TW201034391A - Clock clean-up phase-locked loop (PLL) - Google Patents

Clock clean-up phase-locked loop (PLL) Download PDF

Info

Publication number
TW201034391A
TW201034391A TW098134146A TW98134146A TW201034391A TW 201034391 A TW201034391 A TW 201034391A TW 098134146 A TW098134146 A TW 098134146A TW 98134146 A TW98134146 A TW 98134146A TW 201034391 A TW201034391 A TW 201034391A
Authority
TW
Taiwan
Prior art keywords
signal
clock signal
frequency
pll
clock
Prior art date
Application number
TW098134146A
Other languages
English (en)
Inventor
I-Hsiang Lin
Roger Brockenbrough
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201034391A publication Critical patent/TW201034391A/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/07Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • H03L7/23Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0039Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage using DSP [Digital Signal Processor] quadrature modulation and demodulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Description

201034391 六、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於電子學,且更具體言之係關於用 以產生純淨時脈信號之電路。 本專利申請案主張2008年10月8日所申請之名為「IN-BAND SPUR REDUCTION FOR SENSITIVE RECEIVER」 的臨時申請案第61/103,893號之優先權,該案已讓與給其 受讓人,且以引用之方式明確地併入本文中。 【先前技術】 諸如蜂巢式電話之無線器件通常包括一或多個接收器。 每一接收器可接收一輸入射頻(RF)信號、處理(例如,放 大、降頻轉換及濾波)該輸入RF信號,且提供一類比基頻 信號。該(該等)接收器可實施於RF積體電路(RFIC)上,該 RF積體電路(RFIC)可包括諸如一或多個類比轉數位轉換器 (ADC)之其他電路。ADC可接收來自RFIC外部之積體電路 (1C)的時脈信號、藉由該時脈信號將來自相關聯之接收器 的類比基頻信號數位化,且將數位樣本提供至該外部1C。 該時脈信號可能包括不合需要之突波雜訊,其為不合需要 之頻譜分量。該等突波雜訊可能使RFIC上之該(該等)接收 器之效能降級。 【發明内容】 在一態樣中,本發明提供一種積體電路,其包含:一鎖 相迴路(PLL),其用以接收歸因於頻率突跳而具有突波雜 訊之一第一時脈信號且提供具有減少之突波雜訊之一第二 143849.doc 201034391 時脈信號;及一類比轉數位轉換器(ADC),其用以基於該 第二時脈信號數位化一類比基頻信號且提供數位樣本。 在另一態樣中,本發明亦提供一種裝置,其包含:一第 ,一積體電路,其包含提供一第一時脈信號之一分數N頻率 合成器;及一第二積體電路,其耦接至該第一積體電路且 包含一鎖相迴路(PLL),其用以接收該第一時脈信號且提 供一第二時脈信號,及一類比轉數位轉換器(adc),其用 ❿以基於該第二時脈信號數位化一類比基頻信號且提供數位 樣本。 在又一態樣中,本發明更提供一種方法,其包含··接收 歸因於頻率突跳而具有突波雜訊之_第—時脈信號;基於 該第一時脈信號產生具有減少之突波雜訊之一第二時脈信 號,及基於6亥第一時脈信號數位化一類比基頻信號以獲得 數位樣本。 在另-態樣中,本發明純供-種裝置,其包含··用於 接收歸因於頻率突跳而具有突浊雜 ★ 六·另大及雜afL之—第一時脈信號的 構件,用於基於該第一時脈作辨吝处目士 + 町肌彳σ琥產生具有減少之突波雜訊 之一第二時脈信號的構件;及用於糞#姑 . 丹丨t,汉用於基於該第二時脈信號數 位化一類比基頻信號以獲得數位樣本的構件。 在又-態樣中,本發明亦提供一種電腦程式產品,其包 含:一電腦可讀媒體,其包含:用於庙s, 八匕3 .用於使至少一電腦接收歸 因於頻率突跳而具有突波雜 雜巩之第一時脈信號的程式 碼,用於使該至少一電腦基於該第— ^弟時脈仏唬產生具有減 〉、之突波雜訊之一第二時脈作骑沾 彳°唬的程式碼,及用於使該至 143849.doc 201034391 〆電腦將該第二時脈信號提供至一類比轉數位轉換器 (ADC)用於數位化—類比基頻信號以獲得數位樣本的程 2IS. η 【實施方式】 詞「例示性」在本文中用以意謂「充當實例、例項或說 月」本文中被描述為「例示性」之任何設計未必解釋為 相對於其他設計而言係較佳或有利的。 本文中描述可接收具有不合需要之突波雜訊之第—時脈 t號且提供具有較少突波雜訊之第二時脈信號的時脈清除 PLL。該時脈清除PLL可用於各種電子器件,諸如無線通 仏器件、蜂巢式電話、個人數位助理(pDA)、掌上型器 件、無線數據機、無線電話、廣播接收器、藍芽器件,等 等。為了清楚起見,以下描述時脈清除ριχ在可為蜂巢式 電話或某一其他器件之無線器件中的使用。 圖1展示包括RFIC 110及特殊應用積體電路(ASIC)15〇之 無線通信器件100之例示性設計的方塊圖。在圖1中所展示 之例示性設計中,RFIC 110包括一前端調諧器120及一 ADC 130。前端調諧器120包括一低雜訊放大器(LNa)122 及接收器電路124。LNA 122接收一來自天線之輸入rF信 號(RFin)、放大該輸入RF信號’且提供一放大之rf信號。 接收器電路124處理(例如’降頻轉換、放大及濾波)該放大 之RF信號且提供一類比基頻信號。接收器電路124可包括 一或多個降頻轉換器、濾波器、放大器及/或其他電路, 為了簡單起見未將其展示於圖1中。ADC 130藉由來自 143849.doc 201034391 ASIC 150之時脈信號(CLK)數位化該類比基頻信號且將數 位樣本提供至ASIC 1 50。 ASIC 150可包括各種處理器、控制器、記憶體及其他模 組(未展不於圖i*)’其可處理來自Adc 130之數位樣本且 執行無線器件100之其他功能。ASIC 15〇亦包括一分數^^頻 率合成器160,其可產生用於ADC 130之時脈信號。一般 而言,分數N頻率合成器為接收第一頻率下之輸入信號且 產生第二頻率下之輸出信號的電路區塊,其中該第一頻率 以一非整數比率與該第二頻率相關。在圖】中所展示之例 不性設計中,頻率合成器160接收具有精確頻率儿之參考 (Ref)信號且提供具有所要頻率,。以之時脈信號。分數除法 器比率N等於力《對之比率,或N=/,V/oai,且對於給定/iw 而言視所要/。„,而定。術語「分數N」指代除法器比率\可 為非整數值之事實。 圖1展示包括單一接收器之RFIC uo之簡單設計。一般 而言,RFIC 110可包括任何數目之接收器用於任何數目之 無線電技術及頻帶。RFIC 11〇亦可包括一或多個發射器。 圖1展示一晶片上系統(Soc)接收器之實例,其包括製造 於共同基板上之前端調諧器12〇及晶片上ADC 130。可能 需要ADC 130在晶片上之整合以獲得較低成本、較小電路 面積、較高整合程度,等等。然而,ADC 13〇可能產生可 經由基板耦合至接收器内之其他敏感電路(諸wlNA 122) 之雜訊。由ADC 130產生之雜訊的頻譜内容可視用以觸發 ADC 130之時脈信號之頻譜内容而定。因此,對於adc 143849.doc 201034391 130而言,需要使用純淨時脈信號。
SoC接收器通常與諸如圖1中之ASIC 150之主機介接。為 了達成介於主機與SoC接收器之間的資料同步,主機可產 生用於晶片上ADC 130之時脈信號,如圖1中所展示。兮 時脈信號可能含有不合需要之突波雜訊。尤其當時脈信號 係由分數N頻率合成器16〇產生時,此可為實際情形。 圖7A展示由圖之分數N頻率合成器ι6〇產生之時脈信 號的例示性時序圖。頻率合成器16〇可在頻率上以兩個整 數除法器比率L及Μ來對參考信號進行除法運算以獲得所 要頻率下之時脈信號,其中通常M=L+1。分數除法器比率 N可為介於L與Μ之間的非整數值。頻率合成器16〇可接著 使用累加計數器在一些時間在頻率上以L來對參考信號進 行除法運算且在一些其他時間在頻率上以Μ來對參考信號 進行除法運算。該時脈信號可包括與「長」循環混合之 「短」循環,其中每一短循環涵蓋參考信號之L個週期且 每一長循環涵蓋參考信號之Μ個週期。短循環之百分比及 長循環之百分比視分數除法器比率Ν以及整數除法器比率 L及Μ而定。短循環及長循環之位置視如何選擇除法器比 率L及Μ而疋。無論如何,只要除法器比率自L改變至μ(亦 即,自短循環至長循環之切換發生)及(同樣地)自Μ改變至 L(亦即,自長循環至短循環之切換發生),即發生時脈信 號之頻率的突跳。在圖7Α中所展示之實例中,L=2,Μ=3 且Ν-2.5。時脈信號因此包括交替之短循環及長循環’其 中每一短循環涵蓋參考信號之兩個週期且每一長循環涵蓋 143849.doc 201034391 參考信號之三個週期。 圖8A展示由圖〗中之分數N頻率合成器16〇產生之時脈信 號的例示性頻譜曲線。該時脈信號包括時脈頻率人^之^ .冑波。時脈信號進一步包括歸因於時脈信號中之頻率突跳 , t不合需要的擴展突波雜訊’其可能由頻率合成器⑽使 用分數除法器比率引起。除法器比率之間的切換可 為週期性的且可在時脈信號中產生週期性頻率跳躍。時脈 ❼ 《可接著包括頻譜中之各奇諧波之間的擴展突波雜訊, 如圖8A中所展示。擴展突波雜訊為在整個頻譜上及在嘈、皮 =間出現而非僅在敎頻率下出現之不合需要之頻率分 • 4。-般而言,擴展突波雜訊可存在於在時域中具有頻率 突跳之任何時脈信號中。頻率突跳可由分數N頻率合成器 •之使用引起或可歸因於某—其他機構而發生。 返回參看圖1 ’具有擴展突波雜訊之時脈信號可用以對 S〇C接收器中之ADC 13G進行時脈控制。擴展突波雜訊可 _ 接著存在於ADC 130内之各種信號及電路中。擴展突波雜 訊可經由基板自ADC電路區域麵合至LNA 122之輸入(如圖 1中所展示)且可充當至LNA輸人處之輸人RF信號的額外雜 訊。該額外雜訊可能使接收器之效能降級,尤其在接收器 冑要非常良好之敏感性或易受頻帶内突波雜訊影響的情況 下。該接收器之一實例為全球定位系統(Gps)接收器。頻 帶内突波雜訊為在接收器之操作頻率範圍内之突波雜訊。 因為擴展突波雜訊在整個頻譜上存在,所以擴展突波雜訊 中之一些將自然地處於頻帶内。 143849.doc 201034391 圖2展示具有用以對抗不合需要之擴展突波雜訊之時脈 清除PLL的無線通信器件200之例示性設計的方塊圖。無線 器件 200 包括一 RFIC 210及一 ASIC 250。ASIC 250可包括 為了簡單起見而未展示於圖2中之處理器、控制器、記憶 體等等。ASIC 250亦包括一分數N頻率合成器260,其可產 生用於10^1€210之第一時脈信號(〇:1^1)。 在圖2中所展示之例示性設計中,RFIC 210包括一前端 調諧器220、一 ADC 230,及一用作時脈清除PLL之整數N PLL 240。前端調諧器220包括一 LNA 222及可如以上針對 圖1所描述而操作之接收器電路224。整數N PLL 240接收 來自ASIC 250中之分數N頻率合成器260的第一時脈信號且 產生用於ADC 230之第二時脈信號(CLK2)。一般而言,整 數N PLL為接收第一頻率下之輸入信號且產生第二頻率下 之輸出信號的電路區塊,其中該第一頻率以一整數比率與 該第二頻率相關。該第一時脈信號可能包括不合需要之擴 展突波雜訊,且該第二時脈信號可能包括較少突波雜訊。 ADC 230藉由來自PLL 250之第二時脈信號數位化來自接 收器電路224之類比基頻信號,且將數位樣本提供至ASIC 250。ADC 230可為西格馬-德耳塔(ΣΔ)Αϋ(:、快閃ADC、 連續近似ADC,或某一其他類型之ADC。 圖3展示圖2中之RFIC 210内的整數N PLL 240之例示性 設計的方塊圖。在PLL 240内,相位-頻率偵測器3 10接收 來自ASIC 250之第一時脈信號及來自可程式化延遲單元 3 6 0之回饋信號,比較該兩個信號之相位,且提供指示介 143849.doc -10- 201034391 於第一時脈信號與回饋信號之間的相位誤差/差異之「向 上」信號及「向下」信號。該「向上」信號及該「向下」 信號亦普遍稱作早信號及遲信號、提前信號及推遲信號, ’ H電H32G接收「向上」信號及「向下」信號且產 . i指示經㈣之相位誤差之電流信號(Iep)。迴路渡波器 30對來自電荷$ 32Q之電流信號進行濾、波且產生用於電壓 控制振堡器(VCO)340之控制信號(Vctrl)。迴路滤波器33〇 馨冑整该控制信號使得回饋信號之頻率被鎖定至第一時脈信 號之頻率。 13 VCO 340產生具有由來自迴路濾波器33〇之控制信號判 • 冑之頻率的振盪器信號。除法器35〇在頻率上以整數除法 .、器因數K(例如,以2、3、4, #等)來對振盪器信號進行除 法運且提供一除法器輸出信號。緩衝器352緩衝該除法 器輸出信號且將第三時脈信號提供至ADC 230。可程式化 延遲單το 360使除法器輸出信號延遲一可程式化延遲且將 ❹經延遲之除法器輸出信號作為回饋信號提供至相位_頻率 偵測器31G。可調整單元则之延遲使得第二時脈信號具有 所要之相位(例如,與第一時脈信號時間對準卜亦可省略 可程式化延遲單元36〇,且可直接將除法器輸出信號提供 為回饋信號。 迴路濾波器330具有可經選擇以獲得PLL 240之所要封閉 迫路帶寬之頻率回應。可將PLL 240之封閉迴路帶寬設計 為低以便極大地衰減第-時脈信號中之頻率突跳且抑制 LNA 222之操作頻率範圍内的擴展突波雜訊一般而言, I43849.doc 201034391 PLL 240之漸小之封閉迴路帶寬可提供第一時脈信號中之 頻率突跳的漸大之衰減且因此提供漸少之擴展突波雜訊。 然而,較小之封閉迴路帶寬亦可導致pLL 24〇之較長穩定 時間此可斯*為不理想的。在一例示性設計中,pll 240 之封^迴路帶寬可經選擇為低於(例如,低至少為二之因 數)或遠低於(例如,約為1/1〇)分數N頻率合成器26〇之封閉 迴路帶寬。 圏7B展由圖2中之分數^^頻率合成器26〇及整㈣ 240產生之時脈信號的例示性時序圖。在圖7b中所展示之 實例中,L-2,M=3,N=2.5,且來自頻率合成器26〇之第 一時脈信號包括交替的短循環及長循環,如以上針對訊 所描述。在此實例中’來自⑽34〇之減器信號具有兩 倍於所要頻率之頻率且在頻率上以因數二進 算以獲得所要頻率下之第二時脈信號。 ’、去運 在圖7B所展不之實例中,第__時脈信號歸因於以非整數 除法比率進行之除法;重曾
Q 仃之除法運异而具有頻率突跳。第二時脈信 =因於以整數除法器比率(在此實射為二)進行之除法 鼻而不具有頻率大跳。第一時脈信號之瞬時頻率可不同 :::時脈信號之瞬時頻率。然而,第一時脈信號之平均 頻率等於第二時脈㈣之平均頻_。 請展示由圖2中之整_PLL24G產生之第二時脈沖 :例示性頻譜曲線。該第二時脈信號包括時脈頻率/: 奇譜波但不包括不合需要之擴展突波雜訊。羊^之 PLL 240可衰減第一時脈信號中之頻率突跳,頻 143849.doc -12、 201034391 率突跳為不合需要之擴展突波雜訊之根源。整數N PLL 2 4 0可因此抑制第一時脈信號中之擴展突波雜訊經由基板 而麵合及使LNA 222之效能降級。整數Ν似2辦藉由以 整數除法器比率來對來自彻34〇之㈣器信號進行除法 運“提供無頻率突跳之相對純淨的第二時脈信號。—般 而言,第二時脈信號之頻率八可等於第一時脈信號之頻率 /ι或可為/丨之整數倍或力之整數分之一。
圖4展示圖3中之整數N pLL 24〇内之相位·頻率偵測器 、電荷泵320及迴路濾波器33〇之例示性設計的示意 圖。在相位頻率偵測器310内,分別將第一時脈信號及回 饋信號提供至D正反器412及414之時脈輸入。正反器412及 414之資料(D)輸入耦接至電源供應器且接收邏輯高位準。 正反器412之資料(Q)輸出指示第一時脈信號相對於回饋信 號而言為早的。正反器414之q輸出指示第一時脈信號相對 於回饋信號而言為遲的。「及」閘416接收正反器412及414 之Q輸出且對該兩個信號執行邏輯「及」運算。延遲單元 418使「及」閘416之輸出延遲一小量且將一重設信號提供 至正反器412及414之重設(R)輸入。正反器412之反相資料 ($)輸出提供「向上」信號,且正反器414之卩輸出提供 「向下」信號。 在電荷泵320内,P通道金屬氧化物半導體(pM〇s)電晶 體422及N通道MOS(NMOS)電晶體424串聯耦接且耦接於電 源供應器與電路接地之間。PMOS電晶體422使其源極耦接 至電源供應器’使其閘極接收來自正反器412之「向上, 143849.doc • 13· 201034391 信號,且使其汲極耦接至節點A。NMOS電晶體424使其汲 極耦接至節點A,使其閘極接收來自正反器414之「向下」 信號,且使其源極耦接至電路接地。PMOS電晶體422在藉 由「向上」信號啟用時提供一上拉電流,且NMOS電晶體 424在藉由「向下」信號啟用時提供一下拉電流。 單元41 8之短延遲用以對抗電荷泵320中之零值區。 PMOS電晶體422及NMOS電晶體424需要某一量之時間來 接通或斷開。此轉變時間稱作零值區,因為在轉變時間期 間,可能丟失「向上」信號及「向下」信號中之相位資 訊。該短延遲對抗該零值區。 在迴路濾波器330内,電阻器432耦接於節點A與節點B 之間。電阻器434及電容器436串聯耦接且耦接於節點B與 電路接地之間。電容器438耦接於節點B與電路接地之間。 可僅藉由電阻器432及電容器438來實施一階迴路。可僅藉 由電阻器432及434以及電容器436來實施二階迴路。可藉 由電阻器432及434以及電容器436及438來實施具有針對額 外衰減之高頻極點之二階迴路。電容器43 8可減少來自迴 路濾波器330之控制電壓上之漣波且亦可使PLL迴路穩定 化。可選擇電阻器432及434以及電容器436及438之值以獲 得用於整數N PLL 240之所要的封閉迴路帶寬。 圖5展示圖3中之VCO 340之例示性設計的示意圖。在此 例示性設計中,VCO 340藉由一環式振盪器來實施且其包 括耦接於一迴路中之三個可變延遲單元510a、51 Ob及 510c。延遲單元510a使其輸出耦接至延遲單元51 Ob之輸 143849.doc -14- 201034391 入,延遲單元510b使其輸出耦接至延遲單元510c之輸入, 延遲單元510c進一步使其輸出耦接至延遲單元51〇a之輸 入。可以類似方式實施該三個延遲單元51〇a、51〇b及 . 5 10c,且以下僅描述延遲單元51〇c。 在延遲單元510c内,將PMOS電晶體512及NMOS電晶體 514耦接為一反相器。;\1〇8電晶體512及514使其閘極耗接 在一起且柄接至延遲單元輸入’且使其沒極相接在一起且 φ 麵接至延遲單元輸出(其為節點X)。電阻器516耦接於 PMOS電晶體512之源極與電源供應器之間。電阻器518輕 接於NMOS電晶體514之源極與電路接地之間。電容器522 耦接於節點X與電路接地之間。電容器524耦接於節點又與 節點Y之間。電容器526使其一端耦接至節點γ且另一端接 收來自迴路濾波器330之Vctrl控制信號。電阻器528使其一 端麵接至節點Y且另一端接收一偏壓電壓(vbias)。 延遲單元510c之延遲係由電阻器516及518之值及及電容 • 器522、524及526之值判定。電容器526之值(^咖可藉由改 變Vctrl控制信號上之電壓而變化。電容器524可為ac耦合 電容器且可具有遠大於Cn<Me之值。可選擇電容器522之值 Cp及電容器526之標稱值以獲得VCO 340之所要標稱中心 頻率及所要調諧範圍。所要調諧範圍可取決於(i)第一時脈 仏號之操作頻率的範圍及(Π)歸因於1C處理、溫度、電源 供應等之變化的頻率變化。可將相同Vbias控制電壓施加 至所有二個延遲單元5i〇a、5i〇b及510c中之電阻器528。 類似地,可將相同Vctrl信號施加至所有三個延遲單元 143849.doc 15 201034391 510a、510b及510c中之電容器526。如圖5中所展示,電阻 器516及518可具有固定值或者,電阻器516及518可具 有可組態值,可選擇該等可組態值以獲得VCO 340之所要 標稱頻率。 圖5展示VCO 340之例示性設計,其可為易於實施的且 可進一步占據小的面積且消耗極少電流。亦可以其他設計 來實施VCO 340。 圖6展示具有用以對抗不合需要之擴展突波雜訊之時脈 清除PLL之無線通信器件600之例示性設計的方塊圖。無線 器件 600 包括一 RFIC 610及一 ASIC 650。ASIC 650可包括 為了簡單起見而未展示於圖6中之處理器、控制器、記憶 體等等。 在圖6中所展示之例示性設計中,RFIC 610包括一前端 調諧器620、一 ADC 630、一用作時脈清除PLL之整數 N PLL 640,及一分數N頻率合成器660。前端調諧器620包 括可如以上針對圖1所描述而操作之一 LNA 622及接收器電 路624。頻率合成器660可產生歸因於非整數除法器比率之 使用而具有頻率突跳之第一時脈信號。PLL 640可接收來 自頻率合成器660之第一時脈信號且產生用於ADC 630之 第二時脈信號。第二時脈信號可歸因於整數除法器比率之 使用而無頻率突跳且可因此包括比第一時脈信號少的突波 雜訊。ADC 630藉由來自PLL 640之第二時脈信號數位化 來自接收器電路624之類比基頻信號且將數位樣本提供至 ASIC 650用於處理。 143849.doc -16- 201034391 如圖2及圖6中所展示,整數N似可用作針對adc時脈 信號之清除PLL以便極大地減少高頻突波雜訊且因此減少 在LNA之輸入處所觀測到之頻帶内突波雜訊。整數n pLL .可藉由-簡單數位PLL設計(例如,如圖3、圖4及圖5中所 • I示)來實施且接著可占據小的面積且消耗極少的額外電 流。整數N PLL可接收歸因於頻率突跳而具有擴展突波雜 訊之第-時脈信號且可藉由-低封閉迴路帶寬清除突波雜 籲訊。整數NPLL可向ADC提供一純淨第二時脈信號。 在一例示性設計中,積體電路可包含一 pLL及一ADC, 例如’如圖2中所展示。該PLL可接收歸因於頻率突跳而具 有突波雜訊之第一時脈信號(CLK1)且可提供(例如)歸因於 無頻率突跳而具有減少之突波雜訊的第二時脈信號 (CLK2)。第一時脈信號可由分數N頻率合成器產生,該分 數N頻率合成器可處於積體電路外部(例如,如圖2中所展 示)或處於積體電路内部(例如,如圖6中所展示在任一 馨情況下,第一時脈信號中之頻率突跳可由在頻率合成器中 使用分數除法器比率而引起,例如,如圖7八中所說明。第 二時脈信號可由PLL基於整數除法器比率產生且可能歸因 於整數除法器比率之使用而不包括頻率突跳,例如,如圖 7B中所說明。 ADC可基於第二時脈信號數位化類比基頻信號且提供數 位樣本。積體電路可進一步包含一 LNA及接收器電路。該 LNA可接收並放大一輸入RF信號且提供一故大之rf信 號。該等接收器電路可處理放大之RF信號且將類比基頻信 143849.doc • 17· 201034391 號提供至ADC。LNA可歸θm J ~因於用以清除第—時 PLL的使用而觀測到而經由積體 〇旒之 波雜訊。 路之基板耦合的較少突 在一例示性設計中,ρΤ τ φ r « 、 . n匕3 一相位-頻率偵測器、_ 電:泵、-迴路滤'波器、—vco及—除法器,例如 :中所展示。該相位-頻率偵剛器可接收第—時齡號及: 2信號且提供⑼切料—時脈信 的相位誤虹戒之間 (例如,「向上m r 偵測器輸出信號 V ' J ^ 问上」k旒及「向下.长啤、_ 比 下」彳5唬)。該電荷泵可接收筮 ^貞測器輸出信號及第二偵測器輸出信號且提供—電奸 號。該迴路濾波器可濾波該電流 。 (例如,Vctrl信號)〇該vc〇可拯跄兮从止 〇了接收該控制信號且提供且有 由控制信號判定之頻率之一 八 •午I振盪器化號。該除法器可在頻 ’、以—整數除法器比率來對該振逢器信號進行除法運算 且提供-除法器輸出信號。該PLL可進一步包含一 化延遲單元,丨用以使該除法器輸出信號延遲—可程式^ 延遲,且提供回饋信號。該可程式化延遲可經選擇以相對 於第-時脈信號之相位來調整第二時脈信號之相位。 在一例示性設計中,VCO可包含麵接於一迴路中之多個 可變延遲單元’例如,%圖5中所展示。每—可變延遲單 ^元可具有由來自迴路濾波器之控制信號判定之可變延遲。 該VCO及該PLL亦可以其他設計來實施。 在一例示性設計中,PLL可具有可比分數^^頻率合成器 之封閉迴路帶寬低至少為二之因數(例如,為1〇之因數)的 I43849.doc • 18 · 201034391 封閉迴路帶寬。藉由PLL之較低封閉迴路帶寬可達成第一 時脈信號中之不合需要之突波雜訊的較大衰減。在一例示 性設計中,第一時脈信號及第二時脈信號可具有相同頻 率,例如’如圖7B中所展示。在另一例示性設計中,第一 時脈信號可具有可以一整數比率與第二時脈信號之第二頻 率相關的第一頻率。
在一例示性設計中,一裝置可包含第一積體電路及第二 積體電路。第一積體電路(例如,圖2中之ASIC 250)可包 含可提供第一時脈信號之分數N頻率合成器。第二積體電 路(例如,圖2中之RFIC 210)可耦接至該第一積體電路且可 包含一 PLL及一 ADC。該PLL可接收該第一時脈信號且提 供一第二時脈信號。該ADC可基於第二時脈信號數位化類 比基頻化號且提供數位樣本❶第二積體電路可進一步包含 LNA及接收器電路。該lnA可接收並放大一輸入rf信號 且提供一放大之RF信號。接收器電路可處理該放大2RF L號且將類比基頻信號提供至ADC。LNA可歸因於用以清 除第一時脈信號之PLL的使用而觀測到經由第二積體電路 之基板耦合的較少突波雜訊。 囷9展示用於操作實施於積 咐丄心按收之過程9〇〇 的例示性設計。可(例如)自實施於同一積體電路或另一積 體電路上之分數N頻率合成器接收歸因於頻率突跳而具有 突波雜訊之第一時脈信號(步驟912)。可基於—參考作號及 介於第一時脈信號之頻率與該參考信號之頻率之間的非整 數除法器比率產生該第-時脈信號。可(例如)藉由實施於 143849.doc -19· 201034391 積體電路上之整數N PLL基於第一時脈信號產生具有減少 之犬波雜訊的第二時脈信號(步驟914)。可藉由可比分數N 頻率合成器之封閉迴路帶寬低(例如)至少為二之因數的封 閉迴路帶寬來操作該PLL以便極大地衰減第一時脈信號中 之突波雜訊《可基於第二時脈信號來數位化類比基頻信號 以獲得數位樣本(步驟916)。 本文中描述之時脈清除PLL可實施於Ic、類比Ic、
Rfic、混頻信號1(:、ASIC、印刷電路板(pcB)、電子器件 等上。亦可藉由諸如互補金屬氧化物半導體(CM〇S)、NM〇s、 φ PM〇S、雙極接面電晶體(B JT)、雙極CMOS(BiCMOS)、錯 化矽(SiGe)、砷化鎵(GaAs)等之各種1(:處理技術製造時脈 清除PLL。 實施本文中所描述之時脈清除PLL之裝置可為獨立器件 或可為較大器件之一部分。一器件可為:⑴獨立IC ; (U) 可包括用於儲存資料及/或指令之記憶體1(:的一或多個lc 之集合;(iii)諸如RF接收器(犯幻或RF發射器/接收器 (RTR)之rfic ; (iv)諸如行動台數據機(MSM)之ASIC ; (v) Θ 可嵌入其他器件内之模組;(vi)接收器、蜂巢式電話、無 線器件、手機或行動單元;(vii)等等。 在一或多種例示性設計中’所描述之功能可以硬體、軟 體、韌體或其任何組合來實施。若以軟體來實施,則該等 · 功能可作為一或多個指令或程式碼儲存於電腦可讀媒體上 或經由電腦可讀媒體傳輸。電腦可讀媒體包括電腦儲存媒 體及通信媒體兩者,通信媒體包括促進電腦程式自一處至 143849.doc -20· 201034391 另-處之傳送的任何媒豸。儲存媒體可為可藉由電腦存取 之任何可用媒體。以實例說明且並非限制,該等電腦可讀 媒體可包含RAM、R0M、EEPR〇M、CD_R〇M或其他光碟 . 儲存器、磁碟儲存器或其他磁性儲存器件,或可用以载運 .㈣存呈&令或資料結構形式之所要程式碼並可藉由電腦 存取的任何其他媒體。又,恰當地將任何連接稱為電腦可 讀媒體。舉例而言’若使用同軸電纜、光纖電纜、雙絞 鬱、線數位用戶線(DSL),或諸如紅外線、無線電及微波之 無線技術而自網站、飼服器或其他遠端源傳輸軟體,則同 轴電規、光纖電境、雙絞線、DSL或諸如紅外線、無線電 及微波之無線技術包括於媒體之定義中。如本文中所使 用:磁碟及光碟包括緊密光碟(CD)、雷射光碟、光碟、數 景/曰光碟(DVD)、軟性磁碟及藍光(biu ray)光碟,其中 磁碟通常以磁性方式再生資料’而光碟用雷射以光學方式 再生資料。上述各物之組合亦應包括在電腦可讀媒體之範 B 疇内。 提七、本發明之先前描述以使任何熟習此項技術者能夠製 作f使用本發明。本發明之各種修改對於熟習此項技術者 將.4而易見,且本文中定義之一般原理可在不背離本 發明之範嘴的情況下應用於其他變化。因此,本發明並不 心欲限於本文中所描述之實例及設計,而應符合與本文中 所揭不之原理及新穎特徵相一致的最廣範疇。 【圖式簡單說明】 圖1展不具有突波雜訊耦合之無線通信器件。 143849.doc -21 - 201034391 圖2展示具有用以減輕突波雜訊耦合之整數N鎖相迴路 (PLL)之無線通信器件。 圖3展示整數NPLL之方塊圖。 圖4展示整數N PLL内之相位-頻率偵測器、電荷泵及迴 路滤波Is之不意圖。 圖5展示電壓控制振盪器(VCO)之示意圖。 圖6展示具有用以減輕突波雜訊耦合之整數N PLL之另一 無線通信器件。 圖7A及圖7B展示來自分數N頻率合成器之第一時脈信號 及來自整數N PLL之第二時脈信號的時序圖。 圖8 A及圖8B展示第一時脈信號及第二時脈信號之頻譜 曲線。 圖9展示操作接收器之過程。 【主要元件符號說明】 100 無線通信器件 110 射頻積體電路(RFIC) 120 前端調諧器 122 低雜訊放大器(LNA) 124 接收器電路 130 類比轉數位轉換器(ADC) 150 特殊應用積體電路(ASIC) 160 分數N頻率合成器 200 無線通信器件 210 射頻積體電路(RFIC) 143849.doc -22- 201034391 220 前端調諧器 222 低雜訊放大器(LNA) 224 接收器電路 . 230 類比轉數位轉換器(ADC) 240 整數Ν鎖相迴路(PLL) 250 特殊應用積體電路(ASIC) 260 分數N頻率合成器 310 相位-頻率偵測器 320 電荷泵 330 迴路濾波器 340 電壓控制振盪器(VCO) 350 除法器 352 緩衝器 360 可程式化延遲單元 412 正反器 φ 414 正反器 416 「及」閘 418 延遲單元 - 422 P通道金屬氧化物半導體(PMOS)電晶體 . 424 N通道MOS(NMOS)電晶體 432 電阻器 434 電阻器 436 電容器 438 電容器 143849.doc -23- 201034391 510a 可變延遲單元 510b 可變延遲單元 510c 可變延遲單元 512 PMOS電晶體 514 NMOS電晶體 516 電阻器 518 電阻器 522 電容器 524 電容器 526 電容器 528 電阻器 600 無線通信器件 610 射頻積體電路(RFIC) 620 前端調諳器 622 低雜訊放大器(LNA) 624 接收器電路 630 類比轉數位轉換器(ADC) 640 整數N鎖相迴路(PLL) 650 ASIC 660 分數N頻率合成器 A 節點 B 節點 X 節點 Y 節點 143849.doc -24-

Claims (1)

  1. 201034391 七、申請專利範圍: i 一種積體電路,其包含: 鎖相迴路(PLL),其用以接收歸因於頻率突跳而具 有突波雜訊之一第一時脈信號且提供具有減少之突波雜 訊之一第二時脈信號;及
    一類比轉數位轉換器(ADC),其用以基於該第二時脈 信號數位化一類比基頻信號且提供數位樣本。 如請求項1之積體電路’該第一時脈信號係由處於該積 體電路外部之一分數關率合成器產生,且該第一時脈 么號中之该等頻率突跳係由該頻率合成器中之一分數除 法器比率之使用引起。
    如請求項1之積體電路,其進一步包含: 一分數N頻率合成器,其用以接收一參考信號且提供 歸因於該頻率合《器中之一分數除法器比率之使用而具 有頻率突跳之該第一時脈信號。 如凊求項1之積體電路,該第二時脈信號係由該PLL基於 一整數除法器比率產生。 5.如請求項1之積體電路,其進一步包含: 一低雜訊放大器(LNA),其用以接收並放大一輸入射 頻(RF)信號且提供一放大之RF信號;及 接收器電路,其用以處理該放大之RIMf號且將該類比 基頻信號提供至該ADC。 6.如請求項1之積體電路,該PLL包含 一相位-頻率偵測器,其用以接收該第一時脈信號及一 143849.doc 201034391 回饋信號且提供指示介於該第一時脈信號與該回饋信號 之間的相位誤差之第一及第二偵測器輸出信號, 一電荷泵,其用以接收該等第一及第二偵測器輸出信 號且提供一電流信號, -迴路渡波器’其用以渡波該電流信號且提供_控制 信號,及 一電壓控制振盪器(vco),其用以接收該控制信號且 提供具有一由該控制信號判定之一頻率的振盪器號。 7. 如請求項6之積體電路,該pLL進一步包含 參 一除法器,其用以在頻率上以一整數除法器比率來對 該振盪器信號進行除法運算且提供用以導出該第二時脈 信號之一除法器輸出信號。 、氏 8. 如請求項7之積體電路,該pLL進—步包含 一可程式化延遲單元,其用以接收該除法器輸出信號 且使該除法器輸出信號延遲一可程式化延遲且提供該 鎮信號。 9. 如請求項1之積體電路,該ριχ包含 ❹ 一電慶控制振i器(VC0),#包含輕接於一迴路中之 多個可變延遲單元,每一可變延遲單元具有由來自該 PLL之一控制信號判定之一可變延遲。 10. 如請求項2之積體電路,該pLL具有比該分數率合成 器之一封閉迴路帶寬低一至少為二之因數的一封閉㈣ 帶寬。 11 ·如请求項1之積體電路,該第一時脈信號及該第二時脈 143849.doc -2- 201034391 信號具有相同頻率。 12·如請求項1之積體電路,該第-時脈信號具有以一整數 比率與該第二時脈信號之一第二頻率相關的一第一頻 率 〇 13. —種裝置,其包含: -第-積體f路,其包含提供―第—時脈信號之一分 數N頻率合成器;及 —第二積體電路,其耦接至該第-積體電路且包含 β 一鎖相迴路(PLL),其用以接收該第一時脈信號且 提供一第二時脈信號,及 -類比轉數位轉換器(ADC),其用以基於該第二時 脈L號數位化一類比基頻信號且提供數位樣本。 14. 如:求項13之裝置,該第一時脈信號歸因於由該頻率合 、中之刀數除法器比率之使用引起的頻率突跳而具 有突波雜訊,且該第二時脈信號歸因於該pLL中之一整 數除法器比率的使用而具有減少之突波雜訊。 15. 如請求項13之裝置,該第二積體電路進一步包含 一低雜訊放大器(LNA) ’其用以接收並放大一輸入射 頻(RF)信號且提供一放大之RF信號,及 接收器電路’其用以處理該放大之rF信號且將該類比 基頻信號提供至該ADC。 16. 如凊求項13之裝置,該pLL具有比該分數n頻率合成器之 封閉迴路帶寬低一至少為二之因數的一封閉迴路帶 寬。 143849.doc 201034391 17. 一種方法,其包含: 接收歸因於頻率突跳而具有突波雜訊之一第一時脈信 號; 。 基於該第一時脈信號產生具有減少 18. 19. 20. 21. 時脈信號;及 基於該第二時脈信號數位化一類比基頻信號以獲得數 位樣本。 如請求項17之方法,其進一步包含: 基於一參考信號及介於該第一時脈信號之一第一頻率 與該參考信號之-第二頻率之間的-非整數除法器比率 而產生該第一時脈信號。 如-月求項17之方法’該接收該第一時脈信號包含自處於 一^積體電路上之—分數N頻率合成器接收該第—時 H a該產生該帛二時脈信^包含冑由處於—第二 積體電路上之—鎖相迴路(PLL)產生該第二時脈信號。— 如請求項19之方法,其進一步包含: ,丨藉由比該分數N頻率合成器之一封閉迴路帶寬低一至 ^為一之因數的一封閉迴路帶寬來操作該PLL·。 一種裝置,其包含·· 用於接收歸因於頻率突跳而具有突波雜訊之 脈信號的構件; 時 、於該第一時脈信號產生具有減少之突波 一第二時脈信號的構件;及 讯之 ;土於該第—B寺脈信號數位化—類比基頻信號以獲 ❿ 143849.doc -4- 201034391 得數位樣本的構件。 22. 如請求項21之裝置,其進一步包含: 用於基於-參考信號及介於該第一時脈信號之一 頻率與該參考信號之一 ,. 弟一頻率之間的一非整數除法器 比率產生該第一時脈信號的構件。 23. t請求項21n制於純該第—時脈信號之構件 包含用於自處於一第一積體電路上之一分數_率合成 益接收該第-時脈信號的構件,且該用於產生該第二時 U之構件包含用於藉由處於—第二積體電路上之一 鎖相迴路(PLL)產生該第二時脈信號的構件。 24·如請求項23之裝置,其進一步包含: 用於藉由比該分數N頻率合成器之一封閉迴路帶寬低 至J為—之因數之一封閉迴路帶寬來操作該PLL·的構 件。 25. —種電腦程式產品,其包含: φ 一電腦可讀媒體,其包含: 用於使至少一電腦接收歸因於頻率突跳而具有突波 雜訊之一第一時脈信號的程式碼, 用於使該至少一電腦基於該第一時脈信號產生具有 減少之突波雜訊之一第二時脈信號的程式碼,及 用於使該至少一電腦將該第二時脈信號提供至一類 比轉數位轉換器(ADC)用於數位化一類比基頻信號以 獲得數位樣本的程式碼。 143849.doc
TW098134146A 2008-10-08 2009-10-08 Clock clean-up phase-locked loop (PLL) TW201034391A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10389308P 2008-10-08 2008-10-08
US12/404,200 US8145171B2 (en) 2008-10-08 2009-03-13 Clock clean-up phase-locked loop (PLL)

Publications (1)

Publication Number Publication Date
TW201034391A true TW201034391A (en) 2010-09-16

Family

ID=42075308

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134146A TW201034391A (en) 2008-10-08 2009-10-08 Clock clean-up phase-locked loop (PLL)

Country Status (7)

Country Link
US (1) US8145171B2 (zh)
EP (1) EP2345163A1 (zh)
JP (3) JP2012505609A (zh)
KR (1) KR101268746B1 (zh)
CN (1) CN102177656B (zh)
TW (1) TW201034391A (zh)
WO (1) WO2010042763A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE520199T1 (de) * 2008-01-25 2011-08-15 Nxp Bv Verbesserungen an oder im zusammenhang mit funkempfängern
US8300680B2 (en) * 2009-06-11 2012-10-30 Qualcomm Incorporated Apparatus and method for dynamic scaling of ADC sampling rate to avoid receiver interference
US20110096864A1 (en) * 2009-10-28 2011-04-28 Maxlinear, Inc. Programmable digital clock control scheme to minimize spur effect on a receiver
US8874060B2 (en) * 2009-12-18 2014-10-28 Silicon Laboratories Inc. Radio frequency (RF) receiver with frequency planning and method therefor
US8224279B2 (en) 2009-12-18 2012-07-17 Silicon Laboratories, Inc. Radio frequency (RF) receiver with dynamic frequency planning and method therefor
US8890589B2 (en) * 2012-04-23 2014-11-18 Samsung Electronics Co., Ltd. Apparatuses for measuring high speed signals and methods thereof
US9123408B2 (en) 2013-05-24 2015-09-01 Qualcomm Incorporated Low latency synchronization scheme for mesochronous DDR system
KR101467547B1 (ko) * 2013-08-30 2014-12-01 포항공과대학교 산학협력단 주입 고정식 디지털 주파수 신시사이저 회로
US9547333B2 (en) 2013-10-10 2017-01-17 General Electric Company System and method for synchronizing networked components
EP3061187B1 (en) * 2013-10-24 2018-04-04 Marvell World Trade Ltd. Sample-rate conversion in a multi-clock system sharing a common reference
US9538537B1 (en) * 2015-08-11 2017-01-03 Phasorlab, Inc. Blind carrier synchronization method for OFDM wireless communication systems
CN106209342B (zh) * 2016-08-25 2022-10-18 四川灵通电讯有限公司 在xDSL传输***中实现低频时钟传递的***
US10218374B2 (en) * 2016-12-30 2019-02-26 Texas Instruments Incorporated Frequency management for interference reduction of A/D converters powered by switching power converters
US10123103B1 (en) * 2017-04-21 2018-11-06 Infineon Technologies Austria Ag Sigma delta modulator for sensors
US10340938B1 (en) * 2018-04-24 2019-07-02 Intel Corporation Analog to digital convertor (ADC) using a common input stage and multiple parallel comparators
CN109194459B (zh) * 2018-10-08 2020-11-06 惠科股份有限公司 传输信号的数据提取方法、装置及存储介质
CN110989325B (zh) * 2019-12-02 2021-07-20 北京无线电计量测试研究所 一种数字伺服装置和使用方法
CN112842312B (zh) * 2021-02-01 2022-03-08 上海交通大学 心率传感器及其自适应心跳锁环***和方法
US12021542B2 (en) * 2022-03-03 2024-06-25 Texas Instruments Incorporated Device, system, and method for intra-package electromagnetic interference suppression
US20240039385A1 (en) * 2022-07-29 2024-02-01 Texas Instruments Incorporated Adaptive spread-spectrum modulation for dc/dc converters

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH582977A5 (zh) * 1974-08-22 1976-12-15 Centre Electron Horloger
JPS5935205B2 (ja) * 1975-08-08 1984-08-27 三菱電機株式会社 搬送波発生回路
GB2049245A (en) 1979-05-09 1980-12-17 Marconi Co Ltd Frequency synthesisers
JPS62278820A (ja) * 1986-05-28 1987-12-03 Hitachi Shonan Denshi Kk Pllシンセサイザ
US4813005A (en) * 1987-06-24 1989-03-14 Hewlett-Packard Company Device for synchronizing the output pulses of a circuit with an input clock
JPS6489620A (en) * 1987-09-30 1989-04-04 Hitachi Ltd N-fraction type frequency synthesizer
JPH0262120A (ja) * 1988-08-29 1990-03-02 Matsushita Electric Ind Co Ltd 位相同期発振器
JPH02280529A (ja) * 1989-04-21 1990-11-16 Matsushita Electric Ind Co Ltd 周波数シンセサイザ
JPH03222519A (ja) * 1990-01-29 1991-10-01 Anritsu Corp 位相同期発振器
US5021754A (en) * 1990-07-16 1991-06-04 Motorola, Inc. Fractional-N synthesizer having modulation spur compensation
JP2924525B2 (ja) * 1992-01-09 1999-07-26 日本電気株式会社 無線送信装置
JP2998474B2 (ja) * 1993-01-22 2000-01-11 日本電気株式会社 無線送信器
GB2294599B (en) * 1994-10-28 1999-04-14 Marconi Instruments Ltd A frequency synthesiser
JPH08130751A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 信号発生回路
JP3327028B2 (ja) * 1995-02-14 2002-09-24 松下電器産業株式会社 周波数シンセサイザ
WO1996028890A1 (en) 1995-03-16 1996-09-19 Qualcomm Incorporated Direct digital synthesizer driven pll frequency synthesizer with clean-up pll
JP3210849B2 (ja) * 1995-12-08 2001-09-25 日本電信電話株式会社 分数n周波数シンセサイザ
US5907253A (en) * 1997-11-24 1999-05-25 National Semiconductor Corporation Fractional-N phase-lock loop with delay line loop having self-calibrating fractional delay element
JP2001237700A (ja) * 2000-02-25 2001-08-31 Ando Electric Co Ltd 位相同期ループ回路
JP4652546B2 (ja) * 2000-09-21 2011-03-16 三星電子株式会社 受信機
WO2003032514A2 (en) * 2001-10-11 2003-04-17 Sirf Technologies, Inc. RF CONVERTER WITH MULTIPLE MODE FREQUENCY SYNTHESIZER COMPATIBLE WITH A 48 Fo GPS BASEBAND PROCESSOR
WO2003063337A1 (en) * 2002-01-18 2003-07-31 The Regents Of The University Of California Cmos phase locked loop with voltage controlled oscillator having realignment to reference and method for the same
JP2004056409A (ja) * 2002-07-19 2004-02-19 Ando Electric Co Ltd 分数分周器を用いた位相同期ループ回路
US20040178856A1 (en) * 2003-03-10 2004-09-16 Zeno Wahl Continuous-phase oscillator with ultra-fine frequency resolution
US7339984B1 (en) 2003-04-10 2008-03-04 Agilent Technologies, Inc. Method and apparatus for jitter measurement using phase and amplitude undersampling
US6952573B2 (en) * 2003-09-17 2005-10-04 Motorola, Inc. Wireless receiver with stacked, single chip architecture
US7268630B2 (en) * 2005-04-25 2007-09-11 International Business Machines Corporation Phase-locked loop using continuously auto-tuned inductor-capacitor voltage controlled oscillator
US7664206B2 (en) * 2005-07-29 2010-02-16 Sirf Technology, Inc. GPS front end having an interface with reduced data rate
US7307460B2 (en) * 2005-12-12 2007-12-11 Xilinx, Inc. Method and apparatus for capacitance multiplication within a phase locked loop
US7742785B2 (en) 2006-08-09 2010-06-22 Qualcomm Incorporated Reference signal generation for multiple communication systems
US20080181340A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Spur Rejection Techniques for an RF Receiver

Also Published As

Publication number Publication date
CN102177656B (zh) 2016-08-31
US8145171B2 (en) 2012-03-27
KR20110081837A (ko) 2011-07-14
EP2345163A1 (en) 2011-07-20
JP6324875B2 (ja) 2018-05-16
JP2015092671A (ja) 2015-05-14
JP2012505609A (ja) 2012-03-01
WO2010042763A1 (en) 2010-04-15
US20100085090A1 (en) 2010-04-08
CN102177656A (zh) 2011-09-07
JP2017063439A (ja) 2017-03-30
KR101268746B1 (ko) 2013-06-04

Similar Documents

Publication Publication Date Title
TW201034391A (en) Clock clean-up phase-locked loop (PLL)
JP5048847B2 (ja) ゲート時間/デジタル変換器を有するデジタル位相ロックドループ
US7564276B2 (en) Low-power modulus divider stage
US7825703B2 (en) Divide-by-three quadrature frequency divider
KR101273397B1 (ko) 어큐물레이터 및 위상-대-디지털 컨버터를 사용하는 투-포인트 변조를 갖는 디지털 위상-고정 루프
TW201001927A (en) High resolution time-to-digital converter
US20120081185A1 (en) Time-to-digital converter (tdc) with improved resolution
WO2010093961A1 (en) Frequency synthesizer with multiple tuning loops
EP2641332A1 (en) Lo generation and distribution in a multi-band transceiver
JP2009027581A (ja) 半導体集積回路
US20040196940A1 (en) Low noise divider module for use in a phase locked loop and other applications
US9088285B2 (en) Dynamic divider having interlocking circuit
US6819915B2 (en) Applications of a differential latch
Tsai et al. A 224–448 MH z low‐power fully integrated phase‐locked loop using 0.18‐μm CMOS process
WO2020215294A1 (zh) 电荷泵、锁相环电路及时钟控制装置
Lu et al. A low noise PLL based FM audio transmitter in 0.35 μm CMOS technology