電位將維持在邏輯低位準(0伏特),輸出端(OUT)的電位會維持在一邏輯低位準(0伏特)的穩態值。質言之,第一信號(V(IN))為邏輯低位準(0伏特)時,經過低功率電壓位準轉換器轉換成具邏輯低位準(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to Figure 3 again. Now consider the steady-state operation of the low-power voltage level converter when the first signal (V (IN)) is a logic low level (0 volts): The logic low level is simultaneously transmitted to the input terminal of the first inverter (I1), the gate of the second NMOS transistor (MN2) and the gate of the third NMOS transistor (MN3), so that the second NMOS transistor ( MN2) and the third NMOS transistor (MN3) are both turned OFF, and the first inverter (I1) transmits A logic high level (VDDL) to the gates of the first NMOS transistor (MN1), the fourth NMOS transistor (MN4), and the third PMOS transistor (MP3), so that the first NMOS transistor (MN1) And the fourth NMOS transistor (MN4) are both turned on, and the third PMOS transistor (MP3) is turned off. At this time, because the fourth NMOS transistor (MN4) is turned on, the fourth node (N4) The potential is pulled down to a logic low level (0 volts), and the logic low level on the fourth node (N4) is transmitted to the gate of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) is turned on. At this time, since the first NMOS transistor (MN1) and the first PMOS transistor (MP1) are both turned on, the third NMOS transistor (MN3) is turned off. Therefore, the third node (N3) Will be pulled up to a logic high level, and the logic high level of the third node (N3) causes the second PMOS transistor (MP2) to be turned off, because the third PMOS transistor (MP3) and the second NMOS The transistor (MN2) is also turned off, and the fourth NMOS transistor (MN4) is turned on. Therefore, the potential of the fourth node (N4) will be maintained at a logic low level (0 volts) and the potential of the output terminal (OUT) Will stay at Series low level (0 volt) steady-state value. In other words, when the first signal (V (IN)) is at a logic low level (0 volts), it is converted into a second signal with a logic low level (0 volts) by a low-power voltage level converter. OUT) output.

再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都導通(ON),而該第一反相器(I1)傳送邏輯低位準到該第一NMOS電晶體(MN1)、該第四NMOS電晶體(MN4)以及該第三PMOS電晶體(MP3)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體 (MN4)都截止,該第三PMOS電晶體(MP3)導通,此時,由於該第三NMOS電晶體(MN3)導通,因此,該第三節點(N3)的電位會被拉降至一邏輯低位準,該第三節點(N3)的邏輯低位準傳送到該第二PMOS電晶體(MP2)的閘極,使得該第二PMOS電晶體(MP2)導通,由於該第三PMOS電晶體(MP3)和該第二NMOS電晶體(MN2)也都導通,而該第四NMOS電晶體(MN4)截止,因此,該第四節點(N4)的電位會被拉升至一邏輯高位準;而該第四節點(N4)的邏輯高位準使得該第一PMOS電晶體(MP1)截止,此時,由於該第三NMOS電晶體(MN3)導通,而該第一PMOS電晶體(MP1)和該第一NMOS電晶體(MN1)都截止,因此,該第三節點(N3)的電位會維持在一邏輯低位準的穩態值,而由於該第二PMOS電晶體(MP2)、該第三PMOS電晶體(MP3)和該第二NMOS電晶體(MN2)都導通,該第四NMOS電晶體(MN4)截止,因此,該第四節點(N4)的電位將維持在一邏輯高位準,因此,輸出端(OUT)的電位會維持在一邏輯高位準的穩態值。質言之,第一信號(V(IN))為一邏輯高位準(VDDL)時,經過低功率電壓位準轉換器轉換成具第一高電源供應電壓(VDDH)的第二信號,由輸出端(OUT)輸出。 Consider again the steady-state operation of the low power voltage level converter when the first signal (V (IN)) is a logic high level (VDDL): the logic high level (VDDL) on the first input (IN) is transmitted simultaneously To the input terminal of the first inverter (I1), the gate of the second NMOS transistor (MN2), and the gate of the third NMOS transistor (MN3), so that the second NMOS transistor (MN2) and the first The three NMOS transistors (MN3) are all turned on, and the first inverter (I1) transmits a logic low level to the first NMOS transistor (MN1), the fourth NMOS transistor (MN4), and the first Gates of three PMOS transistors (MP3) such that the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) is turned off, and the third PMOS transistor (MP3) is turned on. At this time, because the third NMOS transistor (MN3) is turned on, the potential of the third node (N3) is pulled down to a logic Low level, the logic low level of the third node (N3) is transmitted to the gate of the second PMOS transistor (MP2), so that the second PMOS transistor (MP2) is turned on, because the third PMOS transistor (MP3) ) And the second NMOS transistor (MN2) are also turned on, and the fourth NMOS transistor (MN4) is turned off, so the potential of the fourth node (N4) will be pulled up to a logic high level; and the The logic high level of the fourth node (N4) causes the first PMOS transistor (MP1) to be turned off. At this time, because the third NMOS transistor (MN3) is turned on, the first PMOS transistor (MP1) and the first PMOS transistor (MP1) are turned on. An NMOS transistor (MN1) is turned off. Therefore, the potential of the third node (N3) will be maintained at a logic low level steady state value. Because the second PMOS transistor (MP2), the third PMOS transistor, Both the crystal (MP3) and the second NMOS transistor (MN2) are turned on, and the fourth NMOS transistor (MN4) is turned off. Therefore, the potential of the fourth node (N4) will be maintained at a logic high level, because , The output terminal (OUT) will remain at the potential of the steady state value of a logic high level. In other words, when the first signal (V (IN)) is a logic high level (VDDL), it is converted into a second signal with a first high power supply voltage (VDDH) by a low power voltage level converter, and is output by (OUT) output.

綜上所述,第一信號(V(IN))為邏輯低位準(0伏特)時,第二信號(V(OUT))亦為邏輯低位準(0伏特);而第一信號(V(IN))為邏輯高位準(VDDL)時,第二信號(V(OUT))為第一高電源供應電壓(VDDH)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V (IN)) is at a logic low level (0 volts), the second signal (V (OUT)) is also at a logic low level (0 volts); and the first signal (V (IN)) When IN)) is the logic high level (VDDL), the second signal (V (OUT)) is the first high power supply voltage (VDDH). In this way, the purpose of voltage level conversion is achieved.

本創作所提出之低功率電壓位準轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之低功率電壓位準轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並 且能有效地減少輸出端(OUT)的上拉路徑與下拉路徑之間的互相競爭,進而降低功率損耗。 The simulation results of Spice transient analysis of the low power voltage level converter proposed in this work are shown in Figure 4. From the simulation results, it can be confirmed that the low power voltage level converter proposed in this work is not only still Can quickly and accurately convert a first signal into a second signal, and And can effectively reduce the competition between the pull-up path and the pull-down path of the output (OUT), thereby reducing power loss.

雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 Although the present invention specifically discloses and describes the selected preferred embodiment, those skilled in the art can understand that any form or details of possible changes can be made without departing from the spirit and scope of this creation. Therefore, all changes within the relevant technical scope are included in the scope of the patent application for this creation.

Claims (7)

一種低功率電壓位準轉換器,用以將一第一信號(V(IN))轉換為一第二信號(V(OUT)),其包括:一第一節點(N1),用以將一第一PMOS電晶體(MP1)的汲極以及一第一NMOS電晶體(MN1)的汲極連接在一起;一第二節點(N2),用以將一第二PMOS電晶體(MP2)、一第三PMOS電晶體(MP3)的汲極以及一第二NMOS電晶體(MN2)的汲極連接在一起;一第三節點(N3),用以將該第二PMOS電晶體(MP2)的閘極、該第一NMOS電晶體(MN1)的源極以及一第三NMOS電晶體(MN3)的汲極連接在一起;一第四節點(N4),用以將該第一PMOS電晶體(MP1)的閘極、該第二NMOS電晶體(MN2)的源極以及一第四NMOS電晶體(MN4)的汲極連接在一起;一第一輸入端(IN),耦接於該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,用以提供該第一信號(V(IN));一第二輸入端(INB),耦接於該第一NMOS電晶體(MN1)、該第四NMOS電晶體(MN4)以及該第三PMOS電晶體(MP3)的閘極,用以提供該第一信號(V(IN))的反相信號;一輸出端(OUT),耦接於該第四節點(N4),用以輸出該第二信號(V(OUT));一第一高電源供應電壓(VDDH),耦接於該第一PMOS電晶體(MP1)、該第二PMOS電晶體(MP2)以及該第三PMOS電晶體(MP3)的源極,用以提供該電壓位準轉換器所需之第一高電源電壓;一第二高電源供應電壓(VDDL),用以提供該電壓位準轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位;一電位轉換電路(1),耦接於該第一高電源供應電壓(VDDH)以及地(GND),用來做為電位轉換之用;一輸入電路(2),耦接於該第一輸入端(IN),用來提供差動輸入信號;以及一輸出電位控制電晶體(3),耦接於該第二輸入端(INB),用以控制該電壓位準轉換器的輸出電壓位準。A low power voltage level converter is used to convert a first signal (V (IN)) into a second signal (V (OUT)). The converter includes a first node (N1) for converting a The drain of the first PMOS transistor (MP1) and the drain of a first NMOS transistor (MN1) are connected together; a second node (N2) is used to connect a second PMOS transistor (MP2), a The drain of the third PMOS transistor (MP3) and the drain of a second NMOS transistor (MN2) are connected together; a third node (N3) is used to gate the second PMOS transistor (MP2) Electrode, the source of the first NMOS transistor (MN1) and the drain of a third NMOS transistor (MN3); a fourth node (N4) is used to connect the first PMOS transistor (MP1) ), The gate of the second NMOS transistor (MN2) and the drain of a fourth NMOS transistor (MN4) are connected together; a first input terminal (IN) is coupled to the second NMOS The gate of the transistor (MN2) and the third NMOS transistor (MN3) are used to provide the first signal (V (IN)); a second input terminal (INB) is coupled to the first NMOS transistor Crystal (MN1), the fourth NMOS transistor (MN4), and the third PMOS transistor (MP3 ) Is used to provide the inverted signal of the first signal (V (IN)); an output terminal (OUT) is coupled to the fourth node (N4) to output the second signal (V (OUT)); a first high power supply voltage (VDDH) is coupled to the source of the first PMOS transistor (MP1), the second PMOS transistor (MP2) and the third PMOS transistor (MP3) A pole for providing a first high power voltage required by the voltage level converter; a second high power supply voltage (VDDL) for providing a second high power voltage required by the voltage level converter, the The potential of the second high power supply voltage (VDDL) is less than the potential of the first high power supply voltage (VDDH); a potential conversion circuit (1) is coupled to the first high power supply voltage (VDDH) and the ground ( GND) for potential conversion; an input circuit (2) coupled to the first input terminal (IN) to provide a differential input signal; and an output potential control transistor (3), The second input terminal (INB) is coupled to control the output voltage level of the voltage level converter. 如申請專利範圍第1項所述的低功率電壓位準轉換器,其中該電位轉換電路(1)包括:一第一PMOS電晶體(MP1),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;一第二PMOS電晶體(MP2),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;一第一NMOS電晶體(MN1),其源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第一節點(N1)相連接;以及一第二NMOS電晶體(MN2),其源極連接至該第四節點(N4),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接。The low-power voltage level converter according to item 1 of the patent application scope, wherein the potential conversion circuit (1) includes: a first PMOS transistor (MP1) whose source is connected to the first high power supply voltage (VDDH), whose gate is connected to the fourth node (N4), and whose drain is connected to the first node (N1); a second PMOS transistor (MP2), whose source is connected to the first node A high power supply voltage (VDDH), its gate is connected to the third node (N3), and its drain is connected to the second node (N2); a first NMOS transistor (MN1), its source A gate is connected to the third node (N3), a gate is connected to the second input (INB), and a drain is connected to the first node (N1); and a second NMOS transistor (MN2) ), Its source is connected to the fourth node (N4), its gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2). 如申請專利範圍第2項所述的低功率電壓位準轉換器,其中該輸入電路(2)包括:一第三NMOS電晶體(MN3),其源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;一第四NMOS電晶體(MN4),其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;以及一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號。The low power voltage level converter according to item 2 of the scope of patent application, wherein the input circuit (2) includes: a third NMOS transistor (MN3), the source of which is connected to ground (GND), and the gate of Connected to the first input terminal (IN), and its drain is connected to the third node (N3); a fourth NMOS transistor (MN4), its source is connected to the ground (GND), and its gate Connected to the second input terminal (INB), and its drain is connected to the fourth node (N4); and a first inverter (I1) is coupled to the first input terminal (IN), It is used for receiving the first signal (V (IN)) and providing a signal which is opposite to the first signal (V (IN)). 如申請專利範圍第3項所述的低功率電壓位準轉換器,其中該輸出電位控制電晶體(3)係由該第三PMOS電晶體(MP3)所組成,其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接。The low power voltage level converter according to item 3 of the patent application scope, wherein the output potential control transistor (3) is composed of the third PMOS transistor (MP3), and its source is connected to the first The high power supply voltage (VDDH) has a gate connected to the second input terminal (INB), and a drain connected to the second node (N2). 如申請專利範圍第1項所述的低功率電壓位準轉換器,其中該第一信號(V(IN))的振幅為0伏特至該第二高電源供應電壓(VDDL)之間。The low power voltage level converter according to item 1 of the scope of patent application, wherein the amplitude of the first signal (V (IN)) is between 0 volts and the second high power supply voltage (VDDL). 如申請專利範圍第5項所述的低功率電壓位準轉換器,其中該第二信號(V(OUT))的振幅為0伏特至該第一高電源供應電壓(VDDH)之間。The low power voltage level converter according to item 5 of the patent application, wherein the amplitude of the second signal (V (OUT)) is between 0 volts and the first high power supply voltage (VDDH). 如申請專利範圍第6項所述的低功率電壓位準轉換器,其中該第一反相器(I1)的電壓源為該第二高電源供應電壓(VDDL)。The low-power voltage level converter according to item 6 of the application, wherein the voltage source of the first inverter (I1) is the second high power supply voltage (VDDL).
TW108207304U 2019-06-10 2019-06-10 Voltage level converter with low-power consumption TWM587403U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108207304U TWM587403U (en) 2019-06-10 2019-06-10 Voltage level converter with low-power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108207304U TWM587403U (en) 2019-06-10 2019-06-10 Voltage level converter with low-power consumption

