RU2394949C2 - Способ получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника - Google Patents

Способ получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника Download PDF

Info

Publication number
RU2394949C2
RU2394949C2 RU2007119609/04A RU2007119609A RU2394949C2 RU 2394949 C2 RU2394949 C2 RU 2394949C2 RU 2007119609/04 A RU2007119609/04 A RU 2007119609/04A RU 2007119609 A RU2007119609 A RU 2007119609A RU 2394949 C2 RU2394949 C2 RU 2394949C2
Authority
RU
Russia
Prior art keywords
fibers
carbonization
temperature
cellulose
range
Prior art date
Application number
RU2007119609/04A
Other languages
English (en)
Other versions
RU2007119609A (ru
Inventor
Пьер ОЛРИ (FR)
Пьер Олри
Кристоф СУМЭЛЛЬ (FR)
Кристоф СУМЭЛЛЬ
Рене ПЕЛЛЕР (FR)
Рене ПЕЛЛЕР
Сильвии ЛУАЗОН (FR)
Сильвии ЛУАЗОН
Роман КОНИГ (AT)
Роман Кониг
Ален ГЮЭТТ (FR)
Ален ГЮЭТТ
Original Assignee
Снекма Пропюльсьон Солид
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма Пропюльсьон Солид filed Critical Снекма Пропюльсьон Солид
Publication of RU2007119609A publication Critical patent/RU2007119609A/ru
Application granted granted Critical
Publication of RU2394949C2 publication Critical patent/RU2394949C2/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Paper (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Изобретение относится к технологии получения углеродных волокнистых материалов, в частности углеродных волокнистых структур из целлюлозного предшественника. Способ включает стадии прядения нитей целлюлозы из раствора вискозы или раствора целлюлозы; промывки нитей целлюлозы в воде; пропитывания промытых и невысушенных волокон целлюлозы водной эмульсией, по меньшей мере, одного кремнийорганического вспомогательного вещества; высушивания пропитанных волокон целлюлозы; получения волокнистой структуры, состоящей из пропитанных и высушенных волокон целлюлозы и карбонизации волокнистой структуры. Полученные структуры обладают высокими механическими показателями - прочностью на разрыв до 2500 МПа, модулем Юнга до 350 ГПа. 13 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение касается получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Термин "волокнистые структуры" используется здесь для обозначения различных типов структур, например нитей, однонаправленных полотен, сделанных из параллельно тянущихся волокон, или нитей и двухмерных (2D) или трехмерных (3D) волокнистых полотен или холста, полученных, например, путем тканья, вязания или плетения.
Из-за своей низкой теплопроводности углеродные волокна из целлюлозного предшественника (прекурсора) используются, в частности, для изготовления абляционных материалов, обычно для внутренней облицовки стенок сопел и/или камер сгорания ракетных двигателей. Термин "абляционный материал" используется для обозначения материала, который в ходе работы постепенно разрушается под воздействием потока газа при высокой температуре. Существуют или могут быть предусмотрены другие применения для углеродных волокон из целлюлозного предшественника.
До недавнего времени используемый целлюлозный предшественник не позволял получить углеродные волокна, имеющие хорошие механические свойства. Как правило, полученные углеродные волокна имели прочность на разрыв приблизительно 600 МПа и модуль Юнга приблизительно 40 ГПа. Кроме того, стоимость таких углеродных волокон была высока, в частности приблизительно в 10-15 раз больше, чем стоимость высокопрочных углеродных волокон, полученных из полиакрилонитрильного предшественника.
Способы, описанные в заявках на патент США 2002/0182138, 2002/0182139 и патенте США 6967014, содержание которых включено в настоящую работу посредством ссылки, позволили получить из целлюлозных предшественников углеродные волокна с относительно низкой стоимостью, типа, обычно используемого в промышленности, например таких как искусственные волокна, используемые для армирования шин, а также позволило улучшить механические свойства углеродных волокон из целлюлозного предшественника. Как правило, могут быть достигнуты прочность на разрыв, по меньшей мере, 1200 МПа и модуль Юнга приблизительно 40 ГПа или значительно больше.
Эти известные процессы заключаются в пропитывании перед карбонизацией волокон предшественника раствором кремнийорганического вспомогательного вещества в органическом растворителе, например перхлорэтилене. Используемый целлюлозный предшественник находится в форме нитей или тканого холста, волокна которых покрыты маслом, добавляемым в процессе изготовления нитей для облегчения текстильных операций, которым подвергают нити, в частности переплетения (тканья). Необходимо или, по меньшей мере, предпочтительно перед пропитыванием кремнийорганическим вспомогательным веществом (вспомогательными веществами) удалять масло или проклейку. Это осуществляется путем промывки с использованием органических растворителей, например растворителей типа тетрахлорэтилена. Растворители, используемые для удаления масла или для растворения кремнийорганического вспомогательного вещества, вызывают экологические проблемы и они дороги в утилизации.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задача изобретения заключается в устранении этих недостатков и с этой целью изобретение предусматривает способ получения углеродной волокнистой структуры из целлюлозного предшественника. Способ характеризуется тем, что он включает стадии, состоящие из:
- прядения волокон целлюлозы из раствора вискозы или раствора целлюлозы;
- промывки волокон целлюлозы в воде;
- пропитывания промытых и невысушенных волокон целлюлозы водной эмульсией, по меньшей мере, одного кремнийорганического вспомогательного вещества;
- высушивания пропитанных волокон целлюлозы;
- получения волокнистой структуры, состоящей из пропитанных и высушенных волокон целлюлозы; и
- карбонизации волокнистой структуры путем непрерывного пропускания через камеру карбонизации.
Главное преимущество настоящего изобретения должно позволить использовать кремнийорганические вспомогательные вещества в водной среде так, чтобы они не требовали органического растворителя, использование которого вызвало бы трудности, упомянутые выше. Заявитель также обнаружил, что кремнийорганические вспомогательные вещества в водной эмульсии могут быть осаждены на волокнах промытой вискозы после прядения и перед высушиванием гораздо более однородным способом, чем на высушенных нитях вискозы.
В одной форме осуществления изобретения получают, по меньшей мере, одно из нити или полотна из однонаправленных волокон, которые состоят из пропитанных и высушенных волокон целлюлозы, и затем эту нить или полотно из однонаправленных волокон карбонизируют при натяжении. В результате карбонизации при натяжении может быть достигнуто очень существенное улучшение механических свойств. Кроме того, ограничения, накладываемые на карбонизацию холста, для того чтобы избежать его нежелательной деформации, отсутствуют при карбонизации нитей или полотна из однонаправленных волокон, таким образом делая возможным использование температурного профиля, который является более подходящим для карбонизации.
В другой форме осуществления изобретения получают двухмерную (2D) или трехмерную (3D) волокнистую структуру, которая состоит из пропитанных и высушенных волокон целлюлозы, которую подвергают карбонизации. Карбонизацию можно выполнять при натяжении.
Водная эмульсия может содержать от 5 масс.% до 50 масс.% кремнийорганического вспомогательного вещества (веществ).
После пропитывания водной эмульсией и перед высушиванием волокна могут быть отжаты до достижения содержания жидкости, лежащего в диапазоне от 10% до 50% от массы сухих волокон.
Предпочтительно после высушивания содержание кремнийорганического вспомогательного вещества, присутствующего на волокнах, находится в диапазоне приблизительно от 1,5 масс.% до приблизительно 15 масс.% относительно общей массы волокон.
Нить может быть сформирована путем скручивания множества пропитанных и высушенных волокон до карбонизации.
Полотно из однонаправленных волокон может быть сформировано до карбонизации из множества пропитанных и высушенных волокон, расположенных, по существу, параллельно друг другу, или из множества нитей, сформированных из пропитанных и высушенных волокон, и расположенных, по существу, параллельно друг другу.
Двухмерные или трехмерные волокнистые структуры могут быть получены до карбонизации путем тканья, вязания или плетения нитей, сформированных из пропитанных и высушенных волокон.
До карбонизации может быть выполнена стадия релаксации или стабилизации в воздушной среде при температуре ниже 200°С, предпочтительно лежащей в диапазоне от 160°С до 190°С.
Предпочтительно стадия карбонизации включает стадию медленного пиролиза, с последующей заключительной карбонизацией при высокой температуре.
В течение медленной стадии пиролиза температуру поднимают постепенно до значения, лежащего в диапазоне от 360°С до 750°С.
При карбонизации нити или полотна из однонаправленных волокон может быть применено натяжение так, чтобы после пиролиза изменение в их продольном направлении лежало в диапазоне от -30% до +40%.
При карбонизации двухмерной или трехмерной волокнистой структуры применяемое натяжение и выбранный температурный профиль могут быть такими, как описано в документе WO 01/42543, посредством чего сохраняются сбалансированные механические и тепловые свойства. Также можно приложить значительное натяжение к двухмерной или трехмерной волокнистой структуре, посредством чего могут быть получены различные свойства в направлении утка и основы.
Заключительную стадию карбонизации выполняют путем тепловой обработки при высокой температуре, лежащей в диапазоне от 1000°С до 2800°С.
Когда волокнистая структура имеет форму нити или полотна из однонаправленных волокон, в течение этой стадии заключительной карбонизации к волокнистой структуре может быть приложено натяжение таким образом, чтобы получить удлинение в продольном направлении не больше 200%. Таким способом можно получить углеродные волокна, имеющие прочность на разрыв более 1200 МПа, при этом могут быть достигнуты значения до 2500 МПа и имеющие модуль Юнга более 40 ГПа, могут быть достигнуты значения до 350 ГПа.
Когда волокнистая структура представляет собой двухмерную или трехмерную структуру, заключительная стадия карбонизации может быть выполнена, как описано в документе WO 01/42543, или может быть выполнена при значительном натяжении.
Когда заключительную стадию карбонизации выполняют при температуре, по меньшей мере, 2500°С и с удлинением предпочтительно, по меньшей мере, равным 100%, дополнительно может быть выполнена последующая тепловая обработка при температуре более 2500°С и в течение, по меньшей мере, 15 минут, предпочтительно, по меньшей мере, 30 минут, чтобы вызвать в углеродных волокнах волокнистой структуры образование углеродных вискеров (волокнистых нитевидных кристаллов).
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Изобретение будет более понятно при чтении следующего описания, не ограничивающего объема изобретения, со ссылками на прилагаемые графические материалы, на которых:
фиг.1 представляет собой схему производственного процесса, показывающую последовательные стадии в одной форме осуществления способа в соответствии с изобретением;
фиг.2 представляет собой упрощенную схему, показывающую предварительную обработку волокон вискозы до карбонизации;
фиг.3 представляет собой упрощенную схему, показывающую непрерывную карбонизацию нитей, состоящих из предварительно обработанных волокон вискозы;
фиг.4 представляет собой микрофотографию, показывающую углеродное волокно, полученное из целлюлозного предшественника и уже подвергшееся высокотемпературной обработке - карбонизации при удлинении, с последующей высокотемпературной обработкой; и
фиг.5 представляет собой схему производственного процесса, показывающую последовательные стадии в другой форме осуществления способа в соответствии с изобретением.
СВЕДЕНИЯ. ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Первая стадия 10 способа, показанная на фиг.1, заключается в прядении множества волокон из раствора вискозы или целлюлозы. Предпочтительно вискоза представляет собой вискозу того же типа, что и типы, которые используются для производства нити искусственного волокна и которые находят широкое распространение в текстильной промышленности или для армирования шин, например вискоза, имеющая содержание α-целлюлозы, по меньшей мере, 95%, и предпочтительно, по меньшей мере, 98%. Может также использоваться раствор целлюлозы, например целлюлозы в растворителе типа n-метилморфолиноксида.
Прядение вискозы хорошо известно. На выходе из фильеры 11 (фиг.2) получают нить 12, состоящую из множества волокон, как правило, нескольких сотен волокон, например 1000, формируя таким образом волокнистую вискозную нить 1 К.
Нить 12 промывают (стадия 20), распыляя воду через форсунки 21 по ходу движения нити между роликами дефлектора 22 и 42.
Как вариант нить может быть отжата на участке между роликами 22 и 42 (стадия 30) путем пропускания между роликами 31, 32, чтобы уменьшить содержание воды в ней перед последующим пропитыванием ее кремнийорганическим вспомогательным веществом в водной суспензии. Если выполняют отжим, это делают таким образом, чтобы получить содержание воды, лежащее в диапазоне от 10% до 75% от сухой массы нити.
Промытую и невысушенную нить пропитывают кремнийорганическим вспомогательным веществом в водной эмульсии путем пропускания через ванну 41 (стадия 40). Различные кремнийорганические вспомогательные вещества, которые увеличивают последующую карбонизацию вискозы с образованием углеродной нити с хорошими механическими свойствами, описаны в вышеупомянутых документах US 2002/0182138 и US 2002/0182139, поданных от имени Заявителя. Таким образом, кремнийорганическое вспомогательное вещество может быть полисилоксаном, отобранным из следующих групп:
- полигидросилоксаны, которые являются циклическими, линейными или разветвленными и замещены метильной и/или фенильной группами со средней молекулярной массой в диапазоне от 250 до 10000, и предпочтительно в диапазоне от 2500 до 5000; и
- олигомеры и смолы, которые являются поперечно-сшитыми, циклическими или разветвленными, со средней молекулярной массой, лежащей в диапазоне от 500 до 10000 и которые состоят из звеньев формулы SiO4 (называемых звеньями Q4) и звеньев формулы SiOxRy (OR')z, в которых:
- х, у, и z являются целыми числами, такими, что х+у+z=4 и 1≤x≤3,0≤y≤3,0≤z≤3;
- R представляет собой водород или алкильный радикал, который является линейным или разветвленным, имеющим от 1 до 10 атомов углерода, причем возможны различные R в одном и том же звене, когда y≤2;
- R' представляет собой, независимо от R, водород или алкильный радикал, линейный или разветвленный, имеющий от 1 до 10 атомов углерода, причем возможны различные R' в одном и том же звене, когда z≤2;
Понятно, что:
- для олигомеров со средней молекулярной массой менее 1000 в указанной формуле SiOxRy(R')z z≈0; и
- для смол со средней молекулярной массой более 2000 в указанной формуле SiOxRy(R')z у≈0.
В частности, кремнийорганическим соединением может быть силоксановая смола, состоящая из звеньев формулы SiO4 (называемых звеньями Q4), звеньев формулы SiO3-OH (называемых звеньями Q3), и звеньев формулы 0-Si-R3 (называемых звеньями М), предпочтительно состоящая из n1 звеньев Q4, n2 звеньев Q3 и n3 звеньев М, с 2≤n1≤70, 3≤n2≤50 и 3≤n3≤50, и со средней молекулярной массой, лежащей в диапазоне от 2500 до 5000.
Кремнийорганическое соединение также может быть выбрано из олигомеров частично гидролизованного органического силиката, предпочтительно выбрано из олигомеров частично гидролизованного алкилсиликата, и предпочтительно выбрано из олигомеров частично гидрслизованных этил сил и катов.
Как правило, количество кремнийорганического воспомогательного вещества составляет от 5% до 50% от массы водной суспензии.
Следует заметить, что для увеличения выхода углерода также могут быть включены неорганические соединения, способствующие дегидратации целлюлозы. Такие соединения являются кислотами или основаниями Льюиса, например кислый фосфат или хлорид аммония. Эта цель также может быть достигнута последующим проведением релаксации в атмосфере хлористого водорода HCl.
На выходе из ванны 41 пропитанную нить отжимают (стадия 50) путем пропускания между отжимными роликами 51, 52. Они предназначены для уменьшения содержание жидкости до значения, лежащего в диапазоне от 10% до 50% от сухой массы нити.
После отжима пропитанную нить сушат (стадия 60), пропуская один или более раз через ролики нагревателя 61, 62.
После высушивания содержание кремнийорганического вспомогательного вещества на нити 12 лежит в диапазоне от 1,5 масс.% до 15 масс.% относительно общей массы сухой нити.
Пропитанную и высушенную нить 12 затем направляют на устройство скручивания 71 для формирования скрученной нити 72 (стадия 70). Нить 12 может быть скручена с кручением от 20 до 100 оборотов на метр. Скрученная нить большей массы может также быть получена путем скручивания вместе множества нитей, таких как нить 12.
Полученную нить 72 хранят (стадия 80), намотав на бобины 81.
Для целей релаксации и пиролиза (стадии 90 и 100) нить 72 с бобины 81 вводят последовательно в туннельную печь 91 для релаксации в воздушной среде и в туннельную печь 93 пиролиза в азоте. В течение стадии релаксации устраняются или, по меньшей мере, очень уменьшаются внутренние напряжения в волокнах, что приводит к стабилизации нити. Нить 72 подвергают медленному пиролизу путем повышения его температуры на нескольких стадиях. Могут быть осуществлены следующие операции:
а) первая стадия релаксации нити в воздушной среде в печи 91, причем температуру повышают до значения ниже 200°С, предпочтительно лежащего в диапазоне от 160°С до 190°С, при этом нить выдерживают при этой температуре в течение времени, лежащего в диапазоне от 0,5 ч до 2 ч; и
б) вторая стадия медленного пиролиза, включающая, например:
- этап повышения температуры до значения, лежащего в диапазоне от 200°С до 300°С после ввода в печь 93;
- этап повышения температуры до значения, лежащего в диапазоне от 240°С до 350°С;
- этап выдерживания при температуре, лежащей в диапазоне от 260°С до 350°С;
- этап повышения температуры до значения, лежащего в диапазоне от 300°С до 400°С;
- этап повышения температуры до значения, лежащего в диапазоне от 330°С до 450°С;
- этап повышения температуры до значения, лежащего в диапазоне от 340°С до 500°С;
- этап повышения температуры до значения, лежащего в диапазоне от 350°С до 550°С; и
- этап повышения температуры до значения, лежащего в диапазоне от 360°С до 750°С, перед выходом из печи 93.
Следует отметить, что такой температурный профиль сам по себе не является новым. Может быть сделана ссылка на документ "Carbon fiber rayon precursors", R. Bacon, Chemistry and Physics of Carbon, Walker Thrower Editions Marcel Dekker, vol.9.
Печь 93 разделена на несколько зон, через которые последовательно проходит нить. Температура в каждой зоне управляется путем подачи энергии на резистивные элементы электронагревателя (например, 94) в зависимости от информации, поступающей от температурных датчиков (не показаны). На входе и на выходе из печи 93 могут быть предусмотрены герметизирующие камеры. В этой печи также имеются каналы 95 для удаления газообразных побочных продуктов карбонизации и каналы 96 для подачи в печь тока инертного газа, например азота.
Количество зон в печи и температуры в них подобраны таким образом, чтобы соответствовать предварительно установленному профилю повышения температуры, при этом следует заметить, что количество стадий в течение медленного пиролиза может отличаться от восьми. В частности, это количество может быть меньше восьми в случае объединения последовательных стадий с целью ограничения количества зон в печи.
Полное время прохождения через печь 93 может лежать, например, в диапазоне от 30 мин до 2 ч. 30 мин.
Медленный пиролиз нити 72 выполняют предпочтительно при натяжении. Для этой цели нить 72 проходит между двумя ведущими роликами 97а, 97b вверх по движению от входа в печь 91, и получающаяся углеродная нить 92 проходит между двумя другими ведущими роликами 98а, 98b вниз по движению от выхода печи 93. Скорости ведущих роликов подбирают таким образом, чтобы получить желаемое удлинение и избежать любого сдвига.
Во время пиролиза в свободном состоянии нить подвергается сокращению в размерах (усадке), которая может достигать от 30% до 40% от ее первоначального размера. Напряжение воздействует на нить, компенсируя усадку в продольном направлении, по меньшей мере, частично или даже полностью компенсируя усадку. В результате воздействия натяжения возможно также удлинение нити по сравнению с ее первоначальным состоянием. Изменение длины нити в продольном направлении в течение медленного пиролиза предпочтительно находится в диапазоне от -30% до +40%, причем это изменение достигается путем дифференциального управления роликами 98а, 98b, расположенными ниже по направлению движения, относительно роликов 97а, 97b, расположенными выше по направлению движения.
Затем нить 92 подвергают заключительной обработке - карбонизации при высокой температуре (стадия 110), в непрерывном процессе со стадией пиролиза, или, возможно, после промежуточного хранения на бобине 111. Обработку осуществляют в печи карбонизации 112 при температуре, лежащей в диапазоне от 1200°С до 2800°С, в течение нескольких минут, и этот процесс может сопровождаться удлинением нити, где указанное удлинение находится, например, в диапазоне от 0% до 200%. Эта обработка структурирует углеродную нить. При температурах выше 2500°С углеродные волокна деформируются, это происходит особенно легко вследствие низкой структурированности углерода в них. История углеродной решетки вследствие этого стирается, и деформация ведет к почти полной реорганизации графеновой плоскости. Высокотемпературную обработку выполняют в инертной атмосфере, например в атмосфере азота.
При желании удлинить нить ее пропускают между парой ведущих роликов 113, 114, расположенных выше по направлению движения относительно входа в печь, 112 и парой ведущих роликов 115, 116, расположенных ниже по направлению движения относительно выхода из печи. При этом ролики, расположенные выше и ниже по направлению движения, движутся с различными скоростями вращения в зависимости от желаемого удлинения.
Полученную нить хранят (стадия 120) на бобине 121 для последующего использования.
Следует отметить, что возможность выбора оптимальных условий для карбонизации нити 72 и факт осуществления карбонизации при натяжении позволяет получить углеродную нить, имеющую высокие механические свойства, а именно прочность на разрыв, лежащую в диапазоне от 1200 МПа до 2500 МПа, и модуль Юнга, лежащий в диапазоне от 40 ГПа до 350 ГПа.
Кроме того, волокна нитей, которые были подвергнуты заключительной обработке - карбонизации при температуре более 2500°С при удлинении, равном предпочтительно, по меньшей мере, 100%, не только становятся способными к графитизации, но и также образуют внутренние углеродные вискеры в процессе последующей высокотемпературной обработки, осуществляемой при температуре более 2500°С в течение ≥15 мин, предпочтительно ≥30 мин. Такая последующая высокотемпературная обработка может быть осуществлена партиями в периодическом процессе. На фиг.4 показаны такие вискеры, образующиеся в углеродном волокне из целлюлозного предшественника, которое подвергали высокотемпературной обработке при 2800°С в течение 2 мин и при удлинении 200% в непрерывном процессе, с последующей высокотемпературной обработкой при 2800°С в течение приблизительно 1 ч в периодическом процессе.
Хотя приведенное выше описание относится к карбонизации нити, изобретение также применимо к формированию и карбонизации полотна из однонаправленных волокон. Такое полотно может состоять из волокон или нитей, расположенных, по существу, параллельно друг к другу, причем каждая нить сама состоит из множества волокон. Таким образом, полотно может быть сформировано из множества нитей 72 для последующей непрерывной карбонизации.
ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Пример 1
Нить искусственного волокна типа "Super 2" формировали путем объединения 1000 волокон на выходе из фильеры. Нить промывали в воде. Неотжатую и невысушенную нить пропитывали путем пропускания через ванну с водной эмульсией, состоящей из 60 масс.% воды и 40 масс.% смеси равных частей эмульсий, продаваемых под марками Rhodorsil EMUL 55 (эмульсия полисилоксанового масла) и Rhodorsil EMUL 1803 (эмульсия полисилоксановой смолы, состоящей из звеньев М и Q, как они определены выше) от поставщика Rhodia Silicones. Нить отжимали, а затем сушили путем пропускания через ролики нагревателя при 120°С перед тем, как направить ее на устройство скручивания, чтобы получить скрученную нить.
Содержание кремнийорганического вспомогательного вещества составляло приблизительно 5 масс.% относительно общей массы нити.
Нить, полученную таким образом, подвергали релаксации путем непрерывного пропускания через печь в воздушной среде при 180°С в течение 90 мин, а затем подвергали пиролизу путем непрерывного пропускания через печь пиролиза в атмосфере азота. Печь пиролиза была разделена на шесть зон приблизительно равной длины с набором температур соответственно 210°С, 250°С, 280°С, 310°С, 340°С и 370°С. Нить выдерживали в течение приблизительно 1 ч в печи пиролиза. В течение релаксации и карбонизации нить подвергали натяжению, чтобы получить удлинение 10% при выходе из печи пиролиза относительно ее состояния до входа в печь с воздушной средой, поддерживая скорость на выходе на 10% выше скорости на входе. Затем нить подвергали карбонизации при высокой температуре путем непрерывного пропускания через печь карбонизации без удлинения.
В таблице ниже приведены значения прочности на разрыв и модуля Юнга, измеренные на углеродном моноволокне при различных температурах печи карбонизации.
Таблица
Температура карбонизации (°С) Прочность на разрыв (МПа) Модуль Юнга (ГПа) Удлинение при разрыве (%)
1200 1315 41 3,20
1500 1520 45 3,38
1800 1720 51 3,37
2100 1950 62 3,15
Пример 2 (сравнительный)
Нить искусственного волокна, полученную путем объединения 1000 волокон как в примере 1, сушили после промывки и подвергали пропитыванию маслом, чтобы сделать нить подходящей для обработки, без пропитывания эмульсией. После обезжиривания нить подвергали термической релаксации и пиролизу, применяя тот же самый температурный профиль как в примере 1, но не применяя натяжения (пиролиз со свободным сжатием). Подвергнутую пиролизу нить затем подвергали карбонизации при 1200°С без удлинения.
Измерения свойств углеродного моноволокна дали следующие результаты:
прочность на разрыв 580 МПа, модуль Юнга 38 ГПа и удлинение при разрыве 1,5%.
Пример 3 (сравнительный)
Процедура была аналогичной описанной в примере 2, за исключением того, что обезжиренную нить пропитывали до тепловой релаксации и пиролиза кремнийорганическим вспомогательным веществом, представляющим собой комбинацию полисилоксанового масла и полисилоксановой смолы, состоящей из звеньев М и Q, как они определены выше, поставляемым под маркой RTV 121 французским поставщиком Rhodia в форме раствора в тетрахлорэтилене. Пропитывание осуществляли таким образом, чтобы оставить количество кремнийорганического вспомогательного вещества на нити, составляющее 3% от массы сухой нити.
Измерения выполняли для углеродного моноволокна, дали следующие результаты: прочность на разрыв 1125 МПа, модуль Юнга 40 ГПа и удлинение при разрыве 2,8%.
Приведенные выше примеры показывают, что при осуществлении способа по изобретению получается существенное улучшение механических свойств углеродных волокон по сравнению со способом, который не включает пропитывание кремнийорганической композицией (пример 2).
Определенное улучшение также наблюдается по сравнению со способом, который включает такое пропитывание, выполненное после высушивания нити искусственного волокна (пример 3), который известен из предшествующего уровня техники, описанного во введении к настоящему описанию. Это улучшение сопровождается убедительным преимуществом, заключающимся в отсутствии необходимости использования растворителя типа тетрахлорэтилена, который вызывает существенные проблемы, касающиеся окружающей среды и переработки отходов.
В другой форме осуществления способа согласно изобретению, как показано на фиг.5, пропитанные и высушенные нити получают и хранят, выполняя те же самые стадии 10-80, как описано выше в отношении фиг.1.
Такие нити используются для получения двухмерной или трехмерной волокнистой структуры путем тканья, вязания или плетения (стадия 130), такой как, например, двухмерный холст.
Волокнистую структуру, изготовленную из нитей, сформированных из пропитанных и высушенных волокон целлюлозы, подвергают последовательным стадиям релаксации (стадия 140) и пиролиза (стадия 150).
Релаксация и пиролиз волокнистой структуры могут быть выполнены, как описано выше для нити, а именно релаксация в воздушной среде при температуре ниже 200°С, предпочтительно лежащей в диапазоне от 160°С до 190°С, и медленный пиролиз, в течение которого температуру поднимают постепенно до значения, лежащего в диапазоне от 360°С до 750°С, без натяжения или только с умеренным натяжением, прикладываемым к волокнистой структуре для получения более уравновешенного полотна, в одном случае, и с натяжением, заставляющим полотно удлиняться из его первоначального состояния в продольном направлении с получением неуравновешенного полотна, во втором случае.
Релаксация и пиролиз также могут быть выполнены на волокнистой структуре, движущейся непрерывно через камеру для релаксации в воздушной среде и туннельную печь для пиролиза в атмосфере азота, как описано в патенте США 6967014. Пиролиз, следующий за релаксацией, включает:
- начальную стадию доведения температуры ткани до значения, лежащего в диапазоне от 250°С до 350°С, при этом начальная стадия включает повышение температуры с первой средней скоростью, лежащей в диапазоне от 10°С/мин до 60°С/мин;
- промежуточную стадию повышения температуры ткани до значения, лежащего в диапазоне от 350°С до 500°С, при этом промежуточная стадия включает повышение температуры со второй средней скоростью меньшей, чем первая, и лежащей в диапазоне от 2°С/мин до 10°С/мин; и
- заключительную стадию повышения температуры ткани до значения, лежащего в диапазоне от 500°С до 750°С, при этом заключительная стадия включает повышение температуры с третьей средней скоростью большей, чем вторая, и лежащей в диапазоне от 5°С/мин до 40°С/мин.
Такой температурный профиль предпочтителен для пиролиза тканого полотна, так как это позволяет минимизировать деформацию ткани, имеющую место вследствие сжатия волокон целлюлозы (получается более уравновешенный холст). Если в этом нет необходимости, температурный профиль и скорость могут быть подобраны таким образом, чтобы получить неуравновешенный холст.
После пиролиза может быть выполнена заключительная карбонизация термообработкой при высокой температуре в печи карбонизации при температуре, лежащей в диапазоне от 1200°С до 2800°С (стадия 160), подобно стадии 110, изображенной на фиг.1, за исключением того, что волокнистая структура может не подвергаться удлинению.
Получающуюся углеродную волокнистую структуру складируют (стадия 170) для последующего использования.

Claims (14)

1. Способ получения углеродной волокнистой структуры из целлюлозного предшественника, включающий стадии:
прядения волокон целлюлозы из раствора вискозы или раствора целлюлозы;
промывки волокон целлюлозы в воде;
пропитывания промытых и невысушенных волокон целлюлозы водной эмульсией, включающей от 5 до 50 мас.%, по меньшей мере, одного кремнийорганического вспомогательного вещества, пригодного для увеличения карбонизации целлюлозы;
высушивания пропитанных волокон целлюлозы, при этом после высушивания содержание кремнийорганического вспомогательного вещества находится в диапазоне от 1,5 до 15 мас.% относительно общей массы волокон;
получения волокнистой структуры, состоящей из пропитанных и высушенных волокон целлюлозы; и
карбонизации волокнистой структуры.
2. Способ по п.1, отличающийся тем, что после пропитывания водной эмульсией и перед высушиванием волокна отжимают до достижения содержания воды, лежащего в диапазоне от 10 до 50 мас.% от массы сухих волокон.
3. Способ по п.1, отличающийся тем, что после высушивания и перед карбонизацией формируют нить путем скручивания множества пропитанных и высушенных волокон.
4. Способ по п.1, отличающийся тем, что после высушивания и перед карбонизацией формируют полотно из однонаправленных волокон, включающее множество пропитанных и высушенных волокон, расположенных по существу параллельно друг к другу.
5. Способ по п.3, отличающийся тем, что перед карбонизацией формируют полотно из однонаправленных волокон, включающее множество нитей, расположенных по существу параллельно друг к другу.
6. Способ по любому из пп.3-5, отличающийся тем, что карбонизация включает стадию медленного пиролиза, в течение которой температуру поднимают постепенно до значения, лежащего в диапазоне от 360 до 750°С.
7. Способ по п.6, отличающийся тем, что в течение стадии медленного пиролиза к нити или полотну из однонаправленных волокон прикладывают натяжение так, чтобы изменение в продольном направлении после пиролиза находилось в диапазоне от -30% до +40%.
8. Способ по п.3, отличающийся тем, что перед карбонизацией путем тканья, вязания или плетения нитей формируют двухмерную или трехмерную волокнистую структуру, образованную из пропитанных и высушенных волокон.
9. Способ по п.8, отличающийся тем, что карбонизация включает стадию медленного пиролиза, в течение которой температуру поднимают постепенно до значения, лежащего в диапазоне от 360 до 750°С.
10. Способ по п.9, отличающийся тем, что после заключительной стадии карбонизации при температуре более 2500°С волокнистую структуру подвергают дальнейшей термообработке при температуре более 2500°С и в течение, по меньшей мере, 15 мин, чтобы вызвать развитие вискеров на углеродных волокнах нити или полотна из однонаправленных волокон.
11. Способ по п.6, отличающийся тем, что после стадии медленного пиролиза стадию заключительной карбонизации выполняют термообработкой при высокой температуре, лежащей в диапазоне от 1200 до 2800°С.
12. Способ по п.10, отличающийся тем, что в течение стадии заключительной высокотемпературной карбонизации к волокнистой структуре прикладывают натяжение таким образом, чтобы получить удлинение не более 200% в продольном направлении.
13. Способ по п.6, отличающийся тем, что перед медленным пиролизом выполняют стадию релаксации в воздушной среде при температуре ниже 200°С.
14. Способ по п.13, отличающийся тем, что стадию релаксации выполняют при температуре, лежащей в диапазоне от 160 до 190°С.
RU2007119609/04A 2004-12-07 2005-12-06 Способ получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника RU2394949C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04292902A EP1669480B1 (en) 2004-12-07 2004-12-07 Method of obtaining yarns or fiber sheets of carbon from a cellulose precursor
EP04292902.6 2004-12-07

Publications (2)

Publication Number Publication Date
RU2007119609A RU2007119609A (ru) 2009-01-20
RU2394949C2 true RU2394949C2 (ru) 2010-07-20

Family

ID=34931585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007119609/04A RU2394949C2 (ru) 2004-12-07 2005-12-06 Способ получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника

Country Status (11)

Country Link
US (1) US7879271B2 (ru)
EP (2) EP1669480B1 (ru)
JP (1) JP5253811B2 (ru)
CN (1) CN100564622C (ru)
AT (2) ATE361383T1 (ru)
BR (1) BRPI0519062B1 (ru)
DE (2) DE602004006285T2 (ru)
MX (1) MX2007006773A (ru)
RU (1) RU2394949C2 (ru)
UA (1) UA88489C2 (ru)
WO (1) WO2006061386A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494109C2 (ru) * 2010-09-20 2013-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения гидрогеля нанокристаллической целлюлозы
EA022544B1 (ru) * 2012-04-26 2016-01-29 Открытое Акционерное Общество "Светлогорскхимволокно" Способ получения углеродных волокнистых материалов из гидратцеллюлозных волокон
RU2718749C2 (ru) * 2015-06-11 2020-04-14 Стора Энсо Ойй Волокно и способ его изготовления
RU2748442C2 (ru) * 2016-10-28 2021-05-25 Аркема Франс Способ изготовления углеродных волокон из биопрекурсоров и получаемые углеродные волокна

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909920B1 (fr) * 2006-12-15 2009-03-20 Snecma Propulsion Solide Sa Procede de realisation d'un ensemble carter-divergent
KR101427813B1 (ko) 2008-12-23 2014-08-08 주식회사 효성 탄소섬유용 아크릴로니트릴계 전구체 섬유의 제조방법
JP5271887B2 (ja) * 2009-05-08 2013-08-21 国防科学研究所 ライオセル系炭素繊維及び炭素織物の製造方法
PL2556007T3 (pl) * 2010-04-07 2015-04-30 Dsm Ip Assets Bv Nawój przędzy o wysokim module Younga i sposób nawijania nawoju przędzy
US9181134B1 (en) 2011-04-27 2015-11-10 Israzion Ltd. Process of converting textile solid waste into graphite simple or complex shaped manufacture
EP2524980A1 (de) * 2011-05-18 2012-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung ligninhaltiger Precursorfasern sowie Carbonfasern
RU2506356C1 (ru) * 2012-07-13 2014-02-10 Открытое акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Установка карбонизации волокнистых вискозных материалов для получения комбинированных углеродных нитей
EP2783764B1 (de) * 2013-03-28 2016-07-13 ELG Carbon Fibre International GmbH Pyrolyseanlage und Verfahren zur Rückgewinnung von Kohlenstofffasern aus kohlenstofffaserhaltigen Kunststoffen, und rückgewonnene Kohlenstofffasern
DE102013218639A1 (de) * 2013-09-17 2015-03-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Faserverbundhalbzeuges sowie Faserverbundhalbzeug
EP3143187B1 (de) * 2014-05-16 2020-11-11 Deutsche Institute für Textil- und Faserforschung Denkendorf Verfahren zur herstellung von carbonfasern aus cellulosefasern
KR102596017B1 (ko) * 2015-10-08 2023-10-30 스토라 엔소 오와이제이 전구체 얀의 제조 방법
FR3058167B1 (fr) * 2016-10-28 2019-11-22 Arkema France Nouveau procede de fabrication de materiaux hautement carbones et materiau hautement carbone obtenu
US10415938B2 (en) 2017-01-16 2019-09-17 Spectre Enterprises, Inc. Propellant
FR3096691B1 (fr) * 2019-05-29 2021-06-25 Inst De Rech Tech Jules Verne Procédé de fabrication d’une fibre de carbone à partir d’une fibre de cellulose

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978788A (en) * 1955-07-13 1961-04-11 Du Pont Process for treating synthetic yarn
US3969268A (en) * 1974-12-31 1976-07-13 Toyobo Co., Ltd. Process for preparing active carbon fibers
US4076932A (en) * 1976-02-27 1978-02-28 International Telephone And Telegraph Corporation Process for producing regenerated cellulosic articles
FR2372268A1 (fr) * 1976-11-30 1978-06-23 Rhone Poulenc Ind Procede de lubrification du fil a coudre par impregnation en bains aqueux contenant des polymeres organosiliciques
US4123398A (en) * 1977-05-25 1978-10-31 International Telephone And Telegraph Corporation Flame resistant cellulosic product containing antimony pentoxide and polyvinyl bromide
JPS5795313A (en) * 1981-10-16 1982-06-14 Toyobo Co Ltd Production of carbon fiber
JPS59179885A (ja) * 1983-03-31 1984-10-12 松本油脂製薬株式会社 炭素繊維原糸用処理剤
JPS62191518A (ja) * 1986-02-10 1987-08-21 Toa Nenryo Kogyo Kk 炭素繊維及び黒鉛繊維の製造方法
JPH11204114A (ja) * 1998-01-20 1999-07-30 Daikin Ind Ltd 電極材料
FR2801907B1 (fr) * 1999-12-06 2002-03-01 Snecma Carbonisation de materiaux fibreux cellulosiques en presence d'un compose organosilicie
FR2801906B1 (fr) * 1999-12-06 2002-03-01 Snecma Carbonisation de materiaux fibreux cellulosiques en presence d'un compose organosilicie
FR2801908B1 (fr) 1999-12-06 2002-03-01 Snecma Procede pour l'obtention de tissu en fibres de carbone par carbonisation en continu d'un tissu en fibres cellulosiques
DE10036678A1 (de) * 2000-07-27 2002-02-14 Wacker Chemie Gmbh Ammoniumgruppen aufweisende Organosiliciumverbindungen
DE10115476A1 (de) * 2001-03-29 2002-10-10 Wacker Chemie Gmbh Verfahren zur Behandlung von organischen Fasern
JP2002355538A (ja) * 2001-05-30 2002-12-10 Asahi Medical Co Ltd 炭素繊維中空糸膜用セルロース中空糸膜およびその製造方法
DE10238818A1 (de) * 2002-08-23 2004-03-04 Wacker-Chemie Gmbh Cyclodextrinreste aufweisende Organosiliciumverbindungen
JP2004084147A (ja) * 2002-08-29 2004-03-18 Mitsubishi Chemicals Corp 炭素質繊維織布

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494109C2 (ru) * 2010-09-20 2013-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения гидрогеля нанокристаллической целлюлозы
EA022544B1 (ru) * 2012-04-26 2016-01-29 Открытое Акционерное Общество "Светлогорскхимволокно" Способ получения углеродных волокнистых материалов из гидратцеллюлозных волокон
RU2718749C2 (ru) * 2015-06-11 2020-04-14 Стора Энсо Ойй Волокно и способ его изготовления
US10626523B2 (en) 2015-06-11 2020-04-21 Stora Enso Oyj Fiber and a process for the manufacture thereof
RU2748442C2 (ru) * 2016-10-28 2021-05-25 Аркема Франс Способ изготовления углеродных волокон из биопрекурсоров и получаемые углеродные волокна

Also Published As

Publication number Publication date
EP1669480B1 (en) 2007-05-02
BRPI0519062A2 (pt) 2008-12-23
UA88489C2 (ru) 2009-10-26
MX2007006773A (es) 2007-08-06
WO2006061386A1 (en) 2006-06-15
EP1669480A1 (en) 2006-06-14
ATE361383T1 (de) 2007-05-15
US20090121380A1 (en) 2009-05-14
JP2008523261A (ja) 2008-07-03
DE602005011172D1 (de) 2009-01-02
CN101072903A (zh) 2007-11-14
EP1819852A1 (en) 2007-08-22
JP5253811B2 (ja) 2013-07-31
ATE414806T1 (de) 2008-12-15
DE602004006285T2 (de) 2007-12-20
BRPI0519062B1 (pt) 2016-05-17
EP1819852B1 (en) 2008-11-19
CN100564622C (zh) 2009-12-02
DE602004006285D1 (de) 2007-06-14
RU2007119609A (ru) 2009-01-20
US7879271B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
RU2394949C2 (ru) Способ получения углеродных волокнистых структур путем карбонизации целлюлозного предшественника
JP3929073B2 (ja) 再生セルロースフィラメントの調製方法
JP5722991B2 (ja) 炭素繊維の製造方法及び炭素繊維用前駆体繊維
CA2968266C (en) Continuous carbonization process and system for producing carbon fibers
WO2017204026A1 (ja) 炭素繊維束およびその製造方法
JP5741815B2 (ja) 炭素繊維前駆体アクリル繊維束および炭素繊維束
JP6575696B1 (ja) 炭素繊維束およびその製造方法
RU2257429C2 (ru) Способ получения ткани из углеродных волокон путем непрерывной карбонизации ткани из целлюлозных волокон
JP3047731B2 (ja) フィラメントワインディング成形用炭素繊維およびその製造方法
JP2017137602A (ja) ポリアクリロニトリル繊維束の製造方法
RU2741012C1 (ru) Способ получения углеродного волокна и материалов на его основе
Nakagaito et al. Fabrication of strong macrofibers from plant fiber bundles
JP2021139062A (ja) 炭素繊維束の製造方法
JP2004156161A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
KR101957061B1 (ko) 고강도 탄소섬유의 제조방법
Bengtsson et al. LightFibre and beyond-towards the bio-based carbon fibres of the future
JP2596092B2 (ja) 炭素繊維用原糸の製法
KR101364788B1 (ko) 탄소섬유 제조를 위한 전구체 섬유의 유제 처리방법
RU1772241C (ru) Способ получени углеродного текстильного наполнител композиционного материала
JP2001131832A (ja) 炭素繊維の製造方法
JP2763001B2 (ja) ピツチ系炭素繊維の製造方法
JPS58214520A (ja) 炭素繊維前駆体糸条の製造方法
JPH0364514A (ja) 炭素繊維用アクリル系前駆体糸条の製造法
JPH0299608A (ja) 炭素繊維製造用前駆体の製造法
KR20120073962A (ko) 고강력 라이오셀 섬유의 수세 방법

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20140815

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20181130

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191207