TW201227793A - Field emission display device - Google Patents

Field emission display device Download PDF

Info

Publication number
TW201227793A
TW201227793A TW99145342A TW99145342A TW201227793A TW 201227793 A TW201227793 A TW 201227793A TW 99145342 A TW99145342 A TW 99145342A TW 99145342 A TW99145342 A TW 99145342A TW 201227793 A TW201227793 A TW 201227793A
Authority
TW
Taiwan
Prior art keywords
electrode
cathode
focusing
field emission
emission display
Prior art date
Application number
TW99145342A
Other languages
Chinese (zh)
Other versions
TWI417925B (en
Inventor
Peng Liu
Duan-Liang Zhou
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99145342A priority Critical patent/TWI417925B/en
Publication of TW201227793A publication Critical patent/TW201227793A/en
Application granted granted Critical
Publication of TWI417925B publication Critical patent/TWI417925B/en

Links

Abstract

The present invention relates to a field emission display device. The field emission display device includes an insulated substrate; a plurality of row electrodes and a plurality of column electrodes disposed on the insulated substrate, and a plurality of electron emission units disposed on the insulated substrate. The row electrodes and column electrodes are disposed parallel respectively at a certain distance. Every two neighbor row electrodes and two neighbor column electrodes form a grid. Each of the electron-emission units is disposed in a grid respectively, and each of the electron-emission units includes a cathode electrode, an anode electrode, a cathode emitter, a first focusing electrode and a second focusing electrode. The cathode electrode and anode electrode are disposed at a distance. The first focusing electrode and the second focusing electrode are separately disposed on the side of the cathode emitter.

Description

201227793 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種場發射顯示裝置,尤其涉及—種大面積 場發射顯示裝置。 [先前技術] [0002] 場發射顯示裝置在低溫或者室溫下工作,與電真*哭件 中的熱發射電子器件相比具有功耗低、回應速度快及低 放氣等優點,因此有望用場發射顯示裝置替代電真空器 件中的熱發射電子器件。大面積場發射顯示裝置在大螢 幕顯示器等裝置中有著廣闊之應用前景’因此,製備大 面積場發射顯示裝置成為目前研究之熱點。 [0003] 先前技術中之場發射顯示襞置包括一絕鍊基底、複數電 子發射單元、複數行電極引線與複數列電極5丨線及螢光 粉層。其中,所述複數行電極引線與複數列電極引線分 別平行且等間隔設置於絕緣基底上。所述複數行電極引 線與複數列電極引線相互交X設置,具在行電極引線與 列電極引線交叉處由一絕緣層隔離,以防止短路。每兩 個相鄰的行電極引線與兩個相鄰的列電極弓丨線形成一網 格,且每一網格定位一電子發射單元。 [0004] 所述複數電子發射單元按照預定規律排列,間隔設置於 上述網格中,且每一網格中設置一電子發射單元。所述 電子發射單元包括一陰極發射體,所述陰極發射體為一 包含金屬化合物(如:氧化免等)的導電薄膜(請來見 ,表面傳導電子發射顯示技術進展,液晶與顯示,牟強 等’ V21,P226-231 (2006))。當在陰極發射體加上 099145342 表單編號A010] 苐4頁/共32頁 0992078166-0 201227793 適當的電壓時,電子將從陰極發射體射出。 闕,然而’在上述大面積場發射顯示裝置在工作時,由於沒 有對發射的電子的運行方向進行控制,因此部份電子在 發射過程巾會tb現偏轉’從㈣響到電㈣率同 時使得場發射顯示裝置在工作過程中會出現“串掻,,的 現象,影響場發射顯示裝置的顯示效果。 【發明内容】 [0006] 有鑒於此,提供一種電子利用率高、發光效果好的場發 Λ 射顯示裝置實為必要。 0 [0007] 一種場發射顯f裝置,其包括:一絕緣基底;一絕緣基 底;複數行電極引線,所述行電極引線相互平行且間隔 設置於絕緣基底上;複數列電極弓i線,所述列電極引線 相互平行且間隔設置於絕緣基底上,該複數列電極引線 與所述複數行電極引線相互交叉設置’每兩個相鄰的行 電極引線與兩個相鄰的列電極引線形成一網格,行電極 引線與列電極引線之間電絕緣;複數電子發射單元,每 Ο 一電子發射單元對應一網格設置,每一電子發射單元包 括間隔設置於絕緣基底上的一陰極電極、一陽極電極、 一螢光粉層及一陰極發射體,所述陽極電極和陰極電極 分別與上述行電極引線與列電極引線電連接’所述陰極 發射體與陰極電極電連接’並且所述陰極發射體與陽極 電極間隔設置,螢光粉層設置於陽極電極遠離絕緣基底 的表面;其中’所述每一電子發射單元進一步包括一第 一聚焦電極及第二聚焦電極’所述第一聚焦電極和第二 聚焦電極分別設置於陰極發射體兩侧,所述第_聚焦電 099145342 表單編號 A0101 第 5 頁/共 32 頁 0992078166-0 201227793 極和第二聚焦電極分別與列電極引線電連接,且所述第 一聚焦電極和第二聚焦電極均分別與行電極引線及陽極 電極電隔離。 [0008] 相較於先前技術,所述場發射顯示裝置應用於大面積場 發射時,通過在陰極發射體兩側設置聚焦電極,可以有 效的控制電子在發射過程中電子之運行方向,從而可有 效的減少電子發射過程中的偏轉現象,進而可以有效的 提高電子的利用率,改善場發射顯示裝置中的“串擾” 現象。 【實施方式】 [0009] 以下將結合附圖對本發明的場發射顯示裝置作進一步的 詳細說明。 [0010] 請參閱圖1、圖2,本發明第一實施例提供一種場發射顯 示裝置200,其包括一絕緣基底202,及設置於該絕緣基 底202上的複數電子發射單元220、複數行電極引線204 與複數列電極引線206。所述複數行電極引線204與列電 極引線206分別平行、間隔設置,優選的,所述複數行電 極引線204與列電極引線206分別平行、等間隔設置,且 所述複數行電極引線204與複數列電極引線206相互交叉 設置,並在行電極引線204與列電極引線206交叉處設置 有一絕緣層216,該絕緣層21 6將行電極引線204與列電 極引線206電隔離,以防止短路。每兩個相鄰的行電極引 線204與兩個相鄰的列電極引線206形成一網格214,且 每一網格214定位一電子發射單元220,所述複數電子發 射單元220對應網格214設置成一陣列。 099145342 表單編號A0101 第6頁/共32頁 0992078166-0 201227793 [0011] [0012] 本實施例中,將所述行電極引線2 0 4的延伸方向定義為χ 方向,所述列電極引線206的延伸方向定義為γ方向。 請一併參照圖3及圖4,所述複數電子發射單元22〇對應設 置於上述網格214中,且每一網格214中設置一電子發射 早元220。每一電子發射早元220包括一陽極電極21〇、 一陰極電極212、一螢光粉層209、一陰極發射體2〇8、 ❹ 一第一聚焦電極211及·一第·一聚焦電極213。該陽極電極 210與陰極電極212相對且間隔設置於絕緣基底2〇2上, 所述陽極電極210與所述行電極引線204電連接,所述陰 極電極212與所述列電極引線206電連接。該陰極發射體 208設置於所述陽極電極210與陰極電極212之間,且所 述陰極發射體208—端與所述陰極電極212電連接,另一 端指向所述陽極電極210並向陽極電極21〇延伸作為陰極 發射體208的電子發射端222,所述電手發射端222與所 述陽極電極210間隔設置。該陰極發射體2〇8可與所述絕 緣基底202間隔設置或直接設置於所述絕緣基底2〇2上。 其中,當該陰極發讓嬤2〇8與所述絕緣基底2〇2間隔設置 時,更容易發揮陰極發射體208的場發射能力。所述螢光 粉層209設置於所述陽極電極21〇遠離絕緣基底2〇2的表 面,電子發射端222發射的電子打到螢光粉層2〇9而使之 發光。 [0013] 所述第-聚焦電極211、第二聚焦電極213分別設置於陰 極發射體208兩側’本發明中所述陰極發射趙雇之兩側 係才曰沿列電極引線2〇6方向上的兩側,即對應網格214中 所述陰極發射體2G8分別與相鄰的兩個行電極引線2〇4之 099145342 表單編號Α0101 第7頁/共32頁 0992078166-0 201227793 間的部份區域。且—端分別與列電極引線2〇 电連接,g —端沿所述陰極發射體208的延伸方向延伸。所、水 焦電極211與第二聚焦電極213由於與列電極弓|線二二 連接,從而其電勢與陰極發射體208的電勢相耸 电 3寻,而雷+ 趨向於向高電勢的方向運動,因此,所述兩聚焦電極對 電子發射端222發射的電子產生屏蔽效應,可以減少電子 發射端222發出的電子發生偏轉的幾率, ^ 一子 V '屯子進入沿 列電極引線206方向上相鄰的電子發射單元22〇中以使 更多的電子打到設置於陽極電極21〇上的榮光粉層2〇9, 同時屏蔽掉其他電子發射罩元22〇中射入的電子。所述第 -聚焦電極21卜第二聚焦電極213均分別與行電極引線 204間隔設置從而與行電極引線2〇4電隔離,並且所述第 一聚焦電極211、第二聚焦電極213均分別與所述陽極電 極210電隔離。本實施例中,所述複數電子發射單元22〇 對應網格214设置成一陣列’同一行的電子發射單元2 2 〇 中的陽極電極210與同一行電極引線2〇4電連接,同一列 的電子發射單元220中的陰極電極212、第一聚焦電極 211、第二聚焦電極213分別>與同一列電極引線2〇6,電連 接。 [0014] 所述第一聚焦電極211、第二聚焦電極213為導電材料製 成的導電體’如金屬層、ITO層等’優選的,本實施例中 所述第一聚焦電極211、第二聚焦電極213的材料為導電 漿料’該導電漿料的成分包括金屬粉、低熔點玻璃粉和 枯結劑;其中’該金屬粉優選為銀粉,該枯結劑優選為 松油醇或乙基纖維素。該導電漿料中,金屬粉的重量比 099145342 表單編號A0101 第8頁/共32頁 0992078166-0 201227793 為50〜90%,低熔點破璃粉的θ重量比為8〜4〇%。所述第—聚隹直比為2,%’粘結劑的213可通過絲網印刷法印製‘、、、電極211、第:聚焦電極 所、f筮"所述絕緣基底202上。可以 理解,所达第一聚焦電極211鱼 不限,只要是導電的材料均可、。—4焦電極213的材料 [0015] 所述第 不居、罨極211及篦-取a ~聚焦電極213的形狀及尺寸 依據網格214的尺寸決定,| 再形狀可為矩形、多邊形、橢 圓形、環形、雙曲線、抛物竣 物線形等形狀,其作用為防止 ❹ 電子發射端222發射的電子進人_的電子發射單元中。 可以理解所述第聚焦電極211及第二聚焦電極Μ 3不 限於所述幾種形狀,只需_防止電子發射端222發射的 電子進入相鄰的電子發射單元即可。本實施例中,所述 第一聚焦電極211與第二聚焦電極213為一矩形平面導電 體,相對於所述絕緣基底2〇2具有一定的厚度。所述第一 聚焦電極211與第一聚焦電極213的厚度可分別為1 5微米 〜600微米,優選的’所述第一聚焦電極2T1與第二聚焦電 〇 極213的厚度大於所述陰極發射體2〇8及陽極電極210相 對於絕緣基底202的厚度,從而可以對電子發射端222射 出的電子起到遮擋屏蔽所用,進一步減小所述電子發射 端222發射的電子越過所述兩個聚焦電極遠離絕緣基底的 表面而進入相鄰電子發射單元220的幾率。所述矩形平面 導電體具有相對的兩端,其一端與所述列電極引線206電 連接,另一端沿X方向向網格214中對應的另一列電極引 線方向延伸。所述矩形平面導電體可直接與所述列電極 引線206電連接,也可通過一導電體與所述列電極引線 099145342 表單编號A0101 第9頁/共32頁 0992078166-0 201227793 206電連接。所述聚焦電極在χ方向上具有—定的長度, 仗而可以減4電子發射端222發射的電子因相鄰電子發射 單=中陽極電極的吸引發生偏轉,而進人相鄰的電子發 射單元中本發明中將所述第__聚焦電極⑴、第二聚焦 電極213在X方向上的長度分別定義為以、d2,將所述陰 極電極212與陰極發射體208在X方向上延伸的長度之和定 義為d3,即所述陰極發射體2〇8的電子發射端222距與該 陰極發射體208電連接的列電極引線206之間的距離為们 ,將所述陰極電極212、陰極發射體208、陽極電極21〇 、及陰極發射體2 0 8與降樣電極2 ! 〇之間的間隔在χ方向上 的延伸長度之和定義為d4 ^所述第一聚焦電極211的長度 dl、第二聚焦電極213的具體長度d2可根據網格214的尺 寸進行選擇,優選的,dl大於或等於d3,d2大於或等於 即所述聚焦電極在X方向上的長度大於或等於所述電 子發射端222與列電極引線2〇6之間的距離。進一步的, d2可大於d4,從而可以更有致的減少電子發射端222發射 的電子在運動的過程中’受身其他電子發射單元高電勢 的吸引而繞過兩聚焦電極靠近陽極電極21 〇的末端,進入 到其他電子發射單元中。所述第一聚焦電極211與第二聚 焦電極213的寬度即在Y方向上的延伸寬度可為5微米 -500微米。 [0016] 所述絕緣基底202為一絕緣基板,如陶瓷基板、玻璃基板 、樹脂基板、石英基板等。所述絕緣基底2 0 2的大小與厚 度不限,本領域技術人員可以根據實際需要選擇。本實 施例中,所述絕緣基底202優選為一玻璃基板,其厚度大 099145342 表單編號A0101 第10頁/共32頁 0992078166-0 201227793 [0017] Ο [0018] Ο 於1毫米’邊長大於1厘米β 所述行電極引線204與列電極引線2〇6為導電體, 廣等。本實施财,該複數行細丨物切複數n 引線206優選為採用導電_印製的平面導電體,且今 數行電極引線204的行間距為5〇微米〜2厘米,複數/複 列電極引線206的寬度為3〇微米〜1〇〇微米厚度為ι〇微、 米~50微米。本實施例中,該行電極引線2〇4與列電極= 線206的父又角度為10度夥9〇度,優選為9〇度,該行電 極弓I線204與列電極引線2〇6相互垂直。本實施例中,可 通過絲網印刷法將導電料印製於絕緣基細2上製備行 電極引線2G4與列電極引線2G6。該導電裂料的成分與f 述兩聚焦電極所用的導電漿料的成分相同、 所述陰極電極212與陽極電極21〇為導電體,如金屬層等 。本實施例中,該陰極電極212與陽極電極21〇均為矩形 的平面導電體,其尺寸依據網格214;的尺寸決定。該险極 電極212和陽極電極210直接與上堞電極引線連接,從而 實現電連接》所述陰極電極212與陽極電極21〇在γ方向上 延伸的長度為30微米~1.5厘米,在X方向上延伸的寬度為 20微米〜1厘米,厚度為1〇微米〜500微米。優選地,所述 陰極電極212與陽極電極210在Y方向上延伸的長度為1〇〇 微米〜700微米,在X方向上延伸的寬度為50微米〜500微 米,厚度為20微米~100微米。本實施例中,該陰極電極 212與陽極電極210的材料為導電漿料,通過絲網印刷法 印製於所述絕緣基底202上。該導電漿料的成分與上述兩 099145342 表單編號A0101 第11頁/共32頁 0992078166-0 201227793 聚焦電極所料導《料的成分相同。 [0019] [0020] 所述鸯光粉層2〇9設置於所述陽極電極21〇遠離絕緣基底 202的表面’具體的’所述螢光粉層2〇9可設置於陽極電 極21〇的部份表面或全部表面。當螢光粉層2〇9設置於所 述陽極電極21 〇的部份表面時,所述螢光粉層2〇9設置於 陽極電極210靠近電子發射端222的一端。所述螢光粉層 209的材料可為白色螢光粉,也可為單色螢光粉,例如紅 色’綠色’藍色螢光粉等,當電子轟擊螢光粉層2〇9時可 發出白光或其他顏色可見光。該螢光粉層2〇9可以採用沈 積法' 印刷法、光刻法或塗敷法設置在陽極電極21〇的表 面。該螢光粉層209的厚度可為5微米至50微米。 所述陰極發射體208可選自梦線、奈米碳管、碳纖維及奈 米瑗管線等中的一種或複數種。而且,陰極發射體2〇8包 括一電子發射端222,該電子發射端222為陰極發射體 208遠離陰極電極212之一鱗。本實施例中,陰極發射體 208包括複數平行排列的奈米疾管線。採用複數平行排列 的奈米碳管線作為陰極發射體划8慧’每一奈米碳管線的 一端與陰極電極212電連接,另一端指向陽極電極21〇, 作為陰極發射體208的電子發射端222。該電子發射端 222與陽極電極210之間的距離為1微米~1〇〇〇微米。該陰 極發射體208 —端與陰極電極21 2的電連接方式可為直接 電連接或通過一導電膠電連接,也可以通過分子間力或 者其他方式實現。該奈米碳管線的長度為10微米〜1厘米 ,且相鄰的奈米碳管線之間的間距為1微米〜1〇〇〇微米。 該奈米碳管線包括複數沿奈米碳管線長度方向排列的奈 099145342 表單編號AOiOl 第12頁/共32頁 0992078166-0 201227793201227793 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a field emission display device, and more particularly to a large area field emission display device. [Prior Art] [0002] The field emission display device operates at a low temperature or a room temperature, and has advantages such as low power consumption, fast response speed, and low deflation compared with the heat-emitting electronic device in the electric device. A field emission display device is used in place of the thermal emission electronics in the electrical vacuum device. Large-area field emission display devices have broad application prospects in devices such as large-screen displays. Therefore, the preparation of large-area field emission display devices has become a hot research topic. [0003] The field emission display device of the prior art includes a rigid chain substrate, a plurality of electron emitting units, a plurality of row electrode leads and a plurality of column electrodes 5 turns and a phosphor layer. Wherein, the plurality of row electrode leads and the plurality of column electrode leads are parallel and equally spaced on the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are disposed X with each other, and are separated by an insulating layer at the intersection of the row electrode lead and the column electrode lead to prevent short circuit. Each of the two adjacent row electrode leads forms a grid with two adjacent column electrode bow lines, and each grid is positioned with an electron-emitting unit. [0004] The plurality of electron-emitting units are arranged in a predetermined pattern, spaced apart in the grid, and an electron-emitting unit is disposed in each of the grids. The electron emission unit includes a cathode emitter, and the cathode emitter is a conductive film containing a metal compound (eg, oxidation, etc.) (see, progress in surface conduction electron emission display technology, liquid crystal and display, barely Etc. 'V21, P226-231 (2006)). When the cathode emitter is added 099145342 Form No. A010] 苐 4 pages / Total 32 pages 0992078166-0 201227793 At the appropriate voltage, electrons will be emitted from the cathode emitter.阙, however, 'when the above-mentioned large-area field emission display device is in operation, since there is no control on the running direction of the emitted electrons, some electrons will be deflected at the time of the emission process, from (four) to electric (four) rate. The field emission display device may have a phenomenon of "stringing," which affects the display effect of the field emission display device. [Invention] [0006] In view of this, a field with high electron utilization rate and good luminous effect is provided. A field emission display device is necessary. [0007] A field emission display device includes: an insulating substrate; an insulating substrate; a plurality of row electrode leads, the row electrode leads being parallel to each other and spaced apart from each other on the insulating substrate a plurality of column electrodes, wherein the column electrode leads are parallel to each other and spaced apart from each other on the insulating substrate, and the plurality of column electrode leads and the plurality of row electrode leads are disposed to cross each other 'every two adjacent row electrode leads and two The adjacent column electrode leads form a grid, and the row electrode lead and the column electrode lead are electrically insulated; the plurality of electron emitting units are each The sub-emissive unit is disposed corresponding to a grid, and each of the electron-emitting units includes a cathode electrode, an anode electrode, a phosphor powder layer and a cathode emitter disposed on the insulating substrate, wherein the anode electrode and the cathode electrode respectively The row electrode lead is electrically connected to the column electrode lead 'the cathode emitter is electrically connected to the cathode electrode' and the cathode emitter is spaced apart from the anode electrode, and the phosphor layer is disposed on the surface of the anode electrode away from the insulating substrate; Each of the electron emission units further includes a first focusing electrode and a second focusing electrode. The first focusing electrode and the second focusing electrode are respectively disposed on two sides of the cathode emitter, and the first focusing electric 099145342 is shown in the form number A0101. Page 5 of 32 0992078166-0 201227793 The pole and second focusing electrodes are electrically connected to the column electrode leads, respectively, and the first focusing electrode and the second focusing electrode are each electrically isolated from the row electrode lead and the anode electrode. 0008] Compared to the prior art, the field emission display device is applied to a large area field emission through a cathode The focusing electrode is disposed on both sides of the body, which can effectively control the running direction of electrons during the electron emission process, thereby effectively reducing the deflection phenomenon during the electron emission process, thereby effectively improving the utilization rate of the electron and improving the field emission display device. [CROSS REFERENCE] [0009] The field emission display device of the present invention will be further described in detail below with reference to the accompanying drawings. [0010] Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a first embodiment. The field emission display device 200 includes an insulating substrate 202, and a plurality of electron emitting units 220, a plurality of row electrode leads 204 and a plurality of column electrode leads 206 disposed on the insulating substrate 202. The plurality of row electrode leads 204 and column electrodes The lead wires 206 are respectively disposed in parallel and at intervals. Preferably, the plurality of row electrode leads 204 and the column electrode leads 206 are respectively disposed in parallel and at equal intervals, and the plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed to cross each other, and An insulating layer 216 is disposed at the intersection of the row electrode lead 204 and the column electrode lead 206, and the insulating layer 21 6 will be electrically The pole lead 204 is electrically isolated from the column electrode lead 206 to prevent shorting. Each two adjacent row electrode leads 204 and two adjacent column electrode leads 206 form a grid 214, and each grid 214 is positioned with an electron emission unit 220, and the complex electron emission unit 220 corresponds to the grid 214. Set up as an array. 099145342 Form No. A0101 Page 6 / Total 32 Page 0992078166-0 201227793 [0012] In this embodiment, the extending direction of the row electrode lead 220 is defined as the χ direction, and the column electrode lead 206 The direction of extension is defined as the gamma direction. Referring to FIG. 3 and FIG. 4 together, the plurality of electron-emitting units 22 are correspondingly disposed in the grid 214, and an electron-emitting early element 220 is disposed in each of the grids 214. Each electron emission early element 220 includes an anode electrode 21A, a cathode electrode 212, a phosphor layer 209, a cathode emitter 2〇8, a first focusing electrode 211, and a first focusing electrode 213. . The anode electrode 210 is opposed to the cathode electrode 212 and spaced apart from the insulating substrate 2〇2, and the anode electrode 210 is electrically connected to the row electrode lead 204, and the cathode electrode 212 is electrically connected to the column electrode lead 206. The cathode emitter 208 is disposed between the anode electrode 210 and the cathode electrode 212, and the cathode emitter 208-terminal is electrically connected to the cathode electrode 212, and the other end is directed to the anode electrode 210 and toward the anode electrode 21. The crucible extends as an electron emission end 222 of the cathode emitter 208, and the electric hand emitter end 222 is spaced apart from the anode electrode 210. The cathode emitter 2〇8 may be spaced apart from the insulating substrate 202 or disposed directly on the insulating substrate 2〇2. Wherein, when the cathode 嬷2〇8 is spaced apart from the insulating substrate 2〇2, the field emission capability of the cathode emitter 208 is more easily exerted. The phosphor layer 209 is disposed on a surface of the anode electrode 21 away from the insulating substrate 2〇2, and electrons emitted from the electron-emitting end 222 strike the phosphor layer 2〇9 to emit light. [0013] The first focusing electrode 211 and the second focusing electrode 213 are respectively disposed on both sides of the cathode emitter 208. In the present invention, the cathode emitting side of the cathode is in the direction of the column electrode lead 2〇6. On both sides, that is, the cathode emitter 2G8 in the corresponding grid 214 and the adjacent two row electrode leads 2〇4, 099145342, part number Α0101, page 7 / total 32 pages 0992078166-0 201227793 . And the ends are electrically connected to the column electrode leads 2, respectively, and the g-ends extend in the extending direction of the cathode emitter 208. The water focus electrode 211 and the second focus electrode 213 are connected to the column electrode bow line, so that their potentials are related to the potential of the cathode emitter 208, and the Thunder + tends to move toward the high potential. Therefore, the two focusing electrodes have a shielding effect on the electrons emitted from the electron emitting end 222, which can reduce the probability of the electrons emitted from the electron emitting end 222 being deflected. ^ One sub-V' dice enters adjacent to the column electrode lead 206. The electron-emitting unit 22 is configured to cause more electrons to strike the glory layer 2〇9 disposed on the anode electrode 21〇 while shielding the electrons incident in the other electron-emitting cover elements 22〇. The first focusing electrode 21 and the second focusing electrode 213 are respectively spaced apart from the row electrode lead 204 to be electrically isolated from the row electrode lead 2〇4, and the first focusing electrode 211 and the second focusing electrode 213 are respectively respectively The anode electrode 210 is electrically isolated. In this embodiment, the plurality of electron-emitting units 22 〇 corresponding to the grid 214 are arranged in an array of 'the same row of electron-emitting units 2 2 阳极 in the anode electrode 210 and the same row of electrode leads 2 〇 4 electrically connected, the same column of electrons The cathode electrode 212, the first focus electrode 211, and the second focus electrode 213 in the emission unit 220 are electrically connected to the same column electrode lead 2〇6, respectively. [0014] The first focusing electrode 211 and the second focusing electrode 213 are electrically conductive materials such as a metal layer, an ITO layer, etc., which are preferably made of a conductive material, and the first focusing electrode 211 and the second in the embodiment. The material of the focusing electrode 213 is a conductive paste. The composition of the conductive paste includes a metal powder, a low melting point glass frit and a dry agent; wherein 'the metal powder is preferably silver powder, and the dry agent is preferably terpineol or ethyl Cellulose. In the conductive paste, the weight ratio of the metal powder is 099145342 Form No. A0101 Page 8/32 pages 0992078166-0 201227793 50 to 90%, and the θ weight ratio of the low-melting glass powder is 8 to 4%. The 213 having a first-to-polythorax ratio of 2,%' binder can be printed on the insulating substrate 202 by screen printing by ',,, electrode 211, focusing electrode, f筮". It can be understood that the first focusing electrode 211 is not limited as long as it is a conductive material. - 4 focus electrode 213 material [0015] The shape and size of the first and second focusing electrodes 213 are determined according to the size of the grid 214, | the shape can be rectangular, polygonal, elliptical A shape such as a shape, a ring shape, a hyperbola, a parabolic shape, or the like, which functions to prevent electrons emitted from the electron-emitting end 222 from entering the electron-emitting unit. It is to be understood that the first focusing electrode 211 and the second focusing electrode Μ 3 are not limited to the above-described shapes, and it is only necessary to prevent electrons emitted from the electron-emitting end 222 from entering the adjacent electron-emitting units. In this embodiment, the first focusing electrode 211 and the second focusing electrode 213 are a rectangular planar conductor having a certain thickness with respect to the insulating substrate 2〇2. The thickness of the first focusing electrode 211 and the first focusing electrode 213 may be 15 μm to 600 μm, respectively. Preferably, the thickness of the first focusing electrode 2T1 and the second focusing electrode 213 is greater than the cathode emission. The thickness of the body 2〇8 and the anode electrode 210 relative to the insulating substrate 202 can be used to shield the electrons emitted from the electron-emitting end 222, and further reduce the electrons emitted by the electron-emitting end 222 across the two focusings. The probability of the electrodes entering the adjacent electron-emitting unit 220 away from the surface of the insulating substrate. The rectangular planar conductor has opposite ends, one end of which is electrically connected to the column electrode lead 206, and the other end of which extends in the X direction toward the corresponding other column of the grid 214. The rectangular planar conductor may be electrically connected directly to the column electrode lead 206, or may be electrically connected to the column electrode lead 099145342 Form No. A0101, page 9 of 32, 0992078166-0 201227793 206 by a conductor. The focusing electrode has a certain length in the χ direction, and the electrons emitted by the electron emitting end 222 can be deflected by the attraction of the adjacent electron emitting single=middle anode electrode, and the adjacent electron emitting unit is inserted. In the present invention, the lengths of the __focus electrode (1) and the second focus electrode 213 in the X direction are respectively defined as lengths in which the cathode electrode 212 and the cathode emitter 208 are extended in the X direction by d2. The sum is defined as d3, that is, the distance between the electron-emitting end 222 of the cathode emitter 2〇8 and the column electrode lead 206 electrically connected to the cathode emitter 208 is that the cathode electrode 212 and the cathode are emitted. The sum of the extension length of the body 208, the anode electrode 21A, and the cathode emitter 2 0 8 and the falling electrode 2 〇 in the χ direction is defined as d4 ^ the length dl of the first focusing electrode 211, The specific length d2 of the second focusing electrode 213 may be selected according to the size of the grid 214. Preferably, dl is greater than or equal to d3, and d2 is greater than or equal to, that is, the length of the focusing electrode in the X direction is greater than or equal to the electron emission. End 222 and column The distance between the lead 2〇6. Further, d2 may be larger than d4, so that the electrons emitted from the electron-emitting end 222 may be more effectively reduced in the process of moving by the high potential of the other electron-emitting units and bypassing the ends of the two focusing electrodes close to the anode electrode 21, Enter into other electron-emitting units. The width of the first focusing electrode 211 and the second focusing electrode 213, that is, the width in the Y direction may be 5 micrometers to 500 micrometers. [0016] The insulating substrate 202 is an insulating substrate such as a ceramic substrate, a glass substrate, a resin substrate, a quartz substrate or the like. The size and thickness of the insulating substrate 202 are not limited, and those skilled in the art can select according to actual needs. In this embodiment, the insulating substrate 202 is preferably a glass substrate having a thickness of 099145342. Form No. A0101 Page 10 / Total 32 Page 0992078166-0 201227793 [0018] Ο [1 mm] The side length is greater than 1 The centimeter β row electrode lead 204 and the column electrode lead 2〇6 are electrically conductive bodies, and the like. In the implementation, the plurality of rows of fine-cut tangent n-lead 206 are preferably conductive conductive printed conductive conductors, and the row spacing of the electrode rows 204 of the current row is 5 〇 micrometers to 2 centimeters, and the complex/rear array electrodes The width of the lead 206 is 3 〇 micrometers to 1 〇〇 micrometers and the thickness is ι〇 micro, and the meter is 50 micrometers. In this embodiment, the row electrode lead 2〇4 and the column electrode=line 206 have a parent angle of 10 degrees, 9 degrees, preferably 9 degrees, and the row electrode bow line I and the column electrode lead 2〇6 Vertical to each other. In this embodiment, the row electrode lead 2G4 and the column electrode lead 2G6 can be prepared by printing a conductive material on the insulating base 2 by a screen printing method. The composition of the conductive crack is the same as that of the conductive paste used for the two focusing electrodes, and the cathode electrode 212 and the anode electrode 21 are electrically conductive, such as a metal layer or the like. In this embodiment, the cathode electrode 212 and the anode electrode 21 are both rectangular planar conductors, and the size thereof is determined according to the size of the grid 214; The dangerous electrode 212 and the anode electrode 210 are directly connected to the upper electrode lead to realize electrical connection. The length of the cathode electrode 212 and the anode electrode 21 γ extending in the γ direction is 30 μm to 1.5 cm in the X direction. The width of the extension is 20 micrometers to 1 centimeter and the thickness is 1 micrometer to 500 micrometers. Preferably, the cathode electrode 212 and the anode electrode 210 extend in the Y direction by a length of 1 μm to 700 μm, a width extending in the X direction of 50 μm to 500 μm, and a thickness of 20 μm to 100 μm. In this embodiment, the material of the cathode electrode 212 and the anode electrode 210 is a conductive paste, which is printed on the insulating substrate 202 by screen printing. The composition of the conductive paste is the same as that of the above-mentioned two 099145342 Form No. A0101, page 11 of 32, 0992078166-0 201227793. [0020] The phosphor layer 2〇9 is disposed on the surface of the anode electrode 21 away from the insulating substrate 202. The phosphor powder layer 2〇9 may be disposed on the anode electrode 21〇. Partial or all surfaces. When the phosphor layer 2〇9 is disposed on a portion of the surface of the anode electrode 21, the phosphor layer 2〇9 is disposed at one end of the anode electrode 210 near the electron-emitting end 222. The material of the phosphor powder layer 209 may be white fluorescent powder or monochromatic fluorescent powder, for example, red 'green' blue fluorescent powder, etc., when the electron bombardment phosphor layer 2〇9 can be issued White light or other colors of visible light. The phosphor layer 2〇9 can be provided on the surface of the anode electrode 21A by a deposition method, a photolithography method or a coating method. The phosphor layer 209 may have a thickness of from 5 micrometers to 50 micrometers. The cathode emitter 208 may be selected from one or more of a dream line, a carbon nanotube, a carbon fiber, and a nanotube line. Moreover, the cathode emitter 2〇8 includes an electron-emitting end 222 which is a scale of the cathode emitter 208 away from the cathode electrode 212. In this embodiment, the cathode emitter 208 includes a plurality of parallel arranged nanoribid lines. A plurality of parallel arranged nanocarbon lines are used as the cathode emitters. One end of each nanocarbon line is electrically connected to the cathode electrode 212, and the other end is directed to the anode electrode 21A. The electron emission end 222 of the cathode emitter 208 is used. . The distance between the electron-emitting end 222 and the anode electrode 210 is from 1 μm to 1 μm. The electrical connection between the cathode emitter 208 end and the cathode electrode 21 2 may be a direct electrical connection or an electrical connection through a conductive adhesive, or may be achieved by intermolecular forces or other means. The length of the nanocarbon line is 10 micrometers to 1 centimeter, and the spacing between adjacent nanocarbon pipelines is 1 micrometer to 1 micrometer. The nano carbon pipeline includes a plurality of nanometers arranged along the length of the nanocarbon pipeline. 099145342 Form No. AOiOl Page 12 of 32 0992078166-0 201227793

米碳管。該奈米碳管線可為複數奈米碳管組成的純結構 ,所述“純結構”是指該奈米碳管線中奈米碳管未經過 任何化學修飾或功能化處理。另外,所述奈米碳管線也 可經過PVC等方法進行處理。優選地,所述奈米碳管線為 自支撐結構。所謂“自支撐結構”即該奈米碳管線無需 通過一支撐體支撐,也能保持自身特定的形狀。所述奈 米碳管線中的奈米碳管通過凡得瓦力相連,奈米碳管的 軸向均基本沿奈米碳管線的長度方向延伸,其中,每一 奈米碳管與在該延伸方向上相鄰的奈米碳管通過凡得瓦 力首尾相連。所述奈米碳管線中的奈米碳管包括單壁、 雙壁及多壁奈米碳管中的一種或複數種。所述奈米碳管 的長度範圍為10微米〜100微米,且奈米碳管的直徑小於 15奈米。 [0021] 本實施例中的陰極發射體208的製備方法具體包括以下步 驟: [0022] 步驟一,提供至少一奈米碳管膜。 [0023] 所述奈米碳管膜從一奈米碳管陣列拉取獲得。該奈米碳 管膜中包括複數首尾相連且定向排列的奈米碳管。所述 奈米碳管膜的結構及其製備方法請參見範守善等人於 2007年2月12日申請的,於2010年7月11公告的第 1327177號中華民國專利“奈米碳管薄膜結構及其製備 方法”,申請人:清華大學,鴻富錦精密工業(深圳) 有限公司)。 [0024] 步驟二,將該奈米碳管膜鋪設覆蓋於陽極電極210,陰極 099145342 表單編號A0101 第13頁/共32頁 0992078166-0 201227793 電極2 1 2上。 [0025] 可以理解,當將至少兩個奈米碳管薄膜重4鋪設於陽極 電極210及陰極電極212上時,相鄰兩個奈米碟管膜中的 奈米礙管的軸向延伸方向基本相同。將奈“管膜鋪設 覆蓋於上述陽極電極21〇,陰極電極212時,要確保哕央 米碳管膜中的奈米碳管的延伸方向均基本為從陰極電極 犯向陽極電極21G延伸。本實施射,由於在後續步驟 =將奈Μ管膜加卫成複數平行且等間隔排列的奈米 奴官線,因此’奈米碳管膜的層數不易太多優選為卜5 層。進-步的’可用有機溶劑對所述奈米碳管膜進行處 理’該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙 _、二氣乙燒或氣仿,本實關帽縣用乙醇。該有 機溶劑揮發後,在揮發性有機溶劑的表面張力的作用下 所述奈米碳管膜會部份聚集形成奈米碳管線狀結構。 [0026] 步驟三,切割奈米碳管膜,來#極零極210與陰極電極 212之間的奈米碳管膜斷開^形成複數平行排列的奈米碳 官線固定於陰極電極212上作為陰極發射體。 [0027] 所述切割奈米碳管薄膜結構的方法為鐳射燒蝕法、電子 束掃描法或加熱熔斷法。本實施例中,優選採用鐳射燒 蝕法切割奈米碳管膜,具體包括以下步驟: [0028] 首先’採用—定寬度之鐳射光束沿著每一行電極引線204 進行掃描’去除不同行的電極之間的奈米碳管膜,使得 留下的奈米碳管膜僅設置於同一行的陰極電極212與陽極 電極210之上。 099145342 表單編號Α0101 第14頁/共32頁 0992078166-0 201227793 [0029] Ο [0030] [0031] Ο [0032] 八人,採用一定寬度之鐳射光束沿著每一列電極引線206 進行掃描’去除列電極引線206與相鄰陽極電極21〇之間 的不米碳管膜,並使得同一網格214中的陰極電極212與 陽極電極210之間的奈米碳管膜與陽極電極21〇斷開。該 步驟中,在錄射光束掃描時,由於當該奈米碳管膜被錯 射…、射後溫度升高,從而在垂直於奈米碳管延伸方向上 產生收縮減小,形成奈米碳管線。並且在鐳射光束照射 的過程中’空氣中的氧氣會氧化鐳射照射到的奈米碳管 ’使得奈米碳管蒸發,從而使奈米碳管膜產生斷裂,在 奈米碳管膜的斷裂處會形成一電子發射端222,且電子發 射端222與陽極電極21〇之間形成一間隔。 本實施例中’所用的鐳射光東的功率為1〇〜50瓦,掃描速 度為0. 1〜10000毫米/秒。所述鐳射光束的寬度為1微米 〜4 00微米。 另外,該場發射顯示裴置200的每一電子發射單元220可 以進一步包括一固定件(圖未示)設置於陰極電極212上 ,且該固定件將陰極發射體固定於陰極電極212上,其可 由導電材質構成。 請參照圖5、圖6及圖7所示’本發明第二實施例提供一種 場發射顯示裝置300,所述場發射顯示裝置3〇〇包括一絕 緣基底302,及設置於該絕緣基底302上的複數電子發射 單元320、複數行電極引線304與複數列電極引線306。 所述複數行電極引線304與列電極引線306分別平行、等 間隔設置,且所述複數行電極引線3〇4與複數列電極引線 3〇6相互交叉設置,並在行電極引線與列電極引線 099145342 表單編號Α0101 第15真/共32頁 0992078166-0 201227793 父又處設置有一絕緣層31 6。每兩個相鄰的疒 線304與兩個相鄰的列電極引線3Q6形成—網格3丨電極引 、同格314定位一電子發射單元320。每—兩 元32〇6上 电子發射單 L括一陽極電極31Q,一陰極電極gig,〜 射*Λ n 陰極發 ,一螢光粉層309,一第一聚焦電極3ll及—第 一永焦電極313 ,所述陰極發射體308靠近陽極雷nQin w , 兒極d 1 0 的I端具有一電子發射端322。 [0033] [0034] 所述場發射顯示裝置300與第一實施例中所述場發射顯示 裝置2〇〇結構基本相同’並且各對應元件的材料、位置關 係及製偉方法也基本栢同,其不同在於所述第二聚焦電 極313為一 “L”形結構,所述第二聚焦電橾313 —方面可 屏蔽向Y方向上偏轉的電子進入相鄰的電子發射單元,另 一方面可以屏蔽沿X方向運動的電子,防止電子越過所述 陽極電極310及螢光粉層309的表面進入相鄰的電子發射 單元’以使更多的電子到達螢光粉層309。 具體的’所述每一電子發射單元32〇脅,所述第~聚焦電 極311與第一實施例中第一聚蹙電择21ι的形狀、位置、 尺寸相同,其所起的作用也基本相同。所述第二聚焦電 極313為一 “L”形的結構,所述“L”詰構的第二聚焦電 極313由平行於X方向的第一子電極313 a及平行Y方向的 第二子電極313b組成,所述第一子電極3l3a—端與所述 列電極引線306電連接,另一端與所述第二子電極3131)的 一端電連接。所述第一子電極31 3a在X方向延伸的長度大 於d4,可屏蔽向γ方向上偏轉的電子進入相鄰的電子發射 單元。所述第二子電極313b設置於陽極電極310及與陽極 099145342 表單編號A0101 第16頁/共32頁 0992078166-0 201227793 電極3 10相鄰的列電極引線之間的區域’並與所述陽極電 極310間隔設置,使所述陽極電極310位於所述第二子電 極313b與陰極電極312之間。所述第二子電極313b的— Ο Ο [0035] 端與第一子電極313a相交於第一子電極31 3a遠離所述列 電極引線306的一端並形成一體結構,從而與列電極引線 306具有相同的電勢,起到屏蔽電子的作用;所述第二子 電極313b的另一端向本電子發射單元320中與陽極電極 310電連接的行電極引線304的方向延伸,所述第二子電 極313b的尺寸可根據所述網吟314的尺寸選擇,優選的, 所述第二子電極313b在Y方向上的長度夫於所述電子發射 端322在Y方向上總的延伸長度’從而更有效的防止電子 發射端322發射的電子繞過所述陽極電極31〇而進入相鄰 場發射單元。進一步的,所述第二聚焦電極313的第二子 電極313b相對於絕緣基底3〇2的厚度大;^奸述螢光粉層 309相對於絕緣基底的厚度,進而可減少陰極發射體 發射的電子中越過陽極電極310而進入相鄰的場發射單元 的電子,使更多蟓電子到達螢光粉層3〇9,進而進一步減 少場發射顯示裝置中“串擾,,現象的發生。 所述場發射顯示裝置X作時,電子發射端發射出電子, 所述電子在陽極電極與陰極電極之間的電場作用下向陽 極電極方向移動,進而受陽極電極的吸引而打到設置於 陽極電極表面㈣光粉層,使之發光。電子在移動的過 程中’會受到聚焦電極的聚焦作用而集中於向所述陽極 電極方向移動’因此可以提高所述電子的利用率。 [0036] 099145342 明參閱圖8a及’ ’圖83為未設置聚焦電極的場發射顯 表單編號A0101 第π頁/共32頁 0992078166-0 201227793 丁裝置的顯7^效果照片;SUb為本發明第二實施例接 的場發射翱-# 致供 ·‘"不裝置的顯示效果照片。與未設置聚隹 的場發射Ig-上 “、、电極 不相比’串擾現象得到了有效的抑制,本發 月第只%例提供的場發射顯示裝置的顯示效果表明, 通過在陰料射體兩侧設置聚焦電極,可使陰極發射體 “ 的電子受到聚焦電極的會聚作用,從而使得所述 電子攸本電子發射單元跑到相鄰電子發射單元的幾率降 低,進而可以有效的抑制電子發射過程中的串列現象, 從而可以抑制場發射顯示裝置中的串擾現象。 [0037] [0038] [0039] [0040] 本發明提供的場發射顯示裝置,通過在電子發射單元中 a置聚焦電極,陰極發射體發射的電子收到聚焦電極的 會聚作用,可以有效的減少電子的偏轉,進而降低了電 子發射中的串列現象’從而提高了電子的利用率,進一 步提高了陽極的發光強度和亮度。 综上所述,本發明確已符合發明專利各要.,遂依法提 .. ... ::.·. .: .. 出專利申請。惟,以上所述者僅為本锋明之較佳實施例 ’自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例提供的場發射顯示裝置的俯視示 意圖。 圖2為圖1所示的場發射顯示裝置沿線n - π的剖面示意圖 099145342 表單編號A0101 第18頁/共32頁 0992078166-0 201227793 [0041] 圖3為本發明第-實施例提供的場發射顯示襄置中 射單元的俯視示意圖。 電子發 [0042] 圖4為圖3所示的電子發射單元沿線贝—汉的剖面示意圖。 [0043] 圖5為本發明第二實施例提供的場發射顯示裝置的俯視示 意圖。 [0044] 圖6為本發明第二實施例提供的場發射顯示裝置中電子發 射單元的俯視示意圖。Carbon tube. The nanocarbon line may be a pure structure composed of a plurality of carbon nanotubes, and the "pure structure" means that the carbon nanotubes in the nanocarbon line are not subjected to any chemical modification or functional treatment. Alternatively, the nanocarbon line may be treated by a method such as PVC. Preferably, the nanocarbon line is a self supporting structure. The so-called "self-supporting structure" means that the nanocarbon pipeline can maintain its own specific shape without being supported by a support. The carbon nanotubes in the nano carbon pipeline are connected by van der Waals, and the axial directions of the carbon nanotubes extend substantially along the length of the nanocarbon pipeline, wherein each carbon nanotube is in the extension The adjacent carbon nanotubes in the direction are connected end to end by van der Waals force. The carbon nanotubes in the nanocarbon pipeline include one or a plurality of single-walled, double-walled, and multi-walled carbon nanotubes. The carbon nanotubes have a length ranging from 10 micrometers to 100 micrometers, and the carbon nanotubes have a diameter of less than 15 nanometers. [0021] The method for preparing the cathode emitter 208 in this embodiment specifically includes the following steps: [0022] Step 1, providing at least one carbon nanotube film. [0023] The carbon nanotube film is obtained by pulling from a carbon nanotube array. The carbon nanotube membrane comprises a plurality of carbon nanotubes connected end to end and oriented. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the patent No. 1327177 of the Republic of China patent "Nano Carbon Tube Film" filed on February 12, 2010 by Fan Shoushan et al. Structure and preparation method", applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.). [0024] Step 2, laying the carbon nanotube film over the anode electrode 210, cathode 099145342 Form No. A0101 Page 13 / Total 32 0992078166-0 201227793 Electrode 2 1 2 . [0025] It can be understood that when at least two carbon nanotube films are placed on the anode electrode 210 and the cathode electrode 212, the axial extension direction of the nano tube in the adjacent two nano tube films is obstructed. basically the same. When the tube film is laid over the anode electrode 21A and the cathode electrode 212, it is ensured that the direction in which the carbon nanotubes in the carbon nanotube film extend is substantially extended from the cathode electrode to the anode electrode 21G. The shot is carried out, because in the subsequent step = the natrix film is reinforced into a plurality of parallel and equally spaced nanobone lines, so the number of layers of the carbon nanotube film is not too much, preferably 5 layers. The step of 'treating the carbon nanotube film with an organic solvent' is a volatile organic solvent such as ethanol, methanol, C-, E 2 or Ethylene, and the actual cap is made of ethanol. After the organic solvent is volatilized, the carbon nanotube film partially aggregates to form a nanocarbon line-like structure under the surface tension of the volatile organic solvent. [0026] Step 3, cutting the carbon nanotube film, The carbon nanotube film between the pole zero 210 and the cathode electrode 212 is broken. A plurality of parallel carbon nanowires are formed on the cathode electrode 212 as cathode emitters. [0027] The cut carbon carbon The method of tube film structure is laser ablation method, electricity The beam scanning method or the heating fusing method. In this embodiment, the laser ablation method is preferably used to cut the carbon nanotube film, and specifically includes the following steps: [0028] First, a laser beam having a constant width is used along each row of electrode leads 204. Scanning 'removing the carbon nanotube film between the electrodes of different rows, so that the remaining carbon nanotube film is disposed only on the cathode electrode 212 and the anode electrode 210 of the same row. 099145342 Form No. 1010101 Page 14/ A total of 32 pages 0992078166-0 201227793 [0029] [0032] Eight people, using a laser beam of a certain width to scan along each column of electrode leads 206 'removing column electrode leads 206 and adjacent anode electrodes a carbon nanotube film between 21 turns, and the carbon nanotube film between the cathode electrode 212 and the anode electrode 210 in the same grid 214 is disconnected from the anode electrode 21A. In this step, the beam is recorded. During scanning, when the carbon nanotube film is mis-reflected, and the temperature rises after the injection, the shrinkage is reduced in the direction perpendicular to the direction in which the carbon nanotube extends, forming a nanocarbon line and irradiated by the laser beam. process The 'oxygen in the air oxidizes the carbon nanotubes irradiated by the laser', causing the carbon nanotubes to evaporate, thereby causing the carbon nanotube film to break, and an electron emission end 222 is formed at the break of the carbon nanotube film. 1〜10000毫米/秒。 The power is used to form a space between the electron-emitting end 222 and the anode electrode 21 。. The power of the laser light used in the present embodiment is 1 〇 50 50 watts, the scanning speed is 0. 1~10000 mm / sec. The width of the laser beam is from 1 micrometer to 400 micrometers. In addition, each of the electron emission units 220 of the field emission display device 200 may further include a fixing member (not shown) disposed on the cathode electrode 212, and the fixing member The cathode emitter is fixed to the cathode electrode 212, which may be composed of a conductive material. Referring to FIG. 5, FIG. 6 and FIG. 7 , a second embodiment of the present invention provides a field emission display device 300. The field emission display device 3 includes an insulating substrate 302 and is disposed on the insulating substrate 302. The plurality of electron emission units 320, the plurality of row electrode leads 304, and the plurality of column electrode leads 306. The plurality of row electrode leads 304 and the column electrode leads 306 are respectively disposed in parallel and at equal intervals, and the plurality of row electrode leads 3〇4 and the plurality of column electrode leads 3〇6 are disposed to cross each other, and the row electrode lead and the column electrode lead are disposed at the same time. 099145342 Form number Α 0101 15th true / total 32 pages 0992078166-0 201227793 The father is again provided with an insulating layer 31 6 . Each two adjacent turns 304 are formed with two adjacent column electrode leads 3Q6 - a grid 3 electrode, and a cell 314 is positioned to position an electron emitting unit 320. Each of the two-element 32〇6 electron-emitting single L includes an anode electrode 31Q, a cathode electrode gig, a cathode, a cathode, a phosphor layer 309, a first focusing electrode 311, and a first permanent focus. Electrode 313, the cathode emitter 308 is close to the anode lightning nQin w , and the I end of the pole d 1 0 has an electron emitting end 322. [0034] The field emission display device 300 is substantially the same as the structure of the field emission display device 2 in the first embodiment, and the materials, positional relationships, and method of making the corresponding components are also basically the same. The difference is that the second focusing electrode 313 is an "L"-shaped structure, and the second focusing electrode 313 can shield electrons deflected in the Y direction from entering the adjacent electron emitting unit, and can be shielded on the other hand. The electrons moving in the X direction prevent electrons from entering the adjacent electron-emitting unit 'over the surface of the anode electrode 310 and the phosphor powder layer 309 to allow more electrons to reach the phosphor layer 309. Specifically, each of the electron-emitting units 32 is configured to have the same shape, position, and size as the first focusing electrode 21 of the first embodiment, and the functions thereof are basically the same. . The second focusing electrode 313 has an "L"-shaped structure, and the second focusing electrode 313 of the "L" structure has a first sub-electrode 313a parallel to the X direction and a second sub-electrode in the parallel Y direction. The first sub-electrode 313a is electrically connected to the column electrode lead 306, and the other end is electrically connected to one end of the second sub-electrode 3131). The length of the first sub-electrode 31 3a extending in the X direction is larger than d4, and electrons deflected in the γ direction can be shielded from entering the adjacent electron-emitting unit. The second sub-electrode 313b is disposed on the anode electrode 310 and a region between the column electrode lead adjacent to the anode 099145342 Form No. A0101, page 16/32 page 0992078166-0 201227793 electrode 3 10 and with the anode electrode The 310 is spaced apart such that the anode electrode 310 is located between the second sub-electrode 313b and the cathode electrode 312. The end of the second sub-electrode 313b is intersected with the first sub-electrode 313a at an end of the first sub-electrode 31 3a away from the column electrode lead 306 and forms an integral structure, thereby having a column electrode lead 306 The same potential acts to shield electrons; the other end of the second sub-electrode 313b extends in the direction of the row electrode lead 304 electrically connected to the anode electrode 310 in the electron emission unit 320, and the second sub-electrode 313b The size of the mesh 314 may be selected according to the size of the mesh 314. Preferably, the length of the second sub-electrode 313b in the Y direction is greater than the total extended length of the electron emitting end 322 in the Y direction. Electrons emitted from the electron-emitting end 322 are prevented from bypassing the anode electrode 31 to enter the adjacent field emission unit. Further, the thickness of the second sub-electrode 313b of the second focusing electrode 313 is larger than the thickness of the insulating substrate 3〇2; the thickness of the phosphor layer 309 relative to the insulating substrate is further reduced, thereby reducing the emission of the cathode emitter The electrons in the electrons that pass through the anode electrode 310 and enter the adjacent field emission unit cause more germanium electrons to reach the phosphor layer 3〇9, thereby further reducing the occurrence of “crosstalk,” in the field emission display device. When the display device X is emitted, the electron emitting end emits electrons, and the electrons move toward the anode electrode under the electric field between the anode electrode and the cathode electrode, and are attracted to the surface of the anode electrode by the attraction of the anode electrode (4). The light powder layer is made to emit light. The electrons are 'focusing on the focusing electrode and moving in the direction of the anode electrode during the movement process', so that the utilization of the electrons can be improved. [0036] 099145342 8a and ' ' Fig. 83 shows the field emission display form No. A0101 without the focus electrode. Page π / Total 32 pages 0992078166-0 201227793 SUb is the display effect photo of the field emission 翱-# 致 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The phenomenon has been effectively suppressed. The display effect of the field emission display device provided by the first example of this month shows that the electrons of the cathode emitter can be concentrated by the focusing electrode by providing a focusing electrode on both sides of the negative emitter. The effect is such that the probability of the electronic sputum electron emission unit running to the adjacent electron emission unit is reduced, thereby effectively suppressing the tandem phenomenon in the electron emission process, thereby suppressing the crosstalk phenomenon in the field emission display device. [0040] The field emission display device provided by the present invention can effectively reduce electrons by collecting a focusing electrode in an electron emission unit, and electrons emitted from the cathode emitter receive convergence of the focusing electrode. The deflection, which in turn reduces the tandem phenomenon in electron emission, increases the utilization of electrons and further increases the luminous intensity and brightness of the anode. As described above, the present invention has indeed met the requirements of the invention patents, and the patent application is filed in accordance with the law. However, the above is only the preferred implementation of Ben Fengming. The invention is not intended to limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the scope of the following claims. 1 is a top plan view of a field emission display device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the field emission display device shown in FIG. 1 along line n - π. 099145342 Form No. A0101 Page 18 / Total 32 Page 0992078166 3 is a top plan view of a firing unit in a field emission display device according to a first embodiment of the present invention. [0042] FIG. 4 is a schematic cross-sectional view of the electron-emitting unit shown in FIG. 3 along the line. 5 is a top plan view of a field emission display device according to a second embodiment of the present invention. 6 is a top plan view of an electron emission unit in a field emission display device according to a second embodiment of the present invention.

[0045] 圖7為本發明第二實施例提供的場發射顯示裝置的掃描電 鏡照片。 [0046] 圖8a為未設置聚焦電極的場#射顧示裝置單個單元的顯 示效果照片。 [0047] 圖8b為本發明第二實施例提供的場發射顯示裝置中單個 單元的顯示效果照片。 【主要元件符號說明】 [0048] 場發射顯示裝置: 200, 300 ....1 . i. [0049] 絕緣基底:202, 302 [0050] 行電極引線‘· 204, 304 [0051] 列電極引線:206, 306 [0052] 陰極發射體’· 208 308 [0053] 螢光粉層:209, 309 [0054] 陽極電極:210, 310 表單編號A0101 第19頁/共32頁 0992078166-0 099145342 201227793 [0055] 第一聚焦電極:211, 3 11 099145342 表單編號 A0101 第 20 頁/共 32 頁 0992078166-0 [0056] 陰極電極:212,312 [0057] 第 二聚焦電極 :213, 313 [0058] 網 格:214, 314 [0059] 絕緣層:216, 316 [0060] 電 子發射單元 :220, 320 [0061] 電 子發射端: 222, 322 [0062] 第 一子電極: 313a [0063] 第 二子電極· 313b7 is a scanning electron microscope photograph of a field emission display device according to a second embodiment of the present invention. [0046] Fig. 8a is a photograph showing the effect of a single unit of the field-shooting device without a focus electrode. 8b is a photograph showing a display effect of a single unit in a field emission display device according to a second embodiment of the present invention. [Explanation of main component symbols] [0048] Field emission display device: 200, 300 ....1 . i. [0049] Insulating substrate: 202, 302 [0050] Row electrode lead '· 204, 304 [0051] Column electrode Lead: 206, 306 [0052] Cathode emitter '· 208 308 [0053] Phosphor layer: 209, 309 [0054] Anode electrode: 210, 310 Form No. A0101 Page 19 of 32 0992078166-0 099145342 201227793 First Focusing Electrode: 211, 3 11 099145342 Form No. A0101 Page 20 of 32 0992078166-0 [0056] Cathode Electrode: 212, 312 [0057] Second Focusing Electrode: 213, 313 [0058] Grid: 214, 314 [0059] Insulation: 216, 316 [0060] Electron emission unit: 220, 320 [0061] Electron emission terminal: 222, 322 [0062] First sub-electrode: 313a [0063] Second sub-electrode · 313b

Claims (1)

201227793 七、申請專利範圍: 1 . 一種場發射顯示裝置,其包括: 一絕緣基底; 複數行電極引線,所述行電極引線相互平行且間隔設置於 絕緣基底上; 複數列電極引線,所述列電極引線相互平行且間隔設置於 絕緣基底上,該複數列電極引線與所述複數行電極引線相 互交叉設置,每兩個相鄰的行電極引線與兩個相鄰的列電 極引線形成一網格,行電極引線與列電極引線之間電絕緣 Ο . > 複數電子發射單元,每一電子發射單元對應一網格設置, 每一電子發射單元包括間隔設置於絕緣基底上的一陰極電 極、一陽極電極、一螢光粉層及一陰極發射體,所述陽極 電極和陰極電極分別與上述行電極引線與列電極引線電連 接,所述陰極發射體與陰極電極電連接,並且所述陰極發 射體與陽極電極間隔設置,螢光粉層設置於陽極電極遠離 絕緣基底的表面; 其改良在於,所述每一電子發射單元進一步包括一第一聚 焦電極及第二聚焦電極,所述第一聚焦電極和第二聚焦電 極分別設置於陰極發射體兩側,所述第一聚焦電極和第二 聚焦電極分別與列電極引線電連接,且所述第一聚焦電極 和第二聚焦電極均分別與行電極引線,所述第一聚焦電極 和第二聚焦電極均分別與陽極電極電隔離。 2.如申請專利範圍第1項所述之場發射顯示裝置,其中,所 述複數電子發射單元對應網格設置形成一陣列,且設置於 099145342 表單編號A0101 第21頁/共32頁 0992078166-0 201227793 同一行的複數電子發射單元的陽極電極與同一行電極引線 電連接,設置於同一列的複數電子發射單元的陰極電極、 第一聚焦電極、第二聚焦電極與同一列電極引線電連接。 3 .如申請專利範圍第1項所述之場發射顯示裝置,其中,所 述第一聚焦電極及第二聚焦電極的材料為導電漿料。 4 .如申請專利範圍第1項所述之場發射顯示裝置,其中,所 述第一聚焦電極的厚度大於所述陰極電極及陽極電極的厚 度,第二聚焦電極的厚度大於所述陰極電極及陽極電極的 厚度。 5 .如申請專利範圍第4項所述之場發射顯示裝置,其中,所 述第一聚焦電極及第二聚焦電極的厚度分別為1 5微米 ~ 6 0 0微米。 6 .如申請專利範圍第1項所述之場發射顯示裝置,其中,所 述第一聚焦電極與第二聚焦電極設置於所述陰極發射體沿 Y方向的兩側,其中,Y方向為列電極引線的延伸方向,所 述兩側是指對應網格中所述陰極發射體分別與相鄰的兩個 行電極引線之間形成的部份區域。 7 .如申請專利範圍第6項所述之場發射顯示裝置,其中,所 述第一聚焦電極與第二聚焦電極分別沿X方向向所在網格 中相對的列電極引線延伸,其中,X方向為行電極引線的 延伸方向。 8 .如申請專利範圍第7項所述之場發射顯示裝置,其中,所 述第一聚焦電極在X方向上延伸的長度大於或等於所述陰 極發射體的電子發射端和與陰極電極電連接的列電極引線 的距離。 9 .如申請專利範圍第8項所述之場發射顯示裝置,其中,所 099145342 表單編號A0101 第22頁/共32頁 0992078166-0 201227793 ίο 11 Ο12 13 14 . 〇15 . 述第二聚焦電極在X方向上延伸的長度大於或等於所述陰 =發射體的電子發射端和與陰極電極電線 的距離。 .如申請專利範圍第9項所述之場發射顯示裳置,其中,所 述第二聚焦電極由平行於乂方 沾笛 J幻弟—子電極及平行Υ方向 的弟—子電極組成的L形結構。 .如申料利範圍第10項所述之場發射顯示裳置,其中,所 子電極一端與所述列電極弓丨線電連接,另一端與所 極電連接,所述第二子電極設置於陽極電極及 ”除極電極相鄰的列電極5丨線之間的區域。 .如申請專利範園第1G項所逑之場發射顯示|置,Α中所 ㈣二子電極在Υ方向的長度大於所述陰極發射體針方向 上的長度。 .如申請專利範圍第W所述之場發射顯示褒置其中,所 述陰極發射體包括石夕線、奈米碳管、碳纖維及奈来碳管線 中的一種或複數種。 如申"月專利範圍第1項所述之場發射顯示裝置其中所 述陰極發射體包括相對的兩端,且一端與陰極電極電連接 另端指向陽極並與陽極電極間隔設置。 如申清專利範圍第15項所述之場發射顯示裝置,其中,所 述陰極發射體遠離陰極電極之一端與陽極電極之間的間距 大於等於1微米且小於等於1〇〇〇微米。 如申請專利範圍第14項所述之場發射顯示裝置,其中,所 述陰極發㈣包括複數平行且制的奈米碳管線。 099145342 表單鎢號Α0101 第23頁/共32頁 0992078166-0 16 .201227793 VII. Patent application scope: 1. A field emission display device, comprising: an insulating substrate; a plurality of row electrode leads, the row electrode leads are parallel to each other and spaced apart from each other on the insulating substrate; and the plurality of column electrode leads, the column The electrode leads are parallel to each other and spaced apart from each other on the insulating substrate, the plurality of row electrode leads and the plurality of row electrode leads are disposed to intersect each other, and each two adjacent row electrode leads and two adjacent column electrode leads form a grid Electrically insulating between the row electrode lead and the column electrode lead. > a plurality of electron-emitting units, each electron-emitting unit corresponding to a grid, each electron-emitting unit comprising a cathode electrode spaced apart from the insulating substrate, An anode electrode, a phosphor powder layer and a cathode emitter, wherein the anode electrode and the cathode electrode are electrically connected to the row electrode lead and the column electrode lead, respectively, the cathode emitter is electrically connected to the cathode electrode, and the cathode is emitted The body is spaced apart from the anode electrode, and the phosphor layer is disposed on the surface of the anode electrode away from the insulating substrate The improvement is that each of the electron emission units further includes a first focusing electrode and a second focusing electrode, the first focusing electrode and the second focusing electrode are respectively disposed on two sides of the cathode emitter, and the first focusing electrode And the second focusing electrode are electrically connected to the column electrode lead, respectively, and the first focusing electrode and the second focusing electrode are respectively connected to the row electrode lead, and the first focusing electrode and the second focusing electrode are respectively electrically isolated from the anode electrode . 2. The field emission display device of claim 1, wherein the plurality of electron emission units are arranged in an array corresponding to a grid, and are disposed at 099145342 Form No. A0101 Page 21 / Total 32 Page 0992078166-0 201227793 The anode electrodes of the plurality of electron-emitting units in the same row are electrically connected to the same row of electrode leads, and the cathode electrodes, the first focusing electrodes, and the second focusing electrodes of the plurality of electron-emitting units disposed in the same row are electrically connected to the same column electrode leads. 3. The field emission display device of claim 1, wherein the material of the first focusing electrode and the second focusing electrode is a conductive paste. 4. The field emission display device of claim 1, wherein a thickness of the first focusing electrode is greater than a thickness of the cathode electrode and the anode electrode, and a thickness of the second focusing electrode is greater than the cathode electrode and The thickness of the anode electrode. 5. The field emission display device of claim 4, wherein the first focusing electrode and the second focusing electrode have a thickness of 15 μm to 600 μm, respectively. 6. The field emission display device of claim 1, wherein the first focusing electrode and the second focusing electrode are disposed on both sides of the cathode emitter in the Y direction, wherein the Y direction is a column The extending direction of the electrode lead refers to a partial region formed between the cathode emitter and the adjacent two row electrode leads in the corresponding grid. 7. The field emission display device of claim 6, wherein the first focusing electrode and the second focusing electrode respectively extend in opposite directions to the column electrode leads in the grid in the X direction, wherein the X direction It is the extending direction of the row electrode leads. 8. The field emission display device of claim 7, wherein the first focusing electrode extends in the X direction by a length greater than or equal to the electron emitting end of the cathode emitter and is electrically connected to the cathode electrode. The distance of the column electrode leads. 9. The field emission display device of claim 8, wherein the 099145342 form number A0101 page 22/32 page 0992078166-0 201227793 ίο 11 Ο 12 13 14 . 〇 15 . The length extending in the X direction is greater than or equal to the electron emitting end of the negative emitter and the distance from the cathode electrode wire. The field emission display according to claim 9 is characterized in that the second focusing electrode is composed of a parallel to the 幻 沾 幻 幻 幻 幻 幻 子 子 子 子 子 子 子 子Shape structure. The field emission display according to claim 10, wherein one end of the sub-electrode is electrically connected to the column electrode, and the other end is electrically connected to the pole, and the second sub-electrode is disposed. In the region between the anode electrode and the column electrode 5 adjacent to the electrode of the depolarization electrode. As shown in the field emission display of the 1G item of the patent application, the length of the dipole electrode in the x-direction is a length greater than a length in the direction of the cathode emitter needle. The field emission display device described in claim W, wherein the cathode emitter comprises a stone strand, a carbon nanotube, a carbon fiber, and a carbon nanotube The field emission display device of claim 1, wherein the cathode emitter comprises opposite ends, and one end is electrically connected to the cathode electrode and the other end is directed to the anode and to the anode. The field emission display device according to claim 15, wherein the distance between the one end of the cathode emitter and the anode electrode and the anode electrode is greater than or equal to 1 micrometer and less than or equal to 1 〇〇〇. Micron The field emission display device of claim 14, wherein the cathode (4) comprises a plurality of parallel carbon nanotubes. 099145342 Form Tungsten Α 0101 Page 23 / Total 32 Page 0992078166-0 16 .
TW99145342A 2010-12-22 2010-12-22 Field emission display device TWI417925B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99145342A TWI417925B (en) 2010-12-22 2010-12-22 Field emission display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99145342A TWI417925B (en) 2010-12-22 2010-12-22 Field emission display device

Publications (2)

Publication Number Publication Date
TW201227793A true TW201227793A (en) 2012-07-01
TWI417925B TWI417925B (en) 2013-12-01

Family

ID=46933405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99145342A TWI417925B (en) 2010-12-22 2010-12-22 Field emission display device

Country Status (1)

Country Link
TW (1) TWI417925B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102298A1 (en) * 1999-11-05 2001-05-23 Iljin Nanotech Co., Ltd. Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
KR100658666B1 (en) * 2001-02-16 2006-12-15 삼성에스디아이 주식회사 Field emission display device having carbon nanotube emitter
TWI281183B (en) * 2004-11-12 2007-05-11 Hon Hai Prec Ind Co Ltd Field emission cathode and field emission device using same

Also Published As

Publication number Publication date
TWI417925B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP4908537B2 (en) Field emission display
US8598774B2 (en) Field emission device and field emission display
US8283861B2 (en) Field emission display
US8339027B2 (en) Field emission device with electron emission unit at intersection and field emission display using the same
CN102074442B (en) Field emission electronic device
CN102768930B (en) Field emission electron device
JP2000063726A (en) Electroconductive paste
CN102064071B (en) Field emission display device
TWI471890B (en) Field emission cathode device and driving method of the field emission cathode device
JP5504246B2 (en) Field emission cathode device and field emission display device using the same
TWI386966B (en) Field emission display
TW201227793A (en) Field emission display device
TWI421896B (en) Field emission device and field emission display
TWI330858B (en) Thermionic emission device
TWI421895B (en) Field emission device and field emission display
TWI427662B (en) Field emission cathod device and field emission display
TWI360831B (en) Field emission electron device
TWI489507B (en) Field emission device and field emission display
TWI421897B (en) Field emission display
TWI352369B (en) Thermionic emission device and method for making t
TW201007805A (en) Field emission cathode device and field emission display
KR100436774B1 (en) Method of manufacturing a field emission display
TWI417924B (en) Field emission electronic device
TWI398895B (en) Method for making field emission device
JP2004199888A (en) Method for manufacturing cold cathode