Publications (1)

Publication Number Publication Date
TWM587403U true TWM587403U (en) 2019-12-01

Family

ID=69584764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108207304U TWM587403U (en) 2019-06-10 2019-06-10 Voltage level converter with low-power consumption

Country Status (1)

Country Link
TW (1) TWM587403U (en)

Similar Documents

Publication Publication Date Title
TWM616390U (en) Low power voltage level shifter
TWM586017U (en) Low power level shifter circuit
TWM598009U (en) Voltage level shifter having output control circuit
TWM576365U (en) Low power voltage level converter
TWM576366U (en) Level conversion circuit with auxiliary circuit
TWM565921U (en) Voltage level shifter
TWM587403U (en) Voltage level converter with low-power consumption
TWM531694U (en) Voltage level converter
TWM639384U (en) High-speed low-power level shifter circuit for integrated circuits having multiple power supplies
TWM517481U (en) Voltage level converter
TWM649184U (en) Low voltage to high voltage signal level translator with improved performance
TWM625120U (en) Voltage level converter with leakage current reduction
TWM598007U (en) High performance voltage level converter
TWM626414U (en) Voltage level converter with stack transistors
TWM625119U (en) Voltage level converting circuit with reduced power consumption
TWM626307U (en) Contention-reduced level converting circuit
TWM643260U (en) High performance level shifting circuit
TWM628475U (en) Low power and high performance voltage level converting circuit
TWM628446U (en) Contention-free level converting circuit for data receiving circuit
TWM576364U (en) Low power voltage level shifter
TWM604082U (en) Low power voltage level converter
TWM601491U (en) Voltage level shifter with low power consumption
TWM599059U (en) Voltage level shifter having output buffer circuit
TWM578459U (en) Power-saving level shifting circuit
TWM626417U (en) High-speed low-power level shifter circuit

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees