TWI427792B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI427792B
TWI427792B TW100108722A TW100108722A TWI427792B TW I427792 B TWI427792 B TW I427792B TW 100108722 A TW100108722 A TW 100108722A TW 100108722 A TW100108722 A TW 100108722A TW I427792 B TWI427792 B TW I427792B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
layer
semiconductor device
semiconductor
electrode
Prior art date
Application number
TW100108722A
Other languages
English (en)
Other versions
TW201212233A (en
Inventor
Wataru Saito
Syotaro Ono
Shunji Taniuchi
Miho Watanabe
Hiroaki Yamashita
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW201212233A publication Critical patent/TW201212233A/zh
Application granted granted Critical
Publication of TWI427792B publication Critical patent/TWI427792B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體裝置
本實施形態係關於半導體裝置。
作為電力用之半導體裝置的範例,有上下電極構造的功率MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金屬氧化物半導體場效型電晶體)。作為減低此種功率MOSFET之導通電阻的手段,於漂移層內形成較深的溝,於此溝內隔著絕緣膜,形成埋入電極之場板構造的功率MOSFET。場板構造係週期性設置於漂移層內,藉由在施加電壓時,對於漂移層的橫方向從場板構造延伸空乏層,維持高耐壓。結果,於此功率MODSET中,可將漂移層的不純物濃度,提升到比先前之功率MOSFET還高,而實現超越材料限度之低導通電阻化。
另一方面,上下電極構造的功率MOSFET係具有由基底層、漂移層及汲極層所構成之pn二極體(內藏二極體)。作為使內藏二極體更高速化的手段,也有將利用肖特基接合之肖特基阻障二極體(Shottky Barrier Diode,SBD)內藏於半導體裝置內的方法。
然而,於功率MOSFET的基本單位晶胞內,形成肖特基阻障二極體的話,形成肖特基接合之區域的晶胞單位(晶胞之橫方向的週期)會變大。於具備場板構造的功率MOSFET中,橫方向的週期變長的話,導通電阻會上升。又,橫方向的週期變長的話,在肖特基接合部之電場強度會變強,有肖特基阻障二極體中漏電流增加的可能性。
本發明的實施形態係提供可降低場效型電晶體部之導通電阻,且抑制肖特基阻障二極體部之漏電流的半導體裝置。
實施形態的半導體裝置,係具備:第1導電形的第1半導體層;第2導電形的第2半導體層,係設置於前述第1半導體層上;第1導電形的第3半導體層,係設置於前述第2半導體層上;埋入電極,係從前述第3半導體層的表面,貫通前述第2半導體層,於到達前述第1半導體層之第1溝內,隔著第1絕緣膜而設置;及控制電極,係於前述第1溝內,於前述埋入電極上,隔著第2絕緣膜而設置。實施形態的半導體裝置,係具備:第2導電形的第4半導體層,係從前述第3半導體層的表面,貫通前述第2半導體層,連接於到達前述第1半導體層之第2溝的下端,選擇性設置於前述第1半導體層內;第1主電極,係電性連接於前述第1半導體層;及第2主電極,係設置於前述第2溝內,連接於前述第2半導體層、前述第3半導體層、前述第4半導體層。前述埋入電極,係電性連接於前述第2主電極或前述控制電極之任一方;於前述第2溝的側壁中,形成有前述第2主電極與前述第1半導體層所致之肖特基接合。
依據本發明的實施形態,可降低場效型電晶體部之導通電阻,且抑制肖特基阻障二極體部之漏電流的半導體裝置。
以下,一邊參照圖面,一邊針對本實施形態進行說明。
在以下實施形態,作為一例,將第1導電形設為n形,第2導電形設為p形。於各圖面的相同構造要素,附加相同符號。
(第1實施形態)
圖1係揭示第1實施形態之半導體裝置的要部剖面的模式圖。圖1係揭示半導體元件的元件部。於後述之圖2~圖9也相同。
半導體裝置1a係具有具有上下電極構造的功率MOSFET,與肖特基阻障二極體(以下記述為SBD)。於半導體裝置1a中,如圖1所示,於n+ 形的汲極層10上,設置有n- 形的漂移層(第1半導體層)11。於漂移層11的表面,形成有p形的基底層(第2半導體層)12。於基底層12的表面,形成有n+ 形的源極層(第3半導體層)13。於本實施形態中,將汲極層10側作為下方,源極層13側作為上方來說明實施形態。亦即,源極層13係設置於比汲極層10還淺的位置。
從源極層13的表面朝向漂移層11,設置有複數溝21。例如,溝21係從源極層13的表面貫通基底層12,到達漂移層11的內部為止。各溝21係例如對於漂移層11的主面往略平行方向週期性設置。各溝21係相互平行延伸存在。
於溝21內的下部,設置有理入絕緣膜(第1絕緣膜)41,與埋入電極31。於溝21內的上部,設置有閘極絕緣膜(第2絕緣膜)42,與閘極電極(控制電極)32。埋入電極31係藉由埋入絕緣膜41從漂移層11及閘極電極32絕緣,成為埋入場板構造(以下記述為埋入FP構造)。埋入電極31係隔著埋入絕緣膜41,連接漂移層11。埋入絕緣膜41的膜厚係比閘極絕緣膜42還厚。
閘極電極32係隔著閘極絕緣膜42,連接漂移層11、基底層12、源極層13。
汲極層10係設置於漂移層11的背面,連接於汲極電極(第1主電極)34。基底層12與源極層13係連接於設置在源極層13上的源極電極(第2主電極)33。源極電極33與閘極電極32係藉由設置於閘極電極32之上部的層間絕緣膜43絕緣。埋入電極31係電性連接於源極電極33。
鄰接之閘極電極32之間係形成有從源極層13之表面到達漂移層11的溝22。溝22係分斷源極層13及基底層12。溝22的下端係位於比基底層12的下面還深的位置,比閘極電極32的下面還淺的位置。於溝22的內部,埋入有源極電極33。
於溝22的下端,連接有p+ 形的護環層(第4半導體層)14。護環層14係連接於設置在溝22內的源極電極33。
於溝22之側壁的一部份中,金屬性的源極電極33連接n- 形的漂移層11。藉此,於溝22連接漂移層11的部份中,形成有肖特基接合50。亦即,半導體裝置1a係內藏有藉由源極電極33與漂移層11所形成之SBD。此SBD係連接於源極電極33與汲極電極34之間。
再者,漂移層11、基底層12、源極層13、汲極層10及護環層14的主要成分例如為矽(Si),埋入電極31及閘極電極32的主要成分例如為多晶矽(poly-Si),源極電極33及汲極電極34的主要成分例如為鋁(Al),埋入絕緣膜41及閘極絕緣膜42及層間絕緣膜43的主要成分例如為氧化矽(SiO2 )。
接著,針對本實施形態之製造過程的一例進行說明。
圖2~圖4係用以說明第1實施形態之半導體裝置的製造過程的要部剖面模式圖。
首先,如圖2(a)所示,準備基板狀(例如半導體晶圓狀)之n+ 形的汲極層10。接下來,於汲極層10的表面,使n- 形的漂移層11磊晶成長。接著,於漂移層11的表面上,選擇性形成由未圖示之矽氧化膜及光阻等所構成之遮罩之後,使用非等向性蝕刻(例如,Reactive Ion Etching,RIE)等,於漂移層11內選擇性形成複數溝21。
接著,如圖2(b)所示,於溝21內,使用熱氧化法、CVD(Chemical Vaper Deposition)法等來形成埋入絕緣膜41。埋入絕緣膜41的材質例如為氧化矽(SiO2 )、氮化矽(Si3 N4 )等。接下來,將多晶矽(poly-Si)隔著埋入絕緣膜41而埋入至溝21內。多晶矽的形成方法係例如CVD法。接下來,回蝕埋入溝21內之多晶矽以及絕緣膜。藉此,於溝21的下部,隔著埋入絕緣膜41,形成埋入電極31。
接著,如圖3(a)所示,於溝21內,使用熱氧化法、CVD法等來形成閘極絕緣膜42。接下來,藉由CVD法而隔著閘極絕緣膜42,埋入多晶矽。接下來,回蝕多晶矽、閘極絕緣膜42,形成閘極電極32。藉此,於埋入電極31上,形成閘極電極32。
接著,如圖3(b)所示,藉由注入離子與熱處理,於漂移層11的表面,形成p形的基底層12。接下來,於基底層12的表面,藉由注入離子與熱處理,形成n+ 形的源極層13。此時,因應需要,於不需要注入離子的部份,覆蓋絕緣膜、光阻層等亦可。
接著,如圖4(a)所示,於源極層13的表面,選擇性形成由矽氧化膜、光阻層等所構成之遮罩60之後,使用RIE法等,形成溝22。進而,從溝22的底面(下端),涵蓋到此底面之下側的漂移層11,藉由注入離子而灌入p形的不純物。注入p形的不純物之後,因應需要而施加熱處理。藉此,形成與溝22的底面(下端)連接護環層14。
接著,如圖4(b)所示,以層間絕緣膜43覆蓋從源極層13的表面突出之閘極電極32的表面。進而,於溝22內,使用濺鍍法或CVD法來形成金屬層,並且於源極層13上,形成源極電極33。因為源極電極33與埋入至溝22內的金屬層連通,故包含此金屬層,稱為源極電極33。
源極電極33的主要成分例如為鋁(Al)。於金屬層與溝22的內壁之間,因應需要,形成阻障膜(例如,以鈦(Ti)為主要成分的膜)亦可。又,因應需要,研磨汲極層10的背面側,於汲極層10的下側,形成汲極電極34。藉由此種製造過程,形成圖1所示之半導體裝置1a。
接著,說明半導體裝置1a的作用效果。
圖1所示之半導體裝置1a係具備埋入FP構造,與SBD。包含源極層13、汲極層10及閘極電極32的MOSFET,與SBD係並排連接於源極電極33與汲極電極34之間。源極電極33係作為SBD的陽極電極而作用,汲極電極31係作為陰極電極而作用。
在源極電極33為比汲極電極34還低電位之狀態下,對閘極電極32施加臨限值電壓以上的電壓的話,於隔著閘極絕緣膜42而與閘極電極32對向的基底層12,形成通道(反轉層),導通源極電極33與汲極電極34之間。
藉此,MOSFET成為導通狀態,例如,電子電流係從源極電極33,經由源極層13、通道、漂移層11及汲極層10,流至汲極電極34。
另一方面,將閘極電極32的電位設為比臨限值電壓還低的電位的話,於基底層12不會形成通道,MOSFET會成為截止狀態。在MOSFET在截止狀態中,成為對源極電極33與汲極電極34之間,施加高電壓之狀態。所以,空乏層從電性連接於源極電極33之埋入絕緣膜41,朝向漂移層11延伸。亦即,空乏層往半導體裝置1a的橫方向(對於汲極層10的主面略平行之方向)延伸,連接上從鄰接之埋入絕緣膜41彼此延伸的空乏層。藉此,半導體裝置1a係維持高耐壓。
又,埋入絕緣膜41的膜厚係充分比閘極絕緣膜42的膜厚還厚,故藉由埋入絕緣膜41,維持高耐壓。因此,可提升漂移層11的不純物濃度,降低導通電阻。進而,橫方向的週期越小,約容易使漂移層11完全空乏化,故可更提升漂移層11的不純物濃度。藉此,更減低半導體裝置1a的導通電阻。
在MOSFET為截止狀態,且源極電極33為比汲極電極34還高電位之狀態時,SBD會動作,從源極電極33介由肖特基接合50,經由漂移層11及汲極層10,往汲極電極34流通順方向電流。
進行比較例之半導體裝置100的說明。
圖5係比較例之半導體裝置100的要部剖面模式圖。
於比較例之半導體裝置100中,源極層13、基底層12、漂移層11係與源極電極33的下面連接。於半導體裝置100中,不存在埋入設置於半導體裝置1a之溝22內的源極電極33、護環層14。在半導體裝置100中,於漂移層11之表面的一部份,形成肖特基接合500。
於半導體裝置100中,肖特基接合500係與汲極電極34對向。為此,對汲極電極34施加高電壓時,對肖特基接合500加強施加電場。所以,於肖特基接合500中,有產生漏電流的可能性。
對於為了抑制肖特基接合500的漏電流,需要選擇高肖特基障壁的材料。然而,肖特基障壁的高度係提高SBD的順方向電壓,難以促進SBD的低損失化。
作為降低半導體裝置100之SBD的導通電壓之手段,需要增加肖特基接合500的面積。於半導體裝置100中,以與汲極電極34之方式設置肖特基接合500,汲極層10之主面與肖特基接合之面成為略平行。為此,增加肖特基接合500的面積的話,鄰接之埋入電極31之間的距離變長。所以,於半導體裝置100中,難以使晶格節距狹小化。結果,於半導體裝置100中,難以縮短橫方向的週期,難以減低導通電阻。
相對於此,於本實施形態的半導體裝置1a中,肖特基接合50係與閘極電極32對向,未與汲極電極34對向。為此,肖特基接合50之面(界面)並不是對於電流路徑垂直的面,而成為對於沿著電流路徑的方向略平行之面。所以,即使對於源極電極33與汲極電極34之間施加高電壓,肖特基接合50的電場強度相較於比較例的半導體裝置100,也會相對地被抑制。進而,藉由護環層14,更緩和電場強度,故施加於肖特基接合50之電場強度接近0。進而,肖特基接合50係位於比閘極電極32的底面(下端)還淺的位置。為此,施加至肖特基接合50的電場強度為難以增加的構造。所以,可抑制流動於肖特基接合50之反方向漏電流。結果,半導體裝置1a之SBD的性能成為更佳。
又,於半導體裝置1a中,因為肖特基接合50之面與汲極層10之主面成為略垂直,故根據肖特基接合50本身的形成,橫方向的週期不會變長。進而,因加深溝22,可增加肖特基接合50的面積。為此,可不使基本單位晶格之橫方向的週期,取得所希望之肖特基接合面積。所以,可確保MOSFET的低導通電阻,增加SBD的面積,降低SBD的導通電壓。
又,在半導體裝置1a中,將埋入電極31連接於源極電極33,故減低閘極‧汲極之間電容。藉此,實現高速開關。
如此,在半導體裝置1a中,可實現一邊具有低導通電阻,一邊內藏反方向漏電流較小之SBD的縱型功率MOSFET。
接著,針對半導體裝置1a的變形例進行說明。
(第1實施形態的第1變形例)
圖6係第1實施形態的第1變形例之半導體裝置的要部剖面模式圖。
於第1實施形態之變形例的半導體裝置1b中,於溝21內,埋入電極31連接於閘極電極32。
如果為此種構造,在MOSFET的導通狀態中,於隔著埋入絕緣膜41而與埋入電極31對向的漂移層11,也可形成電子的蓄積層。所以,半導體裝置1b係相較於半導體裝置1a,增加了通道密度,更減低導通電阻。
(第1實施形態的第2變形例)
圖7係第1實施形態的第2變形例之半導體裝置的要部剖面模式圖。
於半導體裝置1c中,溝22的下端位於比閘極電位32的下端還深的位置。
如果為此種構造的話,肖特基接合50的面積相較於半導體裝置1a、1b較為寬廣。因此,更減低SBD的導通電壓。又,於比閘極絕緣膜42還深的位置,存在護環層14,藉此,在對源極電極33與汲極電極34之間施加高電壓時,可緩和施加於閘極絕緣膜42之電場強度。藉此,於半導體裝置1c中,相較於半導體裝置1a、1b,可抑制閘極絕緣膜42的劣化(例如絕緣破壞),提升信賴性。
(第2實施形態)
圖8係第2實施形態之半導體裝置的要部剖面模式圖。
如圖8所示,於半導體裝置2a中,於基底層12之下側,且溝21與溝22之間的區域A,設置包含比漂移層的不純物濃度還高濃度之不純物的n形高濃度半導體層(第5半導體層)15。高濃度半導體層15的下端係位於比護環層14的下端還淺的位置。高濃度半導體層15的不純物濃度係漂移層11的數倍程度。高濃度半導體層15的主要成分例如為矽(Si)。於溝22之側壁的一部份中,金屬性的源極電極33連接高濃度半導體層15。藉此,於溝22連接高濃度半導體層15的部份中,形成有肖特基接合50。除了該等以外,係與半導體裝置1c的構造略相同。
如果為此種構造,在對汲極電極34施加電壓時,空乏層從閘極絕緣膜42與埋入絕緣膜41往橫方向延伸,並且空乏層也從肖特基接合50往橫方向延伸。所以,被肖特基接合50與溝21挾持之區域A係比溝21彼此之間的區域B更容易空乏化。為此,可不使耐壓降低,提升區域A的不純物濃度。所以,即使設置高濃度半導體層15,半導體裝置2a的耐壓也不會降低。藉由不純物濃度較高的高濃度半導體層15設置於漂移層11,可實現更低導通電阻的MOSFET。
(第2實施形態的變形例)
接著,針對半導體裝置2a的變形例進行說明。
圖9係第2實施形態的變形例之半導體裝置的要部剖面模式圖。
如圖9所示,於半導體裝置2b中,高濃度半導體層15並未連接溝22。於溝22之側壁的一部份中,金屬性的源極電極33連接漂移層11。藉此,於溝22連接漂移層11的部份中,形成有肖特基接合50。除了該等以外,係與半導體裝置2a的構造略相同。
如果為此種構造的話,於半導體裝置2b中,與半導體裝置2a相同,藉由從肖特基接合50延伸的空乏層,可不使耐壓降低,提升漂移層的不純物濃度,實現低導通電阻。因為形成肖特基接合50的半導體層,為漂移層11,故相較於半導體裝置2a,不純物濃度較低。所以,可抑制經由SBD而流通的漏電流。於半導體裝置2b中,可降低導通電阻,且實現更低漏電流的SBD。
(第3實施形態)
圖10係第3實施形態之半導體裝置的要部剖面模式圖。
在圖10中,不僅形成MOSFET的元件區域71,揭示到比元件區域71更外側的終端區域72。亦即,半導體裝置係具有元件區域71,與包圍元件區域71,設置於其外側的終端區域72。元件區域71係於MOSFET的汲極電極與源極電極之間形成主電流路徑的區域,例如,於圖10中,包含閘極電極32等的區域。終端區域72係包圍元件區域71,配置於其外周側的區域,設置後述之場板電極35、場絕緣膜44等的區域。於終端區域72中,於漂移層11上及基底層12a之一部份上,更設置有場絕緣膜44。即使於圖11及圖12也相同。
如圖10所示,於本實施形態的半導體裝置3a中,於比元件區域71更外側的終端區域72,於漂移層11上設置有場絕緣膜44。於場絕緣膜44上,設置有與源極電極33一體形成的場板電極35。於鄰接於溝21的終端區域72,設置有p形的基底層12a。於基底層12a上,並未設置源極層13。基底層12a係延伸存在至場絕緣膜下為止。
於基底層12a,係以比基底層12a與漂移層11連接之側壁12w更接近溝21之方式,設置溝22a。換句話說,設置於終端區域72之溝22a,與設置於終端區域之基底層12a與漂移層11連接之側壁12w之間的距離,係比設置於終端區域之溝22a,與設置於元件區域71之溝21之間的距離還長。溝22a係分斷基底層12a。溝22a的下端係位於比基底層12a的下面還深的位置。於溝22a的內部,埋入有源極電極33。於溝22a的下端,連接有p+ 形的護環層14a。護環層14a係連接於設置在溝22a內的源極電極33。於溝22a之側壁的一部份中,金屬性的源極電極33連接n- 形的漂移層11。藉此,於溝22a連接漂移層11的部份中,形成有肖特基接合50a。
從基底層12a與漂移層11連接之側壁12w,到溝22a之側壁為止的距離a,係比從基底層12a的底面到護環層14a之下端的位置為止的距離b還長。除了該等以外的元件部,係與半導體裝置1a的構造略相同。
在將高電壓施加至汲極電極34時,電場集中於基底層12a之端部。為此,有半導體裝置3a的耐壓降低之狀況。於半導體裝置3a中,藉由將場板電極35設置於場絕緣膜44上的場板構造來緩和電場集中。進而,藉由護環層14a,更緩和電場強度。所以,於半導體裝置3a中,可抑制耐壓的降低。
又,利用將從基底層12a之側壁到溝22a之側壁為止的距離a,設為比從基底層12a之底面到護環層14a之下端的位置為止的距離b還長,可緩和施加至護環層14a上的肖特基接合50a之電場集中。所以,可降低SBD的漏電流。
接著,針對半導體裝置3a的變形例進行說明。
(第3實施形態的第1變形例)
圖11係第3實施形態的第1變形例之半導體裝置的要部剖面模式圖。
如圖11所示,於半導體裝置3b中,於漂移層11的表面,設置有p形的第2護環層(第6半導體層)16。第2護環層16係連接基底層12a,設置於基底層12a的外側。第2護環層16的表面係與源極電極33的下面連接。第2護環層16之下端的位置係比基底層12a之下端的位置還深。
如果為此種構造的話,可藉由第2護環層16,更加抑制基底層12a之端部的電場集中。在圖11,以模式矩形揭示護環層16的形狀,但是,實際的接合係藉由不純物的擴散而端部成為圓弧形狀6越深地形成不純物,pn接合面的曲率半徑越大,可抑制在由第2護環層16與漂移層11所構成之pn接合面之端部的電場集中。所以,在半導體裝置3b中,可提高終端區域之耐壓。
(第3實施形態的第2變形例)
圖12係第3實施形態的第2變形例之半導體裝置的要部剖面模式圖。
如圖12所示,於半導體裝置3c中,於第2護環層16的外側,設置有p形的第3護環層17。第3護環層17係設置於漂移層11的表面。第3護環層的側面並未連接第2護環層16。第3護環層17的表面係連接於場絕緣膜44,故並未連接源極電極33。所以,第3護環層17係並未連接任一電極。第3護環層17之下面的位置係比基底層12a之下面的位置還深。第3護環層17係1個或複數個皆可。
藉由第3護環層17,可更抑制基底層12a之端部的電場集中,更提升在半導體裝置3c之終端區域的耐壓。
以上,一邊參照具體例,一邊針對本實施形態進行說明。但是,本實施形態係不限定於該等具體例。亦即,於該等具體例,當業者加上適切設計變更者,只要具備本實施形態的特徵,也包含於本實施形態的範圍。
例如,在本實施形態中,將第1導電形設為n形,將第2導電形設為p形來進行說明,但是,將第1導電形設為p形,將第2導電形設為n形也可實施。
例如,MOS閘極部、埋入FP構造的平面圖案係不限定於條紋狀,作為格子狀、鋸齒狀、蜂巢狀亦可。
又,作為半導體裝置的半導體材料,例如使用矽(Si)。但是,作為半導體材料,例如可使用碳化矽(SiC)、氮化鎵(GaN)等之化合物半導體、鑽石等之寬帶間隙半導體。
又,在本實施形態中例示之圖面係模式或概念者。各部份之厚度與寬度的關係、部分間之大小的比例,係不一定限於與現實者相同,在圖面上以矩形表示之形狀,在現實上具圓弧之狀況或具有角度之實施形態也包含於本實施形態。
本發明並不完全限定於前述實施形態,在實施階段中可在不脫出其要旨的範圍,改變構成要件而具體化。又,可藉由前述實施形態所揭示之複數構成要件的適切組合,形成各種發明。例如,從實施形態所示之整體構成要件刪除幾個構成要件亦可。
1a~1c,2a,2b,3a~3c...半導體裝置
10...汲極層
11...漂移層
12,12a...基底層
12w...側壁
13...源極層
14,14a...護環層
15...高濃度半導體層
16...第2護環層
17...第3護環層
21,22,22a...溝
31...埋入電極
32...閘極電極
33...源極電極
34...汲極電極
35...場板電極
41...埋入絕緣膜
42...閘極絕緣膜
43...層間絕緣膜
44...場絕緣膜
50,50a,500...肖特基接合
60...遮罩
71...元件區域
72...終端區域
100...半導體裝置
A...區域
a,b...距離
[圖1]第1實施形態之半導體裝置的要部剖面模式圖。
[圖2]揭示第1實施形態之半導體裝置的製造過程的要部剖面模式圖。
[圖3]揭示第1實施形態之半導體裝置的製造過程的要部剖面模式圖。
[圖4]揭示第1實施形態之半導體裝置的製造過程的要部剖面模式圖。
[圖5]比較例之半導體裝置的要部剖面模式圖。
[圖6]第1實施形態的第1變形例之半導體裝置的要部剖面模式圖。
[圖7]第1實施形態的第2變形例之半導體裝置的要部剖面模式圖。
[圖8]第2實施形態之半導體裝置的要部剖面模式圖。
[圖9]第2實施形態的變形例之半導體裝置的要部剖面模式圖。
[圖10]第3實施形態之半導體裝置的要部剖面模式圖。
[圖11]第3實施形態的第1變形例之半導體裝置的要部剖面模式圖。
[圖12]第3實施形態的第2變形例之半導體裝置的要部剖面模式圖。
1a...半導體裝置
10...汲極層
11...漂移層
12...基底層
13...源極層
14...護環層
21...溝
22...溝
31...埋入電極
32...閘極電極
33...源極電極
34...汲極電極
41...埋入絕緣膜
42...閘極絕緣膜
43...層間絕緣膜
50...肖特基接合

Claims (20)

  1. 一種半導體裝置,其特徵為:具備:第1導電形的第1半導體層;第2導電形的第2半導體層,係設置於前述第1半導體層上;第1導電形的第3半導體層,係設置於前述第2半導體層上;埋入電極,係從前述第3半導體層的表面,貫通前述第2半導體層,於到達前述第1半導體層之第1溝內,隔著第1絕緣膜而設置;控制電極,係於前述第1溝內,於前述埋入電極上,隔著第2絕緣膜而設置;第2導電形的第4半導體層,係從前述第3半導體層的表面,貫通前述第2半導體層,連接於到達前述第1半導體層之第2溝的下端,選擇性設置於前述第1半導體層內;第1主電極,係電性連接於前述第1半導體層;及第2主電極,係設置於前述第2溝內,連接於前述第2半導體層、前述第3半導體層、前述第4半導體層;前述埋入電極,係電性連接於前述第2主電極或前述控制電極之任一方;於前述第2溝的側壁中,形成有前述第2主電極與前述第1半導體層所致之肖特基接合。
  2. 如申請專利範圍第1項所記載之半導體裝置,其中,前述埋入電極,係連接於前述控制電極。
  3. 如申請專利範圍第1項所記載之半導體裝置,其中,前述第2溝的下端,係位於比前述控制電極的下端還深的位置。
  4. 如申請專利範圍第1項所記載之半導體裝置,其中,更具備:第1導電形的第5半導體層,係於前述第1溝與前述第2溝之間,設置於前述第2半導體層的下側,包含比前述第1半導體層的不純物濃度還高的不純物。
  5. 如申請專利範圍第4項所記載之半導體裝置,其中,前述第5半導體層的下端,係位於比前述第4半導體層的下端還淺的位置。
  6. 如申請專利範圍第4項所記載之半導體裝置,其中,前述第5半導體層,係連接前述第2溝。
  7. 如申請專利範圍第4項所記載之半導體裝置,其中,前述第5半導體層,係並未連接前述第2溝。
  8. 如申請專利範圍第1項所記載之半導體裝置,其中,於設置於前述控制電極被設置之元件區域的周圍之終端區域中,設置有:前述第2半導體層;前述第2主電極,係設置於前述第2溝內;及前述第4半導體層,係連接於前述第2主電極。
  9. 如申請專利範圍第8項所記載之半導體裝置,其中,於前述終端區域中,於前述第1半導體層上及前述第2半導體層之一部份上,更設置有場絕緣膜。
  10. 如申請專利範圍第8項所記載之半導體裝置,其中,前述終端區域之前述第2溝,與前述終端區域之前述第2半導體層和前述第1半導體層連接之側壁之間的距離,係比前述終端區域之前述第2溝,與前述元件區域之第1溝之間的距離還長。
  11. 如申請專利範圍第8項所記載之半導體裝置,其中,前述終端區域之前述第2半導體層,係藉由前述終端區域之前述第2溝分斷。
  12. 如申請專利範圍第8項所記載之半導體裝置,其中,前述終端區域之前述第2溝的下端,係位於比前述終端區域之前述第2半導體層的下面還深的位置。
  13. 如申請專利範圍第8項所記載之半導體裝置,其中,設置於前述終端區域之前述第2溝內的前述第2主電極,係連接前述第1半導體層。
  14. 如申請專利範圍第8項所記載之半導體裝置,其中,從由前述元件區域延伸存在至前述終端區域之前述第2半導層的側壁,到與前述第2半導體層之前述側壁對向之前述第2溝的側壁為止的距離,係比從前述第2半導體層的底面到前述第4半導體層之下端的位置為止的距離還長。
  15. 如申請專利範圍第8項所記載之半導體裝置,其中,於前述第1半導體層的表面,更設置有與由前述元件區域延伸存在至前述終端區域之前述第2半導體層連接之第2導電形的第6半導體層。
  16. 如申請專利範圍第15項所記載之半導體裝置,其中,前述第6半導體層的底面,係位於比前述終端區域之前述第2半導體層的底面還深的位置。
  17. 如申請專利範圍第15項所記載之半導體裝置,其中,前述第6半導體層,係連接於前述第2主電極。
  18. 如申請專利範圍第15項所記載之半導體裝置,其中,於比前述第6半導體層更外側,至少設置有1個未與前述第2主電極連接之第2導電形的第7半導體層。
  19. 如申請專利範圍第18項所記載之半導體裝置,其中,前述第7半導體層,係未連接前述第6半導體層。
  20. 如申請專利範圍第18項所記載之半導體裝置,其中,前述第7半導體層之下面的位置,係位於比前述第2半導體層之下面的位置還深的位置。
TW100108722A 2010-09-07 2011-03-15 Semiconductor device TWI427792B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200251A JP5449094B2 (ja) 2010-09-07 2010-09-07 半導体装置

Publications (2)

Publication Number Publication Date
TW201212233A TW201212233A (en) 2012-03-16
TWI427792B true TWI427792B (zh) 2014-02-21

Family

ID=45770074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108722A TWI427792B (zh) 2010-09-07 2011-03-15 Semiconductor device

Country Status (4)

Country Link
US (2) US8643091B2 (zh)
JP (1) JP5449094B2 (zh)
CN (1) CN102403315B (zh)
TW (1) TWI427792B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170563B2 (en) * 2009-10-30 2019-01-01 Alpha And Omega Semiconductor Incorporated Gallium nitride semiconductor device with improved termination scheme
US8692318B2 (en) * 2011-05-10 2014-04-08 Nanya Technology Corp. Trench MOS structure and method for making the same
JP5991020B2 (ja) * 2012-05-18 2016-09-14 株式会社豊田中央研究所 炭化珪素単結晶を主材料とする半導体装置
JP2014146666A (ja) * 2013-01-28 2014-08-14 Toshiba Corp 半導体装置
JP5799047B2 (ja) 2013-03-22 2015-10-21 株式会社東芝 半導体装置、及びその製造方法
JP2014216572A (ja) * 2013-04-26 2014-11-17 株式会社東芝 半導体装置
JP2015076592A (ja) * 2013-10-11 2015-04-20 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US20150118810A1 (en) * 2013-10-24 2015-04-30 Madhur Bobde Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
JP2016004847A (ja) * 2014-06-14 2016-01-12 株式会社東芝 半導体装置及びその製造方法
DE102015121566B4 (de) * 2015-12-10 2021-12-09 Infineon Technologies Ag Halbleiterbauelemente und eine Schaltung zum Steuern eines Feldeffekttransistors eines Halbleiterbauelements
WO2017099096A1 (ja) * 2015-12-11 2017-06-15 富士電機株式会社 半導体装置
JP6976858B2 (ja) * 2015-12-25 2021-12-08 出光興産株式会社 積層体
CN109643733B (zh) * 2016-08-19 2022-04-15 罗姆股份有限公司 半导体装置及半导体装置的制造方法
JP6720818B2 (ja) * 2016-10-07 2020-07-08 トヨタ自動車株式会社 半導体装置
JP2018101668A (ja) * 2016-12-19 2018-06-28 トヨタ自動車株式会社 半導体装置
JP6830627B2 (ja) * 2016-12-22 2021-02-17 国立研究開発法人産業技術総合研究所 半導体装置および半導体装置の製造方法
JP6555284B2 (ja) * 2017-02-23 2019-08-07 サンケン電気株式会社 半導体装置
CN106876471B (zh) * 2017-03-31 2019-12-17 西安电子科技大学 双槽umosfet器件
CN106876256B (zh) * 2017-03-31 2020-05-12 西安电子科技大学 SiC双槽UMOSFET器件及其制备方法
JP6930197B2 (ja) * 2017-04-20 2021-09-01 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6866792B2 (ja) * 2017-07-21 2021-04-28 株式会社デンソー 半導体装置およびその製造方法
JP7059556B2 (ja) * 2017-10-05 2022-04-26 富士電機株式会社 半導体装置
US10439075B1 (en) 2018-06-27 2019-10-08 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method
US10566466B2 (en) 2018-06-27 2020-02-18 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method
JP6626929B1 (ja) * 2018-06-29 2019-12-25 京セラ株式会社 半導体デバイス及び電気装置
JP7310144B2 (ja) * 2019-01-10 2023-07-19 富士電機株式会社 炭化珪素半導体装置
CN112164718A (zh) * 2020-08-28 2021-01-01 电子科技大学 具有控制栅保护层的分离栅器件及其制造方法
US20220238698A1 (en) * 2021-01-26 2022-07-28 Pakal Technologies, Inc. Mos-gated trench device using low mask count and simplified processing
CN115132844A (zh) * 2021-03-24 2022-09-30 株式会社东芝 半导体装置
EP4131419A1 (en) * 2021-08-03 2023-02-08 Infineon Technologies Austria AG Transistor device
CN117334745A (zh) * 2023-12-01 2024-01-02 深圳天狼芯半导体有限公司 一种源极沟槽集成SBD超结SiC MOS及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135929A1 (en) * 2006-11-01 2008-06-12 Kabushiki Kaisha Toshiba Power semiconductor device
TW200926397A (en) * 2007-10-04 2009-06-16 Fairchild Semiconductor High density FET with integrated Schottky

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
EP0333426B1 (en) 1988-03-15 1996-07-10 Kabushiki Kaisha Toshiba Dynamic RAM
US5688725A (en) * 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
JP4528460B2 (ja) * 2000-06-30 2010-08-18 株式会社東芝 半導体素子
JP2006202931A (ja) 2005-01-20 2006-08-03 Renesas Technology Corp 半導体装置およびその製造方法
JP5612256B2 (ja) 2008-10-16 2014-10-22 株式会社東芝 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135929A1 (en) * 2006-11-01 2008-06-12 Kabushiki Kaisha Toshiba Power semiconductor device
TW200926397A (en) * 2007-10-04 2009-06-16 Fairchild Semiconductor High density FET with integrated Schottky

Also Published As

Publication number Publication date
US9059284B2 (en) 2015-06-16
JP5449094B2 (ja) 2014-03-19
US20140103425A1 (en) 2014-04-17
CN102403315A (zh) 2012-04-04
CN102403315B (zh) 2014-06-25
US20120056262A1 (en) 2012-03-08
US8643091B2 (en) 2014-02-04
JP2012059841A (ja) 2012-03-22
TW201212233A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TWI427792B (zh) Semiconductor device
JP7059555B2 (ja) 半導体装置
JP4825424B2 (ja) 電力用半導体装置
TWI470768B (zh) Semiconductor device
JP4414863B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
JP4456013B2 (ja) 半導体装置
JP5636254B2 (ja) 半導体装置
JP7243094B2 (ja) 半導体装置
JP2023101007A (ja) 絶縁ゲート型半導体装置の製造方法
US20140209999A1 (en) Semiconductor device
JP2006278826A (ja) 半導体素子及びその製造方法
JP2007027266A (ja) 半導体素子及びその製造方法
JPWO2016047438A1 (ja) 半導体装置
JP5145694B2 (ja) SiC半導体縦型MOSFETの製造方法。
US9276075B2 (en) Semiconductor device having vertical MOSFET structure that utilizes a trench-type gate electrode and method of producing the same
JP2007207784A (ja) 半導体装置
JP2019003967A (ja) 半導体装置および半導体装置の製造方法
WO2017138215A1 (ja) 半導体装置
JP5687582B2 (ja) 半導体素子およびその製造方法
US20110042714A1 (en) Power semiconductor device
JP2023153392A (ja) 半導体装置
JP2007288172A (ja) 半導体装置
JP5556863B2 (ja) ワイドバンドギャップ半導体縦型mosfet
JP3998454B2 (ja) 電力用半導体装置
TWI702722B (zh) 半導體裝置及半導體裝置之製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees