PT92740B - Protese de joelho modular - Google Patents

Protese de joelho modular Download PDF

Info

Publication number
PT92740B
PT92740B PT92740A PT9274089A PT92740B PT 92740 B PT92740 B PT 92740B PT 92740 A PT92740 A PT 92740A PT 9274089 A PT9274089 A PT 9274089A PT 92740 B PT92740 B PT 92740B
Authority
PT
Portugal
Prior art keywords
femoral
stem
pins
connector
component
Prior art date
Application number
PT92740A
Other languages
English (en)
Other versions
PT92740A (pt
Inventor
John Edward Slamin
Original Assignee
Johnson & Johnson Orthopaedics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson & Johnson Orthopaedics filed Critical Johnson & Johnson Orthopaedics
Publication of PT92740A publication Critical patent/PT92740A/pt
Publication of PT92740B publication Critical patent/PT92740B/pt

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/126Power FETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Prostheses (AREA)

Description

DESCRIÇÃO
ANTECEDENTES DA INVENÇÃO
APLICAÇÃO DA INVENÇÃO
A presente invenção refere-se a um siste^ ma de prótese modular do joelho, que é um sistema de prótese implantãvel usado para substituir um joelho natural e que é composto por uma série de hastes intramedulares com comprimentos diferentes e ângulos Valgus diferentes. O ângulo de Valgus e o comprimento da haste podem ser ajustados pelo cirurgião imediatamente antes da implantação do dispositivo, o que permite maior flexibilidade cirúrgica na implantação da prótese do joelho total.
ANTECEDENTES
As próteses de joelho total estiveram em uso durante algum tempo. Essas próteses são geralmente compos^ tas por um componente tibial, um componente femural e com componente da rótula. 0 componente femural da prótese é geralmen te constituído por uma porção cóndilar afastada independentemente e um conector, que liga as porções cóndilares. 0 comp£ nente tibial da prótese é construído para encaixar as porções cândilares do componente femural, isto é, as porções cõndilaree da prótese em contacto directo e são suportadas pelo componente tibial. A superfície de contacto femural do componen te tibial é constituído por um material plástico biocompatível, tal como o polietileno de peso molecular ultra elevado.
A porção da rótula da prótese é geralmente um botão de polietileno de peso molecular ultra elevado, que pode ser apoiada ou reforçada por metal e que ê fixada à rótula natural e assen ta sobre uma superfície metálica numa depressão do componente femural. Exemplo desta prótese é a que é apresentada na paten te norte americana N2 4 298 992.
As próteses do tipo apresentado na patente acima mencionada estão geralmente disponíveis com ou sem uma haste intramedular. A haste intramedular é usada para con ferir estabilidade lateral à prótese e é inserida no canal intramedular do fémur. As hastes são fixas segundo um ângulo relativamente à vertical, o que duplica o ângulo de Valgus” na anatomia humana. 0 ângulo de ”Valgus” é o ângulo entre a linha central do fémur e a linha imaginária vertical, que se estende desde o fémur distai até ao centro da cabeça fémural. Esse ângulo estã geralmente compreendido entre 5 e 99.
Na selecção de uma prótese para implantação o cirurgião não precisa necessariamente de conhecer precisamente o ângulo de Valgus e pode ou não saber se a prótese com ou sem uma haste intramedular deve ser a desejada para um paciente em particular. Segundo a regra geral de manuseio, a prótese escolhida para ser implantada, deve ser a menos complicada e a que necessita de menos remoção de ossos do pacien te.
Têm sido propostas próteses modulares como as que, são mostradas nas patentes norte americanas n2s 4 404 691 e 4 578 081. As próteses descritas nessas patentes têm hastes ou talas, que podem ser estendidos em comprimento, mas não proporcionam próteses sem hastes ou a variação do ângulo de Valgus da haste.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
As próteses da presente invenção proporcionam, ao cirurgião ortopédico, uma flexibilidade na prepara ção de um componente fémural simples de uma prótese de joelho total. Esse componente femural é idêntico para os joelhos direito ou esquerdo e pode variar para admitir hastes de diâmetros diferentes, comprimentos diferentes e fixar segundo ângulos de Valgus diferentes para o uso nos joelhos direito ou esquerdo. 0 sistema da presente invenção permite uma maior flexibilidade cirúrgica na implantação de próteses e proporcio na um número de componentes relativamente não dispendiosos, pa ra serem disponíveis e prontos a implantar durante o procedimento cirúrgico. Esse custo dos componentes simplifica os sis temas de controle de inventário, tanto ao fabricante como ao hospital e assim reduz os custos de tal procedimento.
DESCRIÇÃO DOS DESENHOS
No8 desenhos;
figura 1 é uma vista isométrica da prótese da presente invenção completamente montada.
figura 2 é uma vista de frente da prótese da presente invenção.
figura 3 é uma vista lateral, parcialmente em corte da prótese da presente invenção.
figura 4 é uma vista explodida de uma porção de próteses da presente invenção.
figura 5 é uma vista explodida das próteses da presente invenção.
- 3 DESCRIÇÃO PORMENORIZADA DA INVENÇÃO
As próteses da presente invenção são com postas por um componente femural, que tem duas superfícies condilares 10, ligadas por um conector intercondilar 11, tal como mostram as figuras 1-3. As superfícies condilares têm uma depressão de rótula 12 entre as superfícies condilares, o que permite que a porção da rótula da prótese total do jorlho assente na depressão 12, quando o joelho é dobrado. Para os objectivos de orientação, a superfície interior 25 da prótese ê referida como superfície inferior e a superfície exterior é referida como superfície superior. 0 lado da prótese com a depressão da rótula 12 ê o lado anterior da prótese e o lado oposto é o lado posterior. A porção de prótese que inclui as superfícies condilares e o conector intercondilar podem ter construção semelhante ã das próteses, que são apresentadas na patente norte-americana n2 4 298 992. Nas presentes próteses há um orifício 13, que é mostrado nos desenhos como sendo um orifício circular. Quando desejado, este orifício pode ter uma forma diferente. A orla posterior do orifício tem uma pequena abertura ou ranhura 16, cujo objectivo será descrito subsequentemente. A presente prótese contem um para fuso 17, que tem a mesma configuração da secção transversal do orifício e que deve ser montado através do orifício e estender -se através de um anel da haste 18 e dentro da porção roscada da haste 19. 0 interior da haste tem uma porção de rosca fêmea, que pode ser enroscada na porção roscada do parafuso fémural 17, quando o dispositivo é montado. 0 parafuso deve ser mantido em posição no orifício, para o que a cabeça 14 do para fuso é mais largo do que o orifício 13. Quando a haste sobre o parafuso é apertada, o anel 18 da haste e a cabeça 14 do parafuso arrastam-se uma à outra até que a cabeça 14 do parafuso e o anel 18 da haste estão em contacto firme com a superfície intercondilar e mantêm a haste segundo o ângulo de Valgus” apropriado. 0 anel da haste tem uma fenda periférica 21 próximo do extremo do anel, que pode receber um grampo circular 22 para tratar a haste contra o anel da haste. A haste tem uma depressão ou ranhura correspondente.
- 4 Como mostra a figura 4, o grampo 22 encaixa parcialmente na ranhura 21 do anel da haste e parcialmente na haste para tra var a haste contra o anel da haste. 0 parafuso femural tem uma cabeça 14, que é dimensionada para encaixar adequadamente num rebaixo 15 sobre a superfície superior do conector inter condilar.
parafuso fémural 17 é construído de tal forma, que o eixo geométrico do eixo mecânico faz um ângulo com a cabeça 14 do parafuso, o que pode ser visto na figura 14. A cabeça de parafuso também é angulada, pelo que a superfície da cabeça é relativamente nivelada com o rebaixo na base da caixa intercondilar. A haste forma um ângulo, de 52, 72 ou 92 o ângulo Valgus, com a base da caixa. Estes ângulos, são os ângulos de “Valgus” geralmente usados nas construções de próte ses de baste. Quando o parafuso estã completamente assente na base da caixa intercondilar, forma o ângulo de “Valgus”.
Para se poder ajustar com firmeza em tomo do parafuso, o anel da haste faz um ângulo com a horizontal, que corresponde ao ân guio de “Valgus. No sistema modular da presente invenção, os parafusos são providenciados nas configurações direita e esquerda e segundo ângulos de 52, 72 e 92. Para cada parafuso existe um anel de haste correspondente. As hastes são providenciadas com diâmetros diferentes, normalmente 13 milímetros e 15 milímetros e com comprimentos diferentes tal como 90 e 130 milímetros. Os aneis de baste são dimensionados de modo a corresponderem ao diâmetro da baste. Para cada joelho, isto é, direito ou esquerdo, há 12 modificações possíveis; três ângulos de Valgus diferentes, cada um com dois diâmetros de baste possíveis e dois comprimentos de baste possíveis.
Deve ser compreendido que o modelo do com ponente femural básico no presente sistema tanto pode ser usado para o joelho direito como para o esquerdo, quer a haste seja usada quer não. Quando a haste é usada, é necessário ter parafusos, que são inclinados para a esquerda ou direita, dependendo do joelho em que podem ser envolvidas. Os parafusos também devem ter ângulos de “Valgus diferentes. Quando se desejar ter a capacidade de implantação de uma prótese tanto no joelho direito como no esquerdo segundo os ângulos de Valgus de
- 5 52, 72 ou 92, com os diâmetros de haste de 13 ou 15 milímetros e com comprimentos de haste de 90 ou 130 milímetros, normalmente deve ser necessário ter disponíveis doze próteses diferentes para o joelho direito e doze próteses diferentes para o joelho esquerdo. No presente sistema modular, só há necessidade de um componente femural simples e de preferência deve-se ter doze conjuntos de haste do joelho esquerdo e doze conjuntos de haste do joelho direito disponíveis para implantação. Apesar de o actual componente fémural ser o componente mais dispendioso, não é necessário guardar uma colecçao de custos elevados deste componente, já que a maior parte de opções de implantação podem ser feitas com a troca de materiais relativa mente não dispendiosos, tais como o parafuso fémural, a haste intermedular e os anéis da haste. Quando uma prótese da presente invenção é seleccionada, por um cirurgião ortopédico para implantação, o cirurgião deve ter disponível a dimensão correcta do componente femural e um conjunto de parafusos femurais, hastes e anéis de haste. Quando durante o procedimento operativo, se verificar que a haste não deve ser necessária para um determinado paciente, então não devem ser usados a haste, o parafuso femural e o anel da haste. Quando se decide que a haste deve ser usada, então devem ser seleccionados o parafuso femural de ângulo de Vagus e a montagem de diâmetro e comprimento correctos. 0 parafuso femural deve então ser ajustado à base do componente femural e a montagem da haste inserida com o perno anti-rotacional do anel da haste na ranhu ra 16. 0 perno anti-rotacional encaixado na ranhura 16 deve prevenir a rotação do anel da haste, quando a haste é apertada ao parafuso femural. Depois de a haste ter sido apertada ao parafuso, a prótese deve estar pronta para implantar.
As hastes e os anéis da haste podem ser pré-montadas numa oficina, numa montagem de haste, se for des£ jado. Cada montagem de haste deve incluir uma haste e um anel de haste com o mesmo diâmetro da haste, conectados com um grampo circular. A pré-montagem da haste e do anel da haste é da conveniência do cirurgião. Durante o procedimento cirúrgico, o cirurgião deve decidir qual é a haste desejada, deve
seleccionar o parafuso apropriado e a montagem da haste, inserir o parafuso através do orifício 16 e adaptar a montagem da haste do parafuso, assegurando-se de que o perno 20 está posicionado na ranhura 21.

Claims (1)

  1. REIVINDICAÇÕES
    - lâ Sistema de prótese de joelho modular cons tituído por um componente femoral, um componente tibial, e um componente patelar, caracterizado por proporcionar um componen te femoral com pelo menos duas cavilhas femorais, cada una das quais está ligada e adaptada a um ligador intercondilar entre porções con dilares da componente femoral, pelo menos um aro de haste de suporte adaptado a ajustar em torno da cavilha e em contacto com a porção inferior do ligador intercondilar, sendo esse aro de haste de suporte e a cavilha femoral fixáveis ao ligador in tercondilar segundo ângulos correspondentes ao ângulo de valgus desejado na prótese implantada, uma seria de pelo menos duas hastes de comprimentos diferentes, estando cada uma dessas hajj tes adaptado para ser fixada à cavilha femoral para formar uma componente femoral completa.
    - 2s Sistema de acordo com a reivindicação 1, caracterizado por pelo menos uma das cavilhas possuir uma configuração angular que lhe permite ser implantada num joelho es_ querdo e pelo menos uma das cavilhas possuir uma configuração angular para ser implantada num joelho direito.
    - 3s Sistema de acordo com a reivindicação 1, caracterizado por a série de hastes incluir pelo menos quatro hastes possuindo pelo menos diâmetros diferentes.
    - Sistema de acordo com a reivindicação 1, caracterizado por possuir pelo menos três cavilhas femorais, desenvolvendo-se cada uma dessas cavilhas, quando totalmente instaladas no ligador intercondilar, segundo um ângulo que difere do ângulo segundo o qual as outras cavilhas se desenvolvem quando completamente instaladas no ligador intercondilar.
    - 5ã Sistema de acordo com a reivindicação 1, caracterizado por cada haste ser constituída por uma componente de aro de haste de suporte, uma porção de haste e um ligador para ligar o aro à haste.
    - 6ê Sistema de acordo com a reivindicação 5, caracterizado por um plano que passa ao longo da superfície inferior do aro da haste de suporte formar um ângulo com um plano que passa ao longo da superfície superior do aro da ha_s te de suporte e o qual corresponde ao ângulo de Valgus.
    - 7ã Sistema de acordo com a reivindicação 5, caracterizado por a porção de haste ser enfiada na cavilha para manter a haste em posição.
    - 8â Sistema de acordo com a reivindicação 5, caracterizado por a cavilha femoral se desenvolver a partir da superfície superior da componente femoral através de um orifício que possui uma ranhura na sua face posterior e uma cabeça na face inferior do aro da haste de suporte por ajuste no interior da ranhura para evitar a rotação do aro da haste de suporte.
    - 9ê Sistema de acordo com a reivindicação 4, caracterizado por ser constituído ainda por hastes possuindo pelo menos dois diâmetros diferentes.
    - lOê Sistema de acordo com a reivindicação 9, caracterizado por pelo menos uma das referidas cavilhas possuir uma configuração angular para ser implantada num joelho esquerdo e pelo menos uma das referidas cavilhas possuir configuração angular para ser implantada num joelho direito.
    A requerente reivindica a prioridade do pedido norte-americano apresentado em 27 de Dezembro de 1988, sob o número de série 290,540.
PT92740A 1988-12-27 1989-12-27 Protese de joelho modular PT92740B (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/290,546 US5072266A (en) 1988-12-27 1988-12-27 Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry

Publications (2)

Publication Number Publication Date
PT92740A PT92740A (pt) 1990-06-29
PT92740B true PT92740B (pt) 1995-12-29

Family

ID=23116502

Family Applications (1)

Application Number Title Priority Date Filing Date
PT92740A PT92740B (pt) 1988-12-27 1989-12-27 Protese de joelho modular

Country Status (2)

Country Link
US (3) US5072266A (pt)
PT (1) PT92740B (pt)

Families Citing this family (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5304831A (en) * 1990-12-21 1994-04-19 Siliconix Incorporated Low on-resistance power MOS technology
US5404040A (en) * 1990-12-21 1995-04-04 Siliconix Incorporated Structure and fabrication of power MOSFETs, including termination structures
US5168331A (en) * 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
US5233215A (en) * 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
JP2837033B2 (ja) * 1992-07-21 1998-12-14 三菱電機株式会社 半導体装置及びその製造方法
GB9215653D0 (en) * 1992-07-23 1992-09-09 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5910669A (en) * 1992-07-24 1999-06-08 Siliconix Incorporated Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
US5558313A (en) * 1992-07-24 1996-09-24 Siliconix Inorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
GB9216599D0 (en) * 1992-08-05 1992-09-16 Philips Electronics Uk Ltd A semiconductor device comprising a vertical insulated gate field effect device and a method of manufacturing such a device
GB9216953D0 (en) * 1992-08-11 1992-09-23 Philips Electronics Uk Ltd A semiconductor component
JP3167457B2 (ja) * 1992-10-22 2001-05-21 株式会社東芝 半導体装置
DE4300806C1 (de) * 1993-01-14 1993-12-23 Siemens Ag Verfahren zur Herstellung von vertikalen MOS-Transistoren
US5341011A (en) * 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
US5410170A (en) * 1993-04-14 1995-04-25 Siliconix Incorporated DMOS power transistors with reduced number of contacts using integrated body-source connections
US5349224A (en) * 1993-06-30 1994-09-20 Purdue Research Foundation Integrable MOS and IGBT devices having trench gate structure
JP3396553B2 (ja) 1994-02-04 2003-04-14 三菱電機株式会社 半導体装置の製造方法及び半導体装置
JPH07235672A (ja) * 1994-02-21 1995-09-05 Mitsubishi Electric Corp 絶縁ゲート型半導体装置およびその製造方法
DE69534888T2 (de) * 1994-04-06 2006-11-02 Denso Corp., Kariya Herstellungsverfahren für Halbleiterbauelement mit Graben
US5468982A (en) * 1994-06-03 1995-11-21 Siliconix Incorporated Trenched DMOS transistor with channel block at cell trench corners
US5486772A (en) 1994-06-30 1996-01-23 Siliconix Incorporation Reliability test method for semiconductor trench devices
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
EP0698919B1 (en) * 1994-08-15 2002-01-16 Siliconix Incorporated Trenched DMOS transistor fabrication using seven masks
JP3307785B2 (ja) 1994-12-13 2002-07-24 三菱電機株式会社 絶縁ゲート型半導体装置
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US6005264A (en) * 1995-03-01 1999-12-21 Lsi Logic Corporation Microelectronic integrated circuit including hexagonal CMOS "NAND" gate device
US5528033A (en) * 1995-03-29 1996-06-18 International Business Machines Corporation Automatic surface profiling for submicron device
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US6140678A (en) * 1995-06-02 2000-10-31 Siliconix Incorporated Trench-gated power MOSFET with protective diode
US5998837A (en) * 1995-06-02 1999-12-07 Siliconix Incorporated Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
EP0746030B1 (en) * 1995-06-02 2001-11-21 SILICONIX Incorporated Trench-gated power MOSFET with protective diodes in a periodically repeating pattern
JP2987328B2 (ja) * 1995-06-02 1999-12-06 シリコニックス・インコーポレイテッド 双方向電流阻止機能を備えたトレンチ型パワーmosfet
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6372534B1 (en) * 1995-06-06 2002-04-16 Lg. Philips Lcd Co., Ltd Method of making a TFT array with photo-imageable insulating layer over address lines
US5689128A (en) * 1995-08-21 1997-11-18 Siliconix Incorporated High density trenched DMOS transistor
US5629543A (en) * 1995-08-21 1997-05-13 Siliconix Incorporated Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness
FR2739493B1 (fr) * 1995-09-29 2000-07-28 Nippon Denso Co Mosfet de puissance et son procede de fabrication
US6107661A (en) * 1995-09-29 2000-08-22 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
WO1997013279A1 (en) * 1995-10-02 1997-04-10 Siliconix Incorporated Trench-gated mosfet including integral temperature detection diode
US5637898A (en) * 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5821583A (en) * 1996-03-06 1998-10-13 Siliconix Incorporated Trenched DMOS transistor with lightly doped tub
US5668026A (en) * 1996-03-06 1997-09-16 Megamos Corporation DMOS fabrication process implemented with reduced number of masks
US6040599A (en) * 1996-03-12 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Insulated trench semiconductor device with particular layer structure
JP3410286B2 (ja) * 1996-04-01 2003-05-26 三菱電機株式会社 絶縁ゲート型半導体装置
US6236099B1 (en) * 1996-04-22 2001-05-22 International Rectifier Corp. Trench MOS device and process for radhard device
US5877529A (en) * 1996-04-26 1999-03-02 Megamos Corporation Mosfet termination design and core cell configuration to increase breakdown voltage and to improve device ruggedness
US5904525A (en) * 1996-05-08 1999-05-18 Siliconix Incorporated Fabrication of high-density trench DMOS using sidewall spacers
US5742076A (en) * 1996-06-05 1998-04-21 North Carolina State University Silicon carbide switching devices having near ideal breakdown voltage capability and ultralow on-state resistance
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5838050A (en) * 1996-06-19 1998-11-17 Winbond Electronics Corp. Hexagon CMOS device
EP2043158B1 (en) * 1996-07-19 2013-05-15 SILICONIX Incorporated Trench DMOS transistor with trench bottom implant
US5879968A (en) * 1996-11-18 1999-03-09 International Rectifier Corporation Process for manufacture of a P-channel MOS gated device with base implant through the contact window
JP3502531B2 (ja) * 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
US6239463B1 (en) 1997-08-28 2001-05-29 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
DE19738324C1 (de) * 1997-09-02 1998-09-03 Siemens Ag DMOS mit großer Kanalweite und hoher Avalanche-Festigkeit
US5923979A (en) * 1997-09-03 1999-07-13 Siliconix Incorporated Planar DMOS transistor fabricated by a three mask process
JP3329707B2 (ja) * 1997-09-30 2002-09-30 株式会社東芝 半導体装置
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
US6103635A (en) * 1997-10-28 2000-08-15 Fairchild Semiconductor Corp. Trench forming process and integrated circuit device including a trench
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6033997A (en) * 1997-12-29 2000-03-07 Siemens Aktiengesellschaft Reduction of black silicon in semiconductor fabrication
US6396102B1 (en) * 1998-01-27 2002-05-28 Fairchild Semiconductor Corporation Field coupled power MOSFET bus architecture using trench technology
US6362495B1 (en) 1998-03-05 2002-03-26 Purdue Research Foundation Dual-metal-trench silicon carbide Schottky pinch rectifier
US6171969B1 (en) * 1998-03-13 2001-01-09 Texas Instruments Incorporated Uniform dopant distribution for mesas of semiconductors
JP3413569B2 (ja) 1998-09-16 2003-06-03 株式会社日立製作所 絶縁ゲート型半導体装置およびその製造方法
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6351009B1 (en) * 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
JP2000269486A (ja) * 1999-03-15 2000-09-29 Toshiba Corp 半導体装置
US7084456B2 (en) * 1999-05-25 2006-08-01 Advanced Analogic Technologies, Inc. Trench MOSFET with recessed clamping diode using graded doping
WO2001001484A2 (de) * 1999-06-25 2001-01-04 Infineon Technologies Ag Trench-mos-transistor
JP4244456B2 (ja) * 1999-08-04 2009-03-25 株式会社デンソー 半導体装置の製造方法、絶縁ゲート型バイポーラトランジスタの製造方法及び絶縁ゲート型バイポーラトランジスタ
KR100334577B1 (ko) * 1999-08-06 2002-05-03 윤종용 사진공정의 해상도를 능가하는 트렌치를 절연막내에 형성하는방법
US6518621B1 (en) 1999-09-14 2003-02-11 General Semiconductor, Inc. Trench DMOS transistor having reduced punch-through
US6348712B1 (en) 1999-10-27 2002-02-19 Siliconix Incorporated High density trench-gated power MOSFET
US6461918B1 (en) 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
US6285060B1 (en) 1999-12-30 2001-09-04 Siliconix Incorporated Barrier accumulation-mode MOSFET
US6548860B1 (en) 2000-02-29 2003-04-15 General Semiconductor, Inc. DMOS transistor structure having improved performance
US6312993B1 (en) 2000-02-29 2001-11-06 General Semiconductor, Inc. High speed trench DMOS
US6812526B2 (en) 2000-03-01 2004-11-02 General Semiconductor, Inc. Trench DMOS transistor structure having a low resistance path to a drain contact located on an upper surface
US6642577B2 (en) * 2000-03-16 2003-11-04 Denso Corporation Semiconductor device including power MOSFET and peripheral device and method for manufacturing the same
JP5081358B2 (ja) * 2000-03-17 2012-11-28 ゼネラル セミコンダクター,インク. トレンチゲート電極を有する二重拡散金属酸化膜半導体トランジスタ及びその製造方法
US6376315B1 (en) * 2000-03-31 2002-04-23 General Semiconductor, Inc. Method of forming a trench DMOS having reduced threshold voltage
JP4696335B2 (ja) * 2000-05-30 2011-06-08 株式会社デンソー 半導体装置およびその製造方法
KR100327323B1 (ko) * 2000-05-30 2002-03-06 김덕중 래치 업이 억제된 트랜치 게이트 구조의 전력용반도체소자 및 그 제조방법
TW523816B (en) 2000-06-16 2003-03-11 Gen Semiconductor Inc Semiconductor trench device with enhanced gate oxide integrity structure
US6472678B1 (en) 2000-06-16 2002-10-29 General Semiconductor, Inc. Trench MOSFET with double-diffused body profile
US6555895B1 (en) 2000-07-17 2003-04-29 General Semiconductor, Inc. Devices and methods for addressing optical edge effects in connection with etched trenches
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6472708B1 (en) * 2000-08-31 2002-10-29 General Semiconductor, Inc. Trench MOSFET with structure having low gate charge
US6445037B1 (en) 2000-09-28 2002-09-03 General Semiconductor, Inc. Trench DMOS transistor having lightly doped source structure
US6593620B1 (en) 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US7132712B2 (en) 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6677641B2 (en) 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7345342B2 (en) 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6713351B2 (en) 2001-03-28 2004-03-30 General Semiconductor, Inc. Double diffused field effect transistor having reduced on-resistance
US6657256B2 (en) 2001-05-22 2003-12-02 General Semiconductor, Inc. Trench DMOS transistor having a zener diode for protection from electro-static discharge
DE10125268C1 (de) * 2001-05-23 2002-08-29 Infineon Technologies Ag Vertikaler MOS-Transistor mit einer Druchbruchstruktur und Verfahren zu dessen Herstellung
US6764906B2 (en) * 2001-07-03 2004-07-20 Siliconix Incorporated Method for making trench mosfet having implanted drain-drift region
US7291884B2 (en) * 2001-07-03 2007-11-06 Siliconix Incorporated Trench MIS device having implanted drain-drift region and thick bottom oxide
US6621107B2 (en) 2001-08-23 2003-09-16 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US7045859B2 (en) * 2001-09-05 2006-05-16 International Rectifier Corporation Trench fet with self aligned source and contact
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7061066B2 (en) * 2001-10-17 2006-06-13 Fairchild Semiconductor Corporation Schottky diode using charge balance structure
US6657255B2 (en) * 2001-10-30 2003-12-02 General Semiconductor, Inc. Trench DMOS device with improved drain contact
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
US6822288B2 (en) * 2001-11-20 2004-11-23 General Semiconductor, Inc. Trench MOSFET device with polycrystalline silicon source contact structure
US6977203B2 (en) 2001-11-20 2005-12-20 General Semiconductor, Inc. Method of forming narrow trenches in semiconductor substrates
US6645815B2 (en) 2001-11-20 2003-11-11 General Semiconductor, Inc. Method for forming trench MOSFET device with low parasitic resistance
US6630402B2 (en) 2001-11-21 2003-10-07 General Semiconductor, Inc. Integrated circuit resistant to the formation of cracks in a passivation layer
US6657254B2 (en) 2001-11-21 2003-12-02 General Semiconductor, Inc. Trench MOSFET device with improved on-resistance
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
DE10207309B4 (de) * 2002-02-21 2015-07-23 Infineon Technologies Ag MOS-Transistoreinrichtung
KR100859701B1 (ko) 2002-02-23 2008-09-23 페어차일드코리아반도체 주식회사 고전압 수평형 디모스 트랜지스터 및 그 제조 방법
JP3673231B2 (ja) 2002-03-07 2005-07-20 三菱電機株式会社 絶縁ゲート型半導体装置及びゲート配線構造の製造方法
US6781196B2 (en) 2002-03-11 2004-08-24 General Semiconductor, Inc. Trench DMOS transistor having improved trench structure
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
GB0208833D0 (en) * 2002-04-18 2002-05-29 Koninkl Philips Electronics Nv Trench-gate semiconductor devices
US6784505B2 (en) * 2002-05-03 2004-08-31 Fairchild Semiconductor Corporation Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique
US7161208B2 (en) * 2002-05-14 2007-01-09 International Rectifier Corporation Trench mosfet with field relief feature
JP3979258B2 (ja) * 2002-05-21 2007-09-19 富士電機デバイステクノロジー株式会社 Mis半導体装置およびその製造方法
DE10223699B4 (de) * 2002-05-28 2007-11-22 Infineon Technologies Ag MOS-Transistoreinrichtung vom Trenchtyp
JP3677489B2 (ja) 2002-05-29 2005-08-03 Necエレクトロニクス株式会社 縦型電界効果トランジスタ
KR20040011016A (ko) * 2002-07-26 2004-02-05 동부전자 주식회사 알에프 반도체소자 제조방법
US8080459B2 (en) * 2002-09-24 2011-12-20 Vishay-Siliconix Self aligned contact in a semiconductor device and method of fabricating the same
US8629019B2 (en) 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
US7557395B2 (en) * 2002-09-30 2009-07-07 International Rectifier Corporation Trench MOSFET technology for DC-DC converter applications
US6921699B2 (en) * 2002-09-30 2005-07-26 International Rectifier Corporation Method for manufacturing a semiconductor device with a trench termination
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7033891B2 (en) 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
JP3931138B2 (ja) * 2002-12-25 2007-06-13 三菱電機株式会社 電力用半導体装置及び電力用半導体装置の製造方法
JP3742400B2 (ja) * 2003-04-23 2006-02-01 株式会社東芝 半導体装置及びその製造方法
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
GB0313857D0 (en) * 2003-06-14 2003-07-23 Koninkl Philips Electronics Nv Trench-gate semiconductor devices
CN100334740C (zh) * 2003-08-26 2007-08-29 茂德科技股份有限公司 功率金属氧化物半导体场效应晶体管的制造方法
JP4746262B2 (ja) * 2003-09-17 2011-08-10 Okiセミコンダクタ株式会社 半導体装置の製造方法
JP4567969B2 (ja) * 2003-10-28 2010-10-27 東部エレクトロニクス株式会社 半導体素子のトランジスタ製造方法
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7279743B2 (en) * 2003-12-02 2007-10-09 Vishay-Siliconix Closed cell trench metal-oxide-semiconductor field effect transistor
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
GB0404747D0 (en) * 2004-03-03 2004-04-07 Koninkl Philips Electronics Nv Trench field effect transistor and method of making it
US7234122B2 (en) * 2004-04-19 2007-06-19 Lsi Corporation Three-dimensional interconnect resistance extraction using variational method
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
US8183629B2 (en) * 2004-05-13 2012-05-22 Vishay-Siliconix Stacked trench metal-oxide-semiconductor field effect transistor device
WO2006011882A1 (en) * 2004-06-30 2006-02-02 Advanced Analogic Technologies, Inc. Trench mosfet with recessed clamping diode
KR100615570B1 (ko) 2004-07-05 2006-08-25 삼성전자주식회사 둥근 활성코너를 갖는 리세스 채널 모스 트랜지스터의제조방법
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7265415B2 (en) 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
US7241649B2 (en) * 2004-10-29 2007-07-10 International Business Machines Corporation FinFET body contact structure
AT504998A2 (de) 2005-04-06 2008-09-15 Fairchild Semiconductor Trenched-gate-feldeffekttransistoren und verfahren zum bilden derselben
JP4955958B2 (ja) * 2005-08-04 2012-06-20 ルネサスエレクトロニクス株式会社 半導体装置
US7385248B2 (en) 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
JP4939012B2 (ja) * 2005-08-26 2012-05-23 ルネサスエレクトロニクス株式会社 半導体装置
DE102005059034B4 (de) * 2005-12-10 2007-10-11 X-Fab Semiconductor Foundries Ag SOI-Isolationsgrabenstrukturen
DE102005059035B4 (de) * 2005-12-10 2007-11-08 X-Fab Semiconductor Foundries Ag Isolationsgrabenstrukturen für hohe Spannungen
US7544545B2 (en) 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode
CN101361193B (zh) * 2006-01-18 2013-07-10 维西埃-硅化物公司 具有高静电放电性能的浮动栅极结构
US7667265B2 (en) * 2006-01-30 2010-02-23 Fairchild Semiconductor Corporation Varying mesa dimensions in high cell density trench MOSFET
US7446375B2 (en) * 2006-03-14 2008-11-04 Ciclon Semiconductor Device Corp. Quasi-vertical LDMOS device having closed cell layout
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US8471390B2 (en) * 2006-05-12 2013-06-25 Vishay-Siliconix Power MOSFET contact metallization
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
JP5431638B2 (ja) * 2006-10-27 2014-03-05 ローム株式会社 半導体集積回路
US9437729B2 (en) * 2007-01-08 2016-09-06 Vishay-Siliconix High-density power MOSFET with planarized metalization
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US7557406B2 (en) 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US9947770B2 (en) 2007-04-03 2018-04-17 Vishay-Siliconix Self-aligned trench MOSFET and method of manufacture
US8368126B2 (en) 2007-04-19 2013-02-05 Vishay-Siliconix Trench metal oxide semiconductor with recessed trench material and remote contacts
JP2008300420A (ja) * 2007-05-29 2008-12-11 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US20090020813A1 (en) * 2007-07-16 2009-01-22 Steven Howard Voldman Formation of lateral trench fets (field effect transistors) using steps of ldmos (lateral double-diffused metal oxide semiconductor) technology
KR101630734B1 (ko) 2007-09-21 2016-06-16 페어차일드 세미컨덕터 코포레이션 전력 소자
US9484451B2 (en) * 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
US7994005B2 (en) 2007-11-01 2011-08-09 Alpha & Omega Semiconductor, Ltd High-mobility trench MOSFETs
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US10600902B2 (en) 2008-02-13 2020-03-24 Vishay SIliconix, LLC Self-repairing field effect transisitor
KR20090126849A (ko) * 2008-06-05 2009-12-09 주식회사 동부하이텍 반도체 소자 및 이를 위한 sti 형성 방법
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US7910983B2 (en) * 2008-09-30 2011-03-22 Infineon Technologies Austria Ag MOS transistor having an increased gate-drain capacitance
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US7943989B2 (en) * 2008-12-31 2011-05-17 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
US7911260B2 (en) * 2009-02-02 2011-03-22 Infineon Technologies Ag Current control circuits
US8227855B2 (en) 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
US8148749B2 (en) 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
US8072027B2 (en) * 2009-06-08 2011-12-06 Fairchild Semiconductor Corporation 3D channel architecture for semiconductor devices
US8049276B2 (en) 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
JP2011044513A (ja) * 2009-08-20 2011-03-03 National Institute Of Advanced Industrial Science & Technology 炭化珪素半導体装置
US9443974B2 (en) * 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
US9230810B2 (en) 2009-09-03 2016-01-05 Vishay-Siliconix System and method for substrate wafer back side and edge cross section seals
US9431530B2 (en) * 2009-10-20 2016-08-30 Vishay-Siliconix Super-high density trench MOSFET
US9306056B2 (en) * 2009-10-30 2016-04-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US8604525B2 (en) 2009-11-02 2013-12-10 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
JP2011198993A (ja) * 2010-03-19 2011-10-06 Toshiba Corp 半導体装置およびdc−dcコンバータ
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US20120068222A1 (en) * 2010-09-21 2012-03-22 Kabushiki Kaisha Toshiba Semiconductor Device and Method for Manufacturing the Same
US8794151B2 (en) 2010-11-19 2014-08-05 Wafertech, Llc Silicided MOS capacitor explosive device initiator
JP5738653B2 (ja) * 2011-03-31 2015-06-24 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 絶縁ゲート型半導体装置
US8587059B2 (en) * 2011-04-22 2013-11-19 Infineon Technologies Austria Ag Transistor arrangement with a MOSFET
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US9431249B2 (en) 2011-12-01 2016-08-30 Vishay-Siliconix Edge termination for super junction MOSFET devices
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
JP2013232533A (ja) * 2012-04-27 2013-11-14 Rohm Co Ltd 半導体装置および半導体装置の製造方法
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9722041B2 (en) 2012-09-19 2017-08-01 Vishay-Siliconix Breakdown voltage blocking device
JP6107453B2 (ja) * 2013-06-13 2017-04-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
DE102013111966B4 (de) * 2013-10-30 2017-11-02 Infineon Technologies Ag Feldeffekthalbleiterbauelement und Verfahren zu dessen Herstellung
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US9252293B2 (en) 2014-01-22 2016-02-02 Alexei Ankoudinov Trench field effect diodes and methods of manufacturing those diodes
US9419116B2 (en) 2014-01-22 2016-08-16 Alexei Ankoudinov Diodes and methods of manufacturing diodes
US9508596B2 (en) 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
US9847233B2 (en) 2014-07-29 2017-12-19 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and formation thereof
JP6421487B2 (ja) * 2014-07-31 2018-11-14 富士電機株式会社 半導体装置および半導体装置の製造方法
EP3183754A4 (en) 2014-08-19 2018-05-02 Vishay-Siliconix Super-junction metal oxide semiconductor field effect transistor
KR102026543B1 (ko) 2014-08-19 2019-09-27 비쉐이-실리코닉스 전자 회로
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
JP6267102B2 (ja) * 2014-12-10 2018-01-24 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
JP6584857B2 (ja) 2015-08-11 2019-10-02 株式会社東芝 半導体装置
TW202226592A (zh) * 2020-08-31 2022-07-01 美商GeneSiC 半導體股份有限公司 經改良之功率器件之設計及製法
JP2023136403A (ja) * 2022-03-17 2023-09-29 株式会社東芝 半導体装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412297A (en) 1965-12-16 1968-11-19 United Aircraft Corp Mos field-effect transistor with a onemicron vertical channel
US3924265A (en) 1973-08-29 1975-12-02 American Micro Syst Low capacitance V groove MOS NOR gate and method of manufacture
US4055884A (en) * 1976-12-13 1977-11-01 International Business Machines Corporation Fabrication of power field effect transistors and the resulting structures
US4398339A (en) * 1977-04-15 1983-08-16 Supertex, Inc. Fabrication method for high power MOS device
JPS605228B2 (ja) 1977-10-17 1985-02-08 株式会社日立製作所 半導体装置
US4148047A (en) * 1978-01-16 1979-04-03 Honeywell Inc. Semiconductor apparatus
JPS5553462A (en) * 1978-10-13 1980-04-18 Int Rectifier Corp Mosfet element
JPS55146976A (en) 1979-05-02 1980-11-15 Nec Corp Insulating gate field effect transistor
FR2466101A1 (fr) * 1979-09-18 1981-03-27 Thomson Csf Procede de formation de couches de silicium polycristallin localisees sur des zones recouvertes de silice d'une plaquette de silicium et application a la fabrication d'un transistor mos non plan autoaligne
US4374455A (en) 1979-10-30 1983-02-22 Rca Corporation Method for manufacturing a vertical, grooved MOSFET
US4345265A (en) * 1980-04-14 1982-08-17 Supertex, Inc. MOS Power transistor with improved high-voltage capability
US4364074A (en) 1980-06-12 1982-12-14 International Business Machines Corporation V-MOS Device with self-aligned multiple electrodes
JPS5718365A (en) 1980-07-08 1982-01-30 Matsushita Electronics Corp Semiconductor device and manufacture thereof
DE3028561A1 (de) * 1980-07-28 1982-02-18 Siemens AG, 1000 Berlin und 8000 München Hochintegrierter baustein in v-mos-technologie
US4593302B1 (en) * 1980-08-18 1998-02-03 Int Rectifier Corp Process for manufacture of high power mosfet laterally distributed high carrier density beneath the gate oxide
US4680853A (en) * 1980-08-18 1987-07-21 International Rectifier Corporation Process for manufacture of high power MOSFET with laterally distributed high carrier density beneath the gate oxide
DE3175641D1 (en) 1980-08-25 1987-01-08 Itt Ind Gmbh Deutsche High-voltage semiconductor switch
US4506435A (en) * 1981-07-27 1985-03-26 International Business Machines Corporation Method for forming recessed isolated regions
US4983535A (en) * 1981-10-15 1991-01-08 Siliconix Incorporated Vertical DMOS transistor fabrication process
JPS58137254A (ja) 1982-02-10 1983-08-15 Hitachi Ltd 絶縁ゲ−ト半導体装置
US4443931A (en) 1982-06-28 1984-04-24 General Electric Company Method of fabricating a semiconductor device with a base region having a deep portion
US4532534A (en) 1982-09-07 1985-07-30 Rca Corporation MOSFET with perimeter channel
JPS5980970A (ja) 1982-11-01 1984-05-10 Mitsubishi Electric Corp V溝mos形電界効果トランジスタ
JPS59181668A (ja) 1983-03-31 1984-10-16 Fujitsu Ltd 半導体装置
JPS59193064A (ja) 1983-04-15 1984-11-01 Matsushita Electric Works Ltd 高耐圧縦型トランジスタ装置
JPS6028271A (ja) 1983-07-26 1985-02-13 Nissan Motor Co Ltd 縦型mosfet
JPS60136378A (ja) * 1983-12-26 1985-07-19 Hitachi Ltd 半導体装置およびその製造方法
US4783694A (en) 1984-03-16 1988-11-08 Motorola Inc. Integrated bipolar-MOS semiconductor device with common collector and drain
US4824793A (en) * 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
US4631564A (en) * 1984-10-23 1986-12-23 Rca Corporation Gate shield structure for power MOS device
JPS6212167A (ja) * 1985-07-10 1987-01-21 Tdk Corp 溝部を有する縦形半導体装置の製造方法
JPS6216572A (ja) 1985-07-15 1987-01-24 Tdk Corp 縦形半導体装置およびその製造方法
JPS6237965A (ja) * 1985-08-13 1987-02-18 Tdk Corp 縦形半導体装置およびその製造方法
US5019522A (en) * 1986-03-21 1991-05-28 Advanced Power Technology, Inc. Method of making topographic pattern delineated power MOSFET with profile tailored recessed source
US4767722A (en) * 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US5034785A (en) * 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4808543A (en) * 1986-05-07 1989-02-28 Motorola, Inc. Well Extensions for trench devices
US5160491A (en) * 1986-10-21 1992-11-03 Texas Instruments Incorporated Method of making a vertical MOS transistor
JPS63114173A (ja) 1986-10-31 1988-05-19 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPS63124762A (ja) 1986-11-13 1988-05-28 Tokyo Electric Co Ltd ステツピングモ−タ
JP2590863B2 (ja) 1987-03-12 1997-03-12 日本電装株式会社 導電変調型mosfet
US4794561A (en) * 1987-07-02 1988-12-27 Integrated Device Technology, Inc. Static ram cell with trench pull-down transistors and buried-layer ground plate
US4764481A (en) * 1987-08-24 1988-08-16 Delco Electronics Corporation Grown side-wall silicided source/drain self-align CMOS fabrication process
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US5016068A (en) * 1988-04-15 1991-05-14 Texas Instruments Incorporated Vertical floating-gate transistor

Also Published As

Publication number Publication date
PT92740A (pt) 1990-06-29
US5298442A (en) 1994-03-29
US6627950B1 (en) 2003-09-30
US5072266A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
PT92740B (pt) Protese de joelho modular
JP2930637B2 (ja) モジュール式膝補綴手段
US6214052B1 (en) Tibial component with a reversible, adjustable stem
JP3803881B2 (ja) 大腿膝蓋骨補綴用滑車埋植部材及びその埋植用器具
US3868730A (en) Knee or elbow prosthesis
ES2762937T3 (es) Dispositivo espaciador restringido para la articulación de la rodilla
CA1280253C (en) Staking ring for soft iol
JP3411275B2 (ja) 長円形寛骨臼カップ
US5019103A (en) Tibial wedge system
AU680819B2 (en) Joint prosthesis and apparatus for preparing the bone prior to fitting of the prosthesis
JP4716535B2 (ja) スピンアウト防止付き膝関節補綴
JP2807347B2 (ja) 股関節用モジュラー人工補装具
US4257129A (en) Prosthetic knee joint tibial implant
AU621135B2 (en) Tibial component for a replacement knee prosthesis
JP4115625B2 (ja) 調節可能なキール部を有する脛骨トレイ
ES2211947T3 (es) Instrumento de reseccion tibial.
ES2271368T3 (es) Sistema de articulacion articulada.
US6146424A (en) Offset press-fit tibial stem
EP1799161B1 (en) Surgical support for femur
PT1480582E (pt) Substituição da articulação patelo-femoral
PT92741B (pt) Bloco de corte cirurgico
BRPI0618305A2 (pt) sistema de montagem e método para aumentar a fixação do implante ao osso
JPH10277069A (ja) 医療締結装置
PT92742B (pt) Protese para revisao correctiva do joelho utilizada em cirurgia
PT809471E (pt) Guia de corte femoral distal

Legal Events

Date Code Title Description
FG3A Patent granted, date of granting

Effective date: 19950904

MM3A Annulment or lapse

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19970331

NF3A Restitutio in integrum

Effective date: 19971113

MM4A Annulment/lapse due to non-payment of fees, searched and examined patent

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20100304

MM4A Annulment/lapse due to non-payment of fees, searched and examined patent

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20100906