TWM601491U - Voltage level shifter with low power consumption - Google Patents

Voltage level shifter with low power consumption Download PDF

Info

Publication number
TWM601491U
TWM601491U TW109201852U TW109201852U TWM601491U TW M601491 U TWM601491 U TW M601491U TW 109201852 U TW109201852 U TW 109201852U TW 109201852 U TW109201852 U TW 109201852U TW M601491 U TWM601491 U TW M601491U
Authority
TW
Taiwan
Prior art keywords
node
transistor
signal
nmos transistor
drain
Prior art date
Application number
TW109201852U
Other languages
Chinese (zh)
Inventor
余建政
李泓頡
林宗毅
阮禮皓
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW109201852U priority Critical patent/TWM601491U/en
Publication of TWM601491U publication Critical patent/TWM601491U/en

Links

Images

Landscapes

  • Logic Circuits (AREA)

Abstract

本創作提出一種具低功率損耗之電位轉換器,其係由一輸入電路(1)、一栓鎖電路(2)、一開關控制電晶體(3)以及一開關控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存並且抑制輸出電位的競爭現象;該開關控制電晶體(3)係用以在該開關控制電晶體(3)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置;而該開關控制電晶體(4)係用以在該開關控制電晶體(4)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置。 This creation proposes a potential converter with low power loss, which is composed of an input circuit (1), a latch circuit (2), a switch control transistor (3) and a switch control transistor (4) , Wherein, the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to save and suppress the competition phenomenon of the output potential; the switch control transistor (3) is used to When the switch control transistor (3) is in the off state and the output voltage level is higher than the input voltage level, it prevents the flow of current to prevent damage to the device; and the switch control transistor (4) is used to control the switch When the crystal (4) is in the off state and the output voltage level is higher than the input voltage level, the current flow is prevented to prevent damage to the device.

本創作所提出之具低功率損耗之電位轉換器,不但能精確地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地抑制上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 The potential converter with low power loss proposed in this creation can not only accurately convert the first signal into a second signal, but also has multiple functions such as simple circuit structure and conducive to the miniaturization of the device, and it is also effective The ground suppresses the competition between the pull-up path and the pull-down path, thereby reducing power loss.

Description

具低功率損耗之電位轉換器 Potential converter with low power loss

本創作提出一種具低功率損耗之電位轉換器,尤指一由一輸入電路(1)、一栓鎖電路(2)、一開關控制電晶體(3)以及一開關控制電晶體(4)所組成,以求獲得精確電壓位準轉換同時亦能有效降低功率損耗之電子電路。 This creation proposes a potential converter with low power loss, especially one composed of an input circuit (1), a latch circuit (2), a switch control transistor (3) and a switch control transistor (4) It is composed of an electronic circuit that can obtain accurate voltage level conversion while effectively reducing power loss.

電位轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電位轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 A potential converter is an electronic circuit used to communicate signals between different integrated circuits (IC). In many applications, when the application system needs to transmit a signal from the core logic with a lower voltage level to a peripheral device with a higher voltage level, the potential converter is responsible for converting the low-voltage working signal into a high-voltage working signal.

第1圖係顯示另一先前技藝(prior art)之一鏡像型電位轉換器電路,該電位轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電位轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即 使輸出的第一高電源供應電壓(VDDH)改變,電位轉換器的性能也不會有太大的改變。因此,鏡像型的電位轉換器可以適用在各種輸出電壓電路。 Figure 1 shows another prior art mirror-type potential converter circuit by connecting the gates of a first PMOS transistor (MP1) and a second PMOS transistor (MP2) Together and connected to the drain of the first PMOS transistor (MP1), the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit, and the first PMOS transistor (MP1) is in the The saturation region and its gate voltage make the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are also equal. Since the performance of the mirror-type potential converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), that is, If the output first high power supply voltage (VDDH) is changed, the performance of the level converter will not change much. Therefore, the mirror-type potential converter can be applied to various output voltage circuits.

然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that Both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).

第2圖係顯示一先前技藝之一閂鎖型電位轉換器電路,其係使用一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電位轉換器電路,其中,該反相器(INV)的偏壓是第二高電源供應電壓(VDDL)及地(GND),而第一信號(V(IN))的電位亦在地(GND)與第二高電源供應電壓(VDDL)之間。第一信號(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電位轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電位轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者,當第 一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 Figure 2 shows a latch type potential converter circuit of the prior art, which uses a first PMOS transistor (MP1), a second PMOS transistor (MP2), and a first NMOS transistor (MN1) , A second NMOS transistor (MN2) and an inverter (INV) to form a potential converter circuit, wherein the bias voltage of the inverter (INV) is the second high power supply voltage (VDDL) and ground (GND), and the potential of the first signal (V(IN)) is also between the ground (GND) and the second high power supply voltage (VDDL). The first signal (V(IN)) and the inverted input voltage signal output by the inverter (INV) are connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2), respectively . Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned on (ON). In addition, due to the cross-coupled method of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the potential converter is in a stable state, the latch type There is no static current in the potential converter. Especially, when the first NMOS transistor (MN1) is turned off (OFF) and the second NMOS transistor (MN2) is turned on (ON), the gate potential of the first PMOS transistor (MP1) is pulled down and The first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; When an NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, thereby pulling up The gate potential of the first PMOS transistor (MP1) turns off the first PMOS transistor (MP1). Therefore, there will not be a current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).

然而,上述習知電位轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當第一信號(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電源供應電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低第一信號(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電源供應電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, in the above-mentioned conventional potential converter, when the second PMOS transistor (MP2) is close to turning on (or off) and the second NMOS transistor (MN2) is close to turning off (or on), the output terminal The pull-up and pull-down of the potential on the (OUT) compete with each other (contention), so the second signal (V(OUT)) is slower when it changes to a low potential. In addition, consider that when the first signal (V(IN)) changes from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes a low potential, so that The second PMOS transistor (MP2) is turned on. Therefore, the output is a first high power supply voltage (VDDH). However, since 0 volts cannot be converted to 1.8 volts instantaneously, the lower first signal (V(IN)) during the conversion period may not enable the first PMOS transistor (MP1), the second PMOS transistor (MP2), The first NMOS transistor (MN1) and the second NMOS transistor (MN2) are completely turned on or completely turned off. This will cause a static current (static) between the first high power supply voltage (VDDH) and ground (GND). current), this quiescent current will increase power loss.

再者,閂鎖型的電位轉換器的性能是受到第一高電源供應電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電源供應電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電源供應電壓(VDDL)。因此,限制了可以使閂鎖型電位轉換器正常運作的第一高電源供 應電壓(VDDH)的範圍。在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。 Furthermore, the performance of the latch type potential converter is affected by the first high power supply voltage (VDDH), due to the gate-source voltage of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) The first high power supply voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second high power supply voltage (VDDL). Therefore, the first high power supply that can make the latch-type level converter operate normally is restricted. Applicable voltage (VDDH) range. When the second PMOS transistor (MP2) is approaching to turn on (or off) and the second NMOS transistor (MN2) is approaching to turn off (or on), the potential on the output terminal (OUT) is pulled There is a contention phenomenon between rising and pulling down, so the second signal (V(OUT)) is slower when it changes to a low potential.

有鑑於此,本創作之主要目的係提出一種具低功率損耗之電位轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地減少上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 In view of this, the main purpose of this creation is to propose a potential converter with low power loss, which can not only accurately and quickly convert the first signal into a second signal, but also can effectively reduce the pull-up path and the pull-down path Competing with each other, thereby reducing power loss.

本創作提出一種具低功率損耗之電位轉換器,其係由一輸入電路(1)、一栓鎖電路(2)、一開關控制電晶體(3)以及一開關控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存並且抑制輸出電位的競爭現象;該開關控制電晶體(3)係用以在該開關控制電晶體(3)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置;而該開關控制電晶體(4)係用以在該開關控制電晶體(4)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置。 This creation proposes a potential converter with low power loss, which is composed of an input circuit (1), a latch circuit (2), a switch control transistor (3) and a switch control transistor (4) , Wherein, the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to save and suppress the competition phenomenon of the output potential; the switch control transistor (3) is used to When the switch control transistor (3) is in the off state and the output voltage level is higher than the input voltage level, it prevents the flow of current to prevent damage to the device; and the switch control transistor (4) is used to control the switch When the crystal (4) is in the off state and the output voltage level is higher than the input voltage level, the current flow is prevented to prevent damage to the device.

由模擬結果證實,本創作所提出之具低功率損耗之電位轉換器,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少功率損耗。 The simulation results confirm that the potential converter with low power loss proposed in this creation can not only accurately and quickly convert the first signal to a second signal, but also has a simple circuit structure and is beneficial to the miniaturization of the device. Multiple functions can effectively reduce power loss at the same time.

1:輸入電路 1: Input circuit

2:栓鎖電路 2: Latch circuit

3:開關控制電晶體 3: Switch control transistor

4:開關控制電晶體 4: switch control transistor

I1:第一反相器 I1: First inverter

N1:第一節點 N1: the first node

N2:第二節點 N2: second node

N3:第三節點 N3: third node

N4:第四節點 N4: Fourth node

N5:第五節點 N5: fifth node

N6:第六節點 N6: sixth node

MP1:第一PMOS電晶體 MP1: The first PMOS transistor

MP2:第二PMOS電晶體 MP2: second PMOS transistor

MP3:第三PMOS電晶體 MP3: third PMOS transistor

MN1:第一NMOS電晶體 MN1: The first NMOS transistor

MN2:第二NMOS電晶體 MN2: Second NMOS transistor

MN3:第三NMOS電晶體 MN3: The third NMOS transistor

MN4:第四NMOS電晶體 MN4: Fourth NMOS transistor

MN5:第五NMOS電晶體 MN5: The fifth NMOS transistor

GND:地 GND: ground

OUT:輸出端 OUT: output terminal

V(OUT):第二信號 V(OUT): second signal

IN:第一輸入端 IN: the first input

V(IN):第一信號 V(IN): the first signal

INB:第二輸入端 INB: second input

EN:致能控制端 EN: Enable control terminal

ENB:反相致能控制端 ENB: Reverse enable control terminal

VDDH:第一高電源供應電壓 VDDH: The first high power supply voltage

VDDL:第二高電源供應電壓 VDDL: The second highest power supply voltage

第1圖 係顯示第一先前技藝中電位轉換器之電路圖;第2圖 係顯示第二先前技藝中電位轉換器之電路圖;第3圖 係顯示本創作較佳實施例之具低功率損耗之電位轉換器之電路圖;第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Figure 1 shows the circuit diagram of the potential converter in the first prior art; Figure 2 shows the circuit diagram of the potential converter in the second prior art; Figure 3 shows the potential with low power loss in the preferred embodiment of this creation The circuit diagram of the converter; Figure 4 is a timing diagram showing the transient analysis of the first signal and the second signal of the preferred embodiment of this creation;

根據上述之目的,本創作提出一種具低功率損耗之電位轉換器,如第3圖所示,其係由一輸入電路(1)、一栓鎖電路(2)、一開關控制電晶體(3)以及一開關控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存並且抑制輸出電位的競爭現象;該開關控制電晶體(3)係用以在該開關控制電晶體(3)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置;而該開關控制電晶體(4)係用以在該開關控制電晶體(4)處於關閉狀態,並且輸出電壓位準高於輸入電壓位準時,阻止電流的流動,以防止損壞裝置;該輸入電路(1)係由一第三NMOS電晶體(MN3)、一第四NMOS電晶體(MN4)以及一第一反相器(I1)所組成,其中,該第三NMOS電晶體(MN3)的源極連接至該第五節點(N5),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;該第四NMOS電晶體(MN4)的源極連接至該第五節點(N5),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;該第一反相器(I1)係耦接於該第一輸入端(IN),用以接受該第一信號 (V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該栓鎖電路(2)係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)以及一第二NMOS電晶體(MN2)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至該第六節點(N6),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至該第六節點(N6),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;該第一NMOS電晶體(MN1)的源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第一節點(N1)相連接;該第二NMOS電晶體(MN2)的源極連接至該第四節點(N4),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接;該開關控制電晶體(3)係由一第五NMOS電晶體(MN5)所組成,其源極連接至地(GND),其閘極連接至該反相致能控制端(ENB),而其汲極則與該第五節點(N5)相連接;該開關控制電晶體(4)係由一第三PMOS電晶體(MP3)所組成,其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該致能控制端(EN),而其汲極則與該第六節點(N6)相連接;該第一高電源供應電壓(VDDH)係用以提供該具低功率損耗之電位轉換器所需之第一高電源電壓;該第二高電源供應電壓(VDDL)係用以提供該具低功率損耗之電位轉換器所需之第二高電源電壓;該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準;該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形 波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above-mentioned purpose, this creation proposes a potential converter with low power loss. As shown in Figure 3, it consists of an input circuit (1), a latch circuit (2), and a switch control transistor (3). ) And a switch control transistor (4), wherein the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to save and suppress the output potential competition; the The switch control transistor (3) is used to prevent the flow of current when the switch control transistor (3) is in the off state and the output voltage level is higher than the input voltage level to prevent damage to the device; and the switch control circuit The crystal (4) is used to prevent the flow of current when the switch control transistor (4) is in the off state and the output voltage level is higher than the input voltage level to prevent damage to the device; the input circuit (1) is caused by A third NMOS transistor (MN3), a fourth NMOS transistor (MN4) and a first inverter (I1) are composed, wherein the source of the third NMOS transistor (MN3) is connected to the first Five node (N5), its gate is connected to the first input (IN), and its drain is connected to the third node (N3); the source of the fourth NMOS transistor (MN4) is connected to The fifth node (N5) has its gate connected to the second input terminal (INB), and its drain connected to the fourth node (N4); the first inverter (I1) is coupled At the first input terminal (IN) for receiving the first signal (V(IN)), and provide a signal that is inverse to the first signal (V(IN)); the latch circuit (2) is composed of a first PMOS transistor (MP1), a second PMOS transistor It is composed of a crystal (MP2), a first NMOS transistor (MN1) and a second NMOS transistor (MN2), wherein the source of the first PMOS transistor (MP1) is connected to the sixth node (N6) , Its gate is connected to the fourth node (N4), and its drain is connected to the first node (N1); the source of the second PMOS transistor (MP2) is connected to the sixth node (N6) ), its gate is connected to the third node (N3), and its drain is connected to the second node (N2); the source of the first NMOS transistor (MN1) is connected to the third node ( N3), its gate is connected to the second input terminal (INB), and its drain is connected to the first node (N1); the source of the second NMOS transistor (MN2) is connected to the fourth Node (N4), its gate is connected to the first input (IN), and its drain is connected to the second node (N2); the switch control transistor (3) is connected by a fifth NMOS transistor The crystal (MN5) is composed of its source connected to ground (GND), its gate connected to the inverted enable control terminal (ENB), and its drain connected to the fifth node (N5); the The switch control transistor (4) is composed of a third PMOS transistor (MP3), its source is connected to the first high power supply voltage (VDDH), and its gate is connected to the enable control terminal (EN) , And its drain is connected to the sixth node (N6); the first high power supply voltage (VDDH) is used to provide the first high power supply voltage required by the potential converter with low power loss; The second high power supply voltage (VDDL) is used to provide the second high power supply voltage required by the level converter with low power loss; the level of the second high power supply voltage (VDDL) is smaller than the first high The level of the power supply voltage (VDDH); the first signal is a rectangular wave between 0 volts and 1.2 volts, and the second signal is a corresponding waveform between 0 volts and 1.8 volts, the first high The power supply voltage (VDDH) is 1.8 volts, and the second high power supply voltage (VDDL) is 1.2 volts, and the first signal (V(IN)) is a rectangle between 0 volts and 1.2 volts The second signal (V(OUT)) has a corresponding waveform between 0 volt and 1.8 volt.

請再參閱第3圖,當該致能控制端(EN)的信號為邏輯低位準,而反相致能控制端(ENB)的信號為邏輯高位準時,該第三PMOS電晶體(MP3)和該第五NMOS電晶體(MN5)都導通(ON),現在考慮第一信號(V(IN))為邏輯低位準(0伏特)時,具低功率損耗之電位轉換器的穩態操作情形:第一輸入端(IN)上的邏輯低位準同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都截止(OFF),而該第一反相器(I1)傳送邏輯高位準(VDDL)到該第一NMOS電晶體(MN1)以及該第四NMOS電晶體(MN4)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體(MN4)都導通(ON),此時,由於該第二NMOS電晶體(MN2)截止(OFF),而該第四NMOS電晶體(MN4)和該第五NMOS電晶體(MN5)都導通(ON),該第四節點(N4)的電位會被拉降至一邏輯低位準(0伏特),該第四節點(N4)上的邏輯低位準傳送到該第一PMOS電晶體(MP1)的閘極,使得該第一PMOS電晶體(MP1)導通(ON),此時由於該第一PMOS電晶體(MP1)和該第一NMOS電晶體(MN1)都導通(ON),而該第三NMOS電晶體(MN3)截止(OFF),因此,該第三節點(N3)的電位會被拉升至一邏輯高位準,該第三節點(N3)的邏輯高位準使得該第二PMOS電晶體(MP2)截止(OFF),此時由於該第二PMOS電晶體(MP2)和該第二NMOS電晶體(MN2)都截止(OFF),而該第四NMOS電晶體(MN4)導通(ON),因此,該第四節點(N4)的電位會維持在一邏輯低位準(0伏特),輸出端(OUT)的電位維持在一邏輯低位準(0伏特)的穩態值。質言之,第一信號(V(IN))為邏輯低位準(0伏特)時,經 過具低功率損耗之電位轉換器轉換成具邏輯低位準(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to Figure 3 again. When the signal of the enable control terminal (EN) is at a logic low level and the signal of the inverted enable control terminal (ENB) is at a logic high level, the third PMOS transistor (MP3) and The fifth NMOS transistor (MN5) is all turned on (ON). Now consider the steady-state operation of a potential converter with low power loss when the first signal (V(IN)) is at a logic low level (0 volt): The logic low level on the first input terminal (IN) is simultaneously transmitted to the input terminal of the first inverter (I1), the gate of the second NMOS transistor (MN2) and the third NMOS transistor (MN3) , So that the second NMOS transistor (MN2) and the third NMOS transistor (MN3) are both turned off (OFF), and the first inverter (I1) transmits the logic high level (VDDL) to the first NMOS transistor The gate of the crystal (MN1) and the fourth NMOS transistor (MN4) makes the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) both conductive (ON). At this time, due to the The second NMOS transistor (MN2) is turned off (OFF), and the fourth NMOS transistor (MN4) and the fifth NMOS transistor (MN5) are both turned on (ON), and the potential of the fourth node (N4) will be pulled When it drops to a logic low level (0V), the logic low level on the fourth node (N4) is transferred to the gate of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) is turned on ( ON), at this time, since the first PMOS transistor (MP1) and the first NMOS transistor (MN1) are both turned on (ON), and the third NMOS transistor (MN3) is turned off (OFF), therefore, the The potential of the three node (N3) will be pulled up to a logic high level. The logic high level of the third node (N3) causes the second PMOS transistor (MP2) to be turned off (OFF). At this time, due to the second PMOS The transistor (MP2) and the second NMOS transistor (MN2) are both turned off (OFF), and the fourth NMOS transistor (MN4) is turned on (ON), therefore, the potential of the fourth node (N4) will be maintained at A logic low level (0 volt), the potential of the output terminal (OUT) maintains a steady state value of a logic low level (0 volt). In short, when the first signal (V(IN)) is at a logic low level (0 volts), The level converter with low power loss converts it into a second signal with a logic low level (0 volt) and outputs it from the output terminal (OUT).

再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,具低功率損耗之電位轉換器的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都導通(ON),而該第一反相器(I1)傳送邏輯低位準到該第一NMOS電晶體(MN1)以及該第四NMOS電晶體(MN4)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體(MN4)都截止(OFF),此時,由於該第三NMOS電晶體(MN3)導通,而該第一NMOS電晶體(MN1)截止(OFF),該第三節點(N3)的電位會被拉降至一邏輯低位準,該第三節點(N3)上的邏輯低位準傳送到該第二PMOS電晶體(MP2)的閘極,使得該第二PMOS電晶體(MP2)導通(ON),此時由於該第二PMOS電晶體(MP2)和該第二NMOS電晶體(MN2)都導通(ON),而該第四NMOS電晶體(MN4)截止(OFF),因此,該第四節點(N4)的電位會被拉升至一邏輯高位準,該第四節點(N4)的邏輯高位準使得該第一PMOS電晶體(MP1)截止(OFF),此時由於該第一PMOS電晶體(MP1)和該第一NMOS電晶體(MN1)都截止(OFF),而該第三NMOS電晶體(MN3)導通(ON),因此,該第三節點(N3)的電位將維持在一邏輯低位準,而該第四節點(N4)的電位亦將維持在一邏輯高位準,因此,輸出端(OUT)的電位會維持在一邏輯高位準的穩態值。質言之,第一信號(V(IN))為一邏輯高位準(VDDL)時,經過具低功率損耗之電位轉換器轉換成具第一高電源供應電壓(VDDH)的第二信號,由輸出端(OUT)輸出。 Consider the steady-state operation of a potential converter with low power loss when the first signal (V(IN)) is at the logic high level (VDDL): the logic high level (VDDL) on the first input (IN) is at the same time To the input terminal of the first inverter (I1), the second NMOS transistor (MN2) and the gate of the third NMOS transistor (MN3), so that the second NMOS transistor (MN2) and the The third NMOS transistor (MN3) is turned on (ON), and the first inverter (I1) transmits a logic low level to the gates of the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) The first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) are both turned off (OFF). At this time, since the third NMOS transistor (MN3) is turned on, the first NMOS transistor (MN1) is turned off (OFF), the potential of the third node (N3) will be pulled down to a logic low level, and the logic low level on the third node (N3) is transmitted to the second PMOS transistor (MP2) The gate of the second PMOS transistor (MP2) is turned on (ON). At this time, the second PMOS transistor (MP2) and the second NMOS transistor (MN2) are both turned on (ON). The four NMOS transistors (MN4) are turned off (OFF). Therefore, the potential of the fourth node (N4) will be pulled up to a logic high level. The logic high level of the fourth node (N4) makes the first PMOS transistor The transistor (MP1) is turned off (OFF). At this time, the first PMOS transistor (MP1) and the first NMOS transistor (MN1) are both turned off (OFF), and the third NMOS transistor (MN3) is turned on (ON). ), therefore, the potential of the third node (N3) will be maintained at a logic low level, and the potential of the fourth node (N4) will also be maintained at a logic high level. Therefore, the potential of the output terminal (OUT) will be Maintain a steady-state value at a logic high level. In a nutshell, when the first signal (V(IN)) is a logic high level (VDDL), it is converted into a second signal with a first high power supply voltage (VDDH) by a potential converter with low power loss. Output (OUT) output.

綜上所述,該第一信號(V(IN))為邏輯低位準(0伏特)時,該第二信號(V(OUT))亦為邏輯低位準(0伏特);而該第一信號(V(IN))為邏輯高位準(VDDL)時,該第二信號(V(OUT))為第一高電源供應電壓(VDDH)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V(IN)) is at a logic low level (0V), the second signal (V(OUT)) is also at a logic low level (0V); and the first signal When (V(IN)) is the logic high level (VDDL), the second signal (V(OUT)) is the first high power supply voltage (VDDH). In this way, the purpose of voltage level conversion is achieved.

本創作所提出之具低功率損耗之電位轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之具低功率損耗之電位轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且可有效地減少輸出端(OUT)的上拉路徑與下拉路徑之間的互相競爭,進而降低功率損耗。 The Spice transient analysis simulation results of the potential converter with low power loss proposed in this creation are shown in Figure 4. The simulation results can confirm that the potential converter with low power loss proposed in this creation is Not only can the first signal be converted into a second signal quickly and accurately, but also can effectively reduce the competition between the pull-up path and the pull-down path of the output terminal (OUT), thereby reducing power loss.

雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 Although this creation specifically discloses and describes the selected best embodiment, anyone familiar with the technology can understand that any possible changes in form or details do not depart from the spirit and scope of this creation. Therefore, all changes within the scope of related technologies are included in the scope of patent application for this creation.

1:輸入電路 1: Input circuit

2:栓鎖電路 2: Latch circuit

3:開關控制電晶體 3: Switch control transistor

4:開關控制電晶體 4: switch control transistor

I1:第一反相器 I1: First inverter

N1:第一節點 N1: the first node

N2:第二節點 N2: second node

N3:第三節點 N3: third node

N4:第四節點 N4: Fourth node

N5:第五節點 N5: fifth node

N6:第六節點 N6: sixth node

MP1:第一PMOS電晶體 MP1: The first PMOS transistor

MP2:第二PMOS電晶體 MP2: second PMOS transistor

MP3:第三PMOS電晶體 MP3: third PMOS transistor

MN1:第一NMOS電晶體 MN1: The first NMOS transistor

MN2:第二NMOS電晶體 MN2: Second NMOS transistor

MN3:第三NMOS電晶體 MN3: The third NMOS transistor

MN4:第四NMOS電晶體 MN4: Fourth NMOS transistor

MN5:第五NMOS電晶體 MN5: The fifth NMOS transistor

GND:地 GND: ground

OUT:輸出端 OUT: output terminal

V(OUT):第二信號 V(OUT): second signal

IN:第一輸入端 IN: the first input

V(IN):第一信號 V(IN): the first signal

INB:第二輸入端 INB: second input

EN:致能控制端 EN: Enable control terminal

ENB:反相致能控制端 ENB: Reverse enable control terminal

VDDH:第一高電源供應電壓 VDDH: The first high power supply voltage

VDDL:第二高電源供應電壓 VDDL: The second highest power supply voltage

Claims (8)

一種具低功率損耗之電位轉換器,用以將一第一信號(V(IN))轉換為一第二信號(V(OUT)),其包括:一第一節點(N1),用以將一第一PMOS電晶體(MP1)的汲極以及一第一NMOS電晶體(MN1)的汲極連接在一起;一第二節點(N2),用以將一第二PMOS電晶體(MP2)的汲極以及一第二NMOS電晶體(MN2)的汲極連接在一起;一第三節點(N3),用以將該第二PMOS電晶體(MP2)的閘極、該第一NMOS電晶體(MN1)的源極以及一第三NMOS電晶體(MN3)的汲極連接在一起;一第四節點(N4),用以將該第一PMOS電晶體(MP1)的閘極、該第二NMOS電晶體(MN2)的源極以及一第四NMOS電晶體(MN4)的汲極連接在一起;一第五節點(N5),用以將該第三NMOS電晶體(MN3)、該第四NMOS電晶體(MN4)的源極以及一第五NMOS電晶體(MN5)的汲極連接在一起;一第六節點(N6),用以將該第一PMOS電晶體(MP1)、該第二PMOS電晶體(MP2)的源極以及一第三PMOS電晶體(MP3)的汲極連接在一起;一第一輸入端(IN),耦接於該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,用以提供該第一信號(V(IN));一第二輸入端(INB),耦接於該第一NMOS電晶體(MN1)以及該第四NMOS電晶體(MN4)的閘極,用以提供該第一信號(V(IN))的反相信號; 一輸出端(OUT),耦接於該第四節點(N4),用以輸出該第二信號(V(OUT));一第一高電源供應電壓(VDDH),耦接於該第三PMOS電晶體(MP3)的源極,用以提供該電位轉換器所需之第一高電源電壓;一第二高電源供應電壓(VDDL),用以提供該電位轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位;一致能控制端(EN),耦接於該第三PMOS電晶體(MP3)的閘極,用以提供一致能信號;一反相致能控制端(ENB),耦接於該第五NMOS電晶體(MN5)的閘極,用以提供一反相致能信號;一輸入電路(1),耦接於該第一輸入端(IN),用來提供差動輸入信號;一栓鎖電路(2),耦接於該第六節點(N6)以及該輸入電路(1),用來保存並且抑制輸出電位的競爭現象;一開關控制電晶體(3),用以阻止電流的流動,以防止損壞裝置;以及一開關控制電晶體(4),用以阻止電流的流動,以防止損壞裝置。 A potential converter with low power loss for converting a first signal (V(IN)) into a second signal (V(OUT)), which includes: a first node (N1) for converting The drain of a first PMOS transistor (MP1) and the drain of a first NMOS transistor (MN1) are connected together; a second node (N2) is used to connect the drain of a second PMOS transistor (MP2) The drain and the drain of a second NMOS transistor (MN2) are connected together; a third node (N3) is used for the gate of the second PMOS transistor (MP2) and the first NMOS transistor ( The source of MN1) and the drain of a third NMOS transistor (MN3) are connected together; a fourth node (N4) is used for the gate of the first PMOS transistor (MP1), the second NMOS The source of the transistor (MN2) and the drain of a fourth NMOS transistor (MN4) are connected together; a fifth node (N5) is used for the third NMOS transistor (MN3) and the fourth NMOS The source of the transistor (MN4) and the drain of a fifth NMOS transistor (MN5) are connected together; a sixth node (N6) is used for the first PMOS transistor (MP1) and the second PMOS The source of the transistor (MP2) and the drain of a third PMOS transistor (MP3) are connected together; a first input (IN) is coupled to the second NMOS transistor (MN2) and the third The gate of the NMOS transistor (MN3) is used to provide the first signal (V(IN)); a second input terminal (INB) is coupled to the first NMOS transistor (MN1) and the fourth NMOS The gate of the transistor (MN4) is used to provide the inverted signal of the first signal (V(IN)); An output terminal (OUT), coupled to the fourth node (N4), for outputting the second signal (V(OUT)); a first high power supply voltage (VDDH), coupled to the third PMOS The source of the transistor (MP3) is used to provide the first high power supply voltage required by the level converter; a second high power supply voltage (VDDL) is used to provide the second high power supply required by the level converter The voltage of the second high power supply voltage (VDDL) is less than that of the first high power supply voltage (VDDH); the uniform energy control terminal (EN) is coupled to the third PMOS transistor (MP3) The gate is used to provide an enabling signal; an inverted enable control terminal (ENB), coupled to the gate of the fifth NMOS transistor (MN5), is used to provide an inverted enable signal; an input circuit (1), coupled to the first input terminal (IN), for providing a differential input signal; a latch circuit (2), coupled to the sixth node (N6) and the input circuit (1), Used to save and suppress the competition phenomenon of the output potential; a switch control transistor (3) to prevent the flow of current to prevent damage to the device; and a switch control transistor (4) to prevent the flow of current to Prevent damage to the device. 如申請專利範圍第1項所述的具低功率損耗之電位轉換器,其中該輸入電路(1)包括: 一第三NMOS電晶體(MN3),其源極連接至該第五節點(N5),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;一第四NMOS電晶體(MN4),其源極連接至該第五節點(N5),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;以及一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號。 The potential converter with low power loss as described in item 1 of the scope of patent application, wherein the input circuit (1) includes: A third NMOS transistor (MN3), its source is connected to the fifth node (N5), its gate is connected to the first input terminal (IN), and its drain is connected to the third node (N3) Phase connection; a fourth NMOS transistor (MN4), its source is connected to the fifth node (N5), its gate is connected to the second input (INB), and its drain is connected to the fourth node (N4) are connected; and a first inverter (I1), coupled to the first input terminal (IN), for receiving the first signal (V(IN)), and providing a connection with the first Signal (V(IN)) inverted signal. 如申請專利範圍第2項所述的具低功率損耗之電位轉換器,其中該栓鎖電路(2)包括:一第一PMOS電晶體(MP1),其源極連接至該第六節點(N6),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;一第二PMOS電晶體(MP2),其源極連接至該第六節點(N6),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;一第一NMOS電晶體(MN1),其源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第一節點(N1)相連接;以及一第二NMOS電晶體(MN2),其源極連接至該第四節點(N4),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接。 The potential converter with low power loss as described in the scope of patent application 2, wherein the latch circuit (2) includes: a first PMOS transistor (MP1), the source of which is connected to the sixth node (N6) ), its gate is connected to the fourth node (N4), and its drain is connected to the first node (N1); a second PMOS transistor (MP2), its source is connected to the sixth node (N6), its gate is connected to the third node (N3), and its drain is connected to the second node (N2); a first NMOS transistor (MN1), its source is connected to the Three nodes (N3), the gate of which is connected to the second input terminal (INB), and the drain of which is connected to the first node (N1); and a second NMOS transistor (MN2), the source of which Connected to the fourth node (N4), its gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2). 如申請專利範圍第3項所述的具低功率損耗之電位轉換器,其中該開關控制電晶體(3)係由一第五NMOS電晶體(MN5)所組成,其源極連接至地(GND),其閘極連接至該反相致能控制端(ENB),而其汲極則與該第五節點(N5)相連接。 As described in item 3 of the scope of patent application, the switch control transistor (3) is composed of a fifth NMOS transistor (MN5) whose source is connected to the ground (GND). ), its gate is connected to the inverting enable control terminal (ENB), and its drain is connected to the fifth node (N5). 如申請專利範圍第4項所述的具低功率損耗之電位轉換器,其中該開關控制電晶體(4)係由一第三PMOS電晶體(MP3)所組成,其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該致能控制端(EN),而其汲極則與該第六節點(N6)相連接。 As described in item 4 of the patent application, the switch control transistor (4) is composed of a third PMOS transistor (MP3) whose source is connected to the first The high power supply voltage (VDDH) has its gate connected to the enable control terminal (EN), and its drain connected to the sixth node (N6). 如申請專利範圍第1項所述的具低功率損耗之電位轉換器,其中該第一信號(V(IN))的振幅為0伏特至該第二高電源供應電壓(VDDL)之間。 The potential converter with low power loss described in the first item of the scope of patent application, wherein the amplitude of the first signal (V(IN)) is between 0 volt and the second high power supply voltage (VDDL). 如申請專利範圍第6項所述的具低功率損耗之電位轉換器,其中該第二信號(V(OUT))的振幅為0伏特至該第一高電源供應電壓(VDDH)之間。 The potential converter with low power loss as described in item 6 of the scope of patent application, wherein the amplitude of the second signal (V(OUT)) is between 0 volt and the first high power supply voltage (VDDH). 如申請專利範圍第7項所述的具低功率損耗之電位轉換器,其中該第一反相器(I1)的電壓源為該第二高電源供應電壓(VDDL)。 The potential converter with low power loss as described in item 7 of the scope of patent application, wherein the voltage source of the first inverter (I1) is the second high power supply voltage (VDDL).
TW109201852U 2020-02-20 2020-02-20 Voltage level shifter with low power consumption TWM601491U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109201852U TWM601491U (en) 2020-02-20 2020-02-20 Voltage level shifter with low power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109201852U TWM601491U (en) 2020-02-20 2020-02-20 Voltage level shifter with low power consumption

Publications (1)

Publication Number Publication Date
TWM601491U true TWM601491U (en) 2020-09-11

Family

ID=73645136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109201852U TWM601491U (en) 2020-02-20 2020-02-20 Voltage level shifter with low power consumption

Country Status (1)

Country Link
TW (1) TWM601491U (en)

Similar Documents

Publication Publication Date Title
TWM598009U (en) Voltage level shifter having output control circuit
TWM616390U (en) Low power voltage level shifter
TWM586017U (en) Low power level shifter circuit
TWM576365U (en) Low power voltage level converter
TWM601491U (en) Voltage level shifter with low power consumption
TWM565921U (en) Voltage level shifter
TWM618862U (en) Voltage level shifter with low power consumption
TWM604082U (en) Low power voltage level converter
TWM647689U (en) High speed voltage level converter with low power consumption
TWM599059U (en) Voltage level shifter having output buffer circuit
TWM625119U (en) Voltage level converting circuit with reduced power consumption
TWM645482U (en) High speed voltage level converter having low power consumption
TWM635887U (en) Low-power voltage level converter with contention reduction
TWM625120U (en) Voltage level converter with leakage current reduction
TWM626307U (en) Contention-reduced level converting circuit
TWM598007U (en) High performance voltage level converter
TWM626415U (en) Voltage level shifter with reduced static leakage current
TWM628446U (en) Contention-free level converting circuit for data receiving circuit
TWM591738U (en) Low power voltage level converter
TWM654863U (en) Level converter with output buffering
TWM531694U (en) Voltage level converter
TWM626417U (en) High-speed low-power level shifter circuit
TWM628475U (en) Low power and high performance voltage level converting circuit
TWM626414U (en) Voltage level converter with stack transistors
TWM643260U (en) High performance level shifting circuit

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees