RU2128709C1 - Способ получения димерного одноцепочечного слитого белка (варианты) - Google Patents

Способ получения димерного одноцепочечного слитого белка (варианты) Download PDF

Info

Publication number
RU2128709C1
RU2128709C1 RU94045249A RU94045249A RU2128709C1 RU 2128709 C1 RU2128709 C1 RU 2128709C1 RU 94045249 A RU94045249 A RU 94045249A RU 94045249 A RU94045249 A RU 94045249A RU 2128709 C1 RU2128709 C1 RU 2128709C1
Authority
RU
Russia
Prior art keywords
fragment
antibody
peptide
amphiphilic
chain
Prior art date
Application number
RU94045249A
Other languages
English (en)
Other versions
RU94045249A (ru
Inventor
Плюктун Андреас
Пак Петер
Original Assignee
Мерк Патент Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мерк Патент Гмбх filed Critical Мерк Патент Гмбх
Publication of RU94045249A publication Critical patent/RU94045249A/ru
Application granted granted Critical
Publication of RU2128709C1 publication Critical patent/RU2128709C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)

Abstract

Изобретение относится к биотехнологии и может быть использовано для создания слитых белков фрагментов антитела с би- или мультифункциональными сайтами связывания. ДНК последовательности первой и второй мономерных единиц, кодирующие одноцепочечный Fv фрагмент антитела и амфифильный спиральный пептид, клонируют в одном или двух экспрессирующих векторах. Хозяйские клетки трансформируют вектором (ами) экспрессии и культивируют с последующим выделением целевого продукта, экспрессированного в клетке или среде. Способ позволяет получить димерные слитые белки с высокой активностью против соответствующих антигенов. 2 с. и 1 з.п.ф-лы, 4 ил.

Description

Настоящее изобретение описывает новый класс связывающих антиген молекул, которые содержат Fv-фрагмент антитела, но не используют константные области антитела. Они также могут быть димеризованы с другими молекулами фрагментов антитела или с фрагментами молекул не-антитела с образованием би- или мультифункциональных антител-фрагментов слитых белков и так называемых миниантител соответственно. Новые слитые белки могут быть использованы в широкой области диагностической и терапевтической медицины.
В последние несколько лет проявляется большой интерес к биотехнологической области модификации антител природного происхождения, чтобы получить более специфические и более индивидуальные виды антител. Поэтому были сделаны попытки получить (модифицированные) фрагменты антител.
Все антитела природного происхождения любого класса имеют по крайней мере два сайта связывания. Это дает им возможность связываться с поверхностью с большим функциональным сродством (также называемой авидностью), чем одновалентные фрагменты, такие как Fab фрагменты. В последние несколько лет были описаны способы (Skerra and Pluckthun, 1988, Science 240, 1038 - 1040; Belter et al, 1988, Science 240, 1041 - 1043), с помощью которых могут быть получены функциональные фрагменты антител в Escherichia coli. Они включают Fv фрагмент (гетеродимер, состоящий из VH и VL) и Fab фрагмент (состоящий из полной легкой цепи с доменами VL и CL, а также первых двух доменов тяжелых цепей VH и CH1).
Однако Fv фрагмент имеет тенденцию диссоциировать на VH и VL и, следовательно, выгодно связывать два домена ковалентно. Одним конкретным путем их связывания является конструирование пептидного линкера между ними или в ориентации VH -линкер- VL или VL -линкер- VH (Bird et al, 1988, Science, 242, 423; Huston et al, 1988, Proc. Nate, Acad. Sci. USA 85, 5879). Полученные в результате фрагменты называют одноцепными Fv фрагментами.
Однако все эти фрагменты являются одновалентными. В этом изобретении мы описываем способ получения малых демиризационных доменов на основе пептидов, образующих амфипатические спирали. Эти пептиды будут упоминаться как "интеркалирующие", но этот термин означает только экспрессию способности нацеленной ассоциации, а не ограничение, относящееся к конкретной структуре поверхности раздела димеризации.
Хотя описанная здесь методология в принципе применима к любым Fab, Fv или scFv фрагментам, только для последних она является наиболее выгодной. В этом случае могут быть сконструированы двухвалентные фрагменты cf очень маленького размера и еще может быть предотвращена диссоциация в VL и VH, а также неправильное спаривание фрагментов цепей, например VL-VL. Фрагменты антител маленького размера являются особенно удобными для многих применений. При диагностических применениях (например, ЭЛАЙЗА, РИА и т.д.) меньшая поверхность молекул снижает проблемы неспецифического взаимодействия, которые, как известно, часто включают константные области. Это же справедливо для использования фрагментов антител в качестве лигандов в аффинной хроматографии. При диагностике или лечении опухолей важно, чтобы значительное количество инъецированного антитела проникало в ткани и локализовалось в опухоли, и это зависит от размеров молекул (Colcher et al, 1990, J. Natl. Cancer Inst., 82, 1191 - 1197). Выход экспрессии и эффективность секреции рекомбинантных белков также являются функцией размера цепи (Skerra and Pluckthun, 1991, Protein Eng, 4, 971), по этой причине предпочтительными являются маленькие белки. Следовательно, молекулы маленького размера являются выгодными по нескольким причинам.
Прежде всего уменьшение молекулярных размеров антитела означает получение протеолитических фрагментов. Самые маленькие двухвалентные фрагменты, (Fab)'2 фрагменты, являются примерно в два раза большими, чем фрагменты настоящего изобретения. Следовательно, эти новые фрагменты сочетают три признака: (а) маленький размер, (б) двухвалентность или бифункциональность и (в) способность к функциональной экспрессии в E. coli
Имеется большой интерес к бифункциональным антителам в широком круге областей. Бифункциональные антитела могут быть определены как имеющие две различные специфичности или для двух различных антигенов или для двух эпитопов одного и того же антигена.
В настоящее время имеется несколько способов получения бифункциональных антител. Однако ни один из существующих способов не позволяет получать исключительно бифункциональные антитела in vivo, а всегда получают смесь молекулярных разновидностей, требующую сложных и дорогостоящих процедур разделения.
Могут быть выделены четыре основных способа. В первом используют химическую сшивку, в которой можно удобно использовать гетеробифункциональные сшивающие агенты. По этому способу химически сшивают после очистки целые антитела (Staerz et al, 1985, Nature 314, 628; Perez et al. 1985, Nature 316, 354 - 356), Fab фрагменты (Carter et al., 1992, Biotechnology 10, 63) и scFv фрагменты (Cumber et al 1992, J. Immunol. 149, 120).
Второй известный способ включает слияние двух гибридов, чтобы получить так называемую гетерогибридому или "квадрому". В этом способе любая легкая цепь может быть спарена с любой тяжелой цепью, а две тяжелые цепи могут дать гомодимеры или гетеродимеры, приводя в результате к очень сложным смесям продуктов (Milstein and Cuello, 1983, Nature 305, 537).
Третий способ относится ко второму и состоит из переноса двух экспрессирующих плазмид в клетку гибридомы, кодирующую тяжелую и легкую цепь второго антитела (Zenz and Weidle 1990, Gene 87, 213) или ретровирусный вектор (De Monte et al, 1990, Acad. Sci 87, 2941 - 2945). Однако при введении смесь продуктов является идентичной смеси второй процедуры.
Наконец, антитела восстанавливают, смешивают и повторно окисляют (Staerz and Bevan, 1986, Immunology Today 7). Опять-таки получают очень сложные смеси продуктов, требующие тонких методов разделения и процедур контроля за качеством.
Следовательно, все еще существует потребность в способе, позволяющем выделять исключительно гетеродимерные антитела непосредственно без сложного приготовления, требующегося для химической сшивки. В настоящем изобретении эта проблема решается за счет: (i) ковалентного связывания соответствующих VH и VL областей в scFv фрагменте и (ii) использования областей димеризации, обеспечивающих только образование гетеродимеров, таких как определенные лейциновые зипперы (Zipper - "застежка-молния") и производные.
Другим важным обстоятельством настоящего изобретения является желание получить по возможности меньшую молекулярную массу биспецифического антитела по изложенным выше детально причинам. Это достигается при использовании scFv фрагментов.
Ряд применений биспецифических антител уже был описан, а большинство из них будет извлекать пользу из этой новой технологии. Например, биспецифические антитела представляют большой интерес в терапии опухолей. Одно плечо антитела может связываться с опухолевым маркером, а другое плечо - с эпитопом Т-клетки, токсином или пептидом или белком, связывающим радионуклид, чтобы довести убивающую функцию до опухолевой клетки. В диагностике одно плечо может быть связано с интересующим анализируемым объектом, а другое - с объектом, который может быть легко оценен количественно, например ферментом. Наконец, в клеточных применениях может быть выгодно получать более высокую селективность при связывании, если два различных эпитопа или тот же самый белковый комплекс могут быть узнаны или если два различных белка могут быть узнаны на той же самой клеточной поверхности.
Итак, целью настоящего изобретения является создание новых индивидуальных и стабильных слитых белков фрагментов антитела с би- или мультифункциональными сайтами связывания.
Было обнаружено, что слитые белки фрагментов антитела, содержащие Fv-фрагменты, могут быть получены методами генетической инженерии, которые проявляют специфические и улучшенные свойства.
Следовательно, объектом изобретения является слитый белок фрагмента мономерного антитела, по существу состоящий из Fv-фрагмента антитела и пептида, который способен к димеризации с другим пептидом путем нековалентного взаимодействия.
Термин "нековалентное взаимодействие" означает любое существующее в нормальных условиях стабильное связывание, которое не является ковалентным связыванием, например связывание за счет вандерваальсовых сил, (стерическое) взаимопроникновение амфифильных пептидов, особенно спиральных пептидов, или пептидов, несущих противоположные заряды аминокислотных остатков. Соответствующие эффективные пептиды называют ранее и далее взаимодействующими или интеркалирующими пептидами.
Амфифильные пептиды содержат вплоть до 50 аминокислот. Предпочтительно они состоят из 10 - 30 аминокислот. В предпочтительном варианте изобретения взаимодействующий пептид является пептидным спиральным пуском (состоящим из спирали, изгиба и другой спирали, смотри выше). В другом варианте взаимодействующий пептид является лейциновым зиппером (Zipper - "застежка-молния"), состоящим из пептида, имеющего несколько повторяющихся аминокислот, в котором каждой седьмой аминокислотой является лейциновый остаток. В других случаях согласно изобретению пептид несет положительно или отрицательно заряженные остатки, например, лизина (положительно заряженный) или глютаминовой кислоты (отрицательно заряженный) таким образом, что этот пептид может связываться с другим пептидом (или второй мономерной единицей), несущей противоположный заряд.
Fv-фрагмент и интеркалирующий пептид связываются друг с другом или непосредственно или с помощью пептидного линкера, предпочтительно с помощью пептидного линкера. В предпочтительном варианте пептидный линкер представляет собой последовательность области петли антитела.
Как определено, Fv-фрагмент состоит из VL и VH области антитела. Fv-фрагмент согласно изобретению предпочтительно является одноцепочечным фрагментом. Одноцепочечные фрагменты могут быть получены по стандартным методикам с использованием стандартных линкерных молекул.
Кроме того, объектом изобретения является димерный слитый белок, по существу состоящий из двух мономерных слитых белков, причем связывание мономерных единиц основано на нековалентном взаимодействии идентичных или различных пептидов, отличающийся тем, что по крайней мере одна мономерная единица является слитым белком Fv-фрагмента антитела, как определено выше.
Если димер содержит два Fv-фрагмента, Fv-фрагменты могут быть одинаковыми (идентичные сайты связывания антигена) или могут быть различными (различные сайты связывания антигена). В этих случаях могут быть получены моно- и биспецифические (Fv)-миниантитела. Согласно изобретению предпочтительными являются биспецифические мини-антитела.
Взаимодействующие пептиды могут быть одинаковыми или различными, предпочтительно они являются идентичными. Интеркалирующие пептиды могут быть ассоциированы параллельно или антипараллельно.
Следовательно, объектом изобретения являются, прежде всего, слитый димерный белок, состоящий из двух Fv-фрагментов с различной специфичностью (сайтами связывания антигена) или идентичных интерксилирующих спиральных пептидов, фрагменты антитела и пептиды связаны вместе с помощью последовательности области петли.
Кроме того, объектом изобретения является димер, состоящий из мономерной единицы, содержащей Fv-фрагмент, и другой мономерной единицы, в которой Fv-фрагмент заменен пептидом не-антитела. Пептид не-антитела может быть токсином, подобным рицину, хелатором или связывающим металл пептидом, или ферментом (например, маркерным ферментом), или пептидом, несущим детектируемую метку (например, радиоизотоп).
Пептид не-антитела также может нести соответствующий сайт связывания указанных групп, включая сайты, направленные к Т-клеткам или фрагментам Т-клеток.
Кроме того, изобретение относится к мономерам или димерам, как определено выше, где взаимодействующий(е) пептид(ы) является(ются) дополнительно слитым с С-конца с белками-мишенями/пептидами, как упоминалось выше, включая соответствующие сайты связывания. Следовательно, полученные в результате слитые белки и мини-антитела соответственно являются мультифункциональными.
Кроме того, изобретение относится к способу получения слитого белка мономерного антитела, как определено выше, отличающемуся тем, что гены, кодирующие Fv-фрагмент, взаимодействующий пептид и, при желании, связующий пептид, клонируют в плазмиду экспрессии, клетку хозяина трансформируют указанной плазмидой экспрессии и культивируют в питательном растворе и слитый мономерный белок экспрессируется в клетке или секретируется в среду.
Наконец, объектом изобретения является способ получения димерного слитого белка, как определено выше, отличающийся тем, что гены, кодирующие полные мономерные слитые белки или их части, клонируют по крайней мере в одну плазмиду экспрессии, клетку хозяина трансформируют указанной(ными) плазмидой(ами) экспрессии и культивируют в питательном растворе, и/или полный димерный слитый белок экспрессируется в клетке или в среду, или мономерные слитые белки экспрессируются отдельно и осуществляют нековалентное связывание между двумя мономерными единицами в среде или in vitro, а в случае, когда клонированы только части слитых белков, осуществляют дополнительно стадии построения белка в соответствии со стандартными методиками.
Димерные Fv-фрагменты, содержащие слитые белки согласно изобретению, показывают высокую активность против соответствующих антигенов и удовлетворительную стабильность. Эти новые двухвалентные или бифункциональные молекулы могут быть получены как складчатые и сборные молекулы в E coli. Эти мини-антитела совместимы с функциональной экспрессией путем секреции.
Детальное описание изобретения.
Выбирают домены для олигомеризации, имеющие очень маленькую молекулярную массу и совместимые с транспортировкой слитого белка через мембрану. Они основаны на двух различных типах амфифильных спиралей.
Амфифильные спирали известны преимущественно, но не исключительно ассоциированными в двух различных молекулярных структурах: четырехспиральные узлы и скрученные спирали. Композиция и образование спиральных узлов были изучены ранее (Eisenberg et al, 1986, Proteins 1, 16 - 22; Ho and de Grado, 1987; J. Am. Chem. Soc. 109, 6751 - 6758: Regan and de Grando, 1988, Science 241, 976 - 978; Hill et al 1990, Science, 294, 543 - 546). Такая молекулярная ассоциация также известна для природных белков (Richardson, 1981, Adv. Prot. Chem. 34, 167).
Четырехспиральный узел может быть образован или четырьмя отдельными молекулами (каждая вносит одну спираль), двумя молекулами, содержащими две спирали каждая (соединенными как спираль-поворот-спираль) или одной молекулой, содержащей спираль-поворот-спираль-поворот-спираль-поворот-спираль повторяющийся структурный элемент. Для димеризации или мультимеризации пригодны только первые две.
Были испытаны три вариации этой последней темы. Во-первых, была использована одна спираль последовательности, приведенной у Eisenberg et al (1986. Proteins I, 16 - 22). Во-вторых, эту последовательность удлинили маленьким гидрофильным пептидом, заканчивающимся цистеином. Поскольку спирали являются ассоциированными, гидрофильные пептиды помогают достаточно тесному контакту, при котором они могут сталкиваться и в окислительных условиях может образоваться дисульфидная связь, как в периплазме E. coli. В третьей вариации используют две спирали в тандеме, разделенные коротким витком кодирующего пептида.
Во второй схеме используют пептиды, которые могут образовать так называемые структуры скрученной спирали. Такие пептиды встречаются в факторах транскрипции, таких как, например GCH4 у дрожжей, и имеют так называемые лейциновые зипперы (Landschulz et al, 1988, Science, 240, 1759 - 1764). Недавно была решена кристаллическая структура этого (O'Shea et al, 1991, Science, 254, 539 - 544) и была показана параллельная компановка спиралей.
Ковалентное присоединение спиралей возможно путем маленького удлинения пептида, снова содержащего цистеин. Поскольку спирали теперь являются параллельными, удлинение пептида может быть намного короче, так как расстояние намного меньше.
Различные устройства димеризации (интеркалирующие спирали), однако, не сливаются непосредственно в домен антитела. Удобно вводить гибкий пептид между концом scFv фрагмента и началом спирали. В виде примера используют область верхней петли IgG3 мыши. Однако могут быть использованы различные петли. Это не требуется для самой димеризации, но обеспечивает пространство для двух scFv доменов, подобное сайтам связывания антигена целого антитела. Таким образом, два сайта связывания охватывают большее расстояние в пространстве и, следовательно, могут доходить до антигенов на твердой поверхности.
Встречающиеся в природе петли антител являются предпочтительными вариантами петель в двухвалентных миниантителах. В случае бифункциональных миниантител петли могут быть короче, поскольку часто молекулы от различных поверхностей являются сшитыми по возможности близко и гибкость димера не является необходимой. Выбор петли определяется последовательностью желаемого остатка, длиной (Argos, 1990, J. Mol. Biol. 211, 943 - 958), совместимостью со складчатостью и стабильностью амфифильных спиралей (Richardson and Richardson 1988, Science 240, 1648 - 1652), секрецией и устойчивостью к протеазам.
Настоящее изобретение рассматривает пептиды как устройства для димеризации, которые должны быть по возможности маленькими. Одним предпочтительным вариантом является применение пептидов, которые могут образовать амфипатические спирали. Такие спирали закрывают гидрофобную поверхность путем димеризации или даже мультимеризации. Спирали этого типа характеризуются наличием гидрофобных участков на одной поверхности спирали и содержанием достаточного количества спиралеобразующих остатков. Принципы для таких пептидов обсуждаются у Eisenberg et al, 1986, O'Shea et al, 1991 (Science 254, 539 - 544), 1992 (Cell 68, 699 - 708)
Было обнаружено, что природные пептиды этого типа, так называемые лейциновые зипперы, характеризуются периодическим появлением лейцина (каждый седьмой остаток) и других гидрофильных остатков (например, валина) также каждый седьмой остаток. Поскольку эти принципы теперь являются понятными (O'Shea et al. 1991, 1992, цитированные ссылки), последовательность может быть изменена введением остатка, который делает ассоциацию гомодимеров неблагоприятный, но благоприятствует ассоциации гетеродимеров. Такое изменение последовательности может, например, включать вставку заряженных мостиков, так что в гомодимерах подобные заряды отталкивают друг друга, а в гетеродимере противоположные заряды притягивают друг друга (смотри ниже).
Настоящее изобретение также может удлинять бифункциональные миниантитела. В этом случае должны быть использованы устройства димеризации (интеркалирующие пептиды), которые смогут позволить только образование гетеродимеров, а не гомодимеров. Предпочтительными вариантами этой части изобретения являются две различные скрученные спирали, такие как встречающиеся в природе лейциновые зипперы, например, из белков транскрипционного фактора jun и fos (O'Shea et al., 1989, Science 245, 646 - 648).
В другом варианте изобретения константная scFv-петля-спираль может быть удлинена с C-конца с получением в результате слитого белка. Например, слияние с ферментом может быть выполнено для использования таких двухвалентных конструкций в диагностике. Такими ферментами являются, например, щелочная фосфатаза, люциферазы или пероксидаза хрена. Преимущество такого слитого белка антитело-фермент будет в том, что двухвалентность антитела будет приводить к усилению связывания с поверхностно связанным антигеном. Преимущество по сравнению со слитым белком, приготовленным по традиционной технологии (а именно химическим сочетанием антитела с выбранным ферментом) будет в большей согласованности от партии к партии, гомогенности продукта и намного большей простоте способа получения, а именно из E. coli в одну стадию.
Таким же образом миниантитела могут быть удлинены с C-конца включением токсина. Такие иммунотоксины должны быть двухвалентными или даже биспецифическими и, следовательно, сочетают преимущества таких фрагментов антител, связанных выше, с преимуществами, известными из опухолевой терапии для иммунотоксинов. Подобным образом связывающий металл пептид или белок может быть связан генетически для применения в радиоиммунотерапии или при создании изображений опухоли. Такие же преимущества для любого генетически кодируемого гибридного белка будут справедливы, как приведено выше для слияний антитело-фермент.
В другом варианте изобретения может быть получена конструкция типа scFv-петля-спираль для димеризации с другим слитым белком в область димеризации, полностью аналогично тому, что написано выше для образования биспецифических миниантител. Таким образом scFv-фрагмент, например, должен быть точно соответствующим спирали fos белка. Такой чужеродный белок, который может быть сделан для образования гетеродимеров с scFv фрагментом, включает ферменты, полезные в диагностике, токсины, связывающие металл пептиды или белки, полезные в радиоиммунотерапии или при создании радиоизображений.
Используя принципы настоящего изобретения, представленные здесь, области димеризации также могут служить для целей очистки. Рекомбинантный белок любого вида может быть слит в область димеризации, например в петлю-fos-зиппер. После соэкспрессии с scFv-петля-jun гетеродимер может быть очищен в одну стадию на аффинной колонке для scFv-специфичности. В альтернативной попытке "противоположный" зиппер, связанный с носителем колонки, "захватывает" белок-петлю-зиппер при проходе через колонку в виде сырого клеточного экстракта. Элюирование чистого слитого белка из колонки возможно при использовании температуры развертывания зиппера. Последующее выделение из области димеризации достигается путем введения протеолитического сайта, например фактора свертывания крови Xa, в петлю (Nagai and Thogerson, 1987, Meth. Enyzmol. 152, 461-481).
Конкретным преимуществом миниантител, описанных в настоящем изобретении, является возможность сборки в Escherichia coli. В случае гомодвухвалентных конструкций используют принцип димеризации, который разрешает образование гомодимеров. Описанные выше примеры включают скрученные спирали (лейциновый зиппер) GCH4 белка дрожжей или спирали из антипараллельного узла 4-х спиралей. В этом случае scFv-фрагмент экспрессируется в присутствии бактериальной сигнальной последовательности и несет на конце гена scFv фрагмента кодоны для петли и димеризационную спираль или спираль-поворот-спираль. Спирали совместимы с секрецией в периплазматическое пространство в E. coli, где белок складывается, образуется дисульфид и происходит сборка. В таких условиях гомодимерные белки образуются сами и могут быть непосредственно выделены в димерной форме.
Если желательны гетеродвухвалентные конструкции, для объединения необходимо два различных фрагмента scFv или один scFv-фрагмент, ассоциированный с другим белком. В предпочтительном варианте настоящего изобретения оба объединяемых белка экспрессируются в одной и той же клетке, предпочтительно одной и той же плазмидой, предпочтительно в виде дицистронного оперона. Конструкция искусственного дицистронного оперона объяснена, например, у Skerra et al. (1991, Protein Eng. 4, 971). Так как объединение должно происходить в периплазме, потому что scFv-фрагмент может складываться только в окисляющей среде, оба белка должны транспортироваться и оба должны соответствовать сигнальной последовательности. Пептиды димеризации должны выбираться таким образом, чтобы они промотировали объединение двух различных белков, но предотвращали объединение соответствующих гомодимеров. Примерами таких белков являются лейциновые зипперные пептиды белков fos и jun (смотри выше).
Когда не экспрессируются в той же клетке, различные scFv-петля-зиппер конструкции должны быть смешаны вместе в виде сырого клеточного экстракта или очищенного белка и обработаны при повышенной температуре. При отсутствии "противоположного" зиппера, например, scFv-петлю-jun-зиппер конструкция способна образовать гомодимеры. После кратковременного нагревания до температуры плавления около 40oC зипперы нежелательного гомодимера раскрываются и образуют намного более стабильный гетеродимер (O'Shea et al. 1992, Cell 68, 699-708). Без повышения температуры образование гетеродимеров in vitro невозможно, как показали эксперименты.
Краткое описание чертежей и последовательностей.
На фиг. 1 представлен scFv-вектор экспрессии pLISC-SE, содержащий scFv-фрагмент.
На фиг. 2 представлен дицистронный scFv-петля-зиппер вектор экспрессии pACK • FyJ.
Фиг. 3 - функциональный ЭЛАЙЗА;
концентрации аффинно очищенных белков, измеренные по ОД280 (вертикальная ось) по отношению к молярному числу сайтов связывания на ячейку (горизонтальная ось). Пластины ЭЛАЙЗА покрыты фосфохолин-БСА и очищенные фосфохолин-специфические миниантитела-белки связываются и детектируются МсРС603 антисывороткой;
(a) сравнение различных миниантител;
(b) сравнение миниантитела scHLXc с ScFv и цельным IgA.
Фиг. 4 - функциональный Анти-лизоцим ЭЛАЙЗА;
PC афоринно очищенные образцы соэкспрессированного анти-PC-анти-лизоцим биспецифического миниантитела. + и - на горизонтальной оси означает: плюс ингибитор (+) и без ингибитора (-).
Приведенный в конце описания перечень последовательностей относится к номерам идентичности последовательностей (S.I.N):
S. I. N. 1: Целая нуклеотидная и аминокислотная последовательность pLICS-SE вектора.
S. I. N. 2: Генная кассета, кодирующая интеркалирующую антипараллельную спираль-поворот-спираль (нуклеотидная и амионкислотная последовательность).
S. I. N. 3: Генная кассета, кодирующая интеркалирующую спираль-поворот-спираль (нуклеотидная и аминокислотная последовательность).
S. I. N. 4: Генная кассета, кодирующая интеркалирующую jun-зиппер- и IgG3-петля область.
S. I. N. 5: Генная кассета, кодирующая интеркалирующую fos-зиппер- и IgG3-петля область.
S. I. N. 6: Генная кассета, кодирующая интеркалирующую jun-зиппер и сконструированный линкер.
S. I. N. 7: Генная кассета, кодирующая интеркалирующую fos-зиппер и сконструированный линкер.
Пример 1: Конструкция векторов для секретированных одноцепных фрагментов, содержащих сайт рестрикции для вставки генов для интеркалирующих пептидов.
Методики рекомбинантной ДНК основаны на Sambrook et al. (1989, Molecular Cleoning: A laboratory manual. Second edition. Cold. Spring Harbor Laboratory, New York). Функциональную экспрессию одноцепных Fv фрагментов и миниантител в E. coli J.M 83 осуществляют на векторах, подобных pASK-lis c (Skerra et al. 1991, Protein Eng 4, 971). Сайт-направленный мутагенез проводят непосредственно в этих векторах согласно Kunkel et al. (1987, Meth. Enzymol. 154, 367-382), и Geisselsoder et al. (1987, Biotechiques 5, 786-791), используя хелперный фаг М13К07 (Vieira and Messing, 1987, Meth. Enzymol, 153, 3-11). Проводят SDS-PAGE, как описано Fling and Gregerson (1986, Anal. Biochem. 155, 83-88). Измеряют концентрацию аффинно-очищенных белков по ОД280, используя расчетные коэффициенты экстинкции (Gill and Von Hippel), 1989, Anal. Biochem. 182, 319-326). Используют вектор, такой как pA SK40 (Skerra et al. , 1991, Protein Eng. 4, 971), который содержит сайт инициации репликации, регуляторный промотор, бактериальную сигнальную последовательность после сайта множественного клонирования, терминатор транскрипции и ориджин для однониточных фагов. Ген для одноцепного Fv-фрагмента сконструирован следующим образом: нуклеотидная последовательность VH области непосредственно следует за линкерной последовательностью, кодирующей предпочтительно около 15 остатков, предпочтительно последовательностью (Gby4 Ser)3, непосредственно следующей за последовательностью VL области. Альтернативно последовательность VL области может непосредственно следовать за последовательностью линкера после последовательности VH области.
Если антитело является известной последовательностью, полный ген scFv-фрагмента может быть объединен из синтетических олигонуколетидов. Детальная экспериментальная процедура синтеза такого гена антитела дана, например, у Pluckthun et al, 1987, Cold Spring Harbor Symp. Quant. Biol. 52, 105-112).
Если гены VH и VL областей имеются в других векторах, ген scFv-фрагмента может быть объединен из рестрикционных фрагментов. Например, рестрикционный фрагмент, кодирующий большую часть VH области, может быть вырезан из другой плазмиды, а фрагмент, кодирующий большую часть VL области, может быть вырезан из плазмиды. Оставшиеся участки VL и VH и линкер для scFv фрагмента могут быть обеспечены синтетическими нуклеотидами, которые должны быть лигированы стандартными методами (Sambrook et al. 1989, выше). Смесь фрагментов лигируют в вектор pA SK40 или подобную плазмиду, содержащую пару подходящих сайтов рестрикции.
Если гены антитела не были клонированы ранее, они могут быть получены непосредственно из гибридомной клетки, продуцирующей антитело по реакции полимеразной цепи (PCR; PCR методология описана у Mc Pherson et al, 1991, PCR-A Practical Approach Oxford University Press, New York). Праймеры, пригодные для амплификации VH и VL областей, были даны Orlandi et al, 1989, Proc. Natl. Acad. Sci; USA 86, 3833-3837; Huse et al, 1989, Science 246, 1275-1281; Larrick et al, 1989, Bio-techonology 7, 934-938. Методология получения мРНК из гибридомы также описана в этих ссылках. Отдельные VH и VL гены могут быть клонированы в отдельные векторы и scFv ген объединен в соответствии с принципами, объясненными выше.
Если лигированные фрагменты не приводят в результате к правильной рамке считывания scFv фрагмента, точное слияние с кодонами сигнальной последовательности, находящимися на плазмиде, может быть генерировано сайт-направленным мутагенезом. Конструирование олигонуклеотидов и выполнение возможно любым специалистом в данной области.
Полученная таким образом scFv плазмида экспрессии содержит кодоны бактериальной сигнальной последовательности, непосредственно после первой вариабельной области (VH или VL), линкер и вторую вариабельную область (VL или VH) под контролем регуляторного промотора.
На 3' конце этого гена, соответствующем C-концу scFv белка, введен единичный сайт рестрикции в плазмиду экспрессии для обеспечения вставки кассеты, кодирующей интеркалирующий пептид. Сайт рестрикции вводится сайт-направленным мутагенезом с использованием метода Кункеля (1987, Meth. Enzynol 154, 367 - 382).
Пример полной последовательности плазмиды экспрессии pLISC-SE подходящего одноцепного Fv для получения взаимопроникающего пептида показан на фиг. 1 и последовательности Идентичности N (S.I.N) 1 (смотри список последовательностей).
Пример 2. Схема и конструкция генной кассеты, кодирующей интеркалирующие пептиды с лейциновым зиппером.
Генная кассета, снабженная сайтами рестрикции, совместимыми с сайтом рестрикции на 3'-конце гена scFv фрагмента, должна кодировать последовательность петли (соединение scFv фрагмента с интеркалирующим пептидом) и сам интеркалирующий пептид. Однако область петли также может быть опущена.
В качестве примера последовательность области верхней петли IgG3 мыши (Danl et al. , 1988, EMBO J. 7,1989 - 1994), за которой следует последовательность лейцин-зипперной последовательности белка GCH4 дрожжей (Oas et al. , 1990, Biochemistry T29, 2891 - 2894), подвергается обратной трансляции (back-translated) в часто используемые кодоны E.coli (S.I.N.:2). Синтезируют олигонуклеотиды и лигируют в вектор pLISC-SE, предварительно переваренный EcoRI и Hinol III.
Пример 3. Схема и конструкция генной кассеты, кодирующей интеркалирующие пептиды четырехспирального узла.
Аналогично примеру 2, последовательность области верхней петли IgG3 мыши, за которой следует последовательность спираль-поворот-спираль узла четырех спиралей (Eisenberg et al. 1986, выше) подвергается обратной трансляции в часто используемые кодоны E.coli. Олигонуклеотиды синтезируют и лигируют в вектор pLISC-SE, ранее переваренный EcoRI и Hinol III.
Пример 4. Схема и конструкция двух генных кассет, кодирующих интеркалирующие пептиды лейцин-зиппера и их коэкспрессия.
Аналогично примеру 2, последовательность области верхней петли IgG3 мыши, за которой следует последовательность зипперной последовательности jun белка (O'Shea et al, 1992, выше), подвергается обратной трансляции часто в используемые кодоны E. coli (S.I.N.:4). Синтезируют олигомеры и лигируют в вектор p LISC-SE, предварительно переваренный EcoRI и Hinol III.
В параллельной реакции последовательность области верхней петли машинного IgG3, за которой следует последовательность зипперной последовательности fos белка (O'Shea et al., 1992, Cell 68, 699 - 708) подвергают обратной трансляции в часто используемые кодоны E. coli (S.I.N.:5). Синтезируют олигонуклеотиды и лигируют в вектор p LISC-SE, предварительно переваренный EcoRI и Hinol III. Итак, каждый из двух векторов кодирует различный scFv фрагмент антитела, следующий за пептидной петлей и различным лейцин-зипперным пептидом. Для коэкспрессии обоих scFv фрагментов целый scFv -петля-зиппер ген fos-содержащего продукта вырезают из вектора как Xba I - Hinol III фрагмент и лигируют в вектор, p LISC-SE - scFv - jun, содержащий уже scFv ген другого антитела.
Вновь полученный вектор затем экспрессирует scFv1 - линкер1 -fos - зиппер и scFv2 -линкер2 - jun - зиппер из одного промотора как дицистронный оперон.
Улучшенная последовательность для области петли в контексте fos и jun зипперов дана в S.I.N.:6 и 7. Эта петля короче и, следовательно, не восприимчива к протеолизу. В случаях, когда расстояние между двумя сайтами связывания является менее важным, такие укороченные петли могут быть выгодными. В этом случае "хвост" scFv фрагмента уже укорочен и EcoRI сайт, который получает гены для взаимопроникающих пептидов, уже сдвинулся на четыре остатка выше.
Пример 5: Очистка двухвалентного миниантитела из E coli.
Выращивают E. coli J. M 83, несущий плазмиду, сконструированную, как в примерах 2 и 3, до ОД 550 из 0,5 и индуцируют IPTG при конечной концентрации 1 мМ. Клетки центрифугируют, ресуспендируют в BBS-буфере (200 мМ Na-борат, 160 мМ NaCl pH 8,0) и суспензию пропускают через френч-пресс. В этих примерах используют фосфорилхолин-связывающее мини-антитело. Миниантитело очищают пропусканием через фосфорилхолин-афинный хроматограф, как описано (Chesebro and Metzger, 1972, Biochemistry 11, 766 - 771).
Пример 6: Очистка биспецифического мини-антитела из E.coli.
Выращивают E. coli J. M83, несущий плазмиду, сконструированную как в примерах 2I и 3 и содержащую дицистронный структуральный ген для двух различных scFv (фиг. 2), до ОД 550 при 0,5 и индуцируют IPTG при конечной концентрации 1 мМ. Клетки центрифугируют, ресуспендируют в BBS-буфере (200 мМ Na-борат, 160 мМ NaCl), pH 8,0) и пропускают суспензию через френч-пресс.
В этом примере используют биспецифическое миниантитело, содержащее специфичность как к фосфорилхолину, так и к бензоилампициллину. Миниантитело очищают пропусканием через фосфорилаффинный хроматограф, как описано (Chesebro and Metzger, 1972, выше).
Пример 7: Поверхностное связывание двухвалентных миниантител.
Покрывают пластины ЭЛАЙЗА (Nunc), Macrosorb) (400 г/мл фосфохолин-BSA в PBS-фубере/20 мМ фосфата, pH 7,2, 115 мМ NaCl). Готовят гаптеновый реагент из нитрофенилфосфохолина (Sigma), который восстанавливают и диазотируют, по существу как описано (Chesebro and Metzger, 1972, выше) и проводят реакцию азосочетания с BSA (Sigma) в боратно-солевом буфере (52,5 мМ бората натрия, pH 120 мМ NaCl) при 4oC в течение 48 часов с последующим диализом против PBS. После блокирования непокрытой поверхности пластины 5% снятым молоком (Nestle) в PBS буфере в течение по крайней мере 2 часов периплазматический экстракт или очищенный белок инкубируют в BBS буфере на пластине в течение 90 минут при комнатной температуре. После тщательной промывки (3 раза) оставшиеся фрагменты функционального антитела детектируют в соответствии со стандартными процедурами (Harlow and Lane, 1988, "Antibodies, A Laboratory Manual", Cold Harbor Labor. 555 - 592) с кроличьей анти-McPC603 сывороткой и анти-кроличьим иммуноглобулином, связанным с пероксидазой (Sigma) согласно Gallati (1979, Clin Chem, Clin. Biochem 17, 1-4).
Для всех конструкций миниантител наблюдается огромный прирост при связывании и, следовательно, чувствительности по сравнению с мономерным scFv фрагментом. Это согласуется с одновременным связыванием двух или даже больше сайтов связывания на одной и той же поверхности. Такая авидность слитого белка scHLXc сравнима с природным антителом McPC603, которое не может быть детектировано ЭЛАЙЗА с антигенным покрытием, тогда как мономерный scFv фрагмент может быть детектирован только при концентрациях, в 100 раз больших (фиг. 3a, b). Любое связывание почти полностью ингибируется растворимым гаптеном, за исключением мономерного фрагмента. Термодинамическое сродство природного антитела к растворимому фосфохолину составляет примерно 1,6 S 105 M-1 и, следовательно, является относительно слабым (Metzger et al, 1971, Proceeding of the Ist Congress of Immunology, Academic Press, New Iork, стр 253 - 267) и очевидно является недостаточным для комплекса мономерный фрагмент-гаптен, чтобы выдержать повторные стадии промывки функциональной ЭЛАЙЗА (Kemeny and Challa Combe, 1988, "ELISA and other solid phase immunoasays", Wiley and Sons, New Iork).
Пример 8: Поверхностное связывание бифункциональных миниантител.
Коэкспрессированные бифункциональные миниантитела, распознающие фосфорилхолин одним плечом и лизоцим другим плечом, очищают фосфохолин (РС) афинной хроматографией и испытывают на специфичность к лизоциму. ЭЛАЙЗА-пластины покрывают лизоцимом и проводят анализ ЭЛАЙЗА, как описано в примере 7. Три различных препарата показывают связывание с антиген-поверхностью, которое полностью ингибируется растворимым лизоцимом (фиг. 4).

Claims (3)

1. Способ получения димерного одноцепочечного слитого белка, содержащего две мономерные единицы, включающий конструирование последовательности ДНК первой и второй мономерных единиц, приготовление рекомбинантного экспрессирующего вектора, трансформацию хозяйских клеток экспрессирующим вектором, культивирование трансформированных клеток и выделение целевого продукта, экспрессированного в клетке или среде, отличающийся тем, что конструируют последовательность ДНК первой мономерной единицы, кодирующую первый одноцепочечный Fv - фрагмент антитела и первый амфифильный спиральный пептид, способный димеризоваться со вторым амфифильным спиральным пептидом второй мономерной единицы посредством нековалентных взаимодействий, причем каждый амфифильный спиральный пептид содержит 10 - 50 аминокислот, конструируют последовательность ДНК второй мономерной единицы, кодирующую второй одноцепочный Fv - фрагмент антитела с одинаковой или различной специфичностью с первым Fv - фрагментом, и второй амфифильный спиральный пептид, одинаковый или различный с амфифильным пептидом в первой единице, при этом сконструированные последовательности клонируют в одном экспрессирующем векторе.
2. Способ получения димерного одноцепочечного слитого белка, содержащего две мономерные единицы, включающий конструирование последовательности ДНК первой и второй мономерных единиц, приготовление рекомбинантных экспрессирующих векторов, трансформацию хозяйской клетки экспрессирующими векторами, культивирование трансформированных клеток и выделение целевого продукта, экспрессируемого в клетке или среде, отличающийся тем, что конструируют последовательность ДНК первой мономерной единицы, кодирующую первый одноцепочечный Fv - фрагмент антитела и первый амфифильный спиральный пептид, способный димеризоваться со вторым амфифильным спиральным пептидом второй мономерной единицы посредством нековалентных взаимодействий, причем каждый амфифильный спиральный пептид содержит 10 - 50 аминокислот, конструируют последовательность ДНК второй мономерной единицы, кодирующую второй одноцепочечный Fv - фрагмент антитела с одинаковой или различной специфичностью с первым Fv - фрагментом, и второй амфифильный спиральный пептид, одинаковый или различный с амфифильным пептидом в первой единице, при этом сконструированные последовательности клонируют в различных экспрессирующих векторах.
3. Способ по п.1 или 2, отличающийся тем, что последовательность ДНК первой или второй мономерной единицы дополнительно включает линкер, шарнирный район или его часть, клонированный между одноцепочечным Fv - фрагментом антитела и амфифильным спиральным пептидом.
RU94045249A 1992-01-23 1993-01-15 Способ получения димерного одноцепочечного слитого белка (варианты) RU2128709C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP92101069 1992-01-23
EP92101069.0 1992-01-23
DE92101069.0 1992-01-23
PCT/EP1993/000082 WO1993015210A1 (en) 1992-01-23 1993-01-15 Monomeric and dimeric antibody-fragment fusion proteins

Publications (2)

Publication Number Publication Date
RU94045249A RU94045249A (ru) 1996-05-27
RU2128709C1 true RU2128709C1 (ru) 1999-04-10

Family

ID=8209260

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94045249A RU2128709C1 (ru) 1992-01-23 1993-01-15 Способ получения димерного одноцепочечного слитого белка (варианты)

Country Status (16)

Country Link
US (1) US5910573A (ru)
EP (1) EP0654085B1 (ru)
JP (2) JP3490437B2 (ru)
KR (1) KR100254759B1 (ru)
AT (1) ATE151113T1 (ru)
AU (1) AU676150B2 (ru)
CA (1) CA2128511C (ru)
CZ (1) CZ287296B6 (ru)
DE (1) DE69309472T2 (ru)
DK (1) DK0654085T3 (ru)
ES (1) ES2102007T3 (ru)
GR (1) GR3023860T3 (ru)
HU (1) HU215180B (ru)
NO (1) NO942750L (ru)
RU (1) RU2128709C1 (ru)
WO (1) WO1993015210A1 (ru)

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416738B1 (en) 1973-12-07 2002-07-09 Neorx Corporation Pretargeting methods and compounds
US6075010A (en) * 1992-06-09 2000-06-13 Neorx Corporation Small molecular weight ligand-hexose containing clearing agents
US5576195A (en) * 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5869620A (en) * 1986-09-02 1999-02-09 Enzon, Inc. Multivalent antigen-binding proteins
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
EP1997894B1 (en) * 1992-02-06 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Biosynthetic binding protein for cancer marker
US5911969A (en) 1992-06-09 1999-06-15 Neorx Corporation Pretargeting protocols for enhanced localization of active agents to target sites
US6358490B2 (en) 1992-06-09 2002-03-19 Neorx Corporation Three-step pretargeting methods and compounds
US6217869B1 (en) 1992-06-09 2001-04-17 Neorx Corporation Pretargeting methods and compounds
US6329507B1 (en) * 1992-08-21 2001-12-11 The Dow Chemical Company Dimer and multimer forms of single chain polypeptides
WO1994012520A1 (en) * 1992-11-20 1994-06-09 Enzon, Inc. Linker for linked fusion polypeptides
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
EP0743956A4 (en) * 1993-12-07 1999-03-24 Neorx Corp Warping and averaging procedures
US6015897A (en) * 1993-12-07 2000-01-18 Neorx Corporation Biotinamido-n-methylglycyl-seryl-o-succinamido-benzyl dota
US20050214309A1 (en) * 1994-03-18 2005-09-29 Hinrichs Steven H Methods and compositions for modulating transcription factor activity
SE9401460D0 (sv) * 1994-04-28 1994-04-28 Ferring Ab Antigen/antibody specificity exhanger
US6933366B2 (en) 1996-12-27 2005-08-23 Tripep Ab Specificity exchangers that redirect antibodies to bacterial adhesion receptors
US6040137A (en) 1995-04-27 2000-03-21 Tripep Ab Antigen/antibody specification exchanger
US6660842B1 (en) 1994-04-28 2003-12-09 Tripep Ab Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
JP3659261B2 (ja) 1994-10-20 2005-06-15 モルフォシス・アクチェンゲゼルシャフト 組換体タンパク質の多機能性複合体への標的化ヘテロ結合
US6908903B1 (en) 1994-12-07 2005-06-21 Aletheon Pharmaceuticals, Inc. Cluster clearing agents
US6172045B1 (en) 1994-12-07 2001-01-09 Neorx Corporation Cluster clearing agents
US7399837B2 (en) 1995-12-22 2008-07-15 Smithkline Beecham Corporation Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
US5693323A (en) * 1994-12-23 1997-12-02 Smithkline Beecham Corporation Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
DE69633175T2 (de) * 1995-05-23 2005-08-11 Morphosys Ag Multimere proteine
US7105307B2 (en) 1997-08-30 2006-09-12 Cyclacel, Ltd. Compositions and methods for screening for modulators of enzymatic activity
GB9718358D0 (en) * 1997-08-30 1997-11-05 Univ Leeds Chemical modification
DK1039931T3 (da) * 1997-12-01 2005-08-08 Fang Fang Multivalente rekombinante antistoffer til at behandle HRV infektioner
US6204537B1 (en) 1998-10-01 2001-03-20 Micron Technology, Inc. ESD protection scheme
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
US20030035798A1 (en) 2000-08-16 2003-02-20 Fang Fang Humanized antibodies
US6432673B1 (en) * 1998-12-07 2002-08-13 Zymogenetics, Inc. Growth factor homolog ZVEGF3
US7550143B2 (en) * 2005-04-06 2009-06-23 Ibc Pharmaceuticals, Inc. Methods for generating stably linked complexes composed of homodimers, homotetramers or dimers of dimers and uses
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US7569542B2 (en) 1999-08-20 2009-08-04 The Regents Of The University Of California Anti-microbial targeting chimeric pharmaceutical
US20030143234A1 (en) * 1999-08-20 2003-07-31 Wenyuan Shi Anti-microbial targeting chimeric pharmaceutical
DE60233509D1 (de) 2001-06-20 2009-10-08 Fibron Ltd Fgfr3 blockierende antikörper, verfahren zum screening darauf und verwendungen davon
US7022323B2 (en) 2001-06-26 2006-04-04 Progenics Pharmaceuticals, Inc. Uses of DC-SIGN and DC-SIGNR for inhibiting hepatitis C virus infection
DE10133071A1 (de) * 2001-07-07 2003-03-06 Alexander Cherkasky Antigene, Rezeptoren, Liganden oder ihre Regionen kombiniert mit proteolytischer Aktivität
WO2003062370A2 (en) 2001-07-19 2003-07-31 Perlan Therapeutics, Inc. Multimeric proteins and methods of making and using same
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
WO2003018749A2 (en) * 2001-08-22 2003-03-06 Shengfeng Li Compositions and methods for generating antigen-binding units
US7175983B2 (en) * 2001-11-02 2007-02-13 Abmaxis, Inc. Adapter-directed display systems
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
US7335359B2 (en) 2003-02-06 2008-02-26 Tripep Ab Glycosylated specificity exchangers
CN1747970A (zh) 2003-02-06 2006-03-15 三肽公司 抗原/抗体或配体/受体糖基化的特异***换剂
AU2004238263A1 (en) * 2003-05-06 2004-11-25 Syntonix Pharmaceuticals, Inc. Inhibition of drug binding to serum albumin
US20050147618A1 (en) * 2003-05-06 2005-07-07 Rivera Daniel S. Clotting factor-Fc chimeric proteins to treat hemophilia
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
US7348004B2 (en) * 2003-05-06 2008-03-25 Syntonix Pharmaceuticals, Inc. Immunoglobulin chimeric monomer-dimer hybrids
US8551480B2 (en) * 2004-02-13 2013-10-08 Immunomedics, Inc. Compositions and methods of use of immunotoxins comprising ranpirnase (Rap) show potent cytotoxic activity
US9481878B2 (en) 2004-02-13 2016-11-01 Immunomedics, Inc. Compositions and methods of use of immunotoxins comprising ranpirnase (Rap) show potent cytotoxic activity
US7875598B2 (en) * 2004-03-04 2011-01-25 The Regents Of The University Of California Compositions useful for the treatment of microbial infections
CN101035554A (zh) * 2004-08-23 2007-09-12 维兹曼科学研究所耶达研究与发展有限公司 介导应激反应的肽抑制剂
CA2595398A1 (en) * 2004-11-04 2006-05-11 Fibron Limited Treatment of b-cell malignancies
US20120276100A1 (en) * 2005-04-06 2012-11-01 Ibc Pharmaceuticals, Inc. Compositions and Methods of Use of Immunotoxins Comprising Ranpirnase (Rap) Show Potent Cytotoxic Activity
WO2006117782A2 (en) 2005-05-04 2006-11-09 Quark Pharmaceuticals, Inc. Recombinant antibodies against cd55 and cd59 and uses thereof
WO2006129843A2 (en) * 2005-05-31 2006-12-07 Canon Kabushiki Kaisha Bispecific capturing molecule
KR100832773B1 (ko) 2005-11-18 2008-05-27 주식회사 아이지세라피 기능성 Fv 항체 절편 제조 방법
ATE485517T1 (de) 2006-03-22 2010-11-15 Viral Logic Systems Technology Verfahren zur identifizierung von polypeptid- targets
TWI428448B (zh) * 2006-03-24 2014-03-01 Syntonix Pharmaceuticals Inc 作為第九因子(factor ix)原肽處理酶之pc5
US8377448B2 (en) * 2006-05-15 2013-02-19 The Board Of Trustees Of The Leland Standford Junior University CD47 related compositions and methods for treating immunological diseases and disorders
WO2007133811A2 (en) * 2006-05-15 2007-11-22 Viral Logic Systems Technology Corp. Cd47 related compositions and methods for treating immunological diseases and disorders
CA2655504A1 (en) 2006-06-15 2007-12-21 Fibron Ltd. Antibodies blocking fibroblast growth factor receptor activation and methods of use thereof
PL2059533T3 (pl) 2006-08-30 2013-04-30 Genentech Inc Przeciwciała wieloswoiste
US7846895B2 (en) 2006-09-06 2010-12-07 The Regents Of The University Of California Selectively targeted antimicrobial peptides and the use thereof
EP2072527A1 (en) * 2007-12-21 2009-06-24 Altonabiotec AG Fusion polypeptides comprising a SHBG dimerization component and uses thereof
JP5917143B2 (ja) 2008-03-28 2016-05-11 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニーGlaxoSmithKline LLC 処置方法
US8193321B2 (en) 2008-09-03 2012-06-05 Genentech, Inc. Multispecific antibodies
AR079944A1 (es) * 2010-01-20 2012-02-29 Boehringer Ingelheim Int Anticuerpo neutralizante de la actividad de un anticoagulante
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
CN103476459A (zh) 2011-03-30 2013-12-25 勃林格殷格翰国际有限公司 抗凝血剂解毒剂
WO2012160563A2 (en) 2011-05-23 2012-11-29 Yeda Research And Development Co. Ltd. Use of akt phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
WO2013054320A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
WO2013078425A1 (en) * 2011-11-22 2013-05-30 University Of Maryland, Baltimore Lambodies with high affinity and selectivity for glycans and uses therefor
CN108034006A (zh) * 2012-01-13 2018-05-15 乌利班-马克西姆利安大学 双抗原诱导的双功能互补作用
EP3492095A1 (en) 2012-04-01 2019-06-05 Technion Research & Development Foundation Limited Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies
CA2899089C (en) 2013-03-15 2021-10-26 Biogen Ma Inc. Factor ix polypeptide formulations
CA2956667A1 (en) 2013-07-29 2015-02-05 Bluebird Bio, Inc. Multipartite signaling proteins and uses thereof
US9243294B2 (en) 2013-09-30 2016-01-26 Hadasit Medical Research Services And Development Ltd. Modulation of NLGn4 expression, NK cell activity in non-alcoholic fatty liver disease (NAFLD)
US10081679B2 (en) 2013-11-25 2018-09-25 Ccam Biotherapeutics Ltd. Compositions comprising anti-CEACAM1 and anti-PD antibodies for cancer therapy
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
EP3099380B1 (en) 2014-01-28 2021-08-11 Buck Institute for Research on Aging Methods and compositions for killing senescent cells and for treating senescence-associated diseases and disorders
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
CN113583129A (zh) 2014-03-14 2021-11-02 诺华股份有限公司 针对lag-3的抗体分子及其用途
EP3119423B1 (en) 2014-03-15 2022-12-14 Novartis AG Treatment of cancer using chimeric antigen receptor
WO2015145449A2 (en) 2014-03-27 2015-10-01 Yeda Research And Development Co. Ltd. T-cell receptor cdr3 peptides and antibodies
AP2016009564A0 (en) 2014-04-27 2016-11-30 Ccam Biotherapeutics Ltd Humanized antibodies against ceacam1
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
JP2016002009A (ja) * 2014-06-13 2016-01-12 国立大学法人名古屋大学 タグ付抗体
ES2805475T3 (es) 2014-07-21 2021-02-12 Novartis Ag Tratamiento del cáncer utilizando un receptor antigénico quimérico de CD33
EP3172237A2 (en) 2014-07-21 2017-05-31 Novartis AG Treatment of cancer using humanized anti-bcma chimeric antigen receptor
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
TW202140557A (zh) 2014-08-19 2021-11-01 瑞士商諾華公司 使用cd123嵌合抗原受體治療癌症
CA2961636A1 (en) 2014-09-17 2016-03-24 Boris ENGELS Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
CN107001478B (zh) 2014-10-14 2022-01-11 诺华股份有限公司 针对pd-l1的抗体分子及其用途
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
US20180111989A1 (en) 2015-04-01 2018-04-26 Hadasit Medical Research Services And Development Ltd. Inhibitors of neuroligin 4 - neurexin 1-beta protein-protein interaction for treatment of liver disorders
LT3280729T (lt) 2015-04-08 2022-08-10 Novartis Ag Terapijos cd20, terapijos cd22 ir kombinuotos terapijos su cd19 chimerinį antigeno receptorių (car) ekspresuojančia ląstele
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
EP3878465A1 (en) 2015-07-29 2021-09-15 Novartis AG Combination therapies comprising antibody molecules to tim-3
ES2878188T3 (es) 2015-07-29 2021-11-18 Novartis Ag Terapias de combinación que comprenden moléculas de anticuerpos contra LAG-3
JP6861418B2 (ja) 2015-09-02 2021-04-28 イッサム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム リミテッド ヒトt細胞免疫グロブリン及びitimドメイン(tigit)に特異的な抗体
EP3362093A4 (en) 2015-10-13 2019-05-08 Technion Research & Development Foundation Limited MONOCLONAL ANTIBODIES NEUTRALIZING HEPARANASE
EP3389712B1 (en) 2015-12-17 2024-04-10 Novartis AG Antibody molecules to pd-1 and uses thereof
US20200261573A1 (en) 2015-12-17 2020-08-20 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof
ES2847155T3 (es) 2016-01-21 2021-08-02 Novartis Ag Moléculas multiespecíficas que fijan como objetivo CLL-1
AU2017228055B2 (en) 2016-03-01 2024-04-04 University Of Rijeka Faculty Of Medicine Antibodies specific to human poliovirus receptor (PVR)
CN109153714A (zh) 2016-03-04 2019-01-04 诺华股份有限公司 表达多重嵌合抗原受体(car)分子的细胞及其用途
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
KR20180134385A (ko) 2016-04-15 2018-12-18 노파르티스 아게 선택적 단백질 발현을 위한 조성물 및 방법
GB201609235D0 (en) 2016-05-25 2016-07-06 Univ Cape Town Production of a horseradish peroxidase-IGG fusion protein
WO2017210617A2 (en) 2016-06-02 2017-12-07 Porter, David, L. Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
CA3030837A1 (en) 2016-07-15 2018-01-18 Novartis Ag Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor
WO2018023025A1 (en) 2016-07-28 2018-02-01 Novartis Ag Combination therapies of chimeric antigen receptors adn pd-1 inhibitors
CN110267677A (zh) 2016-08-01 2019-09-20 诺华股份有限公司 使用与原m2巨噬细胞分子抑制剂组合的嵌合抗原受体治疗癌症
US10525083B2 (en) 2016-10-07 2020-01-07 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
WO2018140725A1 (en) 2017-01-26 2018-08-02 Novartis Ag Cd28 compositions and methods for chimeric antigen receptor therapy
WO2018160731A1 (en) 2017-02-28 2018-09-07 Novartis Ag Shp inhibitor compositions and uses for chimeric antigen receptor therapy
WO2018201056A1 (en) 2017-04-28 2018-11-01 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
US20200179511A1 (en) 2017-04-28 2020-06-11 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
CA3064859A1 (en) 2017-06-06 2018-12-13 Glaxosmithkline Llc Biopharmaceutical compositions and methods for pediatric patients
UY37758A (es) 2017-06-12 2019-01-31 Novartis Ag Método de fabricación de anticuerpos biespecíficos, anticuerpos biespecíficos y uso terapéutico de dichos anticuerpos
CN110785187B (zh) 2017-06-22 2024-04-05 诺华股份有限公司 针对cd73的抗体分子及其用途
CA3066747A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag DOSAGE REGIMES FOR ANTI-LAG3 ANTIBODIES AND USES THEREOF
TW201922291A (zh) 2017-11-16 2019-06-16 瑞士商諾華公司 組合療法
US11952413B2 (en) 2017-12-14 2024-04-09 2Seventy Bio, Inc. Dimerizing agent regulated immunoreceptor complexes comprising interleukin receptor signaling domains
CA3086474A1 (en) * 2017-12-22 2019-06-27 Hanmi Pharm. Co., Ltd. Therapeutic enzyme fusion protein having a novel structure and use thereof
WO2019152660A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
KR20210009308A (ko) 2018-05-09 2021-01-26 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 인간 넥틴4에 특이적인 항체
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
CA3099308A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions and methods for enhancing the killing of target cells by nk cells
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
JP7398396B2 (ja) 2018-06-01 2023-12-14 ノバルティス アーゲー Bcmaに対する結合分子及びその使用
BR112020025048A2 (pt) 2018-06-13 2021-04-06 Novartis Ag Receptores de antígeno quimérico de bcma e usos dos mesmos
CN112654394A (zh) 2018-06-19 2021-04-13 阿塔盖有限责任公司 针对补体成分5的抗体分子和其用途
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
CA3123377A1 (en) 2018-12-20 2020-06-25 Novartis Ag Extended low dose regimens for mdm2 inhibitors
CN113271945A (zh) 2018-12-20 2021-08-17 诺华股份有限公司 包含3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物的给药方案和药物组合
JP2022519341A (ja) 2019-01-13 2022-03-23 イッサム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム エルティーディー. ヒトネクチン-2に特異的な抗体
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
AU2020222346B2 (en) 2019-02-15 2021-12-09 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
MX2021009763A (es) 2019-02-15 2021-09-08 Novartis Ag Derivados de 3-(1-oxo-5-(piperidin-4-il)isoindolin-2-il)piperidina -2,6-diona y usos de los mismos.
US20220088075A1 (en) 2019-02-22 2022-03-24 The Trustees Of The University Of Pennsylvania Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
CA3135430A1 (en) 2019-03-29 2020-10-08 Atarga, Llc Anti fgf23 antibody
CU20210096A7 (es) 2019-05-21 2022-06-06 Novartis Ag Moléculas de unión a cd19
KR20220010743A (ko) 2019-05-21 2022-01-26 노파르티스 아게 Bcma에 대한 삼중특이적 결합 분자 및 이의 용도
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
MX2022001682A (es) 2019-08-08 2022-05-13 Regeneron Pharma Nuevos formatos de moleculas de union a antigenos.
MX2022004769A (es) 2019-10-21 2022-05-16 Novartis Ag Inhibidores de tim-3 y sus usos.
CN114786679A (zh) 2019-10-21 2022-07-22 诺华股份有限公司 具有维奈托克和tim-3抑制剂的组合疗法
WO2021091953A1 (en) 2019-11-05 2021-05-14 Regeneron Pharmaceuticals, Inc. N-terminal scfv multispecific binding molecules
MX2022006391A (es) 2019-11-26 2022-06-24 Novartis Ag Receptores de antigeno quimerico que se unen a bcma y cd19 y usos de los mismos.
BR112022012112A2 (pt) 2019-12-20 2022-09-06 Regeneron Pharma Agonistas de il2 e métodos de uso dos mesmos
KR20220116257A (ko) 2019-12-20 2022-08-22 노파르티스 아게 골수섬유증 및 골수이형성 증후군을 치료하기 위한, 데시타빈 또는 항 pd-1 항체 스파르탈리주맙을 포함하거나 또는 포함하지 않는, 항 tim-3 항체 mbg453 및 항 tgf-베타 항체 nis793의 조합물
US20210222244A1 (en) 2020-01-17 2021-07-22 Becton, Dickinson And Company Methods and compositions for single cell secretomics
IL293752A (en) 2020-01-17 2022-08-01 Novartis Ag A combination containing a tim-3 inhibitor and a substance that causes hypomethylation for use in the treatment of myeloplastic syndrome or chronic myelomonocytic leukemia
CA3173737A1 (en) 2020-02-27 2021-09-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
CN116249549A (zh) 2020-03-27 2023-06-09 诺华股份有限公司 用于治疗增殖性疾病和自身免疫病症的双特异性组合疗法
WO2021205438A1 (en) 2020-04-06 2021-10-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies to nkp46 and constructs thereof for treatment of cancers and infections
WO2021220215A1 (en) 2020-05-01 2021-11-04 Novartis Ag Engineered immunoglobulins
IL298007A (en) 2020-05-12 2023-01-01 Regeneron Pharma Novel il10 agonists and methods of using them
KR20230027056A (ko) 2020-06-23 2023-02-27 노파르티스 아게 3-(1-옥소이소인돌린-2-일)피페리딘-2,6-디온 유도체를 포함하는 투약 요법
JP2023534214A (ja) 2020-07-16 2023-08-08 ノバルティス アーゲー 抗ベータセルリン抗体、その断片、及び多重特異性結合分子
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
EP4188549A1 (en) 2020-08-03 2023-06-07 Novartis AG Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022044010A1 (en) 2020-08-26 2022-03-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Anti-t-cell immunoglobulin and itim domain (tigit) antibodies for the treatment of fungal infections
EP4204020A1 (en) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Method of treating psma-expressing cancers
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
CA3199095A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
AU2021374083A1 (en) 2020-11-06 2023-06-01 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
JP2023547499A (ja) 2020-11-06 2023-11-10 ノバルティス アーゲー 抗体Fc変異体
KR20230107617A (ko) 2020-11-13 2023-07-17 노파르티스 아게 키메라 항원 수용체(car)-발현 세포를 사용한 병용 요법
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
AU2022219681A1 (en) 2021-02-11 2023-09-21 Nectin Therapeutics Ltd. Antibodies against cd112r and uses thereof
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
KR20240005823A (ko) 2021-05-04 2024-01-12 리제너론 파아마슈티컬스, 인크. 다중특이적 fgf21 수용체 효능제 및 그의 용도
CN117597365A (zh) 2021-05-04 2024-02-23 再生元制药公司 多特异性fgf21受体激动剂及其应用
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
IL308134A (en) 2021-06-22 2023-12-01 Novartis Ag BISPECIFIC ANTIBODIES FOR USE IN THE TREATMENT OF HIDRADENITIS SUPPURATIVA
AU2022314734A1 (en) 2021-07-19 2024-02-08 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
US20230110958A1 (en) 2021-08-16 2023-04-13 Regeneron Pharmaceuticals, Inc. Il27 receptor agonists and methods of use thereof
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023073599A1 (en) 2021-10-28 2023-05-04 Novartis Ag Engineered fc variants
WO2023086812A1 (en) 2021-11-11 2023-05-19 Regeneron Pharmaceuticals, Inc. Cd20-pd1 binding molecules and methods of use thereof
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
WO2023105528A1 (en) 2021-12-12 2023-06-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies specific to ceacam1
WO2023148707A1 (en) 2022-02-07 2023-08-10 Yeda Research And Development Co. Ltd. Humanized anti quiescin suefhydrye oxidase 1 (qsox1) antibodies and uses thereof
TW202342548A (zh) 2022-02-07 2023-11-01 美商威特拉公司 抗獨特型(anti-idiotype)抗體分子及其用途
WO2023209568A1 (en) 2022-04-26 2023-11-02 Novartis Ag Multispecific antibodies targeting il-13 and il-18
WO2023220647A1 (en) 2022-05-11 2023-11-16 Regeneron Pharmaceuticals, Inc. Multispecific binding molecule proproteins and uses thereof
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
US20230382969A1 (en) 2022-05-27 2023-11-30 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
US20230391844A1 (en) 2022-06-04 2023-12-07 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier
US20240067691A1 (en) 2022-08-18 2024-02-29 Regeneron Pharmaceuticals, Inc. Interferon receptor agonists and uses thereof
WO2024040247A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon proproteins and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132405A (en) * 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
DE3920358A1 (de) * 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
JP3512795B2 (ja) * 1991-09-30 2004-03-31 アメリカ合衆国 組換免疫毒素
US5932448A (en) * 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Protein Engineering. V. 4, no.4, p. 457 - 461, 1991. Trends in Biotechnology. V. 9, p. 132, 1991. *

Also Published As

Publication number Publication date
JPH07503366A (ja) 1995-04-13
NO942750D0 (no) 1994-07-22
AU676150B2 (en) 1997-03-06
JP2004041221A (ja) 2004-02-12
KR950700419A (ko) 1995-01-16
DE69309472D1 (de) 1997-05-07
HUT68798A (en) 1995-07-28
US5910573A (en) 1999-06-08
ES2102007T3 (es) 1997-07-16
WO1993015210A1 (en) 1993-08-05
HU215180B (hu) 1998-10-28
CZ287296B6 (en) 2000-10-11
HU9402167D0 (en) 1994-10-28
JP3490437B2 (ja) 2004-01-26
KR100254759B1 (ko) 2000-05-01
CZ175794A3 (en) 1994-12-15
AU3410093A (en) 1993-09-01
CA2128511A1 (en) 1993-08-05
RU94045249A (ru) 1996-05-27
EP0654085A1 (en) 1995-05-24
GR3023860T3 (en) 1997-09-30
DK0654085T3 (da) 1997-09-22
NO942750L (no) 1994-09-13
DE69309472T2 (de) 1997-10-23
ATE151113T1 (de) 1997-04-15
EP0654085B1 (en) 1997-04-02
CA2128511C (en) 2006-11-07

Similar Documents

Publication Publication Date Title
RU2128709C1 (ru) Способ получения димерного одноцепочечного слитого белка (варианты)
JP3312357B2 (ja) 多価の一本鎖抗体
CN105722855B (zh) 恒定链经修饰的双特异性五价和六价Ig-M抗体
CA1341411C (en) Method for producing fv fragments in eukaryotic cells
Ueda et al. Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region
US5837821A (en) Antibody construct
Müller et al. The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies
US7122646B2 (en) Multivalent and multispecific binding proteins, their manufacture and use
US5869620A (en) Multivalent antigen-binding proteins
JP2021004250A (ja) 改変した抗体組成物、それを作製および使用する方法
JP3720353B2 (ja) 多価および多重特異性の結合タンパク質、それらの製造および使用
JP3659261B2 (ja) 組換体タンパク質の多機能性複合体への標的化ヘテロ結合
EP0617706B1 (en) Multivalent antigen-binding proteins
Schlehuber et al. Duocalins: engineered ligand-binding proteins with dual specificity derived from the lipocalin fold
Fernández Prokaryotic expression of antibodies and affibodies
KR20070042967A (ko) 발현 증강된 폴리펩티드
WO1994013806A9 (en) Multivalent single chain antibodies
KR101740030B1 (ko) ScFv 항체 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법
WO1993023537A1 (en) Chimeric multivalent protein analogues and methods of use thereof
EP0672068A1 (en) Target binding polypeptide
EP1294904A1 (en) Heterodimeric fusion proteins
Anand et al. Synthesis and expression in Escherichia coli of cistronic DNA encoding an antibody fragment specific for a Salmonella serotype B O-antigen
US5965405A (en) Method for producing Fv fragments in eukaryotic cells
Denton et al. Production and characterization of an anti-(MUC1 mucin) recombinant diabody
AU5103493A (en) Target binding polypeptide