TWI360831B - Field emission electron device - Google Patents

Field emission electron device Download PDF

Info

Publication number
TWI360831B
TWI360831B TW96150083A TW96150083A TWI360831B TW I360831 B TWI360831 B TW I360831B TW 96150083 A TW96150083 A TW 96150083A TW 96150083 A TW96150083 A TW 96150083A TW I360831 B TWI360831 B TW I360831B
Authority
TW
Taiwan
Prior art keywords
electrode
electron
field emission
electronic device
cathode
Prior art date
Application number
TW96150083A
Other languages
Chinese (zh)
Other versions
TW200929322A (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96150083A priority Critical patent/TWI360831B/en
Publication of TW200929322A publication Critical patent/TW200929322A/en
Application granted granted Critical
Publication of TWI360831B publication Critical patent/TWI360831B/en

Links

Description

1360831 Μ 九、發明說明: 【發明所屬之技術領域】 尤其涉及一種大面 本發明涉及一種場發射電子器件 積場發射電子器件。 【先前技術】1360831 发明 Nine, invention description: [Technical field to which the invention pertains] In particular, the invention relates to a field emission electronic device field emission electronic device. [Prior Art]

場發射電子器件在低溫或者室溫下工作,與電真空器 件中的熱發射電子器件相比具有功耗低、回應速度快^ 低放電等優點,因此用場發射電子器件有望替代電真空器 件中的熱發射電子器件。大面積場發射電子器件在大勞^ 顯示器等裝置中有著廣闊的應用前景,因此,製備大面積 场發射電子器件成為目前研究的一個熱點。 請參閱圖1,先前技術中提供一種大面積場發射電子 器件100,包括一絕緣基底102,多個電子發射單元12〇 設置於該絕緣基底1〇2上,以及多個行電極引線1〇4與多 個列電極引線106設置於該絕緣基底1〇2上。其中,所述 的多個行電極引線1〇4與多個列電極引線1〇6分別平行且 等間隔設置於絕緣基底102上。所述多個行電極引線ι〇4 與多個列電極引線1〇6相互交叉設置,且在行電極引線1〇4 與列電極引線106交又處由一介質絕緣層116隔離,以防 止短路。每兩個相鄰的行電極引線1〇4與兩個相鄰的列電 極引線106形成一網格118,且每個網格118定位一個電 子發射單元120。 所述多個電子發射單元12〇按照預定規律排列,間隔 设置於上述網格118中,且每個網格;q 8中設置一個電子 發射單元120。母個電子發射單元12〇包括一行電極HQ, 7 136083.1 列電極112以及一電子發射體1〇8設置於該行電極ιι〇 與列包極112上。該行電極11〇與列電極112對應且間隔 .設置。該電子發射體1〇8兩端分別與行電極11〇和列電極 112电連接。每個行電極n〇分別和與其對應的行電極引 線104電連接’每個列電極112 >別和與其對應的列電極 引線106電連接。 所述的電子發射體108包括一電子發射區114。該電 子發射區114位於電子發射體1〇8上,且該電子發射區ιΐ4 •包括一個或數個間隙用於發射電子。通常,所述的電子發 射體108為一包含金屬化合物(# :氧化鈀等)的導電薄 膜(請參見,表面傳導電子發射顯示技術進展,液晶與顯 不,vn,p226_231 ( 2006))。當在電子發射體的兩端 加上適當的電壓時,由於隨道效應,電子將從電子發射體 108的電子發射區114的間隙的一端飛向另一端,從而實 現電子發射。然而,採用包含金屬化合物的導電薄膜作為 電子發射體108的大面積場發射電子器件1〇〇工作時,产 籲過電子發射體⑽的電流較大,所以發射電子的功耗大二 另外’由於製備玉藝所限制,f十電子發射體1〇8進行啟 形本電子發射區114時,難以精確控制電子發射區ιΐ4的 形狀和位置,所以電子發射體1〇8的電子發射特性有差 異,從而導致發射的電子整體均勻性較差。 有雲於此,提供一種功耗低,發射的電子整體均勻性 好的大面積場發射電子器件實為必要。 【發明内容】 8 1360831 .電極;電子器件,其包括:-絕緣基底;多個行 每兩個相鄰:線與多個列電極引線相互交又設置, 個網格鄰的列電㈣線形成一 發射單元,每個電子發::極引線之間電絕緣;多個電子 子於 __ 發射早兀對應一個網格設置,每個電 極括間隔設置的一陰極電極與-陽極電 電極引線 t:: 電極分別與上述行電極引線與列 與陰極電極電連接陰=二木體’該陰極發射體-端 極電極間隔設置,且;—端*陽射體的另-端與陽 微米〜細微米。 I、〜極電極之間的間距為10 相較于先前技術,所述的場發射電子器件中,所述阶 :發Γ:Γ與陰極電極電連接,另一端與陽極電_ =所:端與陽極電極之間的間距為10微米〜咖 2 ’所以’該場發射電子器件工作時,陰極電極與陽極 電極之間不會形成電流’所以功耗低。而且,該場發射電 子器件中,多個陰極發射體之間的行距與列距相等,且 發射體2離陰極電極的一端與陽極電極之間的間隔 相4 ’所以發射的電子整體均勻性好。 【實施方式】 明 以下將結合附圖對本技術方案作進一步的詳細說 請參閱圖2及目3’ I技術方案實施例提供一種場 1360831 射電子器件200,包括一絕緣基底202,多個電子發射單 -元220設置於該絕緣基底202上,以及多個行電極引線 '204與多個列電極引線206設置於該絕緣基底202上。所 述多個行電極引線204與列電極引線206分別平行且等 間隔設置於絕緣基底202上。所述多個行電極引線204 與多個列電極引線206相互交叉設置,而且,在行電極 引線204與列電極引線206交叉處設置有一介質絕緣層 216,該介質絕緣層216將行電極引線204與列電極引線 • 206電隔離,以防止短路。每兩個相鄰的行電極引線204 與兩個相鄰的列電極引線206形成一網格214,且每個網 格214定位一個電子發射單元220。 所述多個電子發射單元220對應設置於上述網格214 中,且每個網格214中設置一個電子發射單元220。每個 電子發射單元220包括一陽極電極210,一陰極電極 212,以及一陰極發射體208。該陽極電極210與陰極電 A極212對應且間隔設置。該陰極發射體208設置於陽極 電極210與陰極電極212之間,且,陰極發射體208 — 端與陰極電極212電連接,另一端指向陽極電極210。該 陰極發射體208與絕緣基底202間隔設置或設置於絕緣 基底202上。本實施例中,同一行的電子發射單元220 中的陽極電極210與同一行電極引線204電連接,同一 列的電子發射單元220中的陰極電極212與同一列電極 引線206電連接。 所述的絕緣基底202為一絕緣基板,如陶瓷基板、 乂丄 斑,j广月日基板、石英基板等。絕緣基底2°2大小 例::t領域技術人員可以根據實際需要選擇。 為大:1毫平絕2底202優選為—玻璃基板’其厚度 笔水’邊長大於1厘米。 -導戶ϋ夕tl電極引線204與多個列電極引線206為 線…。本實施例中,該多個行電極引 的不而,:、:列電極引線206優選為採用導電漿料印y 體,且該多個行電極引…多個列2 行距和列距為300微米〜500微求。該行電極 戶声A川、列電極引線206的寬度為30微米〜100微米, 〜5〇微米。本實施例中,該行電極引丄 卯L H 的交叉角度為1〇度到9〇度,優選為 絕綾^广90 Μ例中’通過絲網印刷法將導電毁料印製於 哕I i t…2上製備行電極引線204與列電極引線206。 ΐ。Μ料的成分包括金屬粉、低溶點玻璃粉和枯結 二:,、’該金屬粉優選為銀粉,該減劑優選為松油 =乙基纖維素。該導電聚料中’金屬粉的重量比為 川〜90%,低熔點玻璃粉 量比為10〜40%。刀的重里比為2〜鄕’枯結劑的重 所述陰極電極212與陽極電極21()為一導電體,如 兔一層等,°本實施例中’該陰極電極212與陽極電極21〇 ’·’、一平面導電體’其尺寸依據網⑮214的尺寸決定。該 ^極^極212和陽極電極21〇直接與上述電極引線連 接,從而實現電連接。陰極電極212與陽極電極21〇的 11 1360831 長度為1〇〇微米〜1毫米,寬度為30微米〜100微米,厚 度為10微米〜1〇〇微米。本實施例中,陰極電極與陽 極電極210的長度優選為15〇微米,寬度優選為5〇微米, 厚度優選為50微米。本實施例中,該陰極電極212與陽 ,電極210㈣料為導電衆料,㈣絲網印刷法印製於 絕緣基底202上。該導電漿料的成分與上述電極引線所 用的導電漿料的成分相同。 所述陰極發射體208包括多個平行且等間隔排列的 =子發射體218,如:矽線、單根碳纖維或奈米碳管長線 等。而且,每個電子發射體218包括一電子發射端2^, 該電子發射端222為電子發射體218遠離陰極電極212 的一端。請參閱圖4’本實施例中,陰極發射體2〇8包括 多個2行排列的奈来碳管長線。採用多個平行排列的奈 米炭&長線作為陰極發射體208時,每個奈米碳管長線 的一端與陰極電極212電連接,另一端指向陽極電極 210,作為電子發射體21δ的電子發射端222。該電子發 射端222與陽極電極21〇之間的距離為1〇微米〜2〇〇微 米。該陰極發射體208 一端與陰極電極212的電連接方 式可以為通過一導電膠電連接,也可以通過分子間力或 /二他方式實現。該奈米碳管長線的長度為微米〜4〇〇 微米’且相鄰的奈米碳管長線之間的間距為1奈米〜100 不米。該奈米碳管長線中包括多個首尾相連且擇優取向 排列的奈米碳管束,相鄰的奈米碳管束之間通過凡德瓦 爾力連接。該奈米碳管束中包括多個平行且緊密排列的 12 1360831 奈米碳管。所述奈米碳管長線中的奈米碳管為單壁、雙 壁或多壁奈米碳管。所述奈米碳管的長度範圍為1〇微米 〜100微米,且奈米碳管的直徑小於15奈米。 另外,該場發射電子器件200的每個電子發射單元 220可以進一步包括一固定電極224設置於陰極電極 上,且該固定電極224將陰極發射電極2〇8固定於陰極 電極212上。 'Field-emitting electronic devices operate at low temperatures or room temperature, and have the advantages of low power consumption, fast response speed, low discharge, etc. compared to thermal-emitting electronic devices in electric vacuum devices. Therefore, field emission electronic devices are expected to replace electric vacuum devices. Thermal emission electronics. Large-area field emission electronic devices have broad application prospects in devices such as large-scale displays and displays. Therefore, the preparation of large-area field emission electronic devices has become a hot research topic. Referring to FIG. 1, a prior art provides a large-area field emission electronic device 100 including an insulating substrate 102, a plurality of electron-emitting units 12 disposed on the insulating substrate 1〇2, and a plurality of row electrode leads 1〇4. A plurality of column electrode leads 106 are disposed on the insulating substrate 1〇2. The plurality of row electrode leads 1〇4 and the plurality of column electrode leads 1〇6 are respectively disposed in parallel and equally spaced on the insulating substrate 102. The plurality of row electrode leads ι4 and the plurality of column electrode leads 1〇6 are disposed to cross each other, and the row electrode leads 1〇4 and the column electrode leads 106 are separated from each other by a dielectric insulating layer 116 to prevent short circuit. . Each two adjacent row electrode leads 1〇4 and two adjacent column electrode leads 106 form a grid 118, and each grid 118 positions an electron-emitting unit 120. The plurality of electron-emitting units 12 are arranged in a predetermined pattern, spaced apart from the grid 118, and each of the grids; q 8 is provided with an electron-emitting unit 120. The mother electron-emitting unit 12A includes a row of electrodes HQ, 7 136083.1 column electrodes 112, and an electron emitter 1〇8 disposed on the row electrode ιι and the column package 112. The row electrodes 11A are arranged corresponding to the column electrodes 112 and spaced apart. Both ends of the electron emitter 1〇8 are electrically connected to the row electrode 11A and the column electrode 112, respectively. Each row electrode n〇 is electrically connected to its corresponding row electrode lead 104, respectively. Each column electrode 112 > is not electrically connected to its corresponding column electrode lead 106. The electron emitter 108 includes an electron emission region 114. The electron-emitting region 114 is located on the electron emitter 1 8 and includes one or a plurality of gaps for emitting electrons. Generally, the electron emitter 108 is a conductive film containing a metal compound (#: palladium oxide, etc.) (see, Progress in Surface Conduction Electron Emission Display Technology, Liquid Crystal and Display, vn, p226_231 (2006)). When an appropriate voltage is applied across the electron emitter, electrons will fly from one end of the gap of the electron-emitting region 114 of the electron emitter 108 to the other end due to the channel effect, thereby realizing electron emission. However, when a large-area field emission electron device using a conductive film containing a metal compound as the electron emitter 108 is operated, the current of the electron emitter (10) is large, so that the power consumption of the emitted electrons is large. The limitation of the preparation of the jade art, when the f-electron emitter 1〇8 is used to open the electron-emitting region 114, it is difficult to precisely control the shape and position of the electron-emitting region ιΐ4, so the electron-emitting characteristics of the electron-emitting device 1〇8 are different. As a result, the overall uniformity of the emitted electrons is poor. In view of this, it is necessary to provide a large-area field emission electronic device with low power consumption and good overall uniformity of emitted electrons. SUMMARY OF THE INVENTION 8 1360831. Electrode; electronic device, comprising: - an insulating substrate; a plurality of rows each two adjacent: a line and a plurality of column electrode leads are mutually arranged, and a grid of adjacent columns of electric (four) lines are formed a firing unit, each of the electrons:: electrically insulated between the pole leads; a plurality of electrons are arranged in a grid corresponding to the __ launch, each of the electrodes is provided with a cathode electrode and an anode electrode lead :: the electrodes are electrically connected to the row electrode lead and the column and the cathode electrode, respectively, and the cathode emitter-end electrode is spaced apart, and the end of the emitter is at the other end and the anode is micronized to fine Meter. The spacing between the I and ~ pole electrodes is 10 compared to the prior art, in the field emission electronic device, the order: the hairpin: the cathode is electrically connected to the cathode electrode, and the other end is electrically connected to the anode. The distance from the anode electrode is 10 micrometers to 2 coffee's. Therefore, when the field emission electron device operates, no current is formed between the cathode electrode and the anode electrode, so the power consumption is low. Moreover, in the field emission electronic device, the line spacing between the plurality of cathode emitters is equal to the column pitch, and the interval between the emitter 2 and the anode electrode is 4′′, so the overall electron emission uniformity is good. . [Embodiment] Hereinafter, the present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2 and FIG. 3, a technical solution embodiment provides a field 1368831 electron-emitting device 200, including an insulating substrate 202, and multiple electron emission. The single-element 220 is disposed on the insulating substrate 202, and a plurality of row electrode leads '204 and a plurality of column electrode leads 206 are disposed on the insulating substrate 202. The plurality of row electrode leads 204 and the column electrode leads 206 are respectively disposed in parallel and equally spaced on the insulating substrate 202. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed to cross each other, and a dielectric insulating layer 216 is disposed at a intersection of the row electrode leads 204 and the column electrode leads 206, and the dielectric insulating layer 216 sets the row electrode leads 204. Electrically isolated from column electrode leads • 206 to prevent short circuits. Each two adjacent row electrode leads 204 and two adjacent column electrode leads 206 form a grid 214, and each grid 214 positions an electron-emitting unit 220. The plurality of electron emission units 220 are correspondingly disposed in the mesh 214, and one electron emission unit 220 is disposed in each of the grids 214. Each electron-emitting unit 220 includes an anode electrode 210, a cathode electrode 212, and a cathode emitter 208. The anode electrode 210 corresponds to the cathode electric pole 212 and is spaced apart. The cathode emitter 208 is disposed between the anode electrode 210 and the cathode electrode 212, and the cathode emitter 208 is electrically connected to the cathode electrode 212 and the other end is directed to the anode electrode 210. The cathode emitter 208 is spaced apart from or disposed on the insulating substrate 202. In the present embodiment, the anode electrode 210 in the electron-emitting unit 220 of the same row is electrically connected to the same row electrode lead 204, and the cathode electrode 212 in the electron-emitting unit 220 of the same row is electrically connected to the same column electrode lead 206. The insulating substrate 202 is an insulating substrate, such as a ceramic substrate, a smear, a stellite substrate, a quartz substrate, or the like. Insulation base 2 ° 2 size Example:: t field technicians can choose according to actual needs. To be large: 1 mA 2 bottom 202 is preferably - the glass substrate 'the thickness of the pen water' side length is greater than 1 cm. - The guide TL electrode lead 204 and the plurality of column electrode leads 206 are line... In this embodiment, the plurality of row electrode leads are not:,: the column electrode lead 206 is preferably printed with a conductive paste, and the plurality of row electrodes are led by a plurality of columns 2 rows and a column spacing of 300 Micron ~ 500 micro-seeking. The width of the row of electrode A and column electrode leads 206 is 30 micrometers to 100 micrometers, and is less than 5 micrometers. In this embodiment, the intersection angle of the row electrode lead LH is 1 到 to 9 ,, preferably 绫 广 广 广 90 Μ 中 ' ' ' 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 it it it it it it it it it it it it The row electrode lead 204 and the column electrode lead 206 are prepared on ... 2 . Hey. The ingredients of the dip consisting of metal powder, low melting point glass frit and dry knot 2:, 'The metal powder is preferably silver powder, and the reducing agent is preferably pine oil = ethyl cellulose. The weight ratio of the metal powder in the conductive polymer is ~90%, and the ratio of the low-melting glass powder is 10 to 40%. The weight ratio of the knife is 2~鄕', and the cathode electrode 212 and the anode electrode 21() are a conductor, such as a rabbit layer, etc., in the present embodiment, the cathode electrode 212 and the anode electrode 21 '·', a planar conductor 'its size is determined by the size of the mesh 15214. The ? electrode 212 and the anode electrode 21 are directly connected to the above electrode lead, thereby achieving electrical connection. The anode electrode 212 and the anode electrode 21 are 11 1360831 having a length of 1 μm to 1 mm, a width of 30 μm to 100 μm, and a thickness of 10 μm to 1 μm. In the present embodiment, the length of the cathode electrode and the anode electrode 210 is preferably 15 μm, the width is preferably 5 μm, and the thickness is preferably 50 μm. In this embodiment, the cathode electrode 212 and the anode 210 are electrically conductive and (4) screen printed on the insulating substrate 202. The composition of the conductive paste is the same as that of the conductive paste used for the electrode lead described above. The cathode emitter 208 includes a plurality of parallel and equally spaced = sub-emitters 218, such as: twisted wires, single carbon fibers, or long carbon nanotube tubes. Moreover, each of the electron emitters 218 includes an electron emission end 222 which is an end of the electron emitter 218 away from the cathode electrode 212. Referring to Fig. 4', in the present embodiment, the cathode emitter 2〇8 includes a plurality of long lines of Nyle carbon nanotubes arranged in two rows. When a plurality of parallel carbon nanotubes and long wires are used as the cathode emitter 208, one end of each nanocarbon long line is electrically connected to the cathode electrode 212, and the other end is directed to the anode electrode 210 as electron emission of the electron emitter 21δ. End 222. The distance between the electron emitting end 222 and the anode electrode 21A is 1 〇 micrometer to 2 〇〇 micrometer. The electrical connection between one end of the cathode emitter 208 and the cathode electrode 212 may be electrically connected through a conductive paste, or may be achieved by an intermolecular force or a binary method. The length of the long carbon nanotube wire is micrometer ~ 4 〇〇 micron' and the spacing between adjacent carbon nanotube long wires is 1 nm to 100 m. The long carbon nanotube line includes a plurality of carbon nanotube bundles arranged end to end and preferentially oriented, and adjacent carbon nanotube bundles are connected by van der Waal force. The carbon nanotube bundle includes a plurality of parallel and closely arranged 12 1360831 carbon nanotubes. The carbon nanotubes in the long line of the carbon nanotubes are single-walled, double-walled or multi-walled carbon nanotubes. The carbon nanotubes have a length ranging from 1 μm to 100 μm, and the diameter of the carbon nanotubes is less than 15 nm. In addition, each electron-emitting unit 220 of the field emission electronic device 200 may further include a fixed electrode 224 disposed on the cathode electrode, and the fixed electrode 224 fixing the cathode emitter electrode 2〇8 to the cathode electrode 212. '

本實施例中,所述場發射電子器件2〇〇中,陰極發 射體.208的-端與陰極電極212電連接,另—端與陽極 電極210間隔設置’且另一端與陽極電極21〇之間的間 距為10微米〜200微米,所以,該場發射電子器件2〇〇工 作時,陰極電極212與陽極電極21G之間不會形成電流, 所以功耗低。而且,該大面積場發射電子器件細中, 多個陰極發㈣208 <間的行距與列距相等,且每個陰 極發射體細遠離陰極電極212的—端與陽極電極^ f間的間隔相等’每個陰極發射It咖包括多個平行且 :間隔設置的電子發射體218,所以發射的電子整體均勻 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者 k Vi th irp ^ ^ 僅為本發明之較佳實施例, 之人士接…ΤΙ 範圍。舉凡熟悉本案技藝 之人士杈依本發明之精神所作 I 之專效修飾或變化,皆應涵 盍於以下申凊專利範圍内。 【圖式簡單說明】 1360831 圖1為先前技術中的場發射電子器件的俯視圖。 •圖2為本技術方案實施例的場發射電子器件的俯視 •圖。 圖3為本技術方案實施例的場發射電子器件的側視 圖。 圖4為本技術方案實施例的場發射電子器件的電子發 射單元的掃描電鏡照片。 【主要元件符號說明】 ®場發射電子器件 100, 200 絕緣基底 102, 202 行電極引線 104, 204 列電極引線 106, 206 電子發射體 108, 218 行電極 110 列電極 112 I電子發射區 114 介質絕緣層 116,216 網格 118, 214 電子發射單元 120, 220 陰極發射體 208 陽極電極 210 陰極電極 212 電子發射端 222 固定電極 224 14In this embodiment, in the field emission electronic device 2, the end of the cathode emitter 208 is electrically connected to the cathode electrode 212, the other end is spaced apart from the anode electrode 210, and the other end is connected to the anode electrode 21. The spacing between the electrodes is from 10 micrometers to 200 micrometers. Therefore, when the field emission electron device 2 is operated, no current is formed between the cathode electrode 212 and the anode electrode 21G, so power consumption is low. Moreover, in the large-area field emission electronic device, the spacing between the plurality of cathodes (four) 208 < and the column spacing is equal, and the spacing between the end of each cathode emitter that is away from the cathode electrode 212 and the anode electrode ^ f is equal. 'Each cathode emission It coffee includes a plurality of parallel and spaced-apart electron emitters 218, so the emitted electrons are uniformly integrated as a whole, and the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above-mentioned k Vi th irp ^ ^ is only a preferred embodiment of the present invention, and the scope of the person is limited. Any person who is familiar with the skill of the present invention, in accordance with the spirit of the present invention, should be modified or changed in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS 1360831 FIG. 1 is a top plan view of a field emission electronic device in the prior art. • Figure 2 is a top plan view of a field emission electronic device in accordance with an embodiment of the present technical solution. Figure 3 is a side elevational view of a field emission electronic device in accordance with an embodiment of the present technology. Fig. 4 is a scanning electron micrograph of an electron-emitting unit of a field emission electronic device according to an embodiment of the present technology. [Main component symbol description] ® Field emission electronic device 100, 200 Insulation substrate 102, 202 Row electrode lead 104, 204 Column electrode lead 106, 206 Electron emitter 108, 218 Row electrode 110 Column electrode 112 I Electron emission region 114 Dielectric insulation Layer 116, 216 grid 118, 214 electron emission unit 120, 220 cathode emitter 208 anode electrode 210 cathode electrode 212 electron emission end 222 fixed electrode 224 14

Claims (1)

1360831 十、申請專利範圍 1. 一種場發射電子器件,其包括: 一絕緣基底; 多個行電極引線與列電極引線分別平行且等間隔設 =絕緣基底上,該多個行電極引線與多個列電極引 ==設置’每兩個相鄰的行電極引線與兩個相 ==引線形成一個網格,行電極引線與列電極 引線之間電絕緣;1360831 X. Patent Application Range 1. A field emission electronic device comprising: an insulating substrate; a plurality of row electrode leads and column electrode leads are respectively parallel and equally spaced = on an insulating substrate, the plurality of row electrode leads and a plurality of Column electrode lead == set 'Every two adjacent row electrode leads and two phases == lead form a grid, and the row electrode lead and the column electrode lead are electrically insulated; =電=發射單元’每個電子發射單元對應— 發射單元進一步包括間隔設置的-陰 虚 極’且該陰極電極和陽極電極分別 ”上述仃電極引線與列電極引線電連接,以及一陰極 發射體’該陰極發射體一端與陰極電極電連接/ =在二所述陰極發射體的另一端與陽極電極間 二微米端與陽極電極之間的間距為10微求 項所述的場發射電 遠離陰極電極的一 子器件,其 端指向陽極 2.如申請專利範圍第J 中,所述陰極發射體 電極。 3. y請專·圍第1項所述的場發射電子器件,立 極之間的間距為5。微米〜二,^ 4. ^申2第i項所述的場發射電 中,所述陰極發射體與絕緣基底間隔設置。、 15 1360831 5. 如申請專利範圍第1項所述的場發射電子器件,其 • 中,所述陰極發射體包括多個平行且等間隔排列的 • 電子發射體。 6. 如申請專利範圍第5項所述的場發射電子器件,其 中,所述電子發射體之間的間距為1奈米〜^奈米。 7. 如申請專利範圍第5項所述的場發射電子器件,其 中’所述電子發射體包括一電子發射端,且該電子 發射知為電子發射體遠離陰極電極的一端。 ® 8.如申請專利範圍第5項所述的場發射電子器件,其 中,所述電子發射體為矽線、單根碳纖維或奈米碳 管長線。 9.如申請專利範圍第8項所述的場發射電子器件,其 中,所述奈来碳管長線中包括多個首尾相連且擇優 取向排列的奈米碳管束,且相鄰奈米碳管束之間通 過凡德瓦爾力連接。 1〇.如申請專利範圍第9項所述的場發射電子器件,其 • 中,所述的奈米碳管束包括多個平行且緊密排列的 奈米碳管。 u.如申請專利範圍第10項所述的場發射電子器件,其 中,所述奈米碳管為單壁奈米碳管,雙壁奈米碳管 或多壁奈米碳管。 12.如申請專利範圍第1〇項所述的場發射電子器件,其 中,所述奈米碳管的長度為1〇微米〜100微米,直徑 小於15奈米。 16 1360831 13.如申請專利範圍第1項所述的場發射電子器件,其 中,所述行電極引線與列電極引線交叉處設置有 介質絕緣層。= electric = transmitting unit 'corresponding to each electron-emitting unit - the emitting unit further includes a gap-setting cathode electrode and the anode electrode and the anode electrode respectively" said first electrode lead is electrically connected to the column electrode lead, and a cathode emitter 'The cathode emitter is electrically connected to the cathode electrode at one end /= the spacing between the two-micron end and the anode electrode between the other end of the cathode emitter and the anode electrode is 10 micro-inquiries. A sub-device of the electrode, the end of which is directed to the anode 2. The cathode emitter electrode as in the scope of claim J. 3. y please use the field emission electronic device described in item 1, between the vertical poles In the field emission electricity described in item (i), the cathode emitter is spaced apart from the insulating substrate. 15 1360831 5. As described in claim 1 Field emission electronic device, wherein the cathode emitter comprises a plurality of parallel and equally spaced electron emitters. 6. The field emission electronic device of claim 5, The field emission electronic device of claim 5, wherein the electron emitter comprises an electron emission end, And the electron emission is the end of the electron emitter. The field emission electronic device according to claim 5, wherein the electron emitter is a twisted wire, a single carbon fiber or a nanometer. 9. The field emission electronic device of claim 8, wherein the long carbon nanotube comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and the adjacent carbon nanotubes are adjacent to each other. The carbon nanotube bundle is connected by a van der Waals force. The field emission electronic device according to claim 9, wherein the carbon nanotube bundle comprises a plurality of parallel and closely arranged nai The field emission electronic device of claim 10, wherein the carbon nanotube is a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. 12. If the scope of patent application is the first The field emission electronic device of claim 1, wherein the carbon nanotube has a length of from 1 μm to 100 μm and a diameter of less than 15 nm. 16 1360831 13. The field emission electron according to claim 1 A device, wherein a dielectric insulating layer is disposed at a intersection of the row electrode lead and the column electrode lead. 14.如申請專利範圍帛丨項所述的場發射電子器件,其 中,所述多·電子發射單元對應網格設置成陣歹/’、 且設置于同-行的電子發射單元的陽極電極盘同一 個行電極引線電連接,設置於同一列的電子發射單 π的陰極電極與同一個列電極引線電連接。 π如中請專利範圍第!項所述的場發射電子器件,並 中,所述每個電子發射單元進一步包括一固定電極 位於陰極電極上14. The field emission electronic device of claim 2, wherein the plurality of electron-emitting units are arranged in a grid/', and are disposed on the anode-electrode unit of the same-row electron-emitting unit. The same row electrode lead is electrically connected, and the cathode electrodes of the electron emission single π disposed in the same column are electrically connected to the same column electrode lead. π as in the patent scope! The field emission electronic device of the present invention, wherein each of the electron emission units further comprises a fixed electrode on the cathode electrode 1717
TW96150083A 2007-12-26 2007-12-26 Field emission electron device TWI360831B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96150083A TWI360831B (en) 2007-12-26 2007-12-26 Field emission electron device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150083A TWI360831B (en) 2007-12-26 2007-12-26 Field emission electron device

Publications (2)

Publication Number Publication Date
TW200929322A TW200929322A (en) 2009-07-01
TWI360831B true TWI360831B (en) 2012-03-21

Family

ID=44864455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96150083A TWI360831B (en) 2007-12-26 2007-12-26 Field emission electron device

Country Status (1)

Country Link
TW (1) TWI360831B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489507B (en) * 2011-01-04 2015-06-21 Hon Hai Prec Ind Co Ltd Field emission device and field emission display

Also Published As

Publication number Publication date
TW200929322A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US8030837B2 (en) Field emission cathode device and display using the same
US8110975B2 (en) Field emission display device
CN102768929B (en) Field emission display device
CN101499389A (en) Electronic emitter
CN101471212A (en) Thermal emission electronic component
CN102082061B (en) Field emission display device
CN101848564A (en) Heating element
CN102082062A (en) Field emission display device
CN102768930B (en) Field emission electron device
US7915797B2 (en) Thermionic electron source
TW201005785A (en) Electron emission device
TWI360831B (en) Field emission electron device
TWI386966B (en) Field emission display
CN102543633B (en) Field emission cathode device and field emission display
TW200935485A (en) Thermionic emission device
TWI393160B (en) Field emission cathode structure and display using the same
TWI352369B (en) Thermionic emission device and method for making t
KR20100012573A (en) Field emission device using carbon nanotubes of and method of the same
TWI352371B (en) Method for making field emission electron device
TWI427662B (en) Field emission cathod device and field emission display
TWI386964B (en) Electron emitter and displaying device using the same
TWI421895B (en) Field emission device and field emission display
TWI398895B (en) Method for making field emission device
TWI383420B (en) Electron emitter and displaying device using the same
TWI417925B (en) Field emission display device