TWI330858B - Thermionic emission device - Google Patents

Thermionic emission device Download PDF

Info

Publication number
TWI330858B
TWI330858B TW97105425A TW97105425A TWI330858B TW I330858 B TWI330858 B TW I330858B TW 97105425 A TW97105425 A TW 97105425A TW 97105425 A TW97105425 A TW 97105425A TW I330858 B TWI330858 B TW I330858B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electrode
electronic device
heat
insulating substrate
Prior art date
Application number
TW97105425A
Other languages
Chinese (zh)
Other versions
TW200935485A (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97105425A priority Critical patent/TWI330858B/en
Publication of TW200935485A publication Critical patent/TW200935485A/en
Application granted granted Critical
Publication of TWI330858B publication Critical patent/TWI330858B/en

Links

Description

1330858 099年06月18日接正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種電子發射器件,尤其涉及一種基於奈米 碳管的熱發射電子器件。 【先前技術】 [0002] 從1991年曰本科學家次發現奈米碳管以來(請 參見Helical micr〇tubules of graphitic carbon, Nature, Sumio Iijima, vol 354, p56(1991)),以奈米碳管為代表的奈米材料以其獨特的 結構和性質引起了人們極大的關注。近幾年來,大量有 關其在電子發射器件、感測器、新型光學材料、軟鐵磁 材料等領域的應用研究不斷被報導β [0003] 先則的電子發射器件依據電子發射原理的不同,可以分 為場發射電子器件和熱發射電子器件。先前技術中的場 發射電子器件,包括一絕緣基底’複數個電子發射單元 設置於該絕緣基底上,及複數個行電極引線與複數個列 電極引線設置於該絕緣基底上。其_,所述的複數個行 電極引線與複數個列電極引線分別平行且等間隔設置於 絕緣基底上。所述複數個行電極引線與複數個列電極引 線相互交又設置,且在行電極引線與列電極引線交又處 由一介質絕緣層隔離,以防止短路。每兩個相鄰的行電 極引線與每兩個相鄰的列電極引線形成一網格,且每個 網格定位一個電子發射單元。每個電子發射單元包括一 行電極與一列電極及一電子發射體設置於該行電極與列 電極上。該行電極與列電極對應且間隔設置。 097105425 表單編號Α0101 第4頁/共24頁 0993213484-0 1330858 099年06月18日修正替换頁 [0004] 先刖技術中的熱發射電子器件通常包括複數個單個熱電 子發射單元組裝而成。熱電子發射單元一般包括一熱電 子發射體和兩個電極。所述熱電子發射體設置於兩個電 極之間並與所述兩個電極電接觸。通常採用金屬、硼化 物材料或者氧化物材料作為熱電子發射體材料。將金屬 加工成帶狀或者極細的絲,通過焊接等技術將金屬固定 到所述兩個電極之間。或者將以硼化物材料或者氧化物 材料製成的漿料直接塗覆或者電漿喷塗在一加熱子上; 通過焊接等技術將加熱子固定到所述兩個電極之間。然 而,由於製備工藝和熱電子發射體材料所限制,很難將 複數個單個熱電子發射單元集成為熱發射電子器件,而 不能實現發射性能均勻一致且具有複數個熱電子發射單 元的大面積陣列形式的平面顯示裝置。而且,以金屬、 硼化物材料或者鹼土金屬碳酸鹽材料製作的熱電子發射 體難以做到較小的尺寸,從而限制了其在微型器件方面 的應用。由於含金屬、硼化物材料或者鹼土金屬碳酸鹽 材料的塗層具有相當高的電阻率,所製備熱電子發射單 兀在加熱而發射時產生的功耗比較大,限制了其對於快 速開關的响應,因此不適合於高清晰度和高亮度的應用 〇 [0005] 有鑒於此,提供一種具有優良的熱發射性能,可用於高 清晰度和高亮度的平板顯示和邏輯電路等複數個領域的 熱發射電子器件實為必要。 【發明内容】 一種熱發射電子器件,其包括:一絕緣基底,該絕緣基 097105425 表單編號A0101 第5頁/共24頁 0993213484-0 [0006] 1330858 __ 099年06月18日梭正替換頁 底具有複數個等大且等間隔設置的凹槽;複數個行電極 引線與列電極引線分別平行且等間隔設置於絕緣基底上 ,該複數個行電極引線與複數個列電極引線相互交叉設 置,每兩個相鄰的行電極引線與每兩個相鄰的列電極引 線形成一個網格,且行電極引線與列電極引線之間電絕 緣;複數個熱電子發射單元,每個熱電子發射單元包括 一第一電極、一第二電極和一熱電子發射體,該第一電 極與第二電極間隔設置於所述的每個網格中,並分別與 所述行電極引線和列電極引線電連接,所述熱電子發射 體與所述第一電極和第二電極電連接。其中,所述絕緣 基底的每個凹槽分別對應於所述每個網格設置,所述熱 電子發射體至少部分通過所述凹槽與所述絕緣基底間隔 設置。 [0007] 與先前技術相比較,所述熱發射電子器件具有以下優點 :其一,所述熱發射電子器件中熱電子發射體通過所述 絕緣基底的凹槽與該絕緣基底間隔設置,絕緣基底不會 將加熱所述熱電子發射體而產生的熱量傳導進大氣中, 具有優異的熱電子發射性能;其二,所述熱發射電子器 件中包括複數個均勻分佈的熱電子發射單元,具有優異 的熱電子發射性能;其三,所述熱電子發射體為奈米碳 管薄膜結構,該奈米碳管薄膜結構電阻率低,在較低的 熱功率下即可實現熱電子的發射,降低了所述熱發射電 子器件在加熱時發射電子而產生的功耗,可用於高清晰 度和高亮度的平板顯示和邏輯電路等複數個領域。 【實施方式】 097105425 表單編號A0101 第6頁/共24頁 0993213484-0 1330858 [0008]1330858 Continuation of the replacement page of June 18, 2008. SUMMARY OF THE INVENTION [0001] The present invention relates to an electron-emitting device, and more particularly to a thermal-emitting electronic device based on a carbon nanotube. [Prior Art] [0002] Since the discovery of carbon nanotubes by Sakamoto in 1991 (see Helical micr〇tubules of graphitic carbon, Nature, Sumio Iijima, vol 354, p56 (1991)), carbon nanotubes The nanomaterials represented by the company have attracted great attention due to their unique structure and properties. In recent years, a large number of applications in the fields of electron-emitting devices, sensors, new optical materials, soft ferromagnetic materials, etc. have been reported. [0003] The prior art electron-emitting devices can be based on the principle of electron emission. Divided into field emission electronics and thermal emission electronics. The field emission electronic device of the prior art includes an insulating substrate. The plurality of electron-emitting units are disposed on the insulating substrate, and a plurality of row electrode leads and a plurality of column electrode leads are disposed on the insulating substrate. And, the plurality of row electrode leads and the plurality of column electrode leads are respectively disposed in parallel and equally spaced on the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are disposed to overlap each other, and the row electrode leads are separated from the column electrode leads by a dielectric insulating layer to prevent short circuit. Each two adjacent row electrode leads forms a grid with each two adjacent column electrode leads, and each grid positions an electron-emitting unit. Each of the electron-emitting units includes a row of electrodes and a column of electrodes, and an electron emitter is disposed on the row and column electrodes. The row electrodes are corresponding to the column electrodes and are spaced apart. 097105425 Form number Α0101 Page 4 of 24 0993213484-0 1330858 Correction replacement page on June 18, 099 [0004] The heat-emitting electronic device in the prior art usually consists of a plurality of individual thermoelectric emission units assembled. The thermal electron emission unit generally includes a thermoelectron emitter and two electrodes. The thermal electron emitter is disposed between two electrodes and is in electrical contact with the two electrodes. A metal, a boride material or an oxide material is usually used as the thermal electron emitter material. The metal is processed into a strip or a very fine wire, and the metal is fixed between the two electrodes by a technique such as welding. Alternatively, a slurry made of a boride material or an oxide material may be directly coated or plasma sprayed on a heater; a heater is fixed between the two electrodes by a technique such as welding. However, due to the limitations of the fabrication process and the thermal electron emitter material, it is difficult to integrate a plurality of individual thermal electron emission units into thermal emission electrons, and it is not possible to realize a large-area array having uniform emission performance and having a plurality of thermal electron emission units. Form of a flat display device. Moreover, thermal electron emitters made of metal, boride or alkaline earth metal carbonate materials are difficult to achieve in a small size, thereby limiting their use in micro devices. Since the coating of the metal-containing, boride or alkaline earth metal carbonate material has a relatively high electrical resistivity, the heat generated by the prepared thermoelectron emission unit is relatively large when heated and emitted, which limits its response to fast switching. Therefore, it is not suitable for high-definition and high-brightness applications. [0005] In view of this, it is provided that it has excellent thermal emission performance and can be used for heat in a plurality of fields such as high-definition and high-brightness flat panel display and logic circuits. It is necessary to launch electronic devices. SUMMARY OF THE INVENTION A thermal emission electronic device includes: an insulating substrate, the insulating substrate 097105425 Form No. A0101 Page 5 of 24 pages 0993213484-0 [0006] 1330858 __ June 18, 2017 Shuttle is replacing the bottom of the page a plurality of equal-sized and equally spaced grooves; a plurality of row electrode leads and column electrode leads are respectively disposed in parallel and equally spaced on the insulating substrate, and the plurality of row electrode leads and the plurality of column electrode leads are disposed to cross each other Two adjacent row electrode leads form a grid with each two adjacent column electrode leads, and the row electrode leads are electrically insulated from the column electrode leads; a plurality of thermal electron emission units each including a thermal electron emission unit a first electrode, a second electrode and a thermal electron emitter, the first electrode and the second electrode are disposed in each of the grids, and are electrically connected to the row electrode and the column electrode lead, respectively. The hot electron emitter is electrically connected to the first electrode and the second electrode. Wherein each of the grooves of the insulating substrate is disposed corresponding to each of the grids, and the thermoelectron emitter is disposed at least partially from the insulating substrate by the grooves. [0007] Compared with the prior art, the heat-emitting electronic device has the following advantages: First, a thermal electron emitter in the heat-emitting electronic device is spaced apart from the insulating substrate by a groove of the insulating substrate, and the insulating substrate The heat generated by heating the hot electron emitter is not conducted into the atmosphere, and has excellent thermal electron emission performance. Second, the heat-emitting electronic device includes a plurality of uniformly distributed hot electron emission units, which are excellent. The thermal electron emission performance; thirdly, the thermal electron emitter is a carbon nanotube film structure, and the carbon nanotube film has a low resistivity, and can emit hot electrons at a lower heat power, thereby reducing The power consumption of the heat-emitting electronic device that emits electrons upon heating can be used in a plurality of fields such as high-definition and high-brightness flat panel display and logic circuits. [Embodiment] 097105425 Form No. A0101 Page 6 of 24 0993213484-0 1330858 [0008]

099年06月18日修正替換頁I 以下將結合附圖詳細說明本技術方案熱發射電子器件及 其製備方法》 [0009] 請參閱圖1,本技術方案實施例提供一種熱發射電子器件 200,包括一絕緣基底202 ’該絕緣基底202具有複數個 等大且等間隔設置的凹槽203。複數個熱電子發射單元 220設置於該絕緣基底202上,及複數個行電極引線204 與複數個列電極引線206設置於該絕緣基底202上。所述 複數個行電極引線204與列電極引線2〇6分別平行且等間 隔設置於絕緣基底202上。所述複數個行電極引線204與 複數個列電極引線206相互交叉設置,而且,在行電極引 線204與列電極引線206交叉處設置有一介質絕緣層21 6 ,該介質絕緣層216將行電極引線204與列電極引線206 電隔離,以防止短路。每兩個相鄰的行電極引線204與兩 個相鄰的列電極引線206形成一網格214,且每個網格 214定位一個熱電子發射單元220。其中,所述複數個凹 槽2 03分別對應所述每個網格214並設置於所述絕緣基底 202 上。 [0010] 所述複數個熱電子發射單元220對應設置於上述網格214 中,且每個網格214中設置一個熱電子發射單元220。每 個熱電子發射單元220包括一第一電極210,一第二電極 212,及一熱電子發射體208。所述熱電子發射體208為 一薄膜結構或者至少一根長線。每一行的網格214中的第 一電極210與同一行電極引線204電連接,每一列的網格 中214的第二電極212與同一列電極引線206電連接。本 實施例中,同一行的熱電子發射單元220中的第一電極 097105425 表單編號A0101 第7頁/共24頁 0993213484-0 1330858 099年〇6j 18日接正替換頁"] 210與同一行電極引線2〇4電連接,同一列的熱電子發射 單兀220中的第二電極212與同一列電極引線2〇6電連接 。所述第一電極21〇與第二電極212間隔設置於每個網格 214中,與所述熱電子發射體2〇8電連接並將所述熱電子 發射體208固定於所述絕緣基底2〇2。所述熱電子發射體 208至少部分通過所述第一電極21〇與第二電極212與所 述絕緣基底202間隔設置。可以理解,所述熱電子發射體 208還可以通過一導電膠固定於所述絕緣基底2〇2。 [0011] 所述熱電子發射體208可以為一奈米碳管薄膜結構。所述 奈米碳管薄膜結構包括一奈米碳管薄膜或者至少兩個重 疊設置的奈米碳管薄膜。該奈米碳管薄膜中奈米碳管沿 同一方向擇優取向排列。所述單層奈米碳管薄膜中奈米 碳管沿從所述第一電極210向所述第二電極212延伸的方 向排列。所述重疊設置的奈米碳管薄膜中相鄰的兩個奈 米碳管薄膜中奈米碳管排列方向具有一交又角度α α 90 *所述奈米碳管薄膜包括複數個首尾相連且擇 優取向排列的奈米碳管束’相鄰的奈米碳管束之間通過 凡得瓦力(van der waals aUractive f〇rce)連接 。該奈米碳管束包括複數個長度相等且相互平行排列的 奈米碳管,相鄰奈米碳管之間通過凡得瓦力連接。 [0012] 本技術方案實施例中,由於採用化學氣相沈積法在4英寸 的基底上生長超順排奈米碳管陣列,並進行進一步地處 理得到-奈米碳管薄膜,故該奈米碳管薄膜的寬度為 〇.〇1厘米〜10厘米,厚度為10奈米~1〇〇微米。所述奈米 碳管薄膜可根據實際需要切割成具有預定尺寸和形狀的 097105425 表單編號Α0101 第8頁/共24頁 0993213484-0 1330858 099年06月18日修正替換百 奈米碳管薄膜。可以理解,當採用較大的基底生長超順 排奈米碳管陣列時,可以得到更寬的奈米碳管薄膜。上 述奈来礙管薄膜中的奈米礙管為單壁奈米碳管、雙壁奈 米碳管或者多壁奈米碳管。當奈米碳管薄膜中的奈米碳 管為單壁奈米碳管時,該單壁奈米碳管的直徑為0. 5奈米 〜50奈米。當奈米碳管薄膜中的奈米碳管為雙壁奈米碳管 時,該雙壁奈米碳管的直徑為1. 0奈米〜50奈求。當奈米 碳管薄膜中的奈米碳管為多壁奈米碳管時,該多壁奈米 碳管的直徑為1.5奈米〜50奈米。 [0013] 所述熱電子發射體208可以為至少一根奈米碳管長線。所 述奈米碳管長線包括複數個平行的首尾相連的奈米碳管 束組成的束狀結構或由複數個首尾相連的奈米碳管束組 成的絞線結構。該相鄰的奈米碳管束之間通過凡得瓦力 緊密結合,該奈米碳管束包括複數個首尾相連且定向排 列的奈米碳管。所述奈求碳管長線的直徑為0.5奈来〜100 微米。 [0014] 所述的絕緣基底202為一絕緣絕緣基底,如陶瓷絕緣基底 、玻璃絕緣基底、樹脂絕緣基底、石英絕緣基底等。絕 緣基底202大小與厚度不限,本領域技術人員可以根據實 際需要選擇。所述的複數個凹槽203等大且等間隔地分佈 於所述絕緣基底202表面。所述奈米碳管薄膜結構通過所 述絕緣基底202表面的凹槽203與所述絕緣基底202間隔 設置。所述凹槽20 3的形狀和高度不限。本實施例中,所 述絕緣基底202優選為一玻璃絕緣基底,其厚度為大於1 毫米,邊長大於1厘米。所述凹槽203為長方體形,長度 097105425 表單編號A0101 第9頁/共24頁 0993213484-0 1330858 __ 099年06月 18日按正替换頁 為200微米~500微米,寬度為100微米〜300微米,高度為 50微米〜100微米。 [0015] 所述複數個行電極引線20 4與複數個列電極引線206為一 導電體,如金屬層等。本實施例中,該複數個行電極引 線204與複數個列電極引線206優選為採用導電漿料印刷 的平面導電體,且該複數個行電極引線204與複數個列電 極引線206的行距和列距為300微米〜500微米。該行電極 引線204與列電極引線206的寬度為30微米~100微米,厚 度為10微米〜50微米。本實施例中,該行電極引線204與 列電極引線206的交叉角度為10度到90度,優選為90度 。本實施例中,通過絲網印刷法將導電漿料印刷於絕緣 基底202上製備行電極引線204與列電極引線206。該導 電漿料的成分包括金屬粉、低熔點玻璃粉和粘結劑。其 中,該金屬粉優選為銀粉,該粘結劑優選為松油醇或乙 基纖維素。該導電漿料中,金屬粉的重量比為50〜90%, 低溶點玻璃粉的重量比為2〜1 0%,粘結劑的重量比為 10〜40% 。 : [0016] 所述第一電極210與第二電極212為一導電體,如金屬層 等。本實施例中,該第一電極210與第二電極212為一平 面導電體,其尺寸依據網格214的尺寸決定。該第一電極 210和第二電極212直接與上述電極引線連接,從而實現 電連接。所述第一電極210與第二電極212的長度為50微 米〜90微米,寬度為30微米〜60微米,厚度為10微米〜50 微米。所述第一電極210與第二電極212之間的間隔距離 為150微米~450微米。本實施例中,所述第一電極210與 097105425 表單編號A0101 第10頁/共24頁 0993213484-0 1330858 099年06月18日梭正替換頁 第二電極212的長度優選為60微米,寬度優選為40微米, 厚度優選為20微米。本實施例中,所述第一電極21〇與第 二電極212的材料為導電漿料,通過絲網印刷法印刷於絕 緣基底202上。該導電漿料的成分與上述電極引線所用的 導電榮·料的成分相同。所述第一電極210和第二電極212 與奈米碳管薄膜結構的電連接方式可以為通過一導電膠 電連接,也可以通過分子間力或者其他方式實現。 [0017] 請參閱圖2,本技術方案實施例提供一種上述熱發射電子 器件200的製備方法,具體包括以下步驟: [0018] 步驟一:提供一絕緣基底202,在該絕緣基底2〇2表面形 成複數個等大且等間隔設置的凹槽203。 [0019] 本技術方案實施例的絕緣基底202為一玻璃絕緣基底,在 該玻璃絕緣基底上刻蝕形成複數個等大且等間隔設置的 凹槽203。 [0020] 步驟二:在該絕緣基底202上製備複數個平行且等間隔設 置的行電極引線204與列電極引線206,該行電極引線 204與列電極引線206交叉設置,且每兩個相鄰的行電極 引線204與每兩個相鄰的列電極引線206相互交又形成一 網格214。 [0021] 可以理解,也可以在所述絕緣基底202上形成複數個網格 214後再通過刻蝕在所述絕緣基底202表面形成複數個等 大且等間隔設置的凹槽。該複數個凹槽分別與複數個網 格214對應並設置於所述絕緣基底202上。 [0022] 可以通過絲網印刷法或濺射法等方法製備複數個行電極 097105425 表單編號A0101 第11頁/共24頁 0993213484-0 1330858 [0023] [0024] [0025] [0026] [0027] [0028] [0029] [0030] 097105425 099年06 j 18日.接正替換頁 引線204與複數個列電極引線2〇6。本實施例中,採用絲 網印刷法製備複數個行電極引線2〇4與複數個列電極引線 206 ’其具體包括以下步驟: 首先’採用絲網印刷法在絕緣基底2〇2上印刷複數個平行 且等間隔設置的行電極引線2〇4。 其次,採用絲網印刷法在行電極引線2〇4與待形成的列電 極引線206交又處印刷複數個介質絕緣層21 6。 最後,採用絲網印刷法在絕緣基底2〇2上印刷複數個平行 且等間隔設置的列電極引線206,且複數個行電極引線 204與複數個列電極引線2〇6相互交叉形成複數個網格 214。 可以理解,本實施例中,也可以先印刷複數個平行且等 間隔設置的列電極弓W2〇6,再印刷複數個介質絕緣層 216,最後印刷複數個平行且等間隔設置的行電極引線 204 ’且複數個行電極引線204與複數個列電極弓丨線2〇6 相互交叉形成複數個網格2丨4i 步驟三:形成一熱電子發射體208覆蓋上述含有電極5|線 的絕緣基底202。 ' 本技術方案實施例的熱電子發射體2〇8優選為奈米碳管薄 膜結構。該奈米碳管薄膜結構的製備方法包括以下步驟 (1)製備至少一奈米碳管薄臈。 首先’提供-奈米碳管陣列’優選地,輯列為超順排 第12頁/共24頁 表單编號A0101 0993213484-0 1330858 099年06月18日核正替換頁 奈米碳管陣列。 [0031] 本實施例中,奈米碳管陣列的製備方法採用化學氣相沈 積法,其具體步驟包括:(a)提供一平整基底,該基底 可選用P型或N型矽基底,或選用形成有氧化層的矽基底 ,本實施例優選為採用4英寸的矽基底;(b)在基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c )將上述形成有催化劑層的基底在700t:〜900°C的空氣中 退火約30分鐘〜90分鐘;(d)將處理過的基底置於反應 爐中,在保護氣體環境下加熱到500°C~740°C,然後通入 碳源氣體反應約5分鐘~30分鐘,生長得到奈米碳管陣列 ,其高度大於100微米。該奈米碳管陣列為複數個彼此平 行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列 。該奈米碳管陣列的面積與上述基底面積基本相同。通 過上述控制生長條件,該超順排奈米碳管陣列中基本不 含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 [0032] 上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑 的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣 〇 [0033] 可以理解,本實施例提供的奈米碳管陣列不限於上述製 備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等。 [0034] 其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一奈 097105425 表單編號A0101 第13頁/共24頁 0993213484-0 1330858 099年06月· 18日核正替换頁 米碳管薄膜。 [0035] 該奈米碳管薄膜的製備具體包括以下步驟:(a)從上述 奈米碳管陣列中選定一定寬度的複數個奈米碳管片斷, 本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管 陣列以選定一定寬度的複數個奈米碳管束;(b )以一定 速度沿基本垂直於奈米碳管陣列生長方向拉伸複數個該 奈米碳管束,以形成一連續的奈米碳管薄膜。 [0036] 在上述拉伸過程中,該複數個奈米碳管束在拉力作用下 沿拉伸方向逐漸脫離基底的同時,由於凡得瓦力作用, 該選定的複數個奈米碳管束片斷分別與其他奈米碳管束 片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈米碳管薄膜包括複數個首尾相連且定向排列的 奈米碳管束,且複數個首尾相連且定向排列的奈米碳管 束形成一奈米碳管線。該奈米碳管束包括複數個平行排 列的奈米碳管,且奈米碳管的排列方向基本平行於奈米 碳管薄膜的拉伸方向。 [0037] 再次,將上述至少一奈米碳管薄膜鋪設於上述含有電極 引線的絕緣基底202上形成一奈米碳管薄膜結構。 [0038] 所述將至少一奈米碳管薄膜鋪設於所述含有電極引線的 絕緣基底202的方法包括以下步驟:將一奈米碳管薄膜或 者至少兩個奈米碳管薄膜平行且無間隙沿從所述第一電 極2 10向所述第二電極212延伸的方向直接鋪設在所述含 有電極引線的絕緣基底202的表面。進一步還可將至少兩 個奈米碳管薄膜依據奈米碳管的排列方向以一交又角度 097105425 表單編號A0101 第14頁/共24頁 0993213484-0 099年06月18日修正替換頁 1330858 α重疊鋪設在所述含有電極引線的絕緣基底202的表面, 且0° a 90° 。 [0039] 可以理解,所述將至少一奈米碳管薄膜鋪設於所述含有 電極引線的絕緣基底202的方法還可以包括以下步驟:提 供一支撐體;將至少兩個奈米碳管薄膜平行且無間隙沿 從所述第一電極210向所述第二電極21 2延伸的方向直接 鋪設於支撐體表面,得到一奈米碳管薄膜結構;去除支 撐體外多餘的奈米碳管薄膜;採用有機溶劑處理該奈米 碳管薄膜結構;將使用有機溶劑處理後的奈米碳管薄膜 結構從所述支撐體上取下,形成一自支撐的奈米碳管薄 膜結構;將該奈米碳管薄膜結構舖設於所述含有電極引 線的絕緣基底202的表面。進一步還可將至少兩個奈米碳 管薄膜依據奈米碳管的排列方向以一交叉角度α重疊鋪 設在所述支撐體表面,且0° a 90°。由於本實施例提 供的超順排奈米碳管陣列中的奈米碳管非常純淨,且由 於奈米碳管本身的比表面積非常大,故該奈米碳管薄膜 本身具有較強的粘性,該奈米碳管薄膜可利用其本身的 粘性直接粘附於支撐體。 [0040] 本實施例中,上述支撐體的大小可依據實際需求確定。 當支撐體的寬度大於上述奈米碳管薄膜的寬度時,可以 將至少兩個奈米碳管薄膜平行且無間隙或/和重疊鋪設於 所述支撐體上,形成一自支撐的奈米碳管薄膜結構。 [0041] 本實施例中,由於本實施例提供的超順排奈米碳管陣列 中的奈米碳管非常純淨,且由於奈米碳管本身的比表面 積非常大,故該奈米碳管薄膜結構本身具有較強的粘性 097105425 表單編號A0101 第15頁/共24頁 0993213484-0 1330858 099年06月‘18日核正替換頁 。該奈米碳管薄膜可利用其本身的粘性直接粘附於所述 含有電極引線的絕緣基底202的表面。或者在所述所述含 有電極引線的絕緣基底202的表面塗敷一層導電膠;將至 少一奈米碳管薄膜覆蓋於整個含有電極引線的絕緣基底 202上,使所述至少一奈米碳管薄膜與所述含有電極引線 的絕緣基底202的表面電連接;將大於絕緣基底202面積 的奈米碳管薄膜剪去。 [0042] 另外,本實施例還可進一步在將奈米碳管薄膜直接鋪設 於所述含有電極引線的絕緣基底形成一奈米碳管薄膜結 構的步驟之後採用有機溶劑處理該奈米碳管薄膜結構。 具體的,可通過試管將有機溶劑滴落在所述奈米碳管薄 膜結構表面浸潤整個奈米碳管薄膜結構。或者,也可將 奈米碳管薄膜結構整個浸入盛有有機溶劑的容器中浸潤 。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮 、二氯乙烷或氣仿,本實施例中優選採用乙醇。該奈米 碳管薄膜經有機溶劑浸潤處理後,在揮發性有機溶劑的 表面張力的作用下,奈米碳管薄膜結構中的平行的奈米 碳管片斷會部分聚集成奈米碳管束,因此,該奈米碳管 薄膜表面體積比小,粘性降低,且具有良好的機械強度 及韌性,應用有機溶劑處理後的奈米碳管薄膜性能更加 優異。 [0043] 步驟四:在所述熱電子發射體208的表面上製備複數個第 一電極210與複數個第二電極212,在每個網格214中間 隔設置一第一電極210與一第二電極212。 [0044] 製備所述第一電極21 0與第二電極2 12可以通過絲網印刷 097105425 表單編號A0101 第16頁/共24頁 0993213484-0 1330858 099年06月18日梭正替換頁 法或濺射法等方法實現。本實施例中,採用絲網印刷法 製備在每一行的網格214中行電極引線204對應的奈米碳 管薄膜結構表面上製備一第一電極210,該第一電極210 與同一行電極引線204形成電連接;通過絲網印刷法或濺 射法在每一列的網格214中列電極引線206對應的奈米碳 管薄膜結構表面上製備一第二電極212,該第二電極212 與同一列電極引線206形成電連接。所述第一電極210與 第二電極212之間保持一間距,用於設置奈米碳管薄膜結 構。所述第一電極210與第二電極212的厚度大於行電極 引線204與列電極引線206的厚度,以利於後續步驟中設 置奈米碳管薄膜結構。可以理解,本實施例中,也可以 將所印刷的第一電極210與對應的列電極引線206直接接 觸,從而實現電連接,第二電極212與對應的行電極引線 204直接接觸,從而實現電連接。 [0045] 步驟五:切割並去除多餘的熱電子發射體208,保留每個 網格214中覆蓋所述第一電極210與第二電極212表面的 熱電子發射體208,從而得到一熱發射電子器件200。 [0046] 本實施例中,所述切割並去除多餘的奈米碳管薄膜結構 的方法為鐳射燒蝕法或電子束掃描法。本實施例中,優 選採用鐳射燒蝕法切割所述奈米碳管薄膜結構,具體包 括以下步驟: [0047] 首先,採用一定寬度的雷射光束沿著每個行電極引線204 進行掃描。該步驟的目的係去除不同行的電極(包括第 一電極210與第二電極212)之間的奈米碳管薄膜結構。 其中,所述雷射光束的寬度等於位於不同行的兩個相鄰 097105425 表單編號A0101 第17頁/共24頁 0993213484-0 1330858 __ 099年06i 18日’按正替换頁 的第二電極212之間的行間距離,為100微米〜500微米。 [0048] 其次,採用一定寬度的雷射光束沿著每個列電極引線206 進行掃描,去除不同列的電極(包括第一電極210與第二 電極212 )之間的奈米碳管薄膜結構。從而保留每個網格 214中覆蓋所述第一電極210與第二電極212的奈米碳管 薄膜結構。其中,所述雷射光束的寬度等於位於不同列 的兩個相鄰的第一電極210之間的行間距離,為1 0 0微米 〜500微米。 [0049] 本實施例中,上述方法可以在大氣環境或其他含氧的環 境下進行。採用鐳射燒蝕法去除多餘的奈米碳管,所用 的鐳射功率為10瓦~50瓦,掃描速度為10毫米/分鐘 〜1 000毫米/分鐘。本實施例中,優選地,鐳射功率為30 瓦,掃描速度為100毫米/分鐘。 [0050] 與先前技術相比較,所述的熱發射電子器件具有以下優 點:其一,採用奈米碳管薄膜作為熱電子發射體,該奈 米碳管薄膜中奈米碳管均勻分佈,所製備的熱發射電子 器件可以發射均勻而穩定的熱電子流;其二,奈米碳管 薄膜與絕緣基底間隔設置,絕緣基底不會將加熱所述奈 米碳管薄膜而產生的熱量傳導進大氣中,故所製備的熱 發射電子器件的熱電子發射性能優異;其三,所述奈米 碳管薄膜結構的尺寸小可直接鋪設於所述電極,實現熱 發射電子器件中熱電子發射單元的微型化,從而可用於 高清晰度和高亮度的平板顯示和邏輯電路等複數個領域 097105425 表單编號A0101 第18頁/共24頁 0993213484-0 1330858 099年06月18日核正替換頁 [0051] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内 【圖式簡單說明】 [0052] 圖1係本技術方案實施例的熱發射電子器件的結構示意圖 〇 [0053] 圖2係本技術方案實施例的熱發射電子器件的製備方法的 流程不意圖。 【主要元件符號說明】 [0054] 熱發射電子器件:200 [0055] 絕緣基底:202 [0056] 行電極引線:204 [0057] 列電極引線:206 [0058] 熱電子發射體:208 [0059] 第一電極:21 0 [0060] 第二電極:21 2 [0061] 網格:214 [0062] 介質絕緣層:216 [0063] 熱電子發射單元:220 097105425 表單編號A0101 第19頁/共24頁 0993213484-0The invention relates to a heat-emitting electronic device and a method for fabricating the same according to the accompanying drawings. [0009] Referring to FIG. 1 , an embodiment of the technical solution provides a thermal-emitting electronic device 200. An insulating substrate 202 is included. The insulating substrate 202 has a plurality of equally large and equally spaced grooves 203. A plurality of the thermal electron emission units 220 are disposed on the insulating substrate 202, and a plurality of row electrode leads 204 and a plurality of column electrode leads 206 are disposed on the insulating substrate 202. The plurality of row electrode leads 204 and the column electrode leads 2〇6 are respectively disposed in parallel and equally spaced on the insulating substrate 202. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed to cross each other, and a dielectric insulating layer 216 is disposed at a intersection of the row electrode leads 204 and the column electrode leads 206, and the dielectric insulating layer 216 is provided with row electrode leads 204 is electrically isolated from column electrode leads 206 to prevent short circuits. Each two adjacent row electrode leads 204 and two adjacent column electrode leads 206 form a grid 214, and each grid 214 positions a thermal electron emission unit 220. The plurality of recesses 203 correspond to the grids 214 and are disposed on the insulating substrate 202, respectively. [0010] The plurality of thermal electron emission units 220 are correspondingly disposed in the grid 214, and one thermal electron emission unit 220 is disposed in each of the grids 214. Each of the thermal electron emission units 220 includes a first electrode 210, a second electrode 212, and a thermal electron emitter 208. The thermal electron emitter 208 is a thin film structure or at least one long line. The first electrode 210 in the grid 214 of each row is electrically coupled to the same row of electrode leads 204, and the second electrode 212 of the grid 214 of each column is electrically coupled to the same column of electrode leads 206. In this embodiment, the first electrode 097105425 in the same row of the hot electron emission unit 220 Form No. A0101 Page 7 / Total 24 Page 0993213484-0 1330858 099 〇 6j 18th Replacement page "] 210 with the same line The electrode leads 2〇4 are electrically connected, and the second electrode 212 in the same column of the thermal electron emission cells 220 is electrically connected to the same column electrode lead 2〇6. The first electrode 21A and the second electrode 212 are disposed in each of the grids 214, electrically connected to the thermionic emitters 2〇8, and the thermoelectron emitters 208 are fixed to the insulating substrate 2 〇 2. The thermal electron emitter 208 is spaced apart from the insulating substrate 202 at least in part by the first electrode 21 and the second electrode 212. It is to be understood that the thermal electron emitter 208 can also be fixed to the insulating substrate 2〇2 by a conductive paste. [0011] The thermal electron emitter 208 may be a carbon nanotube film structure. The carbon nanotube film structure comprises a carbon nanotube film or at least two stacked carbon nanotube films. The carbon nanotube tubes in the carbon nanotube film are arranged in a preferred orientation along the same direction. The carbon nanotubes in the single-layered carbon nanotube film are arranged in a direction extending from the first electrode 210 to the second electrode 212. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films in the overlapping carbon nanotube film has an intersection angle α α 90 * The carbon nanotube film comprises a plurality of ends connected and Preferred carbon nanotube bundles of adjacent orientations are connected by van der waals aUractive f〇rce. The carbon nanotube bundle includes a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and adjacent carbon nanotubes are connected by van der Waals force. [0012] In the embodiment of the technical solution, since the super-sequential carbon nanotube array is grown on a 4-inch substrate by chemical vapor deposition and further processed to obtain a carbon nanotube film, the nanometer is The carbon tube film has a width of from 1 cm to 10 cm and a thickness of from 10 nm to 1 μm. The carbon nanotube film can be cut into a predetermined size and shape according to actual needs. 097105425 Form No. 1010101 Page 8 of 24 0993213484-0 1330858 The correction of the replacement of the carbon nanotube film on June 18, 099. It will be appreciated that a wider carbon nanotube film can be obtained when a super-sequential nanotube array is grown using a larger substrate. The nano tube in the film is a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. 5纳米〜50纳米。 When the carbon nanotubes in the carbon nanotube film is a single-walled carbon nanotube, the diameter of the single-walled carbon nanotubes is 0. 5 nanometers ~ 50 nanometers. When the carbon nanotubes in the carbon nanotube film are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is 1.0 nm to 50 μ. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. [0013] The hot electron emitter 208 may be at least one long carbon nanotube line. The long carbon nanotube line includes a bundle of parallel bundles of end-to-end carbon nanotube bundles or a strand structure consisting of a plurality of end-to-end carbon nanotube bundles. The adjacent carbon nanotube bundles are tightly coupled by van der Waals, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes connected end to end and oriented. The diameter of the carbon nanotube long line is from 0.5 nanometers to 100 micrometers. [0014] The insulating substrate 202 is an insulating insulating substrate such as a ceramic insulating substrate, a glass insulating substrate, a resin insulating substrate, a quartz insulating substrate, or the like. The insulating substrate 202 is not limited in size and thickness, and can be selected by those skilled in the art according to actual needs. The plurality of grooves 203 are equally large and equally spaced on the surface of the insulating substrate 202. The carbon nanotube film structure is spaced apart from the insulating substrate 202 by a recess 203 in the surface of the insulating substrate 202. The shape and height of the groove 203 are not limited. In this embodiment, the insulating substrate 202 is preferably a glass insulating substrate having a thickness of more than 1 mm and a side length of more than 1 cm. The groove 203 has a rectangular parallelepiped shape and has a length of 097105425. Form No. A0101 Page 9/24 pages 0993213484-0 1330858 __ June 18, 2017, the replacement page is 200 micrometers to 500 micrometers, and the width is 100 micrometers to 300 micrometers. The height is 50 microns to 100 microns. [0015] The plurality of row electrode leads 20 4 and the plurality of column electrode leads 206 are an electrical conductor such as a metal layer or the like. In this embodiment, the plurality of row electrode leads 204 and the plurality of column electrode leads 206 are preferably planar conductors printed with a conductive paste, and the row spacing and columns of the plurality of row electrode leads 204 and the plurality of column electrode leads 206 The distance is from 300 microns to 500 microns. The row electrode lead 204 and the column electrode lead 206 have a width of 30 μm to 100 μm and a thickness of 10 μm to 50 μm. In this embodiment, the intersection angle of the row electrode lead 204 and the column electrode lead 206 is 10 to 90 degrees, preferably 90 degrees. In this embodiment, the row electrode lead 204 and the column electrode lead 206 are prepared by printing a conductive paste on the insulating substrate 202 by a screen printing method. The composition of the conductive paste includes metal powder, low melting point glass frit, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive paste, the weight ratio of the metal powder is 50 to 90%, the weight ratio of the low melting point glass powder is 2 to 10%, and the weight ratio of the binder is 10 to 40%. [0016] The first electrode 210 and the second electrode 212 are an electric conductor such as a metal layer or the like. In this embodiment, the first electrode 210 and the second electrode 212 are a planar conductor, and the size thereof is determined according to the size of the grid 214. The first electrode 210 and the second electrode 212 are directly connected to the above electrode leads to achieve electrical connection. The first electrode 210 and the second electrode 212 have a length of 50 micrometers to 90 micrometers, a width of 30 micrometers to 60 micrometers, and a thickness of 10 micrometers to 50 micrometers. The distance between the first electrode 210 and the second electrode 212 is from 150 micrometers to 450 micrometers. In this embodiment, the first electrode 210 and the 097105425 Form No. A0101 Page 10/24 pages 0993213484-0 1330858 On June 18, 2008, the length of the second electrode 212 is preferably 60 μm, and the width is preferably It is 40 microns and the thickness is preferably 20 microns. In this embodiment, the material of the first electrode 21〇 and the second electrode 212 is a conductive paste, which is printed on the insulating substrate 202 by screen printing. The composition of the conductive paste is the same as that of the conductive material used for the electrode lead. The electrical connection between the first electrode 210 and the second electrode 212 and the carbon nanotube film structure may be through a conductive adhesive connection, or may be achieved by intermolecular force or other means. [0017] Please refer to FIG. 2, the embodiment of the present invention provides a method for fabricating the above-described thermal emission electronic device 200, and specifically includes the following steps: [0018] Step 1: providing an insulating substrate 202 on the surface of the insulating substrate 2〇2 A plurality of equally large and equally spaced grooves 203 are formed. [0019] The insulating substrate 202 of the embodiment of the present technical solution is a glass insulating substrate, and a plurality of equally large and equally spaced grooves 203 are formed on the glass insulating substrate. [0020] Step 2: preparing a plurality of parallel and equally spaced row electrode leads 204 and column electrode leads 206 on the insulating substrate 202, the row electrode leads 204 and the column electrode leads 206 are disposed at intersection, and each two adjacent The row electrode lead 204 and each two adjacent column electrode leads 206 intersect each other to form a grid 214. [0021] It can be understood that a plurality of equal-sized grids 214 may be formed on the insulating substrate 202, and then a plurality of equally-sized and equally spaced grooves may be formed on the surface of the insulating substrate 202 by etching. The plurality of grooves are respectively corresponding to the plurality of meshes 214 and disposed on the insulating substrate 202. [0022] A plurality of row electrodes 097105425 can be prepared by a method such as screen printing or sputtering. Form No. A0101 Page 11 / Total 24 Page 0993213484-0 1330858 [0023] [0025] [0027] [0030] [0030] 097105425 099 06 j 18th. The replacement page lead 204 and the plurality of column electrode leads 2〇6. In this embodiment, a plurality of row electrode leads 2 〇 4 and a plurality of column electrode leads 206 ′ are prepared by screen printing, which specifically includes the following steps: First, a plurality of printings are printed on the insulating substrate 2 〇 2 by screen printing. Row electrode leads 2〇4 are arranged in parallel and at equal intervals. Next, a plurality of dielectric insulating layers 216 are printed by the screen printing method at the row electrode lead 2〇4 and the column electrode lead 206 to be formed. Finally, a plurality of parallel and equally spaced column electrode leads 206 are printed on the insulating substrate 2〇2 by screen printing, and the plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 cross each other to form a plurality of nets. 214. It can be understood that, in this embodiment, a plurality of parallel and equally spaced column electrode bows W2〇6 may be printed first, then a plurality of dielectric insulating layers 216 are printed, and finally a plurality of parallel and equally spaced row electrode leads 204 are printed. And a plurality of row electrode leads 204 and a plurality of column electrode bow lines 2〇6 intersect each other to form a plurality of grids 2丨4i. Step 3: forming a thermal electron emitter 208 covering the above-mentioned insulating substrate 202 containing the electrodes 5| . The hot electron emitter 2〇8 of the embodiment of the present technical solution is preferably a carbon nanotube film structure. The preparation method of the carbon nanotube film structure comprises the following steps: (1) preparing at least one carbon nanotube thin crucible. First, the 'providing-carbon nanotube array' is preferably listed as super-aligned. Page 12 of 24 Form No. A0101 0993213484-0 1330858 June 18, 1999, nuclear replacement page Nano carbon nanotube array. [0031] In this embodiment, the method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or selected The tantalum substrate is formed with an oxide layer. In this embodiment, a 4-inch tantalum substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel ( (1) annealing the substrate on which the catalyst layer is formed in air at 700 t: to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate In the reaction furnace, it is heated to 500 ° C ~ 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array having a height greater than 100 μm. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. The area of the carbon nanotube array is substantially the same as the area of the substrate described above. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by controlling the growth conditions as described above. [0032] The carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is understood that the carbon nanotube array provided in the present embodiment is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. [0034] Next, using a stretching tool to pull from the carbon nanotube array to obtain a 097105425 Form No. A0101 Page 13 / Total 24 Page 0993213484-0 1330858 099 June 18th Nuclear Replacement Page Meter Carbon Tube film. [0035] The preparation of the carbon nanotube film specifically includes the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes, and preferably using a tape having a certain width in this embodiment. Contacting the carbon nanotube array to select a plurality of carbon nanotube bundles of a certain width; (b) stretching the plurality of carbon nanotube bundles at a constant speed in a direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous Nano carbon tube film. [0036] In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively caused by the van der Waals force. The other carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film comprises a plurality of end-to-end aligned carbon nanotube bundles, and a plurality of end-to-end aligned carbon nanotube bundles form a nanocarbon line. The carbon nanotube bundle includes a plurality of parallel arranged carbon nanotubes, and the arrangement of the carbon nanotubes is substantially parallel to the stretching direction of the carbon nanotube film. [0037] Again, the at least one carbon nanotube film is laid on the insulating substrate 202 containing the electrode leads to form a carbon nanotube film structure. [0038] The method of laying at least one carbon nanotube film on the insulating substrate 202 containing the electrode lead comprises the steps of: paralleling a carbon nanotube film or at least two carbon nanotube films without gaps The surface of the insulating substrate 202 containing the electrode leads is directly laid in a direction extending from the first electrode 2 10 toward the second electrode 212. Further, at least two carbon nanotube films can be replaced according to the arrangement direction of the carbon nanotubes by an angle of 097105425. Form No. A0101 Page 14 / Total 24 pages 0993213484-0 Revision No. 1330858 The surface of the insulating substrate 202 containing the electrode leads is overlapped and is 0° a 90°. [0039] It can be understood that the method of laying at least one carbon nanotube film on the insulating substrate 202 containing the electrode lead may further include the following steps: providing a support; parallelizing at least two carbon nanotube films And a gap is directly laid on the surface of the support body in a direction extending from the first electrode 210 to the second electrode 21 2 to obtain a carbon nanotube film structure; removing excess carbon nanotube film outside the support body; Treating the carbon nanotube film structure with an organic solvent; removing the carbon nanotube film structure treated with the organic solvent from the support to form a self-supporting carbon nanotube film structure; A tube film structure is laid on the surface of the insulating substrate 202 containing the electrode leads. Further, at least two carbon nanotube films may be overlapped and laid on the surface of the support at an angle of intersection α according to the arrangement direction of the carbon nanotubes, and 0° a 90°. Since the carbon nanotubes in the super-sequential carbon nanotube array provided by the embodiment are very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. The carbon nanotube film can be directly adhered to the support by its own viscosity. [0040] In this embodiment, the size of the support body can be determined according to actual needs. When the width of the support body is larger than the width of the carbon nanotube film, at least two carbon nanotube films may be laid in parallel and without gaps or/and overlapping on the support to form a self-supporting nanocarbon. Tube film structure. [0041] In this embodiment, since the carbon nanotubes in the super-sequential carbon nanotube array provided by the embodiment are very pure, and because the specific surface area of the carbon nanotube itself is very large, the carbon nanotubes are The film structure itself has a strong adhesive 097105425 Form No. A0101 Page 15 / Total 24 Page 0993213484-0 1330858 099 June '18 nuclear replacement page. The carbon nanotube film can be directly adhered to the surface of the insulating substrate 202 containing the electrode lead by its own viscosity. Or coating a surface of the insulating substrate 202 containing the electrode lead with a layer of conductive paste; covering at least one carbon nanotube film over the entire insulating substrate 202 containing the electrode lead, so that the at least one carbon nanotube The film is electrically connected to the surface of the insulating substrate 202 containing the electrode lead; the carbon nanotube film larger than the area of the insulating substrate 202 is cut away. [0042] In addition, in this embodiment, the carbon nanotube film may be further treated with an organic solvent after the step of directly laying the carbon nanotube film on the insulating substrate containing the electrode lead to form a carbon nanotube film structure. structure. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube film structure through a test tube to infiltrate the entire carbon nanotube film structure. Alternatively, the carbon nanotube film structure may be entirely immersed in a container containing an organic solvent. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or gas, and ethanol is preferably used in this embodiment. After the carbon nanotube film is infiltrated by an organic solvent, the parallel carbon nanotube segments in the structure of the carbon nanotube film partially aggregate into the carbon nanotube bundle under the action of the surface tension of the volatile organic solvent. The carbon nanotube film has a small surface volume ratio, a low viscosity, and good mechanical strength and toughness, and the carbon nanotube film treated by the organic solvent is more excellent in performance. [0043] Step 4: preparing a plurality of first electrodes 210 and a plurality of second electrodes 212 on the surface of the thermal electron emitter 208, and arranging a first electrode 210 and a second in each of the grids 214 Electrode 212. [0044] The first electrode 21 0 and the second electrode 2 12 can be prepared by screen printing 097105425 Form No. A0101 Page 16 / Total 24 Page 0993213484-0 1330858 099 June 18 Shuttle is replacing page method or splashing Method such as shooting method. In this embodiment, a first electrode 210 is prepared on the surface of the carbon nanotube film structure corresponding to the row electrode lead 204 in the grid 214 of each row by a screen printing method, and the first electrode 210 and the same row of electrode leads 204 are prepared. Forming an electrical connection; preparing a second electrode 212 on the surface of the carbon nanotube film structure corresponding to the column electrode 206 in the grid 214 of each column by screen printing or sputtering, the second electrode 212 and the same column The electrode leads 206 form an electrical connection. A spacing is maintained between the first electrode 210 and the second electrode 212 for providing a carbon nanotube film structure. The thickness of the first electrode 210 and the second electrode 212 is greater than the thickness of the row electrode lead 204 and the column electrode lead 206 to facilitate the arrangement of the carbon nanotube film structure in the subsequent step. It can be understood that, in this embodiment, the printed first electrode 210 can be directly in contact with the corresponding column electrode lead 206, thereby achieving electrical connection, and the second electrode 212 is in direct contact with the corresponding row electrode lead 204, thereby realizing electricity. connection. [0045] Step 5: cutting and removing the excess thermal electron emitter 208, and retaining the thermal electron emitter 208 covering each of the first electrode 210 and the second electrode 212 in each of the grids 214, thereby obtaining a thermal emission electron. Device 200. [0046] In the embodiment, the method of cutting and removing the structure of the excess carbon nanotube film is a laser ablation method or an electron beam scanning method. In this embodiment, the carbon nanotube film structure is preferably cut by laser ablation, and specifically includes the following steps: First, a laser beam of a certain width is used to scan along each row electrode lead 204. The purpose of this step is to remove the carbon nanotube film structure between the electrodes of different rows, including the first electrode 210 and the second electrode 212. Wherein, the width of the laser beam is equal to two adjacent 097105425 located in different rows. Form No. A0101 Page 17 / Total 24 Page 0993213484-0 1330858 __ 099 Year 06i 18th 'Press the second electrode 212 of the replacement page The distance between rows is between 100 microns and 500 microns. [0048] Next, a laser beam of a certain width is scanned along each column electrode lead 206 to remove the carbon nanotube film structure between the electrodes of different columns (including the first electrode 210 and the second electrode 212). The carbon nanotube film structure covering each of the first electrode 210 and the second electrode 212 in each of the grids 214 is thereby retained. Wherein the width of the laser beam is equal to the distance between rows of two adjacent first electrodes 210 located in different columns, ranging from 100 micrometers to 500 micrometers. [0049] In this embodiment, the above method can be carried out in an atmospheric environment or other oxygen-containing environment. The excess carbon nanotubes are removed by laser ablation using a laser power of 10 watts to 50 watts and a scanning speed of 10 mm/min to 1 000 mm/min. In this embodiment, preferably, the laser power is 30 watts and the scanning speed is 100 mm/min. [0050] Compared with the prior art, the heat-emitting electronic device has the following advantages: First, a carbon nanotube film is used as a thermal electron emitter, and the carbon nanotubes are uniformly distributed in the carbon nanotube film. The prepared heat-emitting electronic device can emit a uniform and stable flow of hot electrons; secondly, the carbon nanotube film is spaced apart from the insulating substrate, and the insulating substrate does not conduct heat generated by heating the carbon nanotube film into the atmosphere. Therefore, the prepared heat-emitting electronic device has excellent thermal electron emission performance; thirdly, the small size of the carbon nanotube film structure can be directly laid on the electrode to realize the thermal electron emission unit in the thermal emission electronic device. Miniaturization, which can be used for a variety of fields such as high-definition and high-brightness flat panel display and logic circuits 097105425 Form No. A0101 Page 18/24 pages 0993213484-0 1330858 099 June 18th Nuclear replacement page [0051 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the following claims. [FIG. 1] FIG. 1 is a thermal emission electron of an embodiment of the present technical solution. Structure of the device 005 [0053] FIG. 2 is a schematic flow chart of a method for preparing a thermal emission electronic device according to an embodiment of the present technical solution. [Main component symbol description] [0054] Thermal emission electronic device: 200 [0055] Insulation substrate: 202 [0056] Row electrode lead: 204 [0057] Column electrode lead: 206 [0058] Thermal electron emitter: 208 [0059] First electrode: 21 0 [0060] Second electrode: 21 2 [0061] Grid: 214 [0062] Dielectric insulating layer: 216 [0063] Thermal electron emission unit: 220 097105425 Form number A0101 Page 19 of 24 0993213484-0

Claims (1)

1330858 __ 099年06i 18日修正替換頁 七、申請專利範圍: 1 . 一種熱發射電子器件,其包括: 一絕緣基底; 複數個行電極引線與列電極引線分別平行且等間隔設置於 絕緣基底上,該複數個行電極引線與複數個列電極引線相 互交叉設置,每兩個相鄰的行電極引線與每兩個相鄰的列 電極引線形成一個網格,且行電極引線與列電極引線之間 電絕緣; 複數個熱電子發射單元,每個熱電子發射單元對應一個網 格設置,且包括一第一電極、一第二電極和一熱電子發射 體,該第一電極與第二電極間隔設置於所述對應的網格中 ,並分別與所述行電極引線和列電極引線電連接,所述熱 電子發射體與所述第一電極和第二電極電連接; 其改良在於,所述絕緣基底具有複數個凹槽,所述每個凹 槽對應一個網格並設置於所述絕緣基底表面,所述熱電子 發射體至少部分通過所述凹槽與辦述絕緣基底間隔設置。 2. 如申請專利範圍第1項所述的熱發射電子器件,其中,所 述每個熱電子發射體與相應網格内的凹槽對應並設置於所 述絕緣基底表面。 3. 如申請專利範圍第1項所述的熱發射電子器件,其中,所 述複數個凹槽等大且等間隔設置於所述絕緣基底的表面。 4. 如申請專利範圍第1項所述的熱發射電子器件,其中,所 述網格按陣列排列,每一行的網格中的第一電極與同一行 電極引線電連接,每一列的網格中的第二電極與同一列電 極引線電連接。 097105425 表單編號A0101 第20頁/共24頁 0993213484-0 5 I 099年 06月 18 日 如申喷專利範圍第1項所述的熱發射電子器件,其中,所 述第一電極和第二電極的厚度為1〇微米~5〇微米,所述第 電極和第二電極之間的間隔距離為15〇微米〜45〇微米。 如申凊專利範圍第1項所述的熱發射電子器件,其中,所 述熱電子發射體為一薄膜結構或者至少一根長線。 .如申请專利範圍第6項所述的熱發射電子器件,其中,所 述熱電子發射體為一奈米碳管薄膜結構。 .如申請專利範圍第7項所述的熱發射電子器件,其中,所 述奈米碳營薄膜結構包括至少一奈米碳管薄膜,該奈米碳 s薄膜中的奈米碳管沿同一方向擇優取向排列。 9 .如申請專利範圍第8項所述的熱發射電子器件,其中,所 述奈米碳管薄膜結構包括一奈米碳管薄膜,該奈米碳管薄 膜中的奈米碳管沿從所述第一電極向所述第二電極延伸的 方向排列。 10 ·如申請專利範圍第8項所述的熱發射電子器件,其中,所 述奈米碳管薄膜結構包括至少兩個重疊設置的奈米碳管薄 膜’該重疊設置的奈米碳管薄膜中相鄰兩個奈米碳管薄膜 中的奈米碳管排列方向具有一交又角度α,且0。 α 9〇β 〇 11 12 13 097105425 如申請專利範圍第8項所述的熱發射電子器件,其中,所 述奈米碳管薄膜的寬度為0. 01厘米〜10厘米,厚度為1〇奈 米〜100微米。 如申請專利範圍第8項所述的熱發射電子器件,其中,所 述奈米碳管薄膜包括複數個首尾相連且擇優取向排列的奈 米碳管束,相鄰的奈米碳管束之間通過凡得瓦力連接。 如申請專利範圍第6項所述的熱發射電子器件,其中,所 0993213484-0 表單編號Α0101 第21頁/共24頁 1330858 099年06月‘ 18日·梭正替換頁 述熱電子發射體為至少一根奈米碳管長線。 14 .如申請專利範圍第13項所述的熱發射電子器件,其中,所 述的奈米碳管長線的直徑為0.5奈米~100微米。 15 .如申請專利範圍第13項所述的熱發射電子器件,其中,所 述奈米碳管長線包括由複數個平行的首尾相連的奈米碳管 束組成的束狀結構或由複數個首尾相連的奈米碳管束組成 的絞線結構,相鄰的奈米碳管束之間通過凡得瓦力連接。 16 .如申請專利範圍第12項或第15項所述的熱發射電子器件 ,其中,所述奈米碳管束包括複數個長度相等且相互平行 排列的奈米碳管,相鄰的奈米碳管之間通過凡得瓦力連接 097105425 表單編號A0101 第22頁/共24頁 0993213484-01330858 __ 099 06i 18th revised replacement page VII. Patent application scope: 1. A thermal emission electronic device comprising: an insulating substrate; a plurality of row electrode leads and column electrode leads are respectively parallel and equally spaced on the insulating substrate The plurality of row electrode leads and the plurality of column electrode leads are disposed to cross each other, and each two adjacent row electrode leads form a grid with each two adjacent column electrode leads, and between the row electrode leads and the column electrode leads Electrically insulated; a plurality of thermal electron emission units, each of the thermal electron emission units corresponding to a grid arrangement, and comprising a first electrode, a second electrode and a thermal electron emitter, the first electrode and the second electrode are spaced apart In the corresponding grid, and electrically connected to the row electrode lead and the column electrode lead, respectively, the hot electron emitter is electrically connected to the first electrode and the second electrode; the improvement is that the insulation The substrate has a plurality of grooves, each of the grooves corresponding to a grid and disposed on the surface of the insulating substrate, the thermal electron emitter at least Spaced apart by the recess do with said insulating substrate. 2. The heat-emitting electronic device of claim 1, wherein each of the thermionic emitters corresponds to a groove in the corresponding grid and is disposed on a surface of the insulating substrate. 3. The heat-emitting electronic device of claim 1, wherein the plurality of grooves are equally large and equally spaced on a surface of the insulating substrate. 4. The heat-emitting electronic device of claim 1, wherein the grids are arranged in an array, and the first electrode in the grid of each row is electrically connected to the same row of electrode leads, and the grid of each column The second electrode in the electrical connection is electrically connected to the same column electrode lead. 097105425 Form No. A0101 Page 20 of 24 0993213484-0 5 I. The heat-emitting electronic device of claim 1, wherein the first electrode and the second electrode are The thickness is from 1 μm to 5 μm, and the distance between the first electrode and the second electrode is from 15 μm to 45 μm. The heat-emitting electronic device of claim 1, wherein the thermal electron emitter is a thin film structure or at least one long line. The heat-emitting electronic device of claim 6, wherein the thermal electron emitter is a carbon nanotube film structure. The heat-emitting electronic device of claim 7, wherein the nanocarbon film structure comprises at least one carbon nanotube film, and the carbon nanotubes in the nanocarbon film are in the same direction Preferred orientation. 9. The heat-emitting electronic device of claim 8, wherein the carbon nanotube film structure comprises a carbon nanotube film, and the carbon nanotubes in the carbon nanotube film are along The first electrodes are arranged in a direction in which the second electrodes extend. The heat-emitting electronic device of claim 8, wherein the carbon nanotube film structure comprises at least two overlapping carbon nanotube films in the overlapping carbon nanotube film The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films has an intersection angle α and 0. The heat-emitting electronic device according to the invention of claim 8, wherein the carbon nanotube film has a width of 0.01 cm to 10 cm and a thickness of 1 〇 nanometer. ~100 microns. The heat-emitting electronic device of claim 8, wherein the carbon nanotube film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and adjacent carbon nanotube bundles are passed between Connected to the tile. The heat-emitting electronic device according to claim 6 of the patent application, wherein the 0993213484-0 form number Α0101 page 21/24 pages 1330858 099 June '18 At least one carbon nanotube long line. The heat-emitting electronic device according to claim 13, wherein the long diameter of the carbon nanotube is 0.5 nm to 100 μm. The heat-emitting electronic device of claim 13, wherein the carbon nanotube long line comprises a bundle structure consisting of a plurality of parallel end-to-end carbon nanotube bundles or a plurality of end-to-end connections The stranded carbon nanotube bundle consists of a bundle of adjacent carbon nanotube bundles connected by van der Waals. The heat-emitting electronic device of claim 12, wherein the carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other, adjacent carbon carbon Between the tubes through the van der Waals connection 097105425 Form No. A0101 Page 22 / Total 24 Page 0993213484-0
TW97105425A 2008-02-15 2008-02-15 Thermionic emission device TWI330858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Publications (2)

Publication Number Publication Date
TW200935485A TW200935485A (en) 2009-08-16
TWI330858B true TWI330858B (en) 2010-09-21

Family

ID=44866597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105425A TWI330858B (en) 2008-02-15 2008-02-15 Thermionic emission device

Country Status (1)

Country Link
TW (1) TWI330858B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001641B (en) 2009-08-28 2013-06-05 清华大学 Method for preparing carbon nanotube linear structure
TWI391323B (en) * 2009-09-09 2013-04-01 Hon Hai Prec Ind Co Ltd Mehtod for manufacturing carbon nanotube linear structure

Also Published As

Publication number Publication date
TW200935485A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
CN101471211B (en) Thermal emission electronic component
CN101471213B (en) Thermal emission electronic component and method for producing the same
CN101471212B (en) Thermal emission electronic component
JP5199052B2 (en) Method for manufacturing thermionic emission device
CN101499389B (en) Electronic emitter
JP5491036B2 (en) Field emission electron source and manufacturing method thereof
JP5209659B2 (en) Incandescent light source display device
JP5102193B2 (en) Thermionic emission device
TWI330858B (en) Thermionic emission device
TWI386966B (en) Field emission display
TWI352369B (en) Thermionic emission device and method for making t
TWI417924B (en) Field emission electronic device
KR101126296B1 (en) Method for manufacturing carbon nanotube sheet and field emission device using the same
TW200932665A (en) Thermionic emission device
TW200933692A (en) Method for making field emission electron device
TW200937484A (en) Electron emission device and method for making the same
TW200933686A (en) Thermionic source