KR20170130434A - 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자 Download PDF

Info

Publication number
KR20170130434A
KR20170130434A KR1020177026972A KR20177026972A KR20170130434A KR 20170130434 A KR20170130434 A KR 20170130434A KR 1020177026972 A KR1020177026972 A KR 1020177026972A KR 20177026972 A KR20177026972 A KR 20177026972A KR 20170130434 A KR20170130434 A KR 20170130434A
Authority
KR
South Korea
Prior art keywords
formula
ring
aryl
substituted
hydrogen
Prior art date
Application number
KR1020177026972A
Other languages
English (en)
Other versions
KR102595330B1 (ko
Inventor
다쿠지 하타케야마
도시히로 고이케
유키히로 후지타
Original Assignee
가꼬우 호징 관세이 가쿠잉
제이엔씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가꼬우 호징 관세이 가쿠잉, 제이엔씨 주식회사 filed Critical 가꼬우 호징 관세이 가쿠잉
Publication of KR20170130434A publication Critical patent/KR20170130434A/ko
Application granted granted Critical
Publication of KR102595330B1 publication Critical patent/KR102595330B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L27/32
    • H01L51/008
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Furan Compounds (AREA)
  • Indole Compounds (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은, 붕소 원자와 질소 원자로 복수의 방향족환을 연결한 신규한 다환 방향족 화합물(1)과, 이것과 조합하여 최적 발광 특성을 발휘하는 특정 안트라센계 화합물(3)로 이루어지는 발광층용 재료에 관한 것이다. 최적 발광 특성을 가지는 본 발명의 발광층용 재료에 의해, 우수한 유기 EL 소자를 제공할 수 있다. A환∼C환은 아릴환 등이며, X는 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, Ar1∼Ar4는 페닐이나 식(4)으로 표시되는 기 등이다.
Figure pct00163

Description

유기 전계 발광 소자
본 발명은, 도판트(dopant) 재료로서의 다환 방향족 화합물 또는 그의 다량체와 호스트 재료로서의 특정한 안트라센계 화합물을 포함하는 발광층을 가지는 유기 전계 발광 소자, 이것을 사용한 표시 장치 및 조명 장치에 관한 것이다.
종래, 전계 발광하는 발광 소자를 사용한 표시 장치는, 전력 절약화나 박형화가 가능하므로, 다양하게 연구되고, 또한 유기 재료로 이루어지는 유기 전계 발광 소자(이하, 유기 EL 소자)는, 경량화나 대형화가 용이하므로 활발하게 검토되어 왔다. 특히, 광의 3원색 중 하나인 청색 등의 발광 특성을 가지는 유기 재료의 개발, 및 최적 발광 특성을 나타내는 복수 재료의 조합에 대해서는, 고분자 화합물, 저분자 화합물을 불문하고 지금까지 활발하게 연구되어 왔다.
유기 EL 소자는, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되고, 유기 화합물을 포함하는 한층 또는 복수의 층으로 이루어지는 구조를 가진다. 유기 화합물을 포함하는 층에는, 발광층이나, 정공(正孔), 전자 등의 전하를 수송 또는 주입하는 전하 수송/주입층 등이 있지만, 이들 층에 적절한 각종 유기 재료가 개발되어 있다.
발광층용 재료로서는, 예를 들면, 벤조플루오렌계 화합물 등이 개발되어 있다(국제 공개 제2004/061047호 공보). 또한, 정공 수송 재료로서는, 예를 들면, 트리페닐아민계 화합물 등이 개발되어 있다(일본 공개특허 제2001-172232호 공보). 또한, 전자 수송 재료로서는, 예를 들면, 안트라센계 화합물 등이 개발되어 있다(일본 공개특허 제2005-170911호 공보).
또한, 최근에는 트리페닐아민 유도체를 개량한 재료도 보고되고 있다(국제 공개 제2012/118164호 공보). 이 재료는 이미 실용화되어 있던 N,N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-비페닐-4,4'-디아민(TPD)을 참고로 하여, 트리페닐아민을 구성하는 방향환끼리를 연결함으로써 그 평면성을 높인 것을 특징으로 하는 재료이다. 이 문헌에서는, 예를 들면, NO 연결계 화합물(63페이지의 화합물 1)의 전하 수송 특성이 평가되어 있지만, NO 연결계 화합물 이외의 재료의 제조 방법에 대해서는 기재되지 않고, 또한, 연결하는 원소가 상이하면 화합물 전체의 전자 상태가 상이하므로, NO 연결계 화합물 이외의 재료로부터 얻어지는 특성도 아직도 알려져 있지 않다. 이와 같은 화합물의 예는 그 외에도 존재한다(국제 공개 제2011/107186호 공보). 예를 들면, 3중항 여기자(勵起子)의 에너지(T1)가 큰 공역 구조를 가지는 화합물은, 보다 짧은 파장의 인광을 발할 수 있으므로, 청색의 발광층용 재료로서 유익하다.
국제 공개 제2004/061047호 공보 일본 공개특허 제2001-172232호 공보 일본 공개특허 제2005-170911호 공보 국제 공개 제2012/118164호 공보 국제 공개 제2011/107186호 공보
전술한 바와 같이, 유기 EL 소자에 사용되는 재료는 다양한 것이 개발되어 있지만, 유기 EL 소자용 재료의 선택 사항을 증가시키기 위해, 종래의 것과는 상이한 화합물로 이루어지는 재료의 개발이 요구되고 있다. 특히, 특허문헌 4에서 보고된 NO 연결계 화합물 이외의 재료로부터 얻어지는 유기 EL 특성이나 그 제조 방법은 아직도 알려져 있지 않고, 또한, NO 연결계 화합물 이외의 재료와 조합하여 최적인 발광 특성을 얻을 수 있는 화합물에 대해서도 알려져 있지 않다.
본 발명자들은, 상기 문제점을 해결하기 위해 예의(銳意) 검토한 결과, 붕소 원자와 질소 원자로 복수의 방향족 환을 연결한 신규한 다환 방향족 화합물을 발견하고, 그 제조에 성공했다. 그리고, 이 다환 방향족 화합물과 특정한 안트라센계 화합물을 함유하는 발광층을 한 쌍의 전극 사이에 배치하여 유기 EL 소자를 구성함으로써, 우수한 유기 EL 소자를 얻을 수 있는 것을 발견하고, 본 발명을 완성시켰다.
[1]
양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
상기 발광층은, 하기 일반식(1)으로 표시되는 다환 방향족 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 하기 일반식(3)으로 표시되는 안트라센계 화합물을 포함하는, 유기 전계 발광 소자.
Figure pct00001
(상기 식(1) 중,
A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에 있어서의 1개 이상의 수소는 치환되어 있어도 되고,
Y1은 B이며,
X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한, 상기 N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 그리고,
식(1)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 된다.)
Figure pct00002
(상기 식(3) 중,
X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1) 및 식(3-X2)에 있어서의 나프틸렌 부위는 1개의 벤젠환으로 축합되어 있어도 되고, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는, 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 퀴터페닐릴, 나프틸, 페난트릴, 플루오레닐, 벤조플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기로 치환되어 있어도 되고,
Ar4는, 각각 독립적으로, 수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 또는 탄소수 1∼4의 알킬로 치환되어 있는 실릴이며, 그리고,
식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소 또는 상기 식(4)으로 표시되는 기로 치환되어 있어도 되고,
상기 식(4) 중, Y는 -O-, -S- 또는 >N-R29이며, R21∼R28은 각각 독립적으로 수소, 치환되어 있어도 되는 알킬, 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴, 치환되어 있어도 되는 알콕시, 치환되어 있어도 되는 아릴옥시, 치환되어 있어도 되는 아릴티오, 트리알킬실릴, 치환되어 있어도 되는 아미노, 할로겐, 하이드록시 또는 시아노이며, R21∼R28 중 인접하는 기는 서로 결합하여 탄화수소환, 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, R29는 수소 또는 치환되어 있어도 되는 아릴이며, 식(4)으로 표시되는 기는 *에 있어서 식(3-X1) 또는 식(3-X2)의 나프탈렌환, 식(3-X3)의 단결합, 식(3-X3)의 Ar3와 결합하고, 또 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소와 치환하고, 식(4)의 구조에 있어서는 어느 하나의 위치에서 이들과 결합한다.)
[2]
상기 식(1) 중,
A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에 있어서의 1개 이상의 수소는 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노, 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시 또는 치환 또는 무치환의 아릴옥시로 치환되어 있어도 되고, 또한, 이들 환은 Y1, X1 및 X2로 구성되는 상기 식 중앙의 축합 2환 구조와 결합을 공유하는 5원환 또는 6원환을 가지고,
Y1은 B이며,
X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 알킬로 치환되어 있어도 되는 아릴, 알킬로 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한, 상기 N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 수소 또는 알킬이며,
식(1)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
다량체의 경우에는, 식(1)으로 표시되는 구조를 2개 또는 3개 가지는 2량체 또는 3량체인, 상기 [1]에 기재된 유기 전계 발광 소자.
[3]
상기 발광층이, 하기 일반식(2)으로 표시되는 다환 방향족 화합물 및 하기 일반식(2)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 하기 일반식(3)으로 표시되는 안트라센계 화합물을 포함하는, 상기 [1]에 기재된 유기 전계 발광 소자.
Figure pct00003
(상기 식(2) 중,
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 및 R11은, 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고,
Y1은 B이며,
X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 탄소수 6∼12의 아릴, 탄소수 2∼15의 헤테로아릴 또는 탄소수 1∼6의 알킬이며, 또한, 상기 N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 탄소수 1∼6의 알킬이며, 그리고,
식(2)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 된다.)
Figure pct00004
Figure pct00005
(상기 식(3) 중,
X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는, 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기로 치환되어 있어도 되고,
Ar4는, 각각 독립적으로, 수소, 페닐, 또는 나프틸이며, 그리고,
식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 되고,
상기 식(4-1)∼식(4-11) 중, Y는 -O-, -S- 또는 >N-R29이며, R29는 수소 또는 아릴이며, 식(4-1)∼식(4-11)으로 표시되는 기에 있어서의 1개 이상의 수소는 알킬, 아릴, 헤테로아릴, 알콕시, 아릴옥시, 아릴티오, 트리알킬실릴, 디아릴 치환 아미노, 디헤테로아릴 치환 아미노, 아릴헤테로아릴 치환 아미노, 할로겐, 하이드록시 또는 시아노로 치환되어 있어도 되고, 식(4-1)∼식(4-11)으로 표시되는 기는 *에 있어서 식(3-X1) 또는 식(3-X2)의 나프탈렌환, 식(3-X3)의 단결합, 식(3-X3)의 Ar3와 결합하고, 식(4-1)∼식(4-11)의 구조에 있어서는 어느 하나의 위치에서 이들과 결합함)
[4]
상기 식(2) 중,
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 및 R11은, 각각 독립적으로, 수소, 탄소수 6∼30의 아릴, 탄소수 2∼30의 헤테로아릴 또는 디아릴아미노(단 아릴은 탄소수 6∼12의 아릴)이며, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 탄소수 9∼16의 아릴환 또는 탄소수 6∼15의 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 탄소수 6∼10의 아릴로 치환되어 있어도 되고,
Y1은 B이며,
X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 탄소수 6∼10의 아릴이며, 그리고,
식(2)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 되고,
상기 식(3) 중,
X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는, 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 또는 상기 식(4-1)∼식(4-4) 중 어느 하나로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 나프틸, 페난트릴, 플루오레닐, 또는 상기 식(4-1)∼식(4-4) 중 어느 하나로 표시되는 기로 치환되어 있어도 되고,
Ar4는, 각각 독립적으로, 수소, 페닐, 또는 나프틸이며, 그리고,
식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 되는, 상기 [3]에 기재된 유기 전계 발광 소자.
[5]
상기 발광층이, 하기 식(1-422), 식(1-1152), 식(1-1159), 식(1-2620), 식(1-2676), 식(1-2679), 또는 식(1-2680)으로 표시되는 다환 방향족 화합물 중 하나 이상과, 하기 식(3-1), 식(3-2), 식(3-3), 식(3-4), 식(3-5), 식(3-6), 식(3-7), 식(3-8), 또는 식(3-48-O)으로 표시되는 안트라센계 화합물 중 하나 이상을 포함하는, 상기 [1]∼[4] 중 어느 하나에 기재된 유기 전계 발광 소자.
Figure pct00006
Figure pct00007
[6]
또한, 상기 음극과 상기 발광층의 사이에 배치되는 전자 수송층 및/또는 전자 주입층을 가지고, 상기 전자 수송층 및 전자 주입층 중 적어도 하나는, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체, 및 퀴놀리놀계 금속 착체로 이루어지는 군으로부터 선택되는 하나 이상을 함유하는, 상기 [1]∼[5] 중 어느 하나에 기재된 유기 전계 발광 소자.
[7]
상기 전자 수송층 및/또는 전자 주입층이, 또한 알칼리 금속, 알칼리토류 금속, 희토류(希土類) 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 하나 이상을 함유하는, 상기 [6]에 기재된 유기 전계 발광 소자.
[8]
상기 [1]∼[7] 중 어느 하나에 기재된 유기 전계 발광 소자를 구비한 표시 장치.
[9]
상기 [1]∼[7] 중 어느 하나에 기재된 유기 전계 발광 소자를 구비한 조명 장치.
본 발명의 바람직한 태양에 의하면, 신규한 다환 방향족 화합물과 이것과 조합하여 최적의 발광 특성을 얻을 수 있는 안트라센계 화합물을 제공할 수 있고, 이들을 조합하여 이루어지는 발광층용 재료를 사용하여 유기 EL 소자를 제작함으로써, 양자 효율이 우수한 유기 EL 소자를 제공할 수 있다.
도 1은 본 실시형태에 따른 유기 EL 소자를 나타내는 개략 단면도이다.
1. 유기 EL 소자에 있어서의 특징적인 발광층
본 발명은, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 EL 소자로서, 상기 발광층은, 하기 일반식(1)으로 표시되는 다환 방향족 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 하기 일반식(3)으로 표시되는 안트라센계 화합물을 포함하는, 유기 EL 소자이다.
Figure pct00008
그리고, 식(1)에 있어서의 A, B, C, Y1, X1 및 X2는 전술한 정의와 동일하며, 식(3), 식(3-X1), 식(3-X2), 식(3-X3) 및 식(4)에 있어서의 X, Ar1∼Ar4, Y 및 R21∼R28은 전술한 정의와 동일하다.
1-1. 다환 방향족 화합물 및 그의 다량체
일반식(1)으로 표시되는 다환 방향족 화합물 및 일반식(1)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체는 기본적으로는 도판트로서 기능한다. 상기 다환 방향족 화합물 및 그의 다량체는, 바람직하게는, 하기 일반식(2)으로 표시되는 다환 방향족 화합물, 또는 하기 일반식(2)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체이다.
Figure pct00009
일반식(1)에 있어서의 A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에 있어서의 1개 이상의 수소는 치환기로 치환되어 있어도 된다. 이 치환기는, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노(아릴과 헤테로아릴을 가지는 아미노기), 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시 또는 치환 또는 무치환의 아릴옥시가 바람직하다. 이들 기가 치환기를 가지는 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬을 예로 들 수 있다. 또한, 상기 아릴환 또는 헤테로아릴환은, Y1, X1 및 X2로 구성되는 일반식(1) 중앙의 축합 2환 구조(이하, 이 구조를 「D 구조」라고도 함)와 결합을 공유하는 5원환 또는 6원환을 가지는 것이 바람직하다.
여기서, 「축합 2환 구조(D 구조)」란, 일반식(1)의 중앙에 나타낸, Y1, X1 및 X2를 포함하여 구성되는 2개의 포화 탄화 수소환이 축합한 구조를 의미한다. 또한, 「축합 2환 구조와 결합을 공유하는 6원환」이란, 예를 들면, 상기 일반식(2)로 나타낸 바와 같이, 상기 D 구조에 축합한 a환(벤젠환(6원환))을 의미한다. 또한, 「(A환인) 아릴환 또는 헤테로아릴환이 이 6원환을 가지는」이란, 이 6원환만으로 A환이 형성되거나, 또는 이 6원환을 포함하고 이 6원환에 또 다른 환 등이 축합하여 A환이 형성되는 것을 의미한다. 바꾸어 말하면, 여기서 일컫는 「6원환을 가지는(A환인) 아릴환 또는 헤테로아릴환」이란, A환의 전부 또는 일부를 구성하는 6원환이, 상기 D 구조에 축합하고 있는 것을 의미한다. 「B환(b환)」, 「C환(c환)」, 또한 「5원환」에 대해서도 동일한 설명이 적용된다.
일반식(1)에 있어서의 A환(또는 B환, C환)은, 일반식(2)에 있어서의 a환과 그의 치환기 R1∼R3(또는 b환과 그의 치환기 R4∼R7, c환과 그의 치환기 R8∼R11)에 대응한다.즉, 일반식(2)은, 일반식(1)의 A∼C 환으로서 「6원환을 가지는 A∼C 환」이 선택된 것에 대응한다. 이러한 의미에서, 일반식(2)의 각각의 환을 소문자 a∼c로 나타낸다.
일반식(2)에서는, a환, b환 및 c환의 치환기 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다. 따라서, 일반식(2)으로 표시되는 다환 방향족 화합물은, a환, b환야 c환에 있어서의 치환기의 상호 결합 형태에 의해, 하기 식(2-1) 및 식(2-2)에 나타낸 바와 같이, 화합물을 구성하는 환 구조가 변화한다. 각 식 중의 A'환, B'환 및 C'환은, 일반식(1)에 있어서의 각각 A환, B환 및 C환에 대응한다. 그리고, 식(2-1) 및 식(2-2)에 있어서의 R1∼R11, Y1, X1 및 X2는 식(2)에 있어서의 정의와 동일하다.
Figure pct00010
상기 식(2-1) 및 식(2-2) 중의 A'환, B'환 및 C'환은, 일반식(2)에서 설명하면, 치환기 R1∼R11 중 인접하는 기끼리 결합하여, 각각 a환, b환 및 c환과 함께 형성한 아릴환 또는 헤테로아릴환을 나타낸다(a환, b환 또는 c환에 다른 환 구조가 축합하여 이루어진 축합환이라고도 할 수 있다). 그리고, 식에서는 나타내지 않았지만, a환, b환 및 c환 모두 A'환, B'환 및 C'환으로 변화된 화합물도 있다. 또한, 상기 식(2-1) 및 식(2-2)으로부터 알 수 있는 바와 같이, 예를 들면, b환의 R8과 c환의 R7, b환의 R11과 a환의 R1, c환의 R4와 a환의 R3 등은 「인접하는 기끼리」에는 해당 되지 않으며, 이들이 결합하지는 않는다. 즉, 「인접하는 기」란 동일 환 상에서 인접하는기를 의미한다.
상기 식(2-1)이나 식(2-2)으로 표시되는 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한 식(1-2)∼식(1-17)으로 표시되는 화합물에 대응한다. 즉, 예를 들면, a환(또는 b환 또는 c환)인 벤젠환에 대하여 벤젠환, 인돌환, 피롤환, 벤조퓨란환 또는 벤조티오펜환이 축합하여 형성되는 A'환(또는 B'환 또는 C'환)을 가지는 화합물이며, 형성되어 이루어진 축합환 A'(또는 축합환 B' 또는 축합환 C')는 각각 나프탈렌환, 카르바졸환, 인돌환, 디벤조퓨란환 또는 디벤조티오펜환이다.
일반식(1) 및 일반식(2)에 있어서의 Y1은 B이다.
일반식(1)에 있어서의 X1 및 X2는, 각각 독립적으로, N-R이며, 상기 N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 상기 N-R의 R은 연결기 또는 단결합에 의해 상기 B환 및/또는 C환과 결합하고 있어도 되고, 연결기로서는, -O-, -S- 또는 -C(-R)2-가 바람직하다. 그리고, 상기 「-C(-R)2-」의 R은 수소 또는 알킬이다. 이 설명은 일반식(2)에 있어서의 X1 및 X2에서도 동일하다.
여기서, 일반식(1)에 있어서의 「N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합되어 있는」의 규정은, 일반식(2)에서는 「N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합되어 있는」의 규정에 대응한다.
이 규정은, 하기 식(2-3-1)으로 표시되는, X1이나 X2가 축합환 B' 및 축합환 C'에 받아들여진 환 구조를 가지는 화합물로 표현할 수 있다. 즉, 예를 들면, 일반식(2)에 있어서의 b환(또는 c환)인 벤젠환에 대하여 X1(또는 X2)를 받아들이도록 하여 다른 환이 축합하여 형성되는 B'환(또는 C'환)을 가지는 화합물이다. 이 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한, 식(1-451)∼(1-462)으로 표시되는 화합물 및 식(1-1401)∼식(1-1460)으로 표시되는 화합물에 대응하고, 형성되어 이루어진 축합환 B'(또는 축합환 C')는, 예를 들면, 페녹사진환, 페노티아진환 또는 아크리딘환이다.
또한, 상기 규정은, 하기 식(2-3-2)이나 식(2-3-3)으로 표시되는, X1 및/또는 X2가 축합환 A'에 받아들여진 환 구조를 가지는 화합물로도 표현할 수 있다. 즉, 예를 들면, 일반식(2)에 있어서의 a환인 벤젠환에 대하여 X1(및/또는 X2)를 받아들일 수 있도록 하여 다른 환이 축합하여 형성되는 A'환을 가지는 화합물이다. 이 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한 식(1-471)∼(1-479)으로 표시되는 화합물에 대응하고, 형성되어 이루어진 축합환 A'는, 예를 들면, 페녹사진환, 페노티아진환 또는 아크리딘환이다. 그리고, 식(2-3-1)∼식(2-3-3)에 있어서의 R1∼R11, Y1, X1 및 X2는 식(2)에 있어서의 정의와 동일하다.
Figure pct00011
일반식(1)의 A환, B환 및 C환인 「아릴환」으로서는, 예를 들면, 탄소수 6∼30의 아릴환이 있으며, 탄소수 6∼16의 아릴환이 바람직하고, 탄소수 6∼12의 아릴환이 보다 바람직하고, 탄소수 6∼10의 아릴환이 특히 바람직하다. 그리고, 이 「아릴환」은, 일반식(2)에서 규정된 「R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 형성된 아릴환」에 대응하고, 또한, a환(또는 b환, c환)이 이미 탄소수 6의 벤젠환으로 구성되어 있으므로, 여기에 5원환이 축합한 축합환의 합계 탄소수 9가 하한의 탄소수로 된다.
구체적인 「아릴환」으로서는, 단환계인 벤젠환, 2환계인 비페닐환, 축합 2환계인 나프탈렌환, 3환계인 터페닐환(m-터페닐, o-터페닐, p-터페닐), 축합 3환계인, 아세나프틸렌환, 플루오렌환, 페날렌환, 페난트렌환, 축합 4환계인 트리페닐렌환, 피렌환, 나프타센환, 축합 5환계인 페릴렌환, 펜타센환 등을 예로 들 수 있다.
일반식(1)의 A환, B환 및 C환인 「헤테로아릴환」으로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴환이 있으며, 탄소수 2∼25의 헤테로아릴환이 바람직하고, 탄소수 2∼20의 헤테로아릴환이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴환이 보다 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 「헤테로아릴환」으로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개∼5개 함유하는 복소환 등이 있다. 그리고, 이 「헤테로아릴환」은, 일반식(2)에서 규정된 「R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 형성된 헤테로아릴환」에 대응하고, 또한, a환(또는 b환, c환)이 이미 탄소수 6의 벤젠환으로 구성되어 있으므로, 여기에 5원환이 축합한 축합환의 합계 탄소수 6이 하한의 탄소수가 된다.
구체적인 「헤테로아릴환」으로서는, 예를 들면, 피롤환, 옥사졸환, 이소옥사졸환, 티아졸환, 이소티아졸환, 이미다졸환, 옥사디아졸환, 티아디아졸환, 트리아졸환, 테트라졸환, 피라졸환, 피리딘환, 피리미딘환, 피리다진환, 피라진환, 트리아진환, 인돌환, 이소인돌환, 1H-인다졸환, 벤즈이미다졸환, 벤즈옥사졸환, 벤조티아졸환, 1H-벤조트리아졸환, 퀴놀린환, 이소퀴놀린환, 신놀린환, 퀴나졸린환, 퀴녹살린 환, 프탈라진환, 나프티리딘환, 퓨린환, 프테리딘환, 카르바졸환, 아크리딘환, 페녹사틴환, 페녹사진환, 페노티아진환, 페나진환, 인돌리진환, 퓨란환, 벤조퓨란환, 이소벤조퓨란환, 디벤조퓨란환, 티오펜환, 벤조티오펜환, 디벤조티오펜환, 퓨라잔환, 옥사디아졸환, 티안트렌환 등이 있다.
상기 「아릴환」 또는 「헤테로아릴환」에 있어서의 1개 이상의 수소는, 제1 치환기인, 치환 또는 무치환의 「아릴」, 치환 또는 무치환의 「헤테로아릴」, 치환 또는 무치환의 「디아릴아미노」, 치환 또는 무치환의 「디헤테로아릴아미노」, 치환 또는 무치환의 「아릴헤테로아릴아미노」, 치환 또는 무치환의 「알킬」, 치환 또는 무치환의 「알콕시」, 또는 치환 또는 무치환의 「아릴옥시」로 치환되어 있어도 되지만, 이 제1 치환기로서의 「아릴」이나 「헤테로아릴」, 「디아릴아미노」의 아릴, 「디헤테로아릴아미노」의 헤테로아릴, 「아릴헤테로아릴아미노」의 아릴과 헤테로아릴, 또한 「아릴옥시」의 아릴로서는 전술한 「아릴환」또는 「헤테로아릴환」의 1가의 기를 예로 들 수 있다.
또한 제1 치환기로서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이 특히 바람직하다.
구체적인 알킬로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
또한 제1 치환기로서의 「알콕시」로서는, 예를 들면, 탄소수 1∼24의 직쇄 또는 탄소수 3∼24의 분지쇄의 알콕시가 있다. 탄소수 1∼18의 알콕시(탄소수 3∼18의 분지쇄의 알콕시)가 바람직하고, 탄소수 1∼12의 알콕시(탄소수 3∼12의 분지쇄의 알콕시)가 더욱 바람직하고, 탄소수 1∼6의 알콕시(탄소수 3∼6의 분지쇄의 알콕시)가 보다 바람직하고, 탄소수 1∼4의 알콕시(탄소수 3∼4의 분지쇄의 알콕시)가 특히 바람직하다.
구체적인 알콕시로서는, 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, sec-부톡시, tert-부톡시, 펜틸옥시, 헥실옥시, 헵틸옥시, 옥틸옥시 등을 예로 들 수 있다.
제1 치환기인, 치환 또는 무치환의 「아릴」, 치환 또는 무치환의 「헤테로아릴」, 치환 또는 무치환의 「디아릴아미노」, 치환 또는 무치환의 「디헤테로아릴아미노」, 치환 또는 무치환의 「아릴헤테로아릴아미노」, 치환 또는 무치환의 「알킬」, 치환 또는 무치환의 「알콕시」, 또는 치환 또는 무치환의 「아릴옥시」는, 치환 또는 무치환으로 설명되어 있는 바와 같이, 이들에 있어서 1개 이상의 수소가 제2 치환기로 치환되어 있어도 된다. 이 제2 치환기로서는, 예를 들면, 아릴, 헤테로아릴 또는 알킬이 있고, 이들의 구체적인 것은, 전술한 「아릴환」 또는 「헤테로아릴환」의 1가의 기, 또 제1 치환기로서의 「알킬」의 설명을 참조할 수 있다. 또한, 제2 치환기로서의 아릴이나 헤테로아릴에는, 이들에 있어서 1개 이상의 수소가 페닐 등의 아릴(구체예는 전술한 바와 같음)이나 메틸 등의 알킬(구체예는 전술한 바와 같음)로 치환된 것도 제2 치환기로서의 아릴이나 헤테로아릴에 포함된다. 그 일례로서는, 제2 치환기가 카르바졸릴기인 경우에는, 9번 위치에 있어서의 1개 이상의 수소가 페닐 등의 아릴이나 메틸 등의 알킬로 치환된 카르바졸릴기도 제2 치환기로서의 헤테로아릴에 포함된다.
일반식(2)의 R1∼R11에 있어서의 아릴, 헤테로아릴, 디아릴아미노의 아릴, 디헤테로아릴아미노의 헤테로아릴, 아릴헤테로아릴아미노의 아릴과 헤테로아릴, 또는 아릴옥시의 아릴로서는, 일반식(1)에서 설명한 「아릴환」또는 「헤테로아릴환」의 1가의 기를 예로 들 수 있다. 또한, R1∼R11에 있어서의 알킬 또는 알콕시로서는, 전술한 일반식(1)의 설명에 있어서의 제1 치환기로서의 「알킬」이나 「알콕시」의 설명을 참조할 수 있다. 또한, 이들 기로의 치환기로서의 아릴, 헤테로아릴 또는 알킬도 마찬가지이다. 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성한 경우의, 이들 환으로의 치환기인 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시, 및, 새로운 치환기인 아릴, 헤테로아릴 또는 알킬에 대해서도 마찬가지이다.
일반식(1)의 X1 및 X2에 있어서의 N-R의 R은 전술한 제2 치환기로 치환되어 있어도 되는 아릴, 헤테로아릴 또는 알킬이며, 아릴이나 헤테로아릴에 있어서의 1개 이상의 수소는, 예를 들면, 알킬로 치환되어 있어도 된다. 이 아릴, 헤테로아릴이나 알킬로서는 전술한 것을 예로 들 수 있다. 특히 탄소수 6∼10의 아릴(예를 들면, 페닐, 나프틸 등), 탄소수 2∼15의 헤테로아릴(예를 들면, 카르바졸릴 등), 탄소수 1∼4의 알킬(예를 들면, 메틸, 에틸 등)이 바람직하다. 이 설명은 일반식(2)에 있어서의 X1 및 X2에서도 동일하다.
일반식(1)에 있어서의 연결기인 「-C(-R)2-」의 R은 수소 또는 알킬이지만, 이 알킬로서는 전술한 것을 예로 들 수 있다. 특히 탄소수 1∼4의 알킬(예를 들면, 메틸, 에틸 등)이 바람직하다. 이 설명은 일반식(2)에 있어서의 연결기인 「-C(-R)2-」에서도 동일하다.
또한, 발광층에는, 일반식(1)으로 표시되는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체, 바람직하게는, 일반식(2)으로 표시되는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체가 포함되어도 된다. 다량체는, 2∼6 량체가 바람직하고, 2∼3 량체가 보다 바람직하고, 2량체가 특히 바람직하다. 다량체는, 1개의 화합물 중에 상기 단위 구조를 복수 가지는 형태이면 되며, 예를 들면, 상기 단위 구조가 단결합, 탄소수 1∼3의 알킬렌기, 페닐렌기, 나프틸렌기 등의 연결기로 복수 결합한 형태에 더하여, 상기 단위 구조에 포함되는 임의의 환(A환, B환 또는 C환, a환, b환 또는 c환)을 복수의 단위 구조에서 공유하도록 하여 결합한 형태라도 되고, 또한, 상기 단위 구조에 포함되는 임의의 환(A환, B환 또는 C환, a환, b환 또는 c환)끼리 축합하도록 하여 결합한 형태라도 된다.
이와 같은 다량체로서는, 예를 들면, 하기 식(2-4), 식(2-4-1), 식(2-4-2), 식(2-5-1)∼식(2-5-4) 또는 식(2-6)으로 표시되는 다량체 화합물이 있다. 하기 식(2-4)은 2량체 화합물, 식(2-4-1)은 2량체 화합물, 식(2-4-2)은 3량체 화합물, 식(2-5-1)은 2량체 화합물, 식(2-5-2)은 2량체 화합물, 식(2-5-3)은 2량체 화합물, 식(2-5-4)은 3량체 화합물, 식(2-6)은 2량체 화합물이다. 하기 식(2-4)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-423)으로 표시되는 화합물에 대응한다. 즉, 일반식(2)에서 설명하면, a환인 벤젠환을 공유하도록 하고, 복수의 일반식(2)으로 표시되는 단위 구조를 1개의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(2-4-1)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-2665)으로 표시되는 화합물에 대응한다. 즉, 일반식(2)에서 설명하면, a환인 벤젠환을 공유하도록 하고, 2개의 일반식(2)으로 표시되는 단위 구조를 1개의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(2-4-2)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-2666)으로 표시되는 화합물에 대응한다. 즉, 일반식(2)에서 설명하면, a환인 벤젠환을 공유하도록 하고, 2개의 일반식(2)으로 표시되는 단위 구조를 1개의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(2-5-1)∼식(2-5-4)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-421), 식(1-422), 식(1-424) 또는 식(1-425)으로 표시되는 화합물에 대응한다. 즉, 일반식(2)에서 설명하면, b환(또는 c환)인 벤젠환을 공유하도록 하고, 복수의 일반식(2)으로 표시되는 단위 구조를 1개의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(2-6)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-431)∼식(1-435)으로 표시되는 화합물에 대응한다. 즉, 일반식(2)에서 설명하면, 예를 들면, 어떤 단위 구조의 b환(또는 a환, c환)인 벤젠환과 어떤 단위 구조의 b환(또는 a환, c환)인 벤젠환이 축합하도록 하여, 복수의 일반식(2)으로 표시되는 단위 구조를 1개의 화합물 중에 가지는 다량체 화합물이다. 그리고, 식(2-4), 식(2-4-1), 식(2-4-2), 식(2-5-1)∼식(2-5-4) 및 식(2-6)에 있어서의 R1∼R11, Y1, X1 및 X2는 식(2)에 있어서의 정의와 동일하다.
Figure pct00012
다량체 화합물은, 식(2-4), 식(2-4-1) 또는 식(2-4-2)으로 표현되는 다량화 형태와 식(2-5-1)∼식(2-5-4) 중 어느 하나 또는 식(2-6)으로 표현되는 다량화 형태가 조합한 다량체라도 되고, 식(2-5-1)∼식(2-5-4) 중 어느 하나로 표현되는 다량화 형태와, 식(2-6)으로 표현되는 다량화 형태가 조합한 다량체라도 되고, 식(2-4), 식(2-4-1) 또는 식(2-4-2)으로 표현되는 다량화 형태와 식(2-5-1)∼식(2-5-4) 중 어느 하나로 표현되는 다량화 형태와 식(2-6)으로 표현되는 다량화 형태가 조합한 다량체라도 된다.
또한, 일반식(1) 또는 일반식(2)으로 표시되는 다환 방향족 화합물 및 그의 다량체의 화학 구조 중의 수소는, 그 모두 또는 일부가 중수소라도 된다.
또한, 일반식(1) 또는 일반식(2)으로 표시되는 다환 방향족 화합물 및 그의 다량체의 화학 구조 중의 수소는, 그 모두 또는 일부가 할로겐이라도 된다. 예를 들면, 식(1)에 있어서는, A환, B환, C환(A환∼C환은 아릴환 또는 헤테로아릴환), A환∼C환으로의 치환기, 및, X1 및 X2인 N-R에 있어서의 R(=알킬, 아릴)에 있어서의 수소가 할로겐으로 치환될 수 있지만, 이들 중에서도 아릴이나 헤테로아릴에 있어서의 모두 또는 일부의 수소가 할로겐으로 치환된 태양이 있다. 할로겐은, 불소, 염소, 브롬 또는 요오드이며, 바람직하게는 불소, 염소 또는 브롬, 보다 바람직하게는 염소이다.
다환 방향족 화합물 및 그의 다량체의 또한 구체적인 예로서는, 예를 들면, 하기 식(1-401)∼식(1-462)으로 표시되는 화합물, 하기 식(1-1401)∼식(1-1460)으로 표시되는 화합물, 하기 식(1-471)∼식(1-479)으로 표시되는 화합물, 하기 식(1-1151)∼식(1-1159)으로 표시되는 화합물, 하기 식(1-2619)으로 표시되는 화합물, 및 하기 식(1-2620)∼식(1-2705)으로 표시되는 화합물이 있다.
Figure pct00013
Figure pct00014
Figure pct00015
Figure pct00016
Figure pct00017
Figure pct00018
Figure pct00019
Figure pct00020
Figure pct00021
Figure pct00022
Figure pct00023
Figure pct00024
Figure pct00025
Figure pct00026
Figure pct00027
Figure pct00028
Figure pct00029
또한, 다환 방향족 화합물 및 그의 다량체는, A환, B환 및 C환(a환, b환 및 c환) 중 하나 이상에 있어서의, Y1에 대한 파라 위치에 페닐옥시기, 카르바졸릴기 또는 디페닐아미노기를 도입함으로써, T1 에너지의 향상(대략 0.01∼0.1 eV 향상)을 기대할 수 있다. 특히, B(붕소)에 대한 파라 위치에 페닐 옥시기를 도입함으로써, A환, B환 및 C환(a환, b환 및 c환)인 벤젠환 상의 HOMO가 보다 붕소에 대한 메타 위치에 국재화(局在化)하고, LUMO가 붕소에 대한 오르토 및 파라 위치에 국재화하기 때문에, T1 에너지의 향상을 특히 기대할 수 있다.
이와 같은 구체예로서는, 예를 들면, 하기 식(1-4501)∼식(1-4522)으로 표시되는 화합물이 있다.
그리고, 식 중의 R은 알킬이며, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이 특히 바람직하다. 또한, R로서는 그 외에 페닐을 예로 들 수 있다.
또한, 「PhO-」는 페닐옥시기이며, 이 페닐은 직쇄 또는 분지쇄의 알킬로 치환되어 있어도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬), 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬), 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬), 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)로 치환되어 있어도 된다.
Figure pct00030
또한, 다환 방향족 화합물 및 그의 다량체의 구체적인 예로서는, 전술한 화합물에 있어서, 화합물 중의 1개 또는 복수개의 방향환에 있어서의 1개 이상의 수소가 1개 또는 복수개의 알킬이나 아릴로 치환된 화합물을 들 수 있고, 보다 바람직하게는 1개∼2개의 탄소수 1∼12의 알킬이나 탄소수 6∼10의 아릴로 치환된 화합물을 들 수 있다.
구체적으로는, 이하의 화합물을 예로 들 수 있다. 하기 식 중의 R은 각각 독립적으로 탄소수 1∼12의 알킬 또는 탄소수 6∼10의 아릴, 바람직하게는 탄소수 1∼4의 알킬 또는 페닐이며, n은 각각 독립적으로 0∼2, 바람직하게는 1이다.
Figure pct00031
Figure pct00032
또한, 다환 방향족 화합물 및 그의 다량체의 구체적인 예로서는, 화합물 중의 1개 또는 복수개의 페닐기 또는 1개의 페닐렌기에 있어서의 1개 이상의 수소가 1개 또는 복수개의 탄소수 1∼4의 알킬, 바람직하게는 탄소수 1∼3의 알킬(바람직하게는 1개 또는 복수개의 메틸기)로 치환된 화합물을 들 수 있고, 보다 바람직하게는, 1개의 페닐기의 오르토 위치에 있어서의 수소(2개소 중 2개소 모두, 바람직하게는 어느 1개소) 또는 1개의 페닐렌기의 오르토 위치에 있어서의 수소(최대 4개소 중 4개소모두, 바람직하게는 어느 1개소)가 메틸기로 치환된 화합물을 들 수 있다.
화합물 중의 말단의 페닐기나 p-페닐렌기의 오르토 위치에 있어서의 1개 이상의 수소를 메틸기 등으로 치환하는 것에 의해, 인접하는 방향환끼리 직교하기 쉬워져 공역이 약해지는 결과, 3중항 여기(勵起) 에너지(ET)를 높이는 것이 가능하게 된다.
1-2. 다환 방향족 화합물 및 그의 다량체의 제조 방법
일반식(1)이나 일반식(2)으로 표시되는 다환 방향족 화합물 및 그의 다량체는, 기본적으로는, 먼저 A환(a환)과 B환(b환) 및 C환(c환)을 결합기(X1이나 X2를 포함하는 기)와 결합시킴으로써 중간체를 제조하고(제1 반응), 그 후에, A환(a환), B환(b환) 및 C환(c환)을 결합기(Y1을 포함하는 기)와 결합시킴으로써 최종 생성물을 제조할 수 있다(제2 반응). 제1 반응에서는, 아미노화 반응이면 부흐발트-하트위그(Buchwald-Hartwig) 반응과 같은 일반적 반응을 이용할 수 있다. 또한, 제2 반응에서는, 탠덤 헤테로 플리델 크라프트(Tandem Hetero-Friedel-Crafts) 반응(연속적인 방향족 친전자 치환 반응, 이하 동일함)을 이용할 수 있다.
제2 반응은, 하기 스킴(scheme)(1)이나 스킴(2)에 나타낸 바와 같이, A환(a환), B환(b환) 및 C환(c환)을 결합하는 Y1(붕소)을 도입하는 반응이며, 먼저, X1과 X2(>N-R)의 사이의 수소 원자를 n-부틸리튬, sec-부틸리튬 또는 tert-부틸리튬 등으로 오르토 메탈화한다. 이어서, 3염화 붕소나 3브롬화 붕소 등을 가하고, 리튬-붕소의 금속 교환을 행한 후, N,N-디이소프로필에틸아민 등의 브뢴스테드 염기를 가함으로써,탠덤 보라 프리델 크라프트(Tandem Bora-Friedel-Crafts) 반응시켜, 목적물을 얻을 수 있다. 제2 반응에 있어서는 반응을 촉진시키기 위해 3염화 알루미늄 등의 루이스산을 가해도 된다. 그리고, 스킴(1) 및 스킴(2)에 있어서의 구조식 중의 R1∼R11 및 N-R의 R은 식(1) 또는 식(2)에 있어서의 정의와 동일하다.
Figure pct00033
그리고, 상기 스킴(1)이나 스킴(2)은, 일반식(1)이나 일반식(2)으로 표시되는 다환 방향족 화합물의 제조 방법을 주로 나타내고 있지만, 그 다량체에 대해서는, 복수의 A환(a환), B환(b환) 및 C환(c환)을 가지는 중간체를 사용함으로써 제조할 수 있다. 상세하게는 하기 스킴(3)∼스킴(5)에서 설명한다. 이 경우에, 사용하는 부틸리튬 등의 시약의 양을 2배량, 3배량으로 함으로써 목적물을 얻을 수 있다. 그리고, 스킴(3)∼스킴(5)에 있어서의 구조식 중의 R1∼R11 및 N-R의 R은 식(2)에 있어서의 정의와 동일하다.
Figure pct00034
상기 스킴에 있어서는, 오르토 메탈화에 의해 원하는 위치에 리튬을 도입하였으나, 하기 스킴(6) 및 스킴(7)과 같이 리튬을 도입하고자 하는 위치에 브롬 원자 등을 도입하고, 할로겐-메탈 교환에 의해서도 원하는 위치에 리튬을 도입하는 것이 가능하다. 그리고, 스킴(6) 및 스킴(7)에 있어서의 구조식 중의 R1∼R11 및 N-R의 R은 식(1) 또는 식(2)에 있어서의 정의와 동일하다.
Figure pct00035
또한, 스킴(3)에서 설명한 다량체의 제조 방법에 대해서도, 상기 스킴(6) 및 스킴(7)과 같이 리튬을 도입하고자 하는 위치에 브롬 원자나 염소 원자 등의 할로겐을 도입하고, 할로겐-메탈 교환에 의해서도 원하는 위치에 리튬을 도입하는 것이 가능하다(하기 스킴(8), 스킴(9) 및 스킴(10)). 그리고, 스킴(8)∼스킴(10)에 있어서의 구조식 중의 R1∼R11 및 N-R의 R은 식(2)에 있어서의 정의와 동일하다.
Figure pct00036
이 방법에 의하면, 치환기의 영향으로 오르토 메탈화가 되지 않는 케이스에도 목적물을 합성할 수 있어 유용하다.
이상의 반응에 사용되는 용매의 구체예는, tert-부틸벤젠이나 크실렌 등이 있다.
전술한 합성법을 적절하게 선택하고, 사용하는 원료도 적절하게 선택함으로써, 원하는 위치에 치환기를 가지는 다환 방향족 화합물 및 그의 다량체를 합성하는 것이 가능하다.
또한, 일반식(2)에서는, a환, b환 및 c환의 치환기 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴 또는 헤테로아릴로 치환되어 있어도 된다. 따라서, 일반식(2)으로 표시되는 다환 방향족 화합물은, a환, b환 및 c환에 있어서의 치환기의 상호 결합 형태에 의해, 하기 스킴(11) 및 스킴(12)의 식(2-1) 및 식(2-2)에 나타낸 바와 같이, 화합물을 구성하는 환 구조가 변화한다. 이들 화합물은 하기 스킴(11) 및 스킴(12)에 나타낸 중간체에 상기 스킴(1)∼스킴(10)에서 나타낸 합성법을 적용함으로써 합성하는 것이 가능하다. 그리고, 스킴(11) 및 스킴(12)에 있어서의 구조식 중의 R1∼R11, Y1, X1 및 X2는 식(2)에 있어서의 정의와 동일하다.
Figure pct00037
상기 식(2-1) 및 식(2-2) 중의 A'환, B'환 및 C'환은, 치환기 R1∼R11 중 인접하는 기끼리 결합하여, 각각 a환, b환 및 c환과 함께 형성한 아릴환 또는 헤테로아릴환을 나타낸다(a환, b환 또는 c환에 다른 환 구조가 축합하여 이루어진 축합환이라고도 할 수 있다). 그리고, 식에서는 나타내지 않고 있지만, a환, b환 및 c환이 모두 A'환, B'환 및 C'환으로 변화된 화합물도 있다.
또한, 일반식(2)에 있어서의 「N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합되어 있는」의 규정은, 하기 스킴(13)의 식(2-3-1)으로 표시되는, X1이나 X2가 축합환 B' 및 축합환 C'에 받아들여진 환 구조를 가지는 화합물이나, 식(2-3-2)이나 식(2-3-3)으로 표시되는, X1이나 X2가 축합환 A'에 받아들여진 환 구조를 가지는 화합물로 표현할 수 있다. 이들 화합물은 하기 스킴(13)에 나타낸 중간체에 상기 스킴(1)∼스킴(10)에서 나타낸 합성법을 적용함으로써 합성하는 것이 가능하다. 그리고, 스킴(13)에 있어서의 구조식 중의 R1∼ R11, Y1, X1 및 X2는 식(2)에 있어서의 정의와 동일하다.
Figure pct00038
또한, 상기 스킴(1)∼스킴(13)의 합성법에서는, 3염화 붕소나 3브롬화 붕소 등을 가하기 전에, X1과 X2의 사이의 수소 원자(또는 할로겐 원자)를 부틸리튬 등으로 오르토 메탈화함으로써, 탠덤 헤테로 플리델 크라프트반응시킨 예를 나타냈으나, 부틸리튬 등을 사용한 오르토 메탈화를 행하지 않고, 3염화 붕소나 3브롬화 붕소 등의 첨가에 의해 반응을 진행시킬 수도 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 오르토 메탈화 시약으로서는, 메틸리튬, n-부틸리튬, sec-부틸리튬, tert-부틸리튬 등의 알킬리튬, 리튬디이소프로필아미드, 리튬테트라메틸피페리디드, 리튬헥사메틸디실라디드, 칼륨헥사메틸디실라디드 등의 유기 알칼리 화합물을 예로 들 수 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 메탈-Y1의 금속 교환 시약으로서는, Y1의 3불화물, Y1의 3염화물, Y1의 3브롬화물, Y1의 3요오드화물 등의 Y1의 할로겐화물, CIPN(NEt2)2 등의 Y1의 아미노화 할로겐화물, Y1의 알콕시화물, Y1의 아릴옥시화물 등을 예로 들 수 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 브뢴스테드 염기로서는, N,N-디이소프로필에틸아민, 트리에틸아민, 2,2,6,6-테트라메틸피페리딘, 1,2,2,6,6-펜타메틸피페리딘, N,N-디메틸아닐린, N,N-디메틸톨루이딘, 2,6-루티딘, 테트라페닐 붕산 나트륨, 테트라페닐 붕산 칼륨, 트리페닐보란, 테트라페닐실란, Ar4BNa, Ar4BK, Ar3B, Ar4Si(그리고, Ar은 페닐 등의 아릴) 등을 예로 들 수 있다.
상기 스킴(1)∼스킴(13)에서 사용하는 루이스산으로서는, AlCl3, AlBr3, AlF3, BF3·OEt2, BCl3, BBr3, GaCl3, GaBr3, InCl3, InBr3, In(OTf)3, SnCl4, SnBr4, AgOTf, ScCl3, Sc(OTf)3, ZnCl2, ZnBr2, Zn(OTf)2, MgCl2, MgBr2, Mg(OTf)2, LiOTf, NaOTf, KOTf, Me3SiOTf, Cu(OTf)2, CuCl2, YCl3, Y(OTf)3, TiCl4, TiBr4, ZrCl4, ZrBr4, FeCl3, FeBr3, CoCl3, CoBr3 등을 예로 들 수 있다.
상기 스킴(1)∼스킴(13)에서는, 탠덤 헤테로 플리델 크라프트 반응의 촉진을 위하여 브뢴스테드 염기 또는 루이스산을 사용할 수도 있다. 단, Y1의 3불화물, Y1의 3염화물, Y1의 3브롬화물, Y1의 3요오드화물 등의 Y1의 할로겐화물을 사용한 경우에는, 방향족 친전자 치환 반응의 진행과 함께, 불화 수소, 염화 수소, 브롬화 수소, 요오드화 수소와 같은 산이 생성되므로, 산을 포착하는 브뢴스테드 염기의 사용이 효과적이다. 한편, Y1의 아미노화 할로겐화물, Y1의 알콕시화물를 사용한 경우에는, 방향족 친전자 치환 반응의 진행과 함께, 아민, 알코올이 생성되므로, 대부분의 경우, 브뢴스테드 염기를 사용할 필요는 없지만, 아미노기나 알콕시기의 탈리능(脫離能)이 낮으므로, 그 탈리를 촉진하는 루이스산의 사용이 효과적이다.
또한, 다환 방향족 화합물이나 그의 다량체에는, 적어도 일부 수소 원자가 중수소로 치환되어 있는 것이나 불소나 염소 등의 할로겐으로 치환되어 있는 것도 포함되지만, 이와 같은 화합물 등은 원하는 개소가 중수소화, 불소화 또는 염소화 된 원료를 사용함으로써, 상기와 마찬가지로 합성하는 것이 가능하다.
1-3. 안트라센계 화합물
일반식(3)으로 표시되는 안트라센계 화합물은 기본적으로는 호스트로서 기능한다.
Figure pct00039
일반식(3)에서는, X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되지는 않는다. 또한, 2개의 X가 동시에 식(3-X2)으로 표시되는 기가 되지는 않는 것도 바람직하다.
식(3-X1) 및 식(3-X2)에 있어서의 나프틸렌 부위는 1개의 벤젠환으로 축합되어 있어도 된다. 이와 같이 하여 축합한 구조는 이하에 나타낸 바와 같다.
Figure pct00040
Ar1 및 Ar2는, 각각 독립적으로, 수소, 페닐, 비페닐릴, 터페닐릴, 퀴터페닐릴, 나프틸, 페난트릴, 플루오레닐, 벤조플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기(카르바졸릴기, 벤조카르바졸릴기 및 페닐 치환 카르바졸릴기도 포함함)이다. 그리고, Ar1 또는 Ar2가 식(4)으로 표시되는 기인 경우에는, 식(4)으로 표시되는 기는 그 *에 있어서 식(3-X1) 또는 식(3-X2) 중의 나프탈렌환과 결합한다.
Ar3는, 페닐, 비페닐릴, 터페닐릴, 퀴터페닐릴, 나프틸, 페난트릴, 플루오레닐, 벤조플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기(카르바졸릴기, 벤조카르바졸릴기 및 페닐 치환 카르바졸릴기도 포함함)이다. 그리고, Ar3가 식(4)으로 표시되는 기인 경우에는, 식(4)으로 표시되는 기는 그 *에 있어서 식(3-X3) 중의 직선으로 표시되는 단결합과 결합한다. 즉, 식(3)의 안트라센환과 식(4)으로 표시되는 기가 직접 결합한다.
또한, Ar3는 치환기를 가지고 있어도 되고, Ar3에 있어서의 1개 이상의 수소는 또한 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기(카르바졸릴기 및 페닐 치환 카르바졸릴기도 포함함)로 치환되어 있어도 된다. 그리고, Ar3가 가지는 치환기가 식(4)으로 표시되는 기인 경우에는, 식(4)으로 표시되는 기는 그 *에 있어서 식(3-X3) 중의 Ar3와 결합한다.
Ar4는, 각각 독립적으로, 수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 또는 탄소수 1∼4의 알킬로 치환되어 있는 실릴이다.
실릴로 치환하는 탄소수 1∼4의 알킬은, 메틸, 에틸, 프로필, i-프로필, 부틸, sec-부틸, tert-부틸, 시클로부틸 등을 예로 들 수 있고, 실릴에 있어서의 3개의 수소가, 각각 독립적으로, 이들 알킬로 치환되어 있다.
구체적인 「탄소수 1∼4의 알킬로 치환되어 있는 실릴」로서는, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리i-프로필실릴, 트리부틸실릴, 트리sec-부틸실릴, 트리tert-부틸실릴, 에틸디메틸실릴, 프로필디메틸실릴, i-프로필디메틸실릴, 부틸디메틸실릴, sec-부틸디메틸실릴, tert-부틸디메틸실릴, 메틸디에틸실릴, 프로필디에틸실릴, i-프로필디에틸실릴, 부틸디에틸실릴, sec-부틸디에틸실릴, tert-부틸디에틸실릴, 메틸디프로필실릴, 에틸디프로필실릴, 부틸디프로필실릴, sec-부틸디프로필실릴, tert-부틸디프로필실릴, 메틸디i-프로필실릴, 에틸디i-프로필실릴, 부틸디i-프로필실릴, sec-부틸디i-프로필실릴, tert-부틸디 i-프로필실릴 등을 예로 들 수 있다.
또한, 일반식(3)으로 표시되는 안트라센계 화합물의 화학 구조 중의 수소는 상기 식(4)으로 표시되는 기로 치환되어 있어도 된다. 식(4)으로 표시되는 기로 치환되는 경우에는, 식(4)으로 표시되는 기는 그 *에 있어서 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소와 치환한다.
식(4)으로 표시되는 기는, 식(3)으로 표시되는 안트라센계 화합물이 가질 수 있는 치환기의 하나이다.
Figure pct00041
상기 식(4) 중, Y는 -O-, -S- 또는 >N-R29이며, R21∼R28은 각각 독립적으로 수소, 치환되어 있어도 되는 알킬, 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴, 치환되어 있어도 되는 알콕시, 치환되어 있어도 되는 아릴옥시, 치환되어 있어도 되는 아릴티오, 트리알킬실릴, 치환되어 있어도 되는 아미노, 할로겐, 하이드록시 또는 시아노이며, R21∼R28 중 인접하는 기는 서로 결합하여 탄화수소환, 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, R29는 수소 또는 치환되어 있어도 되는 아릴이다.
R21∼R28에 있어서의 「치환되어 있어도 되는 알킬」의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이 특히 바람직하다.
구체적인 「알킬」로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있고, 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다.
구체적인 「아릴」로서는, 단환계인 페닐, 2환계인 비페닐릴, 축합 2환계인 나프틸, 3환계인 터페닐릴(m-터페닐릴, o-터페닐릴, p-터페닐릴), 축합 3환계인, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트레닐, 축합 4환계인 트리페닐레닐, 피레닐, 나프타세닐, 축합 5환계인 페릴레닐, 펜타세닐 등을 예로 들 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 「헤테로아릴」로서는, 예를 들면, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 옥사디아졸릴, 티아디아졸릴, 트리아조릴, 테트라졸릴, 피라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사티이닐, 페녹사지닐, 페노티아지닐, 페나지닐, 인돌리지닐, 프릴, 벤조퓨라닐, 이소벤조퓨라닐, 디벤조퓨라닐, 티에닐, 벤조[b]티에닐, 디벤조티에닐, 퓨라자닐, 옥사디아졸릴, 티안트레닐, 나프토벤조퓨라닐, 나프토벤조티에닐 등을 예로 들 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 알콕시」의 「알콕시」로서는, 예를 들면, 탄소수 1∼24의 직쇄 또는 탄소수 3∼24의 분지쇄의 알콕시가 있다. 탄소수 1∼18의 알콕시(탄소수 3∼18의 분지쇄의 알콕시)가 바람직하고, 탄소수 1∼12의 알콕시(탄소수 3∼12의 분지쇄의 알콕시)가 보다 바람직하고, 탄소수 1∼6의 알콕시(탄소수 3∼6의 분지쇄의 알콕시)가 더욱 바람직하고, 탄소수 1∼4의 알콕시(탄소수 3∼4의 분지쇄의 알콕시)가 특히 바람직하다.
구체적인 「알콕시」로서는, 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, sec-부톡시, tert-부톡시, 펜틸옥시, 헥실옥시, 헵틸옥시, 옥틸옥시 등을 예로 들 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 아릴옥시」의 「아릴옥시」로서는, -OH기의 수소가 아릴로 치환된 기이며, 이 아릴은 전술한 R21∼R28에 있어서의 「아릴」로서 설명한 것을 인용할 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 아릴티오」의 「아릴티오」로서는, -SH기의 수소가 아릴로 치환된 기이며, 이 아릴은 전술한 R21∼R28에 있어서의 「아릴」로서 설명한 것을 인용할 수 있다.
R21∼R28에 있어서의 「트리알킬실릴」로서는, 실릴기에 있어서의 3개의 수소가 각각 독립적으로 알킬로 치환된 것을 예로 들 수 있고, 이 알킬은 전술한 R21∼R28에 있어서의 「알킬」로서 설명한 것을 인용할 수 있다. 치환하기에 바람직한 알킬은, 탄소수 1∼4의 알킬이며, 구체적으로는 메틸, 에틸, 프로필, i-프로필, 부틸, sec-부틸, tert-부틸, 시클로부틸 등을 예로 들 수 있다.
구체적인 「트리알킬실릴」로서는, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리i-프로필실릴, 트리부틸실릴, 트리sec-부틸실릴, 트리tert-부틸실릴, 에틸디메틸실릴, 프로필디메틸실릴, i-프로필디메틸실릴, 부틸디메틸실릴, sec-부틸디메틸실릴, tert-부틸디메틸실릴, 메틸디에틸실릴, 프로필디에틸실릴, i-프로필디에틸실릴, 부틸디에틸실릴, sec-부틸디에틸실릴, tert-부틸디에틸실릴, 메틸디프로필실릴, 에틸디프로필실릴, 부틸디프로필실릴, sec-부틸디프로필실릴, tert-부틸디프로필실릴, 메틸디i-프로필실릴, 에틸디i-프로필실릴, 부틸디i-프로필실릴, sec-부틸디i-프로필실릴, tert-부틸디i-프로필실릴 등을 예로 들 수 있다.
R21∼R28에 있어서의 「치환되어 있어도 되는 아미노」의 「치환된 아미노」로서는, 예를 들면, 2개의 수소가 아릴이나 헤테로아릴로 치환된 아미노기가 있다. 2개의 수소가 아릴로 치환된 것이 디아릴 치환 아미노이며, 2개의 수소가 헤테로아릴로 치환된 것이 디헤테로아릴 치환 아미노이며, 2개의 수소가 아릴과 헤테로아릴로 치환된 것이 아릴헤테로아릴 치환 아미노이다. 이 아릴이나 헤테로아릴은 전술한 R21∼R28에 있어서의 「아릴」이나 「헤테로아릴」로서 설명한 것을 인용할 수 있다.
구체적인 「치환된 아미노」로서는, 디페닐아미노, 디나프틸아미노, 페닐나프틸아미노, 디피리딜아미노, 페닐피리딜아미노, 나프틸피리딜아미노 등을 예로 들 수 있다.
R21∼R28에 있어서의 「할로겐」으로서는, 불소, 염소, 브롬, 요오드를 예로 들 수 있다.
R21∼R28 로서 설명한 기 중, 몇 개는 전술한 바와 같이 치환되어도 되고, 이 경우의 치환기로서는 알킬, 아릴 또는 헤테로아릴을 예로 들 수 있다. 이 알킬, 아릴 또는 헤테로아릴은 전술한 R21∼R28에 있어서의 「알킬」, 「아릴」 또는 「헤테로아릴」로서 설명한 것을 인용할 수 있다.
Y로서의 「>N-R29」에 있어서의 R29는 수소 또는 치환되어 있어도 되는 아릴이며, 이 아릴로서는 전술한 R21∼R28에 있어서의 「아릴」로서 설명한 것을 인용할 수 있고, 또 그 치환기로서는 R21∼R28에 대한 치환기로서 설명한 것을 인용할 수 있다.
R21∼R28 중 인접하는 기는 서로 결합하여 탄화수소환, 아릴환 또는 헤테로아릴환을 형성하고 있어도 된다. 환을 형성하지 않는 경우가 하기 식(4-1)으로 표시되는 기이며, 환을 형성한 경우로서는, 하기 식(4-2)∼식(4-11)으로 표시되는 기를 예로 들 수 있다. 그리고, 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기에 있어서의 1개 이상의 수소는 알킬, 아릴, 헤테로아릴, 알콕시, 아릴옥시, 아릴티오, 트리알킬실릴, 디아릴 치환 아미노, 디헤테로아릴 치환 아미노, 아릴헤테로아릴 치환 아미노, 할로겐, 하이드록시 또는 시아노로 치환되어 있어도 되고, 이들은 전술한 R21∼R28에 있어서의 각 기로서 설명한 것을 인용할 수 있다.
Figure pct00042
인접하는 기가 서로 결합하여 이루어진 환으로서는, 탄화수소환이면 예를 들면, 시클로헥산 환이 있고, 아릴환이나 헤테로아릴환로서는 전술한 R21∼R28에 있어서의 「아릴」이나 「헤테로아릴」에서 설명한 환 구조를 들 수 있어, 이들 환은 상기 식(4-1)에 있어서의 1개 또는 2개의 벤젠환과 축합하도록 형성된다.
식(4)으로 표시되는 기로서는, 예를 들면, 상기 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기가 있고, 상기 식(4-1)∼식(4-4) 중 어느 하나로 표시되는 기가 바람직하고, 상기 식(4-1), 식(4-3) 및 식(4-4) 중 어느 하나로 표시되는 기가 보다 바람직하고, 상기 식(4-1)으로 표시되는 기가 더욱 바람직하다.
식(4)으로 표시되는 기는, 식(4) 중의 *에 있어서, 식(3-X1) 또는 식(3-X2) 중의 나프탈렌환, 식(3-X3) 중의 단결합, 식(3-X3) 중의 Ar3와 결합하고, 또 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소와 치환하는 것은 전술한 바와 같지만, 이들 결합 형태 중에서도 식(3-X1) 또는 식(3-X2) 중의 나프탈렌환, 식(3-X3) 중의 단결합 및/또는 식(3-X3) 중의 Ar3와 결합한 형태가 바람직하다.
또한, 식(4)으로 표시되는 기의 구조 중에서, 식(3-X1) 또는 식(3-X2) 중의 나프탈렌환, 식(3-X3) 중의 단결합, 식(3-X3) 중의 Ar3가 결합하는 위치, 또한, 식(4)으로 표시되는 기의 구조 중에서, 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소와 치환하는 위치는, 식(4)의 구조 중의 어느 위치라도 되고, 예를 들면, 식(4)의 구조 중의 2개의 벤젠환 중 어느 하나, 식(4)의 구조 중의 R21∼R28 중 인접하는 기가 서로 결합하여 형성된 어느 하나의 환이나, 식(4)의 구조 중의 Y로서의 「>N-R29」에 있어서의 R29 중의 어느 하나의 위치에서 결합할 수 있다.
식(4)으로 표시되는 기로서는, 예를 들면, 이하의 기가 있다. 식 중의 Y 및 *는 상기와 동일한 정의이다.
Figure pct00043
Figure pct00044
또한, 일반식(3)으로 표시되는 안트라센계 화합물의 화학 구조 중의 수소는, 그 모두 또는 일부가 중수소라도 된다.
안트라센계 화합물의 구체적인 예로서는, 예를 들면, 하기 식(3-1)∼식(3-26)으로 표시되는 화합물이 있다.
Figure pct00045
Figure pct00046
Figure pct00047
안트라센계 화합물의 구체적인 예로서는, 예를 들면, 하기 식(3-31-Y)∼식(3-67-Y)으로 표시되는 화합물이 있다. 식 중의 Y는 -O-, -S- 또는 >N-R29(R29는 상기와 동일하게 정의됨) 중 어느 것이라도 되고, R29는, 예를 들면, 페닐기이다. 식 번호는, 예를 들면, Y가 O인 경우에는, 식(3-31-Y)은 식(3-31-O)으로 하고, Y가-S- 또는 >N-R29인 경우에는 각각 식(3-31-S) 또는 식(3-31-N)으로 한다.
Figure pct00048
Figure pct00049
Figure pct00050
2. 유기 전계 발광 소자
이하에서, 본 실시형태에 따른 유기 EL 소자에 대하여 도면을 참조하여 상세하게 설명한다. 도 1은, 본 실시형태에 따른 유기 EL 소자를 나타내는 개략 단면도이다.
<유기 전계 발광 소자의 구조>
도 1에 나타낸 유기 EL 소자(100)는, 기판(101)과, 기판(101) 상에 설치된 양극(102)과, 양극(102) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 음극(108)을 가진다.
그리고, 유기 EL 소자(100)는, 제작 순서를 반대로 하여, 예를 들면, 기판(101)과, 기판(101)상에 설치된 음극(108)과, 음극(108) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 양극(102)을 가지는 구성으로 해도 된다.
전술한 각 층 모두 없으면 안되는 것은 아니며, 최소 구성 단위를 양극(102)과 발광층(105)과 음극(108)으로 이루어지는 구성으로서, 정공 주입층(103), 정공 수송층(104), 전자 수송층(106), 전자 주입층(107)은 임의로 설치되는 층이다. 또한, 전술한 각 층은, 각각 단일층으로 되어도 되고, 복수 층으로 되어도 된다.
유기 EL 소자를 구성하는 층의 태양으로서는, 전술한 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/전자 주입층/음극」의 구성 태양 외에, 「기판/양극/정공 수송층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/정공 주입층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 주입층/음극」의 구성 태양이라도 된다.
<유기 전계 발광 소자에 있어서의 기판>
기판(101)은, 유기 EL 소자(100)의 지지체가 되는 것이며, 통상, 석영, 유리, 금속, 플라스틱 등이 사용된다. 기판(101)은, 목적에 따라 판형, 필름형, 또는 시트형으로 형성되고, 예를 들면, 유리판, 금속판, 금속박, 플라스틱 필름, 플라스틱 시트 등이 사용된다. 그 중에서도, 유리판, 및, 폴리에스테르, 폴리메타크릴레이트, 폴리카보네이트, 폴리술폰 등의 투명한 합성 수지제의 판이 바람직하다. 유리 기판이면, 소다 라임 유리나 무알칼리 유리 등이 사용되고, 또한, 두께도 기계적 강도를 유지하기에 충분한 두께가 있으면 되므로, 예를 들면, 0.2 mm 이상이면 된다. 두께의 상한값으로서는, 예를 들면, 2 mm 이하, 바람직하게는 1 mm 이하이다. 유리의 재질에 대해서는, 유리로부터의 용출(溶出) 이온이 적은 것이 좋으므로, 무알칼리 유리인 것이 바람직하지만, SiO2 등의 배리어(barrier) 코팅을 행한 소다 라임 유리도 시판되고 있으므로 이것을 사용할 수 있다. 또한, 기판(101)에는, 가스 배리어성을 높이기 위해, 적어도 한쪽 면에 치밀한 실리콘 산화막 등의 가스 배리어막을 형성해도 되고, 특히 가스 배리어성이 낮은 합성 수지제의 판, 필름 또는 시트를 기판(101)으로서 사용하는 경우에는 가스 배리어막을 형성하는 것이 바람직하다.
<유기 전계 발광 소자에 있어서의 양극>
양극(102)은, 발광층(105)에 정공을 주입하는 역할을 하는 것이다. 그리고, 양극(102)과 발광층(105)의 사이에 정공 주입층(103) 및/또는 정공 수송층(104)이 설치되어 있는 경우에는, 이들을 통하여 발광층(105)에 정공을 주입하게 된다.
양극(102)을 형성하는 재료로서는, 무기 화합물 및 유기 화합물을 예로 들 수 있다. 무기 화합물로서는, 예를 들면, 금속(알루미늄, 금, 은, 니켈, 팔라듐, 크롬 등), 금속 산화물(인듐의 산화물, 주석의 산화물, 인듐-주석 산화물(ITO), 인듐-아연 산화물(IZO) 등), 할로겐화 금속(요오드화 구리 등), 황화 구리, 카본 블랙, ITO 유리나 네사 유리 등이 있다. 유기 화합물로서는, 예를 들면, 폴리(3-메틸티오펜) 등의 폴리티오펜, 폴리피롤, 폴리아닐린 등의 도전성(導電性) 폴리머 등이 있다. 그 외에, 유기 EL 소자의 양극으로서 사용되고 있는 물질 중에서 적절하게 선택하여 사용할 수 있다.
투명 전극의 저항은, 발광 소자의 발광에 충분한 전류를 공급할 수 있으면 되므로, 한정되지 않지만, 발광 소자의 소비 전력의 관점에서는 저저항인 것이 바람직하다. 예를 들면, 300Ω/□ 이하의 ITO 기판이면 소자 전극으로서 기능하지만, 현재에는 10Ω/□ 정도의 기판의 공급도 가능하므로, 예를 들면 100∼5 Ω/□, 50∼5 Ω/□의 저저항품을 사용하는 것이 특히 바람직하다. ITO의 두께는 저항값에 맞추어 임의로 선택할 수 있지만, 통상 50∼300 nm의 사이에서 사용되는 경우가 많다.
<유기 전계 발광 소자에 있어서의 정공 주입층, 정공 수송층>
정공 주입층(103)은, 양극(102)으로부터 이동하여 오는 정공을, 효율적으로 발광층(105) 내 또는 정공 수송층(104) 내에 주입하는 역할을 하는 것이다. 정공 수송층(104)은, 양극(102)으로부터 주입된 정공 또는 양극(102)으로부터 정공 주입층(103)를 통하여 주입된 정공을, 효율적으로 발광층(105)에 수송하는 역할을 하는 것이다. 정공 주입층(103) 및 정공 수송층(104)은, 각각, 정공 주입·수송 재료의 1종 또는 2종 이상을 적층, 혼합하거나, 정공 주입·수송 재료와 고분자 결착제(結着劑)의 혼합물에 의해 형성된다. 또한, 정공 주입·수송 재료에 염화 철(III)과 같은 무기염을 첨가하여 층을 형성해도 된다.
정공 주입·수송성 물질로서는 전계가 인가된 전극 사이에 있어서 양극으로부터의 정공을 효율적으로 주입·수송하는 것이 필요하며, 정공 주입 효율이 높고, 주입된 정공을 효율적으로 수송하는 것이 바람직하다. 이를 위해서는 이온화 포텐셜이 작고, 또한 정공 이동도가 크고, 또한 안정성이 우수하고, 트랩이 되는 불순물이 제조 시 및 사용 시에 쉽게 발생하지 않는 물질인 것이 바람직하다.
정공 주입층(103) 및 정공 수송층(104)를 형성하는 재료로서는, 광 도전(導電) 재료에 있어서, 정공의 전하 수송 재료로서 종래부터 관용되고 있는 화합물, p형 반도체, 유기 EL 소자의 정공 주입층 및 정공 수송층에 사용되고 있는 공지의 것 중으로부터 임의의 것을 선택하여 사용할 수 있다. 이러한 구체예는, 카르바졸 유도체(N-페닐카르바졸, 폴리비닐 카르바졸 등), 비스(N-아릴카르바졸) 또는 비스(N-알킬카르바졸) 등의 비스카르바졸 유도체, 트릴아릴아민 유도체(방향족 제3 급 아미노를 주쇄(主鎖) 또는 측쇄(側鎖)에 가지는 폴리머, 1,1-비스(4-디-p-톨릴아미노페닐)시클로헥산, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디나프틸-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디페닐-1,1'-디아민, N,N'-디나프틸-N,N'-디페닐-4,4'-디페닐-1,1'-디아민, N4,N4'-디페닐-N4,N4'-비스(9-페닐-9H-카르바졸-3-일)-[1,1'-비페닐]-4,4'-디아민, N4,N4,N4',N4'-테트라[1,1'-비페닐]-4-일)-[1,1'-비페닐]-4,4'-디아민, 4,4',4"-트리스(3-메틸페닐(페닐)아미노)트리페닐아민 등의 트리페닐아민 유도체, 스타버스트 아민 유도체 등), 스틸벤 유도체, 프탈로시아닌 유도체(무금속, 구리 프탈로시아닌 등), 피라졸린 유도체, 히드라진계 화합물, 벤조퓨란 유도체나 티오펜 유도체, 옥사디아졸 유도체, 퀴녹살린 유도체(예를 들면, 1,4,5,8,9,12-헥사아자트리페닐렌-2,3,6,7,10,11-헥사카르보니트릴 등), 포르필린 유도체 등의 복소환 화합물, 폴리실란 등이다. 폴리머계에서는 상기 단량체를 측쇄에 가지는 폴리카보네이트나 스티렌 유도체, 폴리비닐카르바졸 및 폴리실란 등이 바람직하지만, 발광 소자의 제작에 필요한 박막을 형성하고, 양극으로부터 정공을 주입할 수 있고, 또한 정공을 수송할 수 있는 화합물이면 특별히 한정되는 것은 아니다.
또한, 유기 반도체의 도전성은, 그 도핑(doping)에 의해, 강한 영향을 받는 것도 알려져 있다. 이와 같은 유기 반도체 매트릭스 물질은, 전자 공여성이 양호한 화합물, 또는 전자 수용성이 양호한 화합물로 구성되어 있다. 전자 공여 물질의 도핑을 위해, 테트라시아노키논디메탄(TCNQ) 또는 2,3,5,6-테트라플루오로테트라시아노-1,4-벤조퀴논디메탄(F4TCNQ) 등의 강한 전자 수용체가 알려져 있다(예를 들면, 문헌 「M.Pfeiffer, A.Beyer, T.Fritz, K.Leo, Appl. Phys. Lett., 73(22), 3202-3204(1998)」 및 문헌 「J. Blochwitz, M. Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73(6),729-731(1998)」를 참조). 이들은, 전자 공여형 베이스 물질(정공 수송 물질)에 있어서의 전자 이동 프로세스에 의해, 이른바 정공을 생성한다. 정공의 수 및 이동도에 의해, 베이스 물질의 전도성이, 매우 크게 변화한다. 정공 수송 특성을 가지는 매트릭스 물질로서는, 예를 들면, 벤지딘 유도체(TPD 등) 또는 스타버스트 아민 유도체(TDATA 등), 또는 특정한 금속 프탈로시아닌(특히, 아연 프탈로시아닌(ZnPc) 등)이 알려져 있다(일본 공개특허 제2005-167175호 공보).
<유기 전계 발광 소자에 있어서의 발광층>
발광층(105)은, 전계가 인가된 전극 사이에 있어서, 양극(102)으로부터 주입된 정공과, 음극(108)으로부터 주입된 전자를 재결합시킴으로써 발광하는 것이다. 발광층(105)를 형성하는 재료로서는, 정공과 전자와의 재결합에 의해 여기되어 발광하는 화합물(발광성 화합물)이면 되고, 안정적인 박막 형상을 형성할 수 있고, 또한 고체 상태로 강한 발광(형광) 효율을 나타내는 화합물인 것이 바람직하다. 본 발명에서는, 발광층용 재료로서, 도판트 재료로서 상기 일반식(1)으로 표시되는 다환 방향족 화합물 및 상기 일반식(1)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 호스트 재료로서 상기 일반식(3)으로 표시되는 안트라센계 화합물을을 사용할 수 있다.
발광층은 단일층이라도 되고 복수 층으로 이루어져도 되며 어느 쪽이라도 되고, 각각 발광층용 재료(호스트 재료, 도판트 재료)에 의해 형성된다. 호스트 재료와 도판트 재료는, 각각 1종류라도 되고, 복수의 조합이라도 되며, 어느 것이라도 된다. 도판트 재료는 호스트 재료 전체에 포함되어 있어도, 부분적으로 포함되어 있어도 되며, 어느 것이라도 된다. 도핑 방법으로서는, 호스트 재료와의 공증착(共烝着)법에 의해 형성할 수 있지만, 호스트 재료와 사전에 혼합한 후 동시에 증착해도 된다.
호스트 재료의 사용량은 호스트 재료의 종류에 따라서 상이하며, 그 호스트 재료의 특성에 맞추어 결정하면 된다. 호스트 재료의 사용량의 기준은, 바람직하게는 발광층용 재료 전체의 50∼99.999 중량%이며, 보다 바람직하게는 80∼99.95 중량%이며, 더욱 바람직하게는 90∼99.9 중량%이다.
도판트 재료의 사용량은 도판트 재료의 종류에 따라 상이하며, 그 도판트 재료의 특성에 맞추어 결정하면 된다. 도판트의 사용량의 기준은, 바람직하게는 발광층용 재료 전체의 0.001∼50 중량%이며, 보다 바람직하게는 0.05∼20 중량%이며, 보다 바람직하게는 0.1∼10 중량%이다. 상기한 범위 내에서는, 예를 들면, 농도 소광 현상을 방지할 수 있는 점에서 바람직하다.
상기 일반식(3)으로 표시되는 안트라센계 화합물과 병용할 수 있는 호스트 재료로서는, 이전부터 발광체로서 알려져 있는 다른 안트라센이나 피렌 등의 축합환 유도체, 비스스티릴안트라센 유도체나 디스티릴벤젠 유도체 등의 비스스티릴 유도체, 테트라페닐부타디엔 유도체, 시클로펜타디엔 유도체, 플루오렌 유도체, 벤조플루오렌 유도체 등을 예로 들 수 있다.
<유기 전계 발광 소자에 있어서의 전자 주입층, 전자 수송층>
전자 주입층(107)은, 음극(108)으로부터 이동하여 오는 전자를, 효율적으로 발광층(105) 내 또는 전자 수송층(106) 내에 주입하는 역할을 하는 것이다. 전자 수송층(106)은, 음극(108)으로부터 주입된 전자 또는 음극(108)으로부터 전자 주입층(107)을 통하여 주입된 전자를, 효율적으로 발광층(105)에 수송하는 역할을 하는 것이다. 전자 수송층(106) 및 전자 주입층(107)은, 각각, 전자 수송·주입 재료의 1종 또는 2종 이상을 적층, 혼합하거나, 전자 수송·주입 재료와 고분자 결착제의 혼합물에 의해 형성된다.
전자 주입·수송층은, 음극으로부터 전자가 주입되고, 또한 전자를 수송하는 것을 담당하는 층이며, 전자 주입 효율이 높고, 주입된 전자를 효율적으로 수송하는 것이 바람직하다. 이를 위해서는 전자 친화력이 크고, 또한 전자 이동도가 크고, 또한 안정성이 우수하고, 트랩이 되는 불순물이 제조 시 및 사용 시에 쉽게 발생하지 않는 물질인 것이 바람직하다. 그러나, 정공과 전자의 수송 밸런스를 고려할 경우, 양극으로부터의 정공이 재결합하지 않고 음극 측으로 흐르는 것을 효율적으로 저지할 수 있는 역할을 주로 행하는 경우에는, 전자 수송 능력이 그렇게 높지 않아도, 발광 효율을 향상시키는 효과는 전자 수송 능력이 높은 재료와 동등하게 가진다. 따라서, 본 실시형태에 있어서의 전자 주입·수송층은, 정공의 이동을 효율적으로 저지할 수 있는 층의 기능도 포함되어도 된다.
전자 수송층(106) 또는 전자 주입층(107)을 형성하는 재료(전자 수송 재료)로서는, 광 도전 재료에 있어서 전자 전달 화합물로서 종래부터 관용되고 있는 화합물, 유기 EL 소자의 전자 주입층 및 전자 수송층에 사용되고 있는 공지의 화합물 중에서 임의로 선택하여 사용할 수 있다.
전자 수송층 또는 전자 주입층에 사용되는 재료로서는, 탄소, 수소, 산소, 유황, 규소 및 인 중에서 선택되는 1종 이상의 원자로 구성되는 방향족환 또는 복소방향족환으로 이루어지는 화합물, 피롤 유도체 및 그의 축합환 유도체 및 전자 수용성 질소를 가지는 금속 착체 중에서 선택되는 적어도 1종을 함유하는 것이 바람직하다. 구체적으로는, 나프탈렌, 안트라센 등의 축합환계 방향족환 유도체, 4,4'-비스(디페닐에테닐)비페닐로 대표되는 스티릴계 방향족환 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논이나 디페노퀴논 등의 퀴논 유도체, 인옥사이드 유도체, 카르바졸 유도체 및 인돌 유도체 등을 예로 들 수 있다. 전자 수용성 질소를 가지는 금속 착체로서는, 예를 들면, 하이드록시페닐옥사졸 착체 등의 하이드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등을 예로 들 수 있다. 이들 재료는 단독으로도 사용되지만, 상이한 재료와 혼합하여 사용해도 된다.
또한, 다른 전자 전달 화합물의 구체예로서, 피리딘 유도체, 나프탈렌 유도체, 안트라센 유도체, 페난트롤린 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논 유도체, 디페노퀴논 유도체, 디페닐퀴논 유도체, 페릴렌 유도체, 옥사디아졸 유도체(1,3-비스[(4-tert-부틸페닐)1,3,4-옥사디아졸릴]페닐렌 등), 티오펜 유도체, 트리아졸 유도체(N-나프틸-2,5-디페닐-1,3,4-트리아졸 등), 티아디아졸 유도체, 옥신 유도체의 금속 착체, 퀴놀리놀계 금속 착체, 퀴녹살린 유도체, 퀴녹살린 유도체의 폴리머, 벤자졸류 화합물, 갈륨 착체, 피라졸 유도체, 퍼플루오로화 페닐렌 유도체, 트리아진 유도체, 피라진 유도체, 벤조퀴놀린 유도체(2,2'-비스(벤조[h]퀴놀린-2-일)-9,9'-스피로비플루오렌 등), 이미다조피리딘 유도체, 보란 유도체, 벤즈이미다졸 유도체(트리스(N-페닐벤즈이미다졸-2-일)벤젠 등), 벤즈옥사졸 유도체, 벤조티아졸 유도체, 퀴놀린 유도체, 터피리딘 등의 올리고피리딘 유도체, 비피리딘 유도체, 터피리딘 유도체(1,3-비스(4'-(2,2':6'2"-터피리디닐))벤젠 등), 나프티리딘 유도체(비스(1-나프틸)-4-(1,8-나프티리딘-2-일)페닐포스핀옥사이드 등), 알다진 유도체, 카르바졸 유도체, 인돌 유도체, 인옥사이드 유도체, 비스스티릴 유도체 등을 들 수 있다.
또한, 전자 수용성 질소를 가지는 금속 착체를 사용할 수도 있고, 예를 들면, 퀴놀리놀계 금속 착체나 하이드록시페닐옥사졸 착체 등의 하이드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등이 있다.
전술한 재료는 단독으로도 사용되지만, 상이한 재료와 혼합하여 사용해도 된다.
전술한 재료 중에서도, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체, 및 퀴놀리놀계 금속 착체가 바람직하다.
<보란 유도체>
보란 유도체는, 예를 들면, 하기 일반식(ETM-1)으로 표시되는 화합물이며, 일본 공개특허 제2007-27587호 공보에 상세하게 개시되어 있다.
Figure pct00051
상기 식(ETM-1) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 하나 이상이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, X는, 치환되어 있어도 되는 알릴렌이며, Y는, 치환되어 있어도 되는 탄소수 16 이하의 아릴, 치환되어 있는 보릴, 또는 치환되어 있어도 되는 카르바졸릴이며, 그리고, n은 각각 독립적으로 0∼3의 정수이다. 또한, 「치환되어 있어도 되는」 또는 「치환되어 있는」 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬 등을 예로 들 수 있다.
상기 일반식(ETM-1)으로 표시되는 화합물 중에서도, 하기 일반식(ETM-1-1)으로 표시되는 화합물이나 하기 일반식(ETM-1-2)으로 표시되는 화합물이 바람직하다.
Figure pct00052
식(ETM-1-1) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 하나 이상이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, R21 및 R22는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 하나 이상이며, X1은, 치환되어 있어도 되는 탄소수 20 이하의 알릴렌이며, n은 각각 독립적으로 0∼3의 정수이며, 그리고, m은 각각 독립적으로 0∼4의 정수이다. 또한, 「치환되어 있어도 되는」 또는 「치환되어 있는」 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬 등을 예로 들 수 있다.
Figure pct00053
식(ETM-1-2) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 하나 이상이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, X1은, 치환되어 있어도 되는 탄소수 20 이하의 알릴렌이며, 그리고, n은 각각 독립적으로 0∼3의 정수이다. 또한, 「치환되어 있어도 되는」 또는 「치환되어 있는」 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬 등을 예로 들 수 있다.
X1의 구체적인 예로서는, 하기 식(X-1)∼식(X-9)으로 표시되는 2가의 기를 들 수 있다.
Figure pct00054
(각 식 중, Ra는, 각각 독립적으로 알킬기 또는 치환되어 있어도 되는 페닐기임)
이 보란 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00055
이 보란 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<피리딘 유도체>
피리딘 유도체는, 예를 들면, 하기 식(ETM-2)으로 표시되는 화합물이며, 바람직하게는 식(ETM-2-1) 또는 식(ETM-2-2)으로 표시되는 화합물이다.
Figure pct00056
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이다.
상기 식(ETM-2-1)에 있어서, R11∼R18은, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이다.
상기 식(ETM-2-2)에 있어서, R11 및 R12는, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이며, R11 및 R12는 결합하여 환을 형성하고 있어도 된다.
각각의 식에 있어서, 「피리딘계 치환기」는, 하기 식(Py-1)∼식(Py-15) 중 어느 하나이며, 피리딘계 치환기는 각각 독립적으로 탄소수 1∼4의 알킬로 치환되어 있어도 된다. 또한, 피리딘계 치환기는 페닐렌기나 나프틸렌기를 통하여 각 식에 있어서의 φ, 안트라센환 또는 플루오렌환에 결합하고 있어도 된다.
Figure pct00057
피리딘계 치환기는, 상기 식(Py-1)∼식(Py-15) 중 어느 하나이지만, 이들 중에서도, 하기 식(Py-21)∼식(Py-44) 중 어느 하나인 것이 바람직하다.
Figure pct00058
각 피리딘 유도체에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 되고, 또한, 상기 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 2개의 「피리딘계 치환기」 중 한쪽은 아릴로 치환되어 있어도 된다.
R11∼R18에 있어서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 바람직한 「알킬」은, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이다. 보다 바람직한 「알킬」은, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이다. 더욱 바람직한 「알킬」은, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이다. 특히 바람직한 「알킬」은, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다.
구체적인 「알킬」로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
피리딘계 치환기로 치환하는 탄소수 1∼4의 알킬로서는, 상기 알킬의 설명을 인용할 수 있다.
R11∼R18에 있어서의 「시클로알킬」로서는, 예를 들면, 탄소수 3∼12의 시클로알킬을 들 수 있다.바람직한 「시클로알킬」은, 탄소수 3∼10의 시클로알킬이다. 더욱 바람직한 「시클로알킬」은, 탄소수 3∼8의 시클로알킬이다. 보다 바람직한 「시클로알킬」은, 탄소수 3∼6의 시클로알킬이다.
구체적인 「시클로알킬」로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
R11∼R18에 있어서의 「아릴」로서는, 바람직한 아릴은 탄소수 6∼30의 아릴이며, 보다 바람직한 아릴은 탄소수 6∼18의 아릴이며, 더욱 바람직하게는 탄소수 6∼14의 아릴이며, 특히 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「탄소수 6∼30의 아릴」로서는, 단환계 아릴인 페닐, 축합 2환계 아릴인 (1-, 2-)나프틸, 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-, 6-)일 등을 예로 들 수 있다.
바람직한 「탄소수 6∼30의 아릴」은, 페닐, 나프틸, 페난트릴, 크리세닐 또는 트리페닐레닐 등을 예로 들 수 있고, 보다 바람직하게는 페닐, 1-나프틸, 2-나프틸 또는 페난트릴을 예로 들 수 있고, 특히 바람직하게는 페닐, 1-나프틸 또는 2-나프틸을 예로 들 수 있다.
상기 식(ETM-2-2)에 있어서의 R11 및 R12는 결합하여 환을 형성하고 있어도 되고, 그 결과, 플루오렌 골격의 5원환에는, 시클로부탄, 시클로펜탄, 시클로펜텐, 시클로펜타디엔, 시클로헥산, 플루오렌 또는 인덴 등이 스피로 결합하고 있어도 된다.
이 피리딘 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00059
이 피리딘 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<플루오란텐 유도체>
플루오란텐 유도체는, 예를 들면, 하기 일반식(ETM-3)으로 표시되는 화합물이며, 상세하게는 국제 공개 제2010/134352호 공보에 개시되어 있다.
Figure pct00060
상기 식(ETM-3) 중, X12∼X21은 수소, 할로겐, 직쇄, 분지 또는 환형(環形)의 알킬, 직쇄, 분지 또는 환형의 알콕시, 치환 또는 무치환의 아릴, 또는 치환 또는 무치환의 헤테로아릴을 나타낸다. 여기서, 치환되어 있는 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬 등을 예로 들 수 있다.
이 플루오란텐 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00061
<BO계 유도체>
BO계 유도체는, 예를 들면, 하기 식(ETM-4)으로 표시되는 다환 방향족 화합물, 또는 하기 식(ETM-4)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체이다.
Figure pct00062
R1∼R11은, 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다.
또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다.
또한, 식(ETM-4)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 된다.
식(ETM-4)에 있어서의 치환기나 환 형성의 형태, 또한 식(ETM-4)의 구조가 복수 조합하여 형성된 다량체의 설명에 대해서는, 상기 일반식(1)이나 일반식(2)으로 표시되는 다환 방향족 화합물이나 그의 다량체의 설명을 인용할 수 있다.
이 BO계 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00063
이 BO계 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<안트라센 유도체>
안트라센 유도체 중 하나는, 예를 들면, 하기 식(ETM-5-1)으로 표시되는 화합물이다.
Figure pct00064
Ar은, 각각 독립적으로, 2가의 벤젠 또는 나프탈렌이며, R1∼R4는, 각각 독립적으로, 수소, 탄소수 1∼6의 알킬, 탄소수 3∼6의 시클로알킬 또는 탄소수 6∼20의 아릴이다.
Ar은, 각각 독립적으로, 2가의 벤젠 또는 나프탈렌으로부터 적절하게 선택할 수 있고, 2개의 Ar이 상이해도 되고 동일해도 되지만, 안트라센 유도체의 합성의 용이함의 관점에서는 동일한 것이 바람직하다. Ar은 피리딘과 결합하여, 「Ar 및 피리딘으로 이루어지는 부위」를 형성하고 있고, 이 부위는, 예를 들면, 하기 식(Py-1)∼식(Py-12) 중 어느 하나로 표시되는 기로서 안트라센에 결합되어 있다.
Figure pct00065
이들 기 중에서도, 상기 식(Py-1)∼식(Py-9) 중 어느 하나로 표시되는 기가 바람직하고, 상기 식(Py-1)∼식(Py-6) 중 어느 하나로 표시되는 기가 더욱 바람직하다. 안트라센에 결합하는 2개의 「Ar 및 피리딘으로 이루어지는 부위」는, 그 구조가 동일해도 되고 상이해도 되지만, 안트라센 유도체의 합성의 용이함의 관점에서는 동일한 구조인 것이 바람직하다. 다만, 소자 특성의 관점에서는, 2개의 「Ar 및 피리딘으로 이루어지는 부위」의 구조가 동일해도 되고 상이해도 된다.
R1∼R4에 있어서의 탄소수 1∼6의 알킬에 대하여는 직쇄 및 분지쇄 중 어느 하나라도 된다. 즉, 탄소수 1∼6의 직쇄 알킬 또는 탄소수 3∼6의 분지쇄 알킬이다. 보다 바람직하게는, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다. 구체예로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 또는 2-에틸부틸 등을 들 수 있고, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, 또는 tert-부틸이 바람직하고, 메틸, 에틸, 또는 tert-부틸이 더욱 바람직하다.
R1∼R4에 있어서의 탄소수 3∼6의 시클로알킬의 구체예로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸 시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
R1∼R4에 있어서의 탄소수 6∼20의 아릴에 대해서는, 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다.
「탄소수 6∼20의 아릴」의 구체예로서는, 단환계 아릴인 페닐, (o-, m-, p-)톨릴, (2, 3-, 2, 4-, 2, 5-, 2, 6-, 3, 4-, 3, 5-)크실릴, 메시틸(2,4,6-트리메틸페닐), (o-, m-, p-)쿠메닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 안트라센(1-, 2-, 9-)일, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 테트라센(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일 등을 들 수 있다.
바람직한 「탄소수 6∼20의 아릴」은, 페닐, 비페닐릴, 터페닐릴 또는 나프틸이며, 보다 바람직하게는, 페닐, 비페닐릴, 1-나프틸, 2-나프틸 또는 m-터페닐-5'-일이며, 더욱 바람직하게는, 페닐, 비페닐릴, 1-나프틸 또는 2-나프틸이며, 가장 바람직하게는 페닐이다.
안트라센 유도체 중 하나는, 예를 들면, 하기 식(ETM-5-2)으로 표시되는 화합물이다.
Figure pct00066
Ar1은, 각각 독립적으로, 단결합, 2가의 벤젠, 나프탈렌, 안트라센, 플루오렌, 또는 페날렌이다.
Ar2는, 각각 독립적으로, 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에 있어서의 「탄소수 6∼20의 아릴」과 동일한 설명을 인용할 수 있다. 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다. 구체예로서는, 페닐, 비페닐릴, 나프틸, 터페닐릴, 안트라세닐, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 테트라세닐, 페릴레닐 등을 들 수 있다.
R1∼R4는, 각각 독립적으로, 수소, 탄소수 1∼6의 알킬, 탄소수 3∼6의 시클로알킬 또는 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에서와 동일한 설명을 인용할 수 있다.
이들의 안트라센 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00067
이들 안트라센 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<벤조플루오렌 유도체>
벤조플루오렌 유도체는, 예를 들면, 하기 식(ETM-6)으로 표시되는 화합물이 있다.
Figure pct00068
Ar1은, 각각 독립적으로, 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에 있어서의 「탄소수 6∼20의 아릴」과 동일한 설명을 인용할 수 있다. 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다. 구체예로서는, 페닐, 비페닐릴, 나프틸, 터페닐릴, 안트라세닐, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 테트라세닐, 페릴레닐 등을 들 수 있다.
Ar2는, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이며, 2개의 Ar2는 결합하여 환을 형성하고 있어도 된다.
Ar2에 있어서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 바람직한 「알킬」은, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이다. 보다 바람직한 「알킬」은, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이다. 더욱 바람직한 「알킬」은, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이다. 특히 바람직한 「알킬」은, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다. 구체적인 「알킬」로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실 등을 예로 들 수 있다.
Ar2에 있어서의 「시클로알킬」로서는, 예를 들면, 탄소수 3∼12의 시클로알킬이 있다. 바람직한「시클로알킬」은, 탄소수 3∼10의 시클로알킬이다. 보다 바람직한 「시클로알킬」은, 탄소수 3∼8의 시클로알킬이다. 더욱 바람직한 「시클로알킬」은, 탄소수 3∼6의 시클로알킬이다. 구체적인 「시클로알킬」로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
Ar2에 있어서의 「아릴」로서는, 바람직한 아릴은 탄소수 6∼30의 아릴이며, 보다 바람직한 아릴은 탄소수 6∼18의 아릴이며, 더욱 바람직하게는 탄소수 6∼14의 아릴이며, 특히 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「탄소수 6∼30의 아릴」로서는, 페닐, 나프틸, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 나프타세닐, 페릴레닐, 펜타세닐 등을 예로 들 수 있다.
2개의 Ar2는 결합하여 환을 형성하고 있어도 되고, 그 결과, 플루오렌 골격의 5원환에는, 시클로부탄, 시클로펜탄, 시클로펜텐, 시클로펜타디엔, 시클로헥산, 플루오렌 또는 인덴 등이 스피로 결합하고 있어도 된다.
이 벤조플루오렌 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00069
이 벤조플루오렌 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<포스핀옥사이드 유도체>
포스핀옥사이드 유도체는, 예를 들면, 하기 식(ETM-7-1)으로 표시되는 화합물이 있다. 상세한 것은 국제 공개 제2013/079217호 공보에도 기재되어 있다.
Figure pct00070
R5는, 치환 또는 무치환의, 탄소수 1∼20의 알킬, 탄소수 6∼20의 아릴 또는 탄소수5∼20의 헤테로아릴이며,
R6는, CN, 치환 또는 무치환의, 탄소수 1∼20의 알킬, 탄소수 1∼20의 헤테로알킬, 탄소수 6∼20의 아릴, 탄소수5∼20의 헤테로아릴, 탄소수 1∼20의 알콕시 또는 탄소수 6∼20의 아릴옥시이며,
R7 및 R8은, 각각 독립적으로, 치환 또는 무치환의, 탄소수 6∼20의 아릴 또는 탄소수5∼20의 헤테로아릴이며,
R9은 산소 또는 유황이며,
j는 0 또는 1이며, k는 0 또는 1이며, r은 0∼4의 정수이며, q는 1∼3의 정수이다.
여기서, 치환되어 있는 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬 등을 예로 들 수 있다.
포스핀옥사이드 유도체는, 예를 들면, 하기 식(ETM-7-2)으로 표시되는 화합물이라도 된다.
Figure pct00071
R1∼R3은, 동일할 수도 있고 상이할 수도 있으며, 수소, 알킬기, 시클로알킬기, 아랄킬기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 아미노기, 니트로기, 실릴기, 및 인접 치환기와의 사이에 형성되는 축합환 중에서 선택된다.
Ar1은, 동일할 수도 있고 상이할 수도 있으며, 알릴렌기 또는 헤테로알릴렌기가 있다. Ar2는, 동일할 수도 있고 상이할 수도 있으며, 아릴기 또는 헤테로아릴기가 있다. 단, Ar1 및 Ar2 중 적어도 한쪽은 치환기를 가지고 있거나, 또는 인접 치환기와의 사이에 축합환을 형성하고 있다. n은 0∼3의 정수이며, n이 0일 때 불포화 구조 부분은 존재하지 않고, n이 3일 때 R1은 존재하지 않는다.
이들 치환기 중, 알킬기는, 예를 들면, 메틸기, 에틸기, 프로필기, 부틸기 등의 포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 치환되어 있는 경우의 치환기로는 특별히 제한은 없으며, 예를 들면, 알킬기, 아릴기, 복소환기 등이 있으며, 이 점은, 이하의 기재에서도 공통된다. 또한, 알킬기의 탄소수는 특별히 한정되지 않지만, 입수의 용이성이나 비용면을 고려하면, 통상, 1∼20의 범위이다.
또한, 시클로알킬기는, 예를 들면, 시클로프로필, 시클로헥실, 노르보르닐, 아다만틸 등의 포화 지환식 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알킬기 부분의 탄소수는 특별히 한정되지 않지만, 통상, 3∼20의 범위이다.
또한, 아랄킬기는, 예를 들면, 벤질기, 페닐에틸기 등의 지방족 탄화수소를 통한 방향족 탄화 수소기를 나타내고, 지방족 탄화수소와 방향족 탄화수소는 모두 무치환이라도 되고 치환되어 있어도 된다. 지방족 부분의 탄소수는 특별히 한정되지 않지만, 통상, 1∼20의 범위이다.
또한, 알케닐기는, 예를 들면, 비닐기, 알릴기, 부타디에닐기 등의 2중 결합을 포함하는 불포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알케닐기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼20의 범위이다.
또한, 시클로알케닐기는, 예를 들면, 시클로펜테닐기, 시클로펜타디에닐기, 시클로헥센기 등의 2중 결합을 포함하는 불포화 지환식 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다.
또한, 알키닐기는, 예를 들면, 아세틸레닐기 등의 3중 결합을 포함하는 불포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알키닐기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼20의 범위이다.
또한, 알콕시기는, 예를 들면, 메톡시기 등의 에테르 결합을 통한 지방족 탄화 수소기를 나타내고, 지방족 탄화 수소기는 무치환이라도 되고 치환되어 있어도 된다. 알콕시기의 탄소수는 특별히 한정되지 않지만, 통상, 1∼20의 범위이다.
또한, 알킬 티오기는, 알콕시기의 에테르 결합의 산소 원자가 유황 원자로 치환된 것이다.
또한, 아릴에테르기는, 예를 들면, 페녹시기 등의 에테르 결합을 통한 방향족 탄화 수소기를 나타내고, 방향족 탄화 수소기는 무치환이라도 되고 치환되어 있어도 된다. 아릴에테르기의 탄소수는 특별히 한정되지 않지만, 통상, 6∼40의 범위이다.
또한, 아릴티오에테르기는, 아릴에테르기의 에테르 결합의 산소 원자가 유황 원자로 치환된 것이다.
또한, 아릴기는, 예를 들면, 페닐기, 나프틸기, 비페닐기, 페난트릴기, 터페닐기, 피레닐기 등의 방향족 탄화 수소기를 나타낸다. 아릴기는, 무치환이라도 되고 치환되어 있어도 된다. 아릴기의 탄소수는 특별히 한정되지 않지만, 통상, 6∼40의 범위이다.
또한, 복소환기는, 예를 들면, 퓨라닐기, 티오페닐기, 옥사졸릴기, 피리딜기, 퀴놀리닐기, 카르바졸릴기 등의 탄소 이외의 원자를 가지는 환형 구조기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 복소환기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼30의 범위이다.
할로겐은, 불소, 염소, 브롬, 요오드를 나타낸다.
알데히드기, 카르보닐기, 아미노기에는, 지방족 탄화수소, 지환식 탄화수소, 방향족 탄화 수소, 복소환 등으로 치환된 것도 포함할 수 있다.
또한, 지방족 탄화수소, 지환식 탄화수소, 방향족 탄화수소, 복소환은 무치환이라도 되고 치환되어 있어도 된다.
실릴기는, 예를 들면, 트리메틸실릴기 등의 규소 화합물기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 실릴기의 탄소수는 특별히 한정되지 않지만, 통상, 3∼20의 범위이다. 또한, 규소수는, 통상, 1∼6이다.
인접 치환기와의 사이에 형성되는 축합환은, 예를 들면, Ar1과 R2, Ar1과 R3, Ar2와 R2, Ar2와 R3, R2와 R3, Ar1과 Ar2 등의 사이에서 공역 또는 비공역의 축합환을 형성하는 것이다. 여기서, n이 1인 경우, 2개의 R1끼리 공역 또는 비공역의 축합환을 형성해도 된다. 이들 축합환은, 환내 구조에 질소, 산소, 유황 원자를 포함해도 되고, 또 다른 환과 축합해도 된다.
이 포스핀옥사이드 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00072
이 포스핀옥사이드 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<피리미딘 유도체>
피리미딘 유도체는, 예를 들면, 하기 식(ETM-8)으로 표시되는 화합물이며, 바람직하게는 하기 식(ETM-8-1)으로 표시되는 화합물이다. 상세한 것은 국제 공개 제2011/021689호 공보에도 기재되어 있다.
Figure pct00073
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 1∼4의 정수이며, 바람직하게는 1∼3의 정수이며, 보다 바람직하게는 2 또는 3이다.
「치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있으며, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-) 일 등을 예로 들 수 있다.
「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
이 피리미딘 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00074
이 피리미딘 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<카르바졸 유도체>
카르바졸 유도체는, 예를 들면, 하기 식(ETM-9)으로 표시되는 화합물, 또는 그것이 단결합 등으로 복수 결합한 다량체이다. 상세한 것은 미국 공개 공보2014/0197386호 공보에 기재되어 있다.
Figure pct00075
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 0∼4의 정수이며, 바람직하게는 0∼3의 정수이며, 보다 바람직하게는 0 또는 1이다.
치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있으며, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-) 일 등을 예로 들 수 있다.
「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
카르바졸 유도체는, 상기 식(ETM-9)으로 표시되는 화합물이 단결합 등으로 복수 결합한 다량체라도 된다. 이 경우에, 단결합 이외에, 아릴환(바람직하게는 다가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)과 결합되어 있어도 된다.
이 카르바졸 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00076
이 카르바졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<트리아진 유도체>
트리아진 유도체는, 예를 들면, 하기 식(ETM-10)으로 표시되는 화합물이며, 바람직하게는 하기 식(ETM-10-1)으로 표시되는 화합물이다. 상세한 것은 미국 공개 공보2011/0156013호 공보에 기재되어 있다.
Figure pct00077
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 1∼3의 정수이며, 바람직하게는 2 또는 3이다.
치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있으며, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-) 일 등을 예로 들 수 있다.
치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
이 트리아진 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure pct00078
이 트리아진 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<벤즈이미다졸 유도체>
벤즈이미다졸 유도체는, 예를 들면, 하기 식(ETM-11)으로 표시되는 화합물이다.
Figure pct00079
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이며, 「벤즈이미다졸계 치환기」는, 상기 식(ETM-2), 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 「피리딘계 치환기」 중의 피리딜기가 벤즈이미다졸기로 치환한 것이며, 벤즈이미다졸 유도체에 있어서의 1개 이상의 수소는 중수소로 치환되어 있어도 된다.
Figure pct00080
상기 벤즈이미다졸기에 있어서의 R11은, 수소, 탄소수 1∼24의 알킬, 탄소수 3∼12의 시클로알킬 또는 탄소수 6∼30의 아릴이며, 상기 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 R11의 설명을 인용할 수 있다.
φ는, 또한 안트라센환 또는 플루오렌환인 것이 바람직하고, 이 경우의 구조는 상기 식(ETM-2-1) 또는 식(ETM-2-2)의 것을 인용할 수 있고, 각 식 중의 R11∼R18은 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서 설명한 것을 인용할 수 있다. 또한, 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서는 2개의 피리딘계 치환기가 결합한 형태로 설명되고 있지만, 이들을 벤즈이미다졸계 치환기로 치환할 때는, 양쪽의 피리딘계 치환기를 벤즈이미다졸계 치환기로 치환해도 되고(즉 n=2), 어느 하나의 피리딘계 치환기를 벤즈이미다졸계 치환기로 치환하고 다른 쪽의 피리딘계 치환기를 R11∼R18로 치환해도 된다(즉 n=1). 또한, 예를 들면, 상기 식(ETM-2-1)에 있어서의 R11∼R18 중 하나 이상을 벤즈이미다졸계 치환기로 치환하고 「피리딘계 치환기」를 R11∼R18로 치환해도 된다.
이 벤즈이미다졸 유도체의 구체예로서는, 예를 들면 1-페닐-2-(4-(10-페닐안트라센-9-일)페닐)-1H-벤조[d]이미다졸, 2-(4-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 2-(3-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 5-(10-(나프탈렌-2-일)안트라센-9-일)-1,2-디페닐-1H-벤조[d]이미다졸, 1-(4-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-2-페닐-1H-벤조[d]이미다졸, 2-(4-(9,10-디(나프탈렌-2-일)안트라센-2-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 1-(4-(9,10-디(나프탈렌-2-일)안트라센-2-일)페닐)-2-페닐-1H-벤조[d]이미다졸, 5-(9,10-디(나프탈렌-2-일)안트라센-2-일)-1,2-디페닐-1H-벤조[d]이미다졸 등이 있다.
Figure pct00081
이 벤즈이미다졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<페난트롤린 유도체>
페난트롤린 유도체는, 예를 들면, 하기 식(ETM-12) 또는 식(ETM-12-1)으로 표시되는 화합물이다. 상세한 것은 국제 공개2006/021982호 공보에 기재되어 있다.
Figure pct00082
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이다.
각 식의 R11∼R18은, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이다. 또한, 상기 식(ETM-12-1)에 있어서는 R11∼R18 중 어느 하나가 아릴환인 φ와 결합한다.
각각의 페난트롤린 유도체에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 된다.
R11∼R18에 있어서의 알킬, 시클로알킬 및 아릴로서는, 상기 식(ETM-2)에 있어서의 R11∼R18의 설명을 인용할 수 있다. 또한, φ는 상기한 것 외에, 예를 들면, 이하의 구조식의 것이 있다. 그리고, 하기 구조식 중의 R은, 각각 독립적으로, 수소, 메틸, 에틸, 이소프로필, 시클로헥실, 페닐, 1-나프틸, 2-나프틸, 비페닐릴 또는 터페닐릴이다.
Figure pct00083
이 페난트롤린 유도체의 구체예로서는, 예를 들면 4,7-디페닐-1,10-페난트롤린, 2,9-디메틸-4,7-디페닐-1,10-페난트롤린, 9,10-디(1,10-페난트롤린-2-일)안트라센, 2,6-디(1,10-페난트롤린-5-일)피리딘, 1,3,5-트리(1,10-페난트롤린-5-일)벤젠, 9,9'-디플루오로-비(1,10-페난트롤린-5-일), 바소큐프로인이나 1,3-비스(2-페닐-1,10-페난트롤린-9-일)벤젠 등이 있다.
Figure pct00084
이 페난트롤린 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<퀴놀리놀계 금속 착체>
퀴놀리놀계 금속 착체는, 예를 들면, 하기 일반식(ETM-13)으로 표시되는 화합물이 있다.
Figure pct00085
식 중, R1∼R6는, 각각 독립적으로, 수소, 불소, 알킬, 아랄킬, 알케닐, 시아노, 알콕시 또는 아릴이며, M은 Li, Al, Ga, Be 또는 Zn이며, n은 1∼3의 정수이다.
퀴놀리놀계 금속 착체의 구체예로서는, 8-퀴놀리놀리튬, 트리스(8-퀴놀리놀레이트)알루미늄, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄, 트리스(5-메틸-8-퀴놀리놀레이트)알루미늄, 트리스(3,4-디메틸-8-퀴놀리놀레이트)알루미늄, 트리스(4,5-디메틸-8-퀴놀리놀레이트)알루미늄, 트리스(4,6-디메틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(4-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(4-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,3-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,6-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,4-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,5-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,5-디-tert-부틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,6-디페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,6-트리페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,6-트리메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,5,6-테트라메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(1-나프톨레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-나프톨레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(2-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(4-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3,5-디메틸페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3,5-디-tert-부틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-8-퀴놀리놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2,4-디메틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-4-에틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-4-에틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-4-메톡시-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-4-메톡시-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-5-시아노-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-5-시아노-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-5-트리플루오로메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-5-트리플루오로메틸-8-퀴놀리놀레이트)알루미늄, 비스(10-하이드록시벤조[h]퀴놀린)베릴륨 등을 들 수 있다.
이 퀴놀리놀계 금속 착체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<티아졸 유도체 및 벤조티아졸 유도체>
티아졸 유도체는, 예를 들면, 하기 식(ETM-14-1)으로 표시되는 화합물이다.
Figure pct00086
벤조티아졸 유도체는, 예를 들면, 하기 식(ETM-14-2)으로 표시되는 화합물이다.
Figure pct00087
각 식의 φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이며, 「티아졸계 치환기」나 「벤조티아졸계 치환기」는, 상기 식(ETM-2), 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 「피리딘계 치환기」 중의 피리딜기가 티아졸기나 벤조티아졸기로 치환한 것이며, 티아졸 유도체 및 벤조티아졸 유도체에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 된다.
Figure pct00088
φ는, 또한 안트라센환 또는 플루오렌환인 것이 바람직하고, 이 경우의 구조는 상기 식(ETM-2-1) 또는 식(ETM-2-2)의 것을 인용할 수 있고, 각 식 중의 R11∼R18은 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서 설명한 것을 인용할 수 있다. 또한, 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서는 2개의 피리딘계 치환기가 결합한 형태로 설명되고 있지만, 이들을 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환할 때는, 양쪽의 피리딘계 치환기를 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환해도 되고(즉 n=2), 어느 하나의 피리딘계 치환기를 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환하고 다른 쪽의 피리딘계 치환기를 R11∼R18로 치환해도 된다(즉 n=1). 또한, 예를 들면, 상기 식(ETM-2-1)에 있어서의 R11∼R18 중 하나 이상을 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환하고 「피리딘계 치환기」를 R11∼R18로 치환해도 된다.
이들 티아졸 유도체 또는 벤조티아졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
전자 수송층 또는 전자 주입층에는, 전자 수송층 또는 전자 주입층을 형성하는 재료를 환원할 수 있는 물질을 더 포함해도 된다. 이 환원성 물질은, 일정한 환원성을 가지는 것이면, 다양한 것이 사용되며, 예를 들면, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 하나 이상을 바람직하게 사용할 수 있다.
바람직한 환원성 물질로서는, Na(일함수 2.36eV), K(일함수 2.28eV), Rb(일함수 2.16eV) 또는 Cs(일함수 1.95eV) 등의 알칼리 금속이나, Ca(일함수 2.9eV), Sr(일함수 2.0∼2.5eV) 또는 Ba(일함수 2.52eV) 등의 알칼리토류 금속을 예로 들 수 있으며, 일함수가 2.9eV 이하인 것이 특히 바람직하다. 이들 중, 보다 바람직한 환원성 물질은, K, Rb 또는 Cs의 알칼리 금속이며, 더욱 바람직하게는 Rb 또는 Cs이며, 가장 바람직한 것은 Cs이다. 이들 알칼리 금속은, 특히 환원 능력이 높고, 전자 수송층 또는 전자 주입층을 형성하는 재료로의 비교적 소량의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다. 또한, 일함수가 2.9eV 이하인 환원성 물질로서, 이들 2종 이상의 알칼리 금속의 조합도 바람직하고, 특히, Cs를 포함한 조합, 예를 들면, Cs와 Na, Cs와 K, Cs와 Rb, 또는 Cs와 Na와 K의 조합이 바람직하다. Cs을 포함하는 것에 의해, 환원 능력을 효율적으로 발휘할 수 있고, 전자 수송층 또는 전자 주입층을 형성하는 재료로의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다.
<유기 전계 발광 소자에 있어서의 음극>
음극(108)은, 전자 주입층(107) 및 전자 수송층(106)을 통하여, 발광층(105)에 전자를 주입하는 역할을 하는 것이다.
음극(108)을 형성하는 재료로서는, 전자를 유기층에 효율적으로 주입할 수 있는 물질이면 특별히 한정되지 않지만, 양극(102)을 형성하는 재료와 동일한 것을 사용할 수 있다. 그 중에서도, 주석, 인듐, 칼슘, 알루미늄, 은, 동, 니켈, 크롬, 김, 백금, 철, 아연, 리튬, 나트륨, 칼륨, 세슘 및 마그네슘 등의 금속 또는 이들의 합금(마그네슘-은 합금, 마그네슘-인듐 합금, 불화 리튬/알루미늄 등의 알루미늄-리튬 합금 등) 등이 바람직하다. 전자 주입 효율을 높여 소자 특성을 향상시키기 위해서는, 리튬, 나트륨, 칼륨, 세슘, 칼슘, 마그네슘 또는 이들 낮은 일함수 금속을 포함하는 합금이 유효하다. 그러나, 이들 낮은 일함수 금속은 일반적으로 대기중에서 불안정한 경우가 많다. 이 점을 개선하기 위해, 예를 들면, 유기층에 미량의 리튬, 세슘이나 마그네슘을 도핑하여, 안정성이 높은 전극을 사용하는 방법이 알려져 있다. 그 외의 도판트로서는, 불화 리튬, 불화 세슘, 산화 리튬 및 산화 세슘과 같은 무기염도 사용할 수 있다. 다만, 이들로 한정되는 것은 아니다.
또한, 전극 보호를 위해 백금, 금, 은, 동, 철, 주석, 알루미늄 및 인듐 등의 금속, 또는 이들 금속을 사용한 합금, 그리고 실리카, 티타니아 및 질화 규소 등의 무기물, 폴리비닐알코올, 염화 비닐, 탄화수소계 고분자 화합물 등을 적층하는 것을, 바람직한 예로서 들 수 있다. 이들 전극의 제작법도, 저항 가열, 전자선 빔, 스퍼터링, 이온 플레이팅 및 코팅 등, 도통할 수 있다면, 특별히 한정되지 않는다.
<각 층에서 사용할 수도 있는 결착제>
이상의 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층에 사용되는 재료는 단독으로 각 층을 형성할 수 있지만, 고분자 결착제로서 폴리염화비닐, 폴리카보네이트, 폴리스티렌, 폴리(N-비닐카르바졸), 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리에스테르, 폴리술폰, 폴리페닐렌옥사이드, 폴리부타디엔, 탄화수소 수지, 케톤 수지, 페녹시 수지, 폴리아미드, 에틸 셀룰로오스, 아세트산 비닐 수지, ABS 수지, 폴리우레탄 수지 등의 용제 가용성 수지나, 페놀 수지, 크실렌 수지, 석유 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스테르 수지, 알키드 수지, 에폭시 수지, 실리콘 수지 등의 경화성 수지 등에 분산시켜 사용하는 것도 가능하다.
<유기 전계 발광 소자의 제작 방법>
유기 EL 소자를 구성하는 각 층은, 각 층을 구성할 재료를 증착법(蒸着法), 저항 가열 증착, 전자빔 증착, 스퍼터링, 분자 적층법, 인쇄법, 스핀 코팅법 또는 캐스팅법, 코팅법 등의 방법으로 박막으로 함으로써, 형성할 수 있다. 이와 같이 하여 형성된 각 층의 막 두께에 대해서는 특별히 한정되지 않고, 재료의 성질에 따라 적절하게 설정할 수 있지만, 통상 2 nm∼5000 nm의 범위이다. 막 두께는 통상, 수정 발진(發振)식 막 두께 측정 장치 등으로 측정할 수 있다. 증착법을 사용하여 박막화하는 경우, 그 증착 조건은, 재료의 종류, 막의 목적으로 하는 결정(結晶) 구조 및 회합 구조 등에 의해 따라 상이하다. 증착 조건은 일반적으로, 보트 가열 온도 +50∼+400 ℃, 진공도 10-6∼10- 3 Pa, 증착 속도 0.01∼50 nm/초, 기판 온도 -150∼+300 ℃, 막 두께 2nm∼5㎛의 범위에서 적절하게 설정하는 것이 바람직하다.
다음으로, 유기 EL 소자를 제작하는 방법의 일례로서, 양극/정공 주입층/정공 수송층/호스트 재료와 도판트 재료로 이루어지는 발광층/전자 수송층/전자 주입층/음극으로 이루어지는 유기 EL 소자의 제작법에 대하여 설명한다. 적절한 기판 상에, 양극 재료의 박막을 증착법 등에 의해 형성시켜 양극을 제작한 후, 이 양극 상에 정공 주입층 및 정공 수송층의 박막을 형성한다. 이 위에 호스트 재료와 도판트 재료를 공증착하여 박막을 형성시켜 발광층으로 하고, 이 발광층 상에 전자 수송층, 전자 주입층을 형성시키고, 또한 음극용 물질로 이루어지는 박막을 증착법 등에 의해 형성시켜 음극으로 함으로써, 목적으로 하는 유기 EL 소자를 얻을 수 있다. 그리고, 전술한 유기 EL 소자의 제작에 있어서는, 제작 순서를 반대로 하여, 음극, 전자 주입층, 전자 수송층, 발광층, 정공 수송층, 정공 주입층, 양극의 순서로 제작할 수도 있다.
이와 같이 하여 얻어진 유기 EL 소자에 직류 전압을 인가하는 경우에는, 양극을 +, 음극을 ―의 극성으로서 인가하면 되고, 전압 2∼40 V 정도를 인가하면, 투명 또는 반투명의 전극측(양극 또는 음극, 및 양쪽)으로부터 발광을 관측할 수 있다. 또한, 이 유기 EL 소자는, 펄스 전류나 교류 전류를 인가한 경우에도 발광한다. 그리고, 인가하는 교류의 파형은 임의로 할 수 있다.
<유기 전계 발광 소자의 응용예>
또한, 본 발명은, 유기 EL 소자를 구비한 표시 장치 또는 유기 EL 소자를 구비한 조명 장치 등에도 응용할 수 있다.
유기 EL 소자를 구비한 표시 장치 또는 조명 장치는, 본 실시형태에 따른 유기 EL 소자와 공지의 구동 장치를 접속하는 등 공지의 방법에 의해 제조할 수 있고, 직류 구동, 펄스 구동, 교류 구동 등 공지의 구동 방법을 적절하게 사용하여 구동할 수 있다.
표시 장치로서는, 예를 들면, 컬러 평판 디스플레이 등의 패널 디스플레이, 플렉시블 컬러 유기 전계 발광(EL) 디스플레이 등의 플렉시블 디스플레이 등이 있다(예를 들면, 일본 공개특허 평10-335066호 공보, 일본 공개특허 제2003-321546호 공보, 일본 공개특허 제2004-281086호 공보 등 참조). 또한, 디스플레이의 표시 방식으로서는, 예를 들면, 매트릭스 및/또는 세그먼트 방식 등이 있다. 그리고, 매트릭스 표시와 세그먼트 표시는 동일한 패널 중에 공존하고 있어도 된다.
매트릭스란, 표시를 위한 화소가 격자형이나 모자이크형 등 2차원적으로 배치된 것을 말하며, 화소의 집합으로 문자나 화상을 표시한다. 화소의 형상이나 사이즈는 용도에 따라 정해진다. 예를 들면, PC, 모니터, 텔레비전의 화상 및 문자 표시에는, 통상 1변 300㎛ 이하의 사각형의 화소가 사용되고, 또한, 표시 패널과 같은 대형 디스플레이의 경우에는, 1변이 mm 오더의 화소를 사용하게 된다. 흑백 표시의 경우에는, 동일한 색의 화소를 배열하는 것이 바람직하지만, 컬러 표시의 경우에는, 적, 녹, 청색 화소를 배열하여 표시시킨다. 이 경우에, 전형적으로는 델타 타입과 스트라이프 타입이 있다. 그리고, 이 매트릭스의 구동 방법으로서는, 선(線) 순차 구동 방법이나 액티브 매트릭스 중 어느 쪽이라도 된다. 선 순차 구동 쪽이 구조가 간단한 장점이 있지만, 동작 특성을 고려한 경우, 액티브 매트릭스 쪽이 우수한 경우가 있으므로, 이것도 용도에 따라 구분하여 사용할 필요가 있다.
세그먼트 방식(타입)에서는, 사전에 결정된 정보를 표시하도록 패턴을 형성하고, 결정된 영역을 발광시키게 된다. 예를 들면, 디지털 시계나 온도계에 있어서의 시각이나 온도 표시, 오디오 기기나 전자(電磁) 조리기 등의 동작 상태 표시 및 자동차의 패널 표시 등이 있다.
조명 장치로서는, 예를 들면, 실내 조명 등의 조명 장치, 액정 표시 장치의 백라이트 등이 있다(예를 들면, 일본 공개특허 제2003-257621호 공보, 일본 공개특허 제2003-277741호 공보, 일본 공개특허 제2004-119211호 공보 등 참조). 백라이트는, 주로 자발광하지 않는 표시 장치의 시인성(視認性)을 향상시킬 목적으로 사용되고, 액정 표시 장치, 시계, 오디오 장치, 자동차 패널, 표시판 및 표식 등에 사용된다. 특히, 액정 표시 장치, 중에서도 박형화가 과제로 되어 있는 PC 용도의 백라이트로서는, 종래 방식의 것이 형광등이나 도광판(導光板)으로 되어 있으므로, 박형화가 곤란한 것을 고려하면, 본 실시형태에 따른 발광 소자를 사용한 백라이트는 박형이며 경량인 것으로 특징으로 한다.
[실시예]
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이들로 한정되는 것은 아니다. 먼저, 다환 방향족 화합물 및 그의 다량체의 합성예에 대하여, 이하에서 설명한다.
합성예(1)
화합물(1-1152):9-([1,1'-비페닐]-4-일)-5,12-디페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure pct00089
질소 분위기 하, 디페닐아민(37.5g), 1-브로모-2,3-디클로로벤젠(50.0g), Pd-132(존슨매티(Johnson Matthey)(0.8g), NaOtBu(32.0g) 및 크실렌(500 ml)이 들어간 플라스크를 80℃에서 4시간 가열 교반한 후, 120℃까지 승온(昇溫)하고 3시간 더 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=1/20(용량비))로 정제하여, 2,3-디클로로-N,N-디페닐아닐린(63.0g)을 얻었다.
Figure pct00090
질소 분위기 하, 2,3-디클로로-N,N-디페닐아닐린(16.2g), 디([1,1'-비페닐]-4-일)아민(15.0g), Pd-132(존슨매티)(0.3g), NaOtBu(6.7g) 및 크실렌(150 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 쇼트 패스 컬럼(전개액: 가열한 톨루엔)으로 정제하고, 또한 헵탄/아세트산 에틸=1(용량비) 혼합 용매로 세정함으로써, N1,N1-디([1,1'-비페닐]-4-일)-2-클로로-N3,N3-디페닐벤젠-1,3-디아민(22.0g)을 얻었다.
Figure pct00091
N1,N1-디([1,1'-비페닐]-4-일)-2-클로로-N3,N3-디페닐벤젠-1,3-디아민(22.0g) 및 tert-부틸벤젠(130 ml)이 들어간 플라스크에, 질소 분위기 하, -30℃에서, 1.6 M의 tert-부틸리튬펜탄 용액(37.5 ml)을 가하였다. 적하(適下) 종료 후, 60℃까지 승온하고 1시간 교반한 후, tert-부틸벤젠보다 저비점(沸点)의 성분을 감압 하에서 증류 제거했다. -30℃까지 냉각하고 3브롬화 붕소(6.2 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 0℃까지 냉각하고 N,N-디이소프로필에틸아민(12.8 ml)을 가하고, 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 2시간 가열 교반하였다. 반응액을 실온까지 냉각하고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 쇼트 패스 컬럼(전개액: 가열한 클로로벤젠)으로 정제하였다. 환류(還流)한 헵탄 및 환류한 아세트산 에틸로 세정한 후, 또한 클로로벤젠으로부터 재침전시킴으로써, 식(1-1152)으로 표시되는 화합물(5.1g)을 얻었다.
Figure pct00092
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=9.17(s, 1H), 8.99(d, 1H), 7.95(d, 2H), 7.68-7.78(m, 7H), 7.60(t, 1H), 7.40-7.56(m, 10H), 7.36(t, 1H), 7.30(m, 2H), 6.95(d, 1H), 6.79(d, 1H), 6.27(d, 1H), 6.18(d, 1H).
합성예(2)
화합물(1-422): 5,9,11,15-테트라페닐-5,9,11,15-테트라하이드로-5,9,11,15-테트라아자-19b,20b-디보라나프토[3,2,1-de:1',2',3'-jk]펜타센의 합성
Figure pct00093
질소 분위기 하, 2,3-디클로로-N,N-디페닐아닐린(36.0g), N1,N3-디페닐벤젠-1,3-디아민(12.0g), Pd-132(존슨매티)(0.3g), NaOtBu(11.0g) 및 크실렌(150 ml)이 들어간 플라스크를 120℃에서 3시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄 혼합 용매)로 정제하였다. 이 때, 전개액 중의 톨루엔의 비율을 서서히 증가시켜 목적물을 용출시켰다. 또한 활성탄 컬럼 크로마토그래피(전개액: 톨루엔)로 정제함으로써, N1,N1 '-(1,3-페닐렌)비스(2-클로로-N1,N3,N3-트리페닐벤젠-1,3-디아민)(22.0g)를 얻었다.
Figure pct00094
N1,N1 '-(1,3-페닐렌)비스(2-클로로-N1,N3,N3-트리페닐벤젠-1,3-디아민)(22.0g) 및 tert-부틸벤젠(150 ml)이 들어간 플라스크에, 질소 분위기 하, -30℃에서, 1.6 M의 tert-부틸리튬펜탄 용액(42.0 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 5시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -30℃까지 냉각하고 3브롬화 붕소(7.6 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 0℃까지 냉각하고 N,N-디이소프로필에틸아민(18.9 ml)을 가하고, 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 2시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액을 가하고, 석출한 고체를 여과했다. 액을 분액하고, 유기층을 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=1(용량비))로 정제하였다. 용매를 감압 하에서 증류 제거하여 얻어진 고체를 클로로벤젠에 용해하고, 아세트산 에틸을 가함으로써 재침전시켜, 식(1-422)으로 표시되는 화합물(0.6g)을 얻었다.
Figure pct00095
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, DMSO-d6): δ=10.38(s, 1H), 9.08(d, 2H), 7.81(t, 4H), 7.70(t, 2H), 7.38-7.60(m, 14H), 7.30(t, 2H), 7.18(d, 4H), 6.74(d, 2H), 6.07(d, 2H), 6.02(d, 2H), 5.78(s, 1H).
합성예(3)
화합물(1-2620)의 합성
상기 합성예(2)의 정제 공정에서 식(1-422)으로 표시되는 화합물을 침전시킨 후, 흡인 여과에 의해 회수한 액을 활성탄 컬럼 크로마토그래피(전개액: 톨루엔)로 정제한 후, 용출액을 농축하고, 석출한 고형물을 헵탄으로 세정함으로써, 고체(0.3g)를 얻었다. 이 조작에 의해 얻어진 고체가 전술한 반응 공정에서 부생한 하기 식(1-2620)으로 표시되는 화합물인 것을, NMR 측정에 의해 확인하였다.
Figure pct00096
1H-NMR(400 MHz, DMSO-d6): δ=9.39(s, 1H), 8.35(d, 1H), 7.77(t, 2H), 7.69(m, 3H), 7.35-7.62(m, 12H), 7.28(m, 4H), 7.20(d, 6H), 7.09(d, 1H), 7.03(t, 1H), 6.96(t, 2H), 6.62(d, 1H), 6.55(s, 1H), 6.00(d, 2H).
합성예(4)
화합물(1-1159): N1-(5,9-디페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-일)-N1,N3,N3-트리페닐벤젠-1,3-디아민의 합성
Figure pct00097
식(1-422)으로 표시되는 화합물(0.6g)의 실리카겔 컬럼 크로마토 정제에 있어서, 상기 유도체를 포함하는 프랙션(fraction)을 분취하였다. 또한 환류한 헵탄으로 세정한 후, 클로로벤젠/아세트산 에틸로부터 재침전시킴으로써, 식(1-1159)으로 표시되는 화합물(1.1g)을 얻었다.
Figure pct00098
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, DMSO-d6): δ=8.78(d, 1H), 8.66(d, 1H), 7.69(t, 2H), 7.59(t, 1H), 7.59(t, 2H), 7.49(m, 2H), 7.40(d, 2H), 7.22-7.32(m, 10H), 7.18(t, 1H), 6.97-7.07(m, 9H), 6.89(d, 1H), 6.60-6.70(m, 4H), 6.11(s, 1H), 5.96(m, 2H).
합성예(5)
화합물(1-2679): 9-([1,1'-비페닐]-4-일)-N,N,5,12-테트라페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-아민의 합성
Figure pct00099
질소 분위기 하, N1,N1,N3-트리페닐벤젠-1,3-디아민(51.7g), 1-브로모-2,3-디클로로벤젠(35.0g), Pd-132(0.6g), NaOtBu(22.4g) 및 크실렌(350 ml)이 들어간 플라스크를 90℃에서 2시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비))로 정제함으로써, N1-(2,3-디클로로페닐)-N1,N3,N3-트리페닐벤젠-1,3-디아민(61.8g)을 얻었다.
Figure pct00100
질소 분위기 하, N1-(2,3-디클로로페닐)-N1,N3,N3-트리페닐벤젠-1,3-디아민(15.0g), 디([1,1'-비페닐]-4-일)아민(10.0g), Pd-132(0.2g), NaOtBu(4.5g) 및 크실렌(70 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 톨루엔을 가하여 분액했다. 이어서, 실리카겔 쇼트 패스 컬럼(전개액: 톨루엔)으로 정제하였다. 얻어진 유상물(油狀物)을 아세트산 에틸/헵탄 혼합 용매로 재침전시킴으로써, N1,N1-디([1,1'-비페닐]-4-일)-2클로로-N3-(3-(디페닐아미노)페닐)-N3-페닐벤젠-1,3-디아민(18.5g)을 얻었다.
Figure pct00101
N1,N1-디([1,1'-비페닐]-4-일)-2클로로-N3-(3-(디페닐아미노)페닐)-N3-페닐벤젠-1,3-디아민(18.0g) 및 tert-부틸벤젠(130 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.7 M의 tert-부틸리튬펜탄 용액(27.6 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 3시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(4.5 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(8.2 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 1시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 가열한 클로로벤젠에 용해시키고, 실리카겔 쇼트 패스 컬럼(전개액: 가열한 톨루엔)으로 정제하였다. 또한 클로로벤젠으로부터 재결정시킴으로써, 식(1-2679)으로 표시되는 화합물(3.0g)을 얻었다.
Figure pct00102
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=9.09(m, 1H), 8.79(d, 1H), 7.93(d, 2H), 7.75(d, 2H), 7.72(d, 2H), 7.67(m, 1H), 7.52(t, 2H), 7.40-7.50(m, 7H), 7.27-7.38(m, 2H), 7.19-7.26(m, 7H), 7.11(m, 4H), 7.03(t, 2H), 6.96(dd, 1H), 6.90(d, 1H), 6.21(m, 2H), 6.12(d, 1H).
합성예(6)
화합물(1-2676): 9-([1,1'-비페닐]-3-일)-N,N,5,11-테트라페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-아민의 합성
Figure pct00103
질소 분위기 하,[1,1'-비페닐]-3-아민(19.0g), 4-브로모-1,1'-비페닐(25.0g), Pd-132(0.8g), NaOtBu(15.5g) 및 크실렌(200 ml)이 들어간 플라스크를 120℃에서 6시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비))로 정제하였다. 용매를 감압 하에서 증류 제거하여 얻어진 고체를 헵탄으로 세정하고, 디([1,1'-비페닐]-3-일)아민(30.0g)을 얻었다.
Figure pct00104
질소 분위기 하, N1-(2,3-디클로로페닐)-N1,N3,N3-트리페닐벤젠-1,3-디아민(15.0g), 디([1,1'-비페닐]-3-일)아민(10.0g), Pd-132(0.2g), NaOtBu(4.5g) 및 크실렌(70 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비))로 정제하였다. 목적물을 포함하는 프랙션을 감압 하에서 증류 제거함으로써 재침전시켜, N1,N1-디([1,1'-비페닐]-3-일)-2-클로로-N3-(3-(디페닐아미노)페닐)-N3-페닐벤젠-1,3-디아민(20.3g)을 얻었다.
Figure pct00105
N1,N1-디([1,1'-비페닐]-3-일)-2-클로로-N3-(3-(디페닐아미노)페닐)-N3-페닐벤젠-1,3-디아민(20.0g) 및 tert-부틸벤젠(150 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.6 M의 tert-부틸리튬펜탄 용액(32.6 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(5.0 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(9.0 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 1.5시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5)로 정제하였다. 또한, 톨루엔/헵탄 혼합 용매, 클로로벤젠/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2676)으로 표시되는 화합물(5.0g)을 얻었다.
Figure pct00106
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.93(d, 1H), 8.77(d, 1H), 7.84(m, 1H), 7.77(t, 1H), 7.68(m, 3H), 7.33-7.50(m, 12H), 7.30(t, 1H), 7.22(m, 7H), 7.11(m, 4H), 7.03(m, 3H), 6.97(dd, 1H), 6.20(m, 2H), 6.11(d, 1H)).
합성예(7)
화합물(1-411): 5,9-디메틸-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure pct00107
N1,N3-디메틸-N1,N3-디페닐벤젠-1,3-디아민(2.9g)의 tert-부틸벤젠(20 ml) 용액에, 질소 분위기 하, 0℃에서 1.6 M의 n-부틸리튬헥산 용액(25.0 ml)을 가하였다. 100℃까지 승온하고 헥산을 증류 제거하고, 또한 21시간 가열 교반하였다. -40℃까지 냉각하고 THF(10 ml)를 가한 후, 3브롬화 붕소(1.9 ml)를 가하고, 1시간에 걸쳐 실온까지 승온한 후, 0℃까지 냉각하고 N,N-디이소프로필아민(5.2 ml)을 가하고, 플로리실 쇼트 패스 컬럼을 사용하여 여과했다. 용매를 감압 하에서 증류 제거 한 후, 아세토니트릴로 세정함으로써, 황녹색 고체로서 식(1-411)으로 표시되는 화합물(0.96g)을 얻었다.
Figure pct00108
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.73(dd, 2H), 7.75(t, 1H), 7.67(m, 2H), 7.57(dd, 2H), 7.29(m, 2H), 7.00(d, 2H), 3.91(s, 6H).
합성예(8)
화합물(1-447): N,N,5,9-테트라페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-7-아민의 합성
Figure pct00109
질소 분위기 하, N1,N1,N3,N3,N5,N5-헥사페닐-1,3,5-벤젠트리아민(11.6g, 20 mmol) 및 o-디클로로벤젠(120 ml)이 들어간 플라스크에, 실온에서 3브롬화 붕소(3.78 ml, 40 mmol)를 가한 후, 170℃에서 48시간 가열 교반하였다. 그 후, 60℃에서 감압 하, 반응 용액을 증류 제거했다. 플로리실 쇼트 패스 컬럼을 사용하여 여과하고, 용매를 감압 하에서 증류 제거하여 조(粗)생성물을 얻었다. 헥산을 사용하여 조생성물을 세정함으로써, 황색 고체인 식(1-447)으로 표시되는 화합물(11.0g)을 얻었다.
Figure pct00110
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.89(dd, 2H), 7.47(t, 4H), 7.39(m, 4H), 7.24(m, 6H), 7.10(m, 4H), 6.94(m, 6H), 6.72(d, 2H), 5.22(m, 2H).
또한, N1,N1,N3,N3,N5,N5-헥사페닐벤젠-1,3,5-트리아민(11.6g, 20 mmol) 및 오르토디클로로벤젠(ODCB, 120 mL)에, 질소 분위기 하, 실온에서 3브롬화 붕소(3.78 mL, 40 mmol)를 가한 후, 170℃에서 48시간 가열 교반하였다. 그 후, 60℃에서 감압 하, 반응 용액을 증류 제거했다. 플로리실 쇼트 패스 컬럼을 사용하여 여과하고, 용매를 감압 하에서 증류 제거하여 조생성물을 얻었다. 헥산을 사용하여 조생성물을 세정함으로써, 황색 고체로서 식(1-447)으로 표시되는 화합물을 얻었다(11.0g, 수율 94%).
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H NMR(400 MHz, CDCl3) δ 5.62(brs, 2H), 6.71(d, 2H), 6.90-6.93(m, 6H), 7.05-7.09(m, 4H), 7.20-7.27(m, 6H), 7.33-7.38(m, 4H), 7.44-7.48(m, 4H), 8.90(dd, 2H)
13C NMR(101 MHz, CDCl3) δ 98.4(2C), 116.8(2C), 119.7(2C), 123.5(2C), 125.6(4C), 128.1(2C), 128.8(4C), 130.2(4C), 130.4(2C), 130.7(4C), 134.8(2C), 142.1(2C), 146.6(2C), 147.7(2C), 147.8(2C), 151.1
합성예(9)
화합물(1-401): 5,9-디페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure pct00111
질소 분위기 하, 디페닐아민(66.0g), 1-브로모-2,3-디클로로벤젠(40.0g), Pd-132(존슨매티)(1.3g), NaOtBu(43.0g) 및 크실렌(400 ml)이 들어간 플라스크를 80℃에서 2시간 가열 교반한 후, 120℃까지 승온하고 3시간 더 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하고, 석출한 고체를 흡인 여과에 의해 채취하였다. 이어서, 실리카겔 쇼트 패스 컬럼(전개액: 가열한 톨루엔)으로 정제하였다. 용매를 감압 하에서 증류 제거하여 얻어진 고체를 헵탄으로 세정함으로써 2-클로로-N1,N1,N3,N3-테트라페닐벤젠-1,3-디아민(65.0g)을 얻었다.
Figure pct00112
2-클로로-N1,N1,N3,N3-테트라페닐벤젠-1,3-디아민(20.0g) 및 tert-부틸벤젠(150 ml)이 들어간 플라스크에, 질소 분위기 하, -30℃에서, 1.7 M의 tert-부틸리튬펜탄 용액(27.6 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -30℃까지 냉각하고 3브롬화 붕소(5.1 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 0℃까지 냉각하고 N,N-디이소프로필에틸아민(15.6 ml)을 가하고, 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 3시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 헵탄을 가하여 분액했다. 이어서, 실리카겔 쇼트 패스 컬럼(첨가액: 톨루엔)으로 정제한 후, 용매를 감압 하에서 증류 제거하여 얻어진 고체를 톨루엔에 용해하고, 헵탄을 가하여 재침전시켜, 식(1-401)으로 표시되는 화합물(6.0g)을 얻었다.
Figure pct00113
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.94(d, 2H), 7.70(t, 4H), 7.60(t, 2H), 7.42(t, 2H), 7.38(d, 4H), 7.26(m, 3H), 6.76(d, 2H), 6.14(d, 2H).
합성예(10) 및 합성예(11)
화합물(1-2657): 3,7-디페닐-3,7-디하이드로-3,7-디아자-11b-보라나프토[3,2,1-no]테트라펜의 합성
Figure pct00114
화합물(1-2699): 9-(나프탈렌-2-일)-5-페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure pct00115
질소 분위기 하, 2,3-디클로로-N,N-디페닐아닐린(15.0g), N-페닐나프탈렌-1-아민(10.0g), Pd-132(0.3g), NaOtBu(6.9g) 및 크실렌(100 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 쇼트 패스 컬럼(전개액: 톨루엔/헵탄=1/1(용량비))으로 정제하고, 또한 헵탄 용매로 재침전시킴으로써, 2-클로로-N1-(나프탈렌-2-일)-N1,N3,N3-트리페닐벤젠-1,3-디아민(18.0g)을 얻었다.
Figure pct00116
2-클로로-N1-(나프탈렌-2-일)-N1,N3,N3-트리페닐벤젠-1,3-디아민(18.0g) 및 tert-부틸벤젠(150 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.6 M의 tert-부틸리튬펜탄 용액(45.3 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(6.8 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(12.5 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 1시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=3/7)로 정제하였다. 또한 가열한 헵탄으로 세정한 후, 또한 톨루엔/아세트산 에틸 혼합 용액으로부터 재침전시킴으로써, 식(1-2657)으로 표시되는 화합물(3.2g)을 얻었다. 또한, 이 재침전액을 활성탄 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=1/1)로 정제한 후, 헵탄/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2699)으로 표시되는 화합물(0.1g)을 얻었다.
Figure pct00117
NMR 측정에 의해 얻어진 화합물(1-2657)의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.94(m, 1H), 8.50(d, 1H), 7.80(m, 1H), 7.77(d, 1H), 7.70(m, 4H), 7.61(m, 2H), 7.46(m, 2H), 7.35-7.44(m, 5H), 7.25(m, 1H), 7.03(t, 1H), 6.95(d, 1H), 6.77(d, 1H), 6.23(d, 1H), 6.18(d, 1H).
NMR 측정에 의해 얻어진 화합물(1-2699)의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.97(m, 2H), 8.18(d, 1H), 8.03(d, 1H), 7.92(m, 2H), 7.70(t, 2H), 7.56-66(m, 3H), 7.36-48(m, 5H), 7.20-7.32(m, 3H), 6.78(t, 2H), 6.15(m, 2H).
합성예(12)
화합물(1-2680):N3,N3,N11,N11,5,9-헥사페닐-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3,11-디아민의 합성
Figure pct00118
질소 분위기 하, 3-니트로아닐린(25.0g), 요오드벤젠(81.0g), 요오드화 구리(3.5g), 탄산 칼륨(100.0g) 및 오르토디클로로벤젠(250 ml)이 들어간 플라스크를 환류 온도에서 14시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 암모니아수를 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=3/7(용량비))로 정제함으로써, 3-니트로-N,N-디페닐아닐린(44.0g)을 얻었다.
Figure pct00119
질소 분위기 하, 빙욕으로 냉각한 아세트산을 가하고 교반하였다. 이 용액에, 3-니트로-N,N-디페닐아닐린(44.0g)을 반응 온도가 현저하게 상승하지 않을 정도로 분할하여 첨가하였다. 첨가 종료 후, 실온에서 30분간 교반하고, 원료의 소실을 확인하였다. 반응 종료 후, 상청액을 디캔테이션(decantation)에 의해 채취하고 탄산 나트륨으로 중화하고, 아세트산 에틸로 추출하였다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=9/1(용량비))로 정제하였다. 목적물이 들어간 프랙션으로부터 용매를 감압 하에서 증류 제거하고, 헵탄을 가함으로써 재침전시켜, N1,N1-디페닐벤젠-1,3-디아민(36.0g)을 얻었다.
Figure pct00120
질소 분위기 하, N1,N1-디페닐벤젠-1,3-디아민(60.0g), Pd-132(1.3g), NaOtBu(33.5g) 및 크실렌(300 ml)이 들어간 플라스크를 120℃에서 가열 교반하였다. 이 용액에, 브로모벤젠(36.2g)의 크실렌(50 ml) 용액을 천천히 적하하고, 적하 종료 후, 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비))로 정제함으로써, N1,N1,N3-트리페닐벤젠-1,3-디아민(73.0g)을 얻었다.
Figure pct00121
질소 분위기 하, N1,N1,N3-트리페닐벤젠-1,3-디아민(20.0g), 1-브로모-2,3-디클로로벤젠(6.4g), Pd-132(0.2g), NaOtBu(6.8g) 및 크실렌(70 ml)이 들어간 플라스크를 120℃에서 2시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제함으로써, N1,N1 '-(2-클로로-1,3-페닐렌)비스(N1,N3,N3-트리페닐벤젠-1,3-디아민)(15.0g)를 얻었다.
Figure pct00122
N1,N1 '-(2-클로로-1,3-페닐렌)비스(N1,N3,N3-트리페닐벤젠-1,3-디아민)(12.0g) 및 tert-부틸벤젠(100 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.7 M의 tert-부틸리튬펜탄 용액(18.1 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(2.9 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(5.4 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 3시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하고, 불용성의 고체를 여과한 후 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5)로 정제하였다. 또한 가열한 헵탄, 아세트산 에틸로 세정한 후, 톨루엔/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2680)으로 표시되는 화합물(2.0g)을 얻었다.
Figure pct00123
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.65(d, 2H), 7.44(t, 4H), 7.33(t, 2H), 7.20(m, 12H), 7.13(t, 1H), 7.08(m, 8H), 7.00(t, 4H), 6.89(dd, 2H), 6.16(m, 2H), 6.03(d, 2H).
합성예(13) 및 합성예(14)
화합물(1-2681): N,N,5,9,11-펜타페닐-9,11-디하이드로-5H-5,9,11-트리아자 16b-보라인데노[2,1-b]나프토[1, 2,3-fg]안트라센-3-아민의 합성
Figure pct00124
화합물(1-2682): N,N,5-트리페닐-9-(9-페닐-9H-카르바졸-2-일)-5,9-디하이드로-5H-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-아민의 합성
Figure pct00125
질소 분위기 하, 2-브로모-9-페닐-9H-카르바졸(10.0g), 아닐린(3.5g), Pd-132(0.2g), NaOtBu(4.5g) 및 크실렌(100 ml)이 들어간 플라스크를 120℃에서 4시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액하고, 또한 유기층을 희염산으로 세정하여, 미반응의 아닐린을 제거하였다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제함으로써, N,9-디페닐-9H-카르바졸-2-아민(10.4g)을 얻었다.
Figure pct00126
질소 분위기 하, N1-(2,3-디클로로페닐)-N1,N3,N3-트리페닐벤젠-1,3-디아민(14.0g), N,9-디페닐-9H-카르바졸-2-아민(10.4g), Pd-132(0.2g), NaOtBu(4.1g) 및 크실렌(90 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 톨루엔을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제함으로써, 2-클로로-N1-(3-(디페닐아미노)페닐)-N1,N3-디페닐-N3-(9-페닐-9H-카르바졸-2-일)벤젠-1,3-디아민(18.5g)을 얻었다.
Figure pct00127
2-클로로-N1-(3-(디페닐아미노)페닐)-N1,N3-디페닐-N3-(9-페닐-9H-카르바졸-2-일)벤젠-1,3-디아민(18.0g) 및 tert-부틸벤젠(100 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.7 M의 tert-부틸리튬펜탄 용액(27.2 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 3시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(4.4 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(8.1 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 1시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액 및 아세트산 에틸을 가함으로써 석출한 침전을 흡인 여과에 의해 채취하였다. 이어서, 가열한 클로로벤젠에 용해시키고, 실리카겔 쇼트 패스 컬럼(전개액: 가열한 톨루엔)으로 정제하였다. 가열한 헵탄으로 세정한 후, 클로로벤젠/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2681)으로 표시되는 화합물(3.0g)을 얻었다.
반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액 및 아세트산 에틸을 가함으로써 석출한 침전을 채취했을 때의 여과액을, 활성탄 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비)), 이어서 실리카겔 컬럼 크로마토그래피(톨루엔/헵탄=4/6(용량비))로 정제하였다. 또한 헵탄/아세트산 에틸 혼합 용매, 이어서 헵탄/톨루엔 혼합 용매로 재침전시킴으로써, 식(1-2682)으로 표시되는 화합물(0.6g)을 얻었다.
Figure pct00128
NMR 측정에 의해 얻어진 화합물(1-2681)의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=9.57(s, 1H), 8.93(d, 1H), 8.26(d, 1H), 7.61(t, 2H), 7.10-7.50(m, 25H), 7.04(m, 3H), 6.59(s, 1H), 6.25(m, 1H), 6.10(t, 2H).
NMR 측정에 의해 얻어진 화합물(1-2682)의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.86(d, 1H), 8.73(d, 1H), 8.43(d, 1H), 8.24(d, 1H), 7.31-7.56(m, 13H), 7.29(dd, 1H), 7.12-24(m, 8H), 7.10(m, 4H), 7.02(t, 2H), 6.94(dd, 1H), 6.79(d, 1H), 6.16(m, 2H), 6.07(d, 1H).
합성예(15)
화합물(1-2626): 12-메틸-N,N,5-트리페닐-9-(p-톨릴)-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-아민의 합성
Figure pct00129
질소 분위기 하, N1-(2,3-디클로로페닐)-N1,N3,N3-트리페닐벤젠-1,3-디아민(15.0g), 디-p-톨릴아민(6.1g), Pd-132(0.2g), NaOtBu(4.5g) 및 크실렌(70 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제하였다. 목적물을 포함하는 프랙션을 감압 하에서 증류 제거함으로써 재침전시켜, 2-클로로-N1-(3-(디페닐아미노)페닐)-N1-페닐-N3,N3-디-p-톨릴벤젠-1,3-디아민(15.0g)을 얻었다.
Figure pct00130
2-클로로-N1-(3-(디페닐아미노)페닐)-N1-페닐-N3,N3-디-p-톨릴벤젠-1,3-디아민(15.0g) 및 tert-부틸벤젠(100 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.6 M의 tert-부틸리튬펜탄 용액(29.2 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(4.4 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(8.1 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 2시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6)로 정제하였다. 또한 가열한 헵탄으로 세정한 후, 톨루엔/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2626)으로 표시되는 화합물(2.0g)을 얻었다.
Figure pct00131
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.74(d, 1H), 8.64(m, 1H), 7.42-7.50(m, 4H), 7.35(t, 1H), 7.15-7.25(m, 10H), 7.10(d, 4H), 7.02(t, 2H), 7.94(dd, 1H), 6.68(d, 1H), 6.20(m, 1H), 6.11(d, 1H), 6.04(d, 1H), 2.52(s, 3H), 2.48(s, 3H).
합성예(16)
화합물(1-2683): 5-([1,1'-비페닐]-4-일)-N,N,9-트리페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-3-아민의 합성
Figure pct00132
질소 분위기 하, N1,N1-디페닐벤젠-1,3-디아민(12.0g), 4-브로모-1,1'-비페닐(30.2g), Pd-132(0.3g), NaOtBu(6.6g) 및 크실렌(100 ml)이 들어간 플라스크를 100℃에서 2시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제하였다. 용매를 감압 하에서 증류 제거하여 얻어진 고체를 헵탄으로 세정하고, N1,([1,1'-비페닐]-4-일)-N3,N3-디페닐벤젠-1,3-디아민(17.4g)을 얻었다.
Figure pct00133
질소 분위기 하, 2,3-디클로로-N,N-디페닐아닐린(12.0g), N1,([1,1'-비페닐]-4-일)-N3,N3-디페닐벤젠-1,3-디아민(15.0g), Pd-132(0.3g), NaOtBu(5.5g) 및 크실렌(100 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6(용량비))로 정제함으로써, N1-([1,1'-비페닐]-4-일)-2-클로로-N1-(3-(디페닐아미노)페닐)-N3,N3-디페닐벤젠-1,3-디아민(20.2g)을 얻었다.
Figure pct00134
N1-([1,1'-비페닐]-4-일)-2-클로로-N1-(3-(디페닐아미노)페닐)-N3,N3-디페닐벤젠-1,3-디아민(16.0g) 및 tert-부틸벤젠(100 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.6 M의 tert-부틸리튬펜탄 용액(26.1 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(4.0 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(8.1 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 2시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가함으로써 석출한 침전을 흡인 여과에 의해 채취하였다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=4/6)로 정제하였다. 가열한 헵탄으로 세정한 후, 클로로벤젠/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2683)으로 표시되는 화합물(2.7g)을 얻었다.
Figure pct00135
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.87(d, 1H), 8.74(d, 1H), 7.68(t, 2H), 7.64(d, 2H), 7.58(m, 3H), 7.50(t, 2H), 7.36-7.44(m, 4H), 7.16-7.28(m, 8H), 7.10(m, 4H), 6.97(m, 3H), 6.72(d, 1H), 6.22(m, 2H), 6.10(d, 1H).
합성예(17)
화합물(1-2691): 16-페닐-16H-8-옥사-12b,16-디아자-4b-보라디벤조[a,j]페릴렌의 합성
Figure pct00136
질소 분위기 하, 2,3-디클로로-N,N-디페닐아닐린(18.0g), 10H-페녹사진(15.0g), Pd-132(0.4g), NaOtBu(8.3g) 및 크실렌(100 ml)이 들어간 플라스크를 120℃에서 1시간 가열 교반하였다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔)로 정제했다. 목적물을 포함하는 프랙션으로부터 용매를 감압 하에서 증류 제거하고, 헵탄을 가함으로써 재침전시켜, 2-클로로-3-(10H-페녹사진-10-일)-N,N-디페닐아닐린(23.0g)을 얻었다.
Figure pct00137
2-클로로-3-(10H-페녹사진-10-일)-N,N-디페닐아닐린(20.0g) 및 tert-부틸벤젠(150 ml)이 들어간 플라스크에, 질소 분위기 하, 빙욕으로 냉각하면서, 1.6 M의 tert-부틸리튬펜탄 용액(54.0 ml)을 가하였다. 적하 종료 후, 60℃까지 승온하고 3시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -50℃까지 냉각하고 3브롬화 붕소(8.2 ml)를 가하고, 실온까지 승온하고 0.5시간 교반하였다. 그 후, 다시 빙욕으로 냉각하고 N,N-디이소프로필에틸아민(15.1 ml)을 가하였다. 발열이 식을 때까지 실온에서 교반한 후, 120℃까지 승온하고 2시간 가열 교반하였다. 반응액을 실온까지 냉각시키고, 빙욕으로 차게 한 아세트산 나트륨 수용액, 이어서 아세트산 에틸을 가하여 분액했다. 이어서, 실리카겔 컬럼 크로마토그래피(전개액: 톨루엔/헵탄=3/7)로 정제하고, 활성탄 크로마토그래피(전개액: 톨루엔/헵탄=5/5(용량비))로 더 정제하였다. 클로로벤젠/아세트산 에틸 혼합 용매로 재침전시킴으로써, 식(1-2691)으로 표시되는 화합물(2.8g)을 얻었다.
Figure pct00138
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ=8.73(d, 1H), 8.20(d, 1H), 7.65-7.80(m, 3H), 7.56-7.64(d, 2H), 7.38-7.54(m, 3H), 7.20-7.37(m, 3H), 7.16(m, 1H), 7.11(m, 1H), 7.05(t, 1H), 6.97(t, 1H), 6.77(d, 1H), 6.27(d, 1H)).
합성예(18)
화합물(1-2662): 2,12-디메틸-N,N,5,9-테트라-p-톨릴-5,13-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-7-아민의 합성
Figure pct00139
먼저, N1,N1,N3,N3,N5,N5-헥사키스(4-메틸페닐)-1,3,5-벤젠트리아민(16.6g, 25 mmol) 및 o-디클로로벤젠(150 ml)에 질소 분위기 하, 실온에서 3브롬화 붕소(4.73 ml, 50 mmol)를 가한 후, 170℃에서 20시간 가열 교반하였다. 그 후, 60℃에서 감압 하, 반응 용액을 증류 제거했다. 플로리실 쇼트 패스 컬럼을 사용하여 여과하고, 용매를 감압 하에서 증류 제거하여 조생성물을 얻었다. 헥산을 사용하여 그 조생성물을 세정하고, 얻어진 고체에 대하여 톨루엔을 사용하여 세정함으로써 황색 고체로서 식(1-2662)으로 표시되는 화합물(8.08g)을 얻었다.
Figure pct00140
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ = 2.27(s, 6H), 2.39(s, 6H), 2.50(s, 6H), 5.48(brs, 2H), 6.68(d, 2H), 6.83(ddd, 4H), 6.89(ddd, 4H), 7.07(ddd, 4H), 7.17(dd, 2H), 7.25(ddd, 4H), 8.68(sd, 2H).
13C-NMR(101 MHz, CDCl3): δ = 20.78(2C), 21.06(2C), 21.11(2C), 96.5(2C), 116.7(2C), 126.0(4C), 128.2(2C), 129.3(4C), 129.9(4C), 131.1(4C), 131.3(2C), 133.0(2C), 134.6(2C), 137.6(2C), 139.8(2C), 143.9(2C), 145.9(2C), 148.0(2C), 151.0.
합성예(19)
화합물(1-2665): 9,11-디페닐-4b,11,15b,19b-테트라하이드로-9H-9,11,19b-트리아자-4b,15b-디보라벤조[3,4]페난트로[2,1, 10,9-fghi]펜타센의 합성
Figure pct00141
먼저, N,N,5,9-테트라페닐-5,13-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센-7-아민(0.294g, 0.5 mmol) 및 o-디클로로벤젠(3.0 ml)에, ㅇ오토클레이브 내, 질소 분위기 하, 실온에서 3브롬화 붕소(0.142 ml, 1.5 mmol)를 가한 후, 260℃에서 48시간 가열 교반하였다. 그 후, N,N-디이소프로필에틸아민(0.775 ml, 4.5 mmol)을 가하고, 플로리실 쇼트 패스 컬럼을 사용하여 여과하고, 용매를 감압 하에서 증류 제거하여 조생성물을 얻었다.아세트산 에틸을 사용하여 조생성물을 세정함으로써, 황색 고체로서 식(1-2665)으로 표시되는 화합물(0.118g)을 얻었다.
Figure pct00142
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ = 5.24(s, 1H), 6.81(d, 2H), 7.12-7.18(m, 6H), 7.34(td, 2H), 7.41-7.49(m, 8H), 7.45(ddd, 2H), 8.31(dd, 2H), 8.81(dd, 2H), 8.91(dd, 2H).
HRMS (DART) m/z [M+H] Calcd for C42H28B2N3596.2483, observed 596.2499.
합성예(20)
화합물(1-2678): 3,6,14,17-테트라메틸-9,11-디-p-톨릴-4b,11,15b,19b-테트라하이드로-9H-9,11,19b-트리아자-4b,15b-디보라벤조[3,4]페난트로[2,1,10,9-fghi]펜타센의 합성
Figure pct00143
먼저, N1,N1,N3,N3,N5,N5-헥사키스(4-메틸페닐)-1,3,5-벤젠트리아민(0.322g, 0.5 mmol) 및 o-디클로로벤젠(3.0 ml)에, 오토클레이브 내, 질소 분위기 하, 실온에서 트리페닐보란(0.730g, 3.0 mmol), 3브롬화 붕소(0.284 ml, 3.0 mmol)를 가한 후, 260℃에서 20시간 가열 교반하였다. 그 후, N,N-디이소프로필에틸아민(1.55 ml, 9.1 mmol)을 가하여, 플로리실 쇼트 패스 컬럼을 사용하여 여과하고, 용매를 감압 하에서 증류 제거하여 조생성물을 얻었다. 헥산을 사용하여 그 조생성물을 세정하고, 얻어진 고체에 대하여 아세트산 에틸을 사용하여 세정함으로써, 황색 고체로서 식(1-2678)으로 표시되는 화합물(0.188g)을 얻었다.
Figure pct00144
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(400 MHz, CDCl3): δ = 2.45(s, 6H), 2.65(s, 6H), 2.58(s, 6H), 5.24(brs, 1H), 6.74(d, 2H), 6.97(d, 4H), 7.15-7.27(m, 6H), 7.34(dd, 2H), 8.18(d, 2H), 8.58(d, 2H), 8.68(d, 2H).
HRMS (DART) m/z [M+H] Calcd for C48H40B2N3680.3424, observed 680.3404.
이하에서, 본 발명을 보다 상세하게 설명하기 위해, 본 발명의 화합물을 사용한 유기 EL 소자의 실시예를 나타내지만, 본 발명은 이들로 한정되는 것은 아니다.
실시예 1∼14 및 비교예 1∼6에 따른 유기 EL 소자를 제작하고, 각각 1000cd/m2 발광 시의 특성인 전압(V), 발광 파장(nm), CIE 색도(x, y), 외부 양자 효율(%)을 측정하였다.
발광 소자의 양자 효율에는, 내부 양자 효율과 외부 양자 효율이 있으며, 발광 소자의 발광층에 전자(또는 정공)로서 주입되는 외부 에너지가 순수하게 광자로 변환되는 비율을 나타낸 것이 내부 양자 효율이다. 한편, 이 광자가 발광 소자의 외부로까지 방출된 양에 기초하여 산출되는 것이 외부 양자 효율이며, 발광층에 있어서 발생한 광자는, 그 일부가 발광 소자의 내부에서 흡수되거나 또는 계속 반사되어, 발광 소자의 외부로 방출되지 않으므로 외부 양자 효율은 내부 양자 효율보다 낮아진다.
외부 양자 효율의 측정 방법은 다음과 같다. 어드반테스트사에서 제조한 전압/전류 발생기 R6144를 사용하여, 소자의 휘도가 1000cd/m2가 되는 전압을 인가하여 소자를 발광시켰다. TOPCON사에서 제조한 분광 방사 휘도계 SR-3AR을 사용하여, 발광면에 대하여 수직 방향으로부터 가시광 영역의 분광 방사 휘도를 측정하였다.발광면이 완전 확산면인 것으로 가정하여, 측정한 각 파장 성분의 분광 방사 휘도의 값을 파장 에너지로 나누고 π를 곱한 수치가 각 파장에 있어서의 포톤(photon)수이다. 이어서, 관측한 전체 파장 영역에서 포톤수를 적산하여, 소자로부터 방출된 전체 포톤 수로 했다. 인가 전류값을 소전하(素電荷)로 나눈 수치를 소자에 주입한 캐리어 수로 하고, 소자로부터 방출된 전체 포톤수를 소자에 주입한 캐리어 수로 나눈 수치가 외부 양자 효율이다.
제작한 실시예 1∼14 및 비교예 1∼6에 따른 유기 EL 소자에 있어서의 각 층의 재료 구성, 및 EL 특성 데이터를 하기 표 1에 나타내었다.
[표 1]
Figure pct00145
표 1에 있어서, 「HI」(정공 주입층 재료)는 N4,N4 '-디페닐-N4,N4 '-비스(9-페닐-9H-카르바졸-3-일)-[1,1'-비페닐]-4,4'-디아민이며, 「HAT-CN」(정공 주입층 재료)은 1,4,5,8,9,12-헥사아자트리페닐렌헥사카르보니트릴이며, 「HT」(정공 수송층 재료)는 N-([1,1'-비페닐]-4-일)-N-(4-(9-페닐-9H-카르바졸-3-일)페닐)-[1,1'-비페닐]-4-아민이며, 「ET-1」(전자 수송층 재료)은 9-(7-(디메시틸보릴)-9,9-디메틸-9H-플루오렌-2-일)-3,6-디메틸-9H-카르바졸이며, 「ET-2」(전자 수송층 재료)는 5,5'-[(2-페닐안트라센-9,10-디일)비스(3,1-페닐렌)]비스(3-메틸피리딘)이며, 「ET-3」(전자 수송층 재료)는 5,5"-(2-페닐안트라센-9,10-디일)디-2,2'-비피리딘이며, 「ET-4」(전자 수송층 재료)는 3-(3-(6-(9,9-디메틸-9H-플루오렌-2-일)나프탈렌-2일)페닐)플루오란텐이며, 「ET-5」(전자 수송층 재료)는 9-(5,9-디옥사-13b-보라나프토[3,2,1-de]안트라센-7-일)-9H-카르바졸이며이다. 「Liq」와 함께 이하에 화학 구조를 나타낸다.
Figure pct00146
또한, 표 1에 있어서, H-101∼H106은 비교예에서 사용한 호스트 재료이며, 각각 이하의 화학 구조를 가진다.
Figure pct00147
<실시예 1>
<화합물(3-1)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
스퍼터링에 의해 180 nm의 두께로 제막한 ITO를 150 nm까지 연마한, 26 mm×28 mm×0.7 mm의 유리 기판((주)오프토사이언스 제조)을 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판중인 증착 장치(쇼와 진공(주) 제조)의 기판 홀더에 고정하고, HI(정공 주입층 재료)를 넣은 몰리브덴제 증착용 보트, HAT-CN(정공 주입층 재료)를 넣은 몰리브덴제 증착용 보트, HT(정공 수송층 재료)를 넣은 몰리브덴제 증착용 보트, 화합물(3-1)(호스트 재료)을 넣은 몰리브덴제 증착용 보트, 화합물(1-1152)(도판트 재료)을 넣은 몰리브덴제 증착용 보트, ET-1(전자 수송층 재료)을 넣은 몰리브덴제 증착용 보트, ET-2(전자 수송층 재료)을 넣은 몰리브덴제 증착용 보트, Liq를 넣은 질화 알루미늄제 증착용 보트, 마그네슘을 넣은 질화 알루미늄제 보트 및 은을 넣은 질화 알루미늄제 증착용 보트를 장착하였다.
투명 지지 기판의 ITO막 상에 순차적으로, 하기 각 층을 형성하였다. 진공조를 5×10-4 Pa까지 감압하고, 먼저, HI가 들어간 증착용 보트를 가열하여 막 두께 40 nm로 되도록 증착하여 정공 주입층 1을 형성하였다. 다음으로, HAT-CN이 들어간 증착용 보트를 가열하여 막 두께 5 nm로 되도록 증착하여 정공 주입층 2를 형성하였다. 다음으로, HT가 들어간 증착용 보트를 가열하여 막 두께 25 nm로 되도록 증착하여 정공 수송층을 형성하였다. 다음으로, 화합물(3-1)이 들어간 증착용 보트와 화합물(1-1152)이 들어간 증착용 보트를 동시에 가열하여 막 두께 20 nm로 되도록 증착하여 발광층을 형성하였다. 화합물(3-1)과 화합물(1-1152)의 중량비가 대략 95 대 5로 되도록 증착 속도를 조절하였다. 다음으로, ET-1이 들어간 증착용 보트를 가열하여 막 두께 5 nm로 되도록 증착하여 전자 수송층 1을 형성하였다. 다음으로, ET-2가 들어간 증착용 보트와 Liq가 들어간 증착용 보트를 동시에 가열하여 막 두께 25 nm로 되도록 증착하여 전자 수송층 2를 형성하였다. ET-2와 Liq의 중량비가 대략 50 대 50이 되도록 증착 속도를 조절하였다. 각 층의 증착 속도는 0.01∼1 nm/초였다.
그 후, Liq가 들어간 증착용 보트를 가열하여 막 두께 1 nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하고, 이어서, 마그네슘이 들어간 증착용 보트와 은이 들어간 증착용 보트를 동시에 가열하여 막 두께 100 nm로 되도록 증착하여 음극을 형성하고, 유기 EL 소자를 얻었다. 이 때, 마그네슘과 은의 원자수비가 10 대 1이 되도록 0.1∼10 nm/초의 사이에서 증착 속도를 조절하였다.
ITO 전극을 양극, 마그네슘/은 전극을 음극으로 하여 직류 전압을 인가하고, 1000cd/m2 발광 시의 특성을 측정한 바, 파장 467 nm, CIE 색도(x, y)=(0.123, 0.109)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 6.6%였다.
<실시예 2>
<화합물(3-2)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-2)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 466 nm, CIE 색도(x, y)=(0.124, 0.105)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 6.3%였다.
<실시예 3>
<화합물(3-3)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-3)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 466 nm, CIE 색도(x, y)=(0.125, 0.103)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 6.2%였다.
<실시예 4>
<화합물(3-4)을 호스트, 화합물(1-2679)을 도판트로 한 소자>
호스트 재료를 화합물(3-4)로 변경하고, 도판트 재료를 화합물(1-2679)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 464 nm, CIE 색도(x, y)=(0.127, 0.092)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 7.0%였다.
<실시예 5>
<화합물(3-4)을 호스트, 화합물(1-422)을 도판트로 한 소자>
호스트 재료를 화합물(3-4)로 변경하고, 도판트 재료를 화합물(1-422)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 481 nm, CIE 색도(x, y)=(0.091,0.212)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.7 V, 외부 양자 효율은 6.0%였다.
<실시예 6>
<화합물(3-5)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-5)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 465 nm, CIE 색도(x, y)=(0.127, 0.095)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 5.9%였다.
<실시예 7>
<화합물(3-6)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-6)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 467 nm, CIE 색도(x, y)=(0.122, 0.117)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.6 V, 외부 양자 효율은 5.9%였다.
<실시예 8>
<화합물(3-7)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-7)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 467 nm, CIE 색도(x, y)=(0.124, 0.109)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 5.9%였다.
<실시예 9>
<화합물(3-8)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(3-8)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 467 nm, CIE 색도(x, y)=(0.123, 0.112)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 6.0%였다.
<실시예 10>
<화합물(3-5)을 호스트, 화합물(1-2620)을 도판트로 한 소자>
호스트 재료를 화합물(3-5)로 변경하고, 도판트 재료를 화합물(1-2620)로 변경하고, 2층의 전자 수송 재료를 각각 ET-5와 ET-3으로 변경하고, 음극 재료를 LiF와 알루미늄으로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 464 nm, CIE 색도(x, y)=(0.128, 0.089)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.7 V, 외부 양자 효율은 7.2%였다.
<실시예 11>
<화합물(3-5)을 호스트, 화합물(1-1159)을 도판트로 한 소자>
호스트 재료를 화합물(3-5)로 변경하고, 도판트 재료를 화합물(1-1159)로 변경하고, 2층의 전자 수송 재료를 각각 ET-5와 ET-3으로 변경하고, 음극 재료를 LiF와 알루미늄으로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 456 nm, CIE 색도(x, y)=(0.140,0.057)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 6.9%였다.
<실시예 12>
<화합물(3-5)을 호스트, 화합물(1-2676)을 도판트로 한 소자>
호스트 재료를 화합물(3-5)로 변경하고, 도판트 재료를 화합물(1-2676)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 468 nm, CIE 색도(x, y)=(0.124, 0.111)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 6.8%였다.
<실시예 13>
<화합물(3-1)을 호스트, 화합물(1-422)을 도판트로 한 소자>
도판트 재료를 화합물(1-422)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 480 nm, CIE 색도(x, y)=(0.091,0.205)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 6.8%였다.
<실시예 14>
<화합물(3-4)을 호스트, 화합물(1-422)을 도판트로 한 소자>
호스트 재료를 화합물(3-4)로 변경하고, 도판트 재료를 화합물(1-422)로 변경하고, 2층의 전자 수송 재료를 각각 ET-4와 ET-3로 변경하고, 음극 재료를 LiF와 알루미늄으로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 481 nm, CIE 색도(x, y)=(0.090,0.212)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.6 V, 외부 양자 효율은 6.9%였다.
<비교예 1>
<화합물(H-101)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-101)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 466 nm, CIE 색도(x, y)=(0.125, 0.103)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 5.5%였다.
<비교예 2>
<화합물(H-102)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-102)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 465 nm, CIE 색도(x, y)=(0.127, 0.099)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 5.2%였다.
<비교예 3>
<화합물(H-103)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-103)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 465 nm, CIE 색도(x, y)=(0.126, 0.101)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 4.9%였다.
<비교예 4>
<화합물(H-104)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-104)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 465 nm, CIE 색도(x, y)=(0.127, 0.095)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.9 V, 외부 양자 효율은 5.0%였다.
<비교예 5>
<화합물(H-105)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-105)과 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 466 nm, CIE 색도(x, y)=(0.125, 0.106)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 4.1 V, 외부 양자 효율은 5.4%였다.
<비교예 6>
<화합물(H-106)을 호스트, 화합물(1-1152)을 도판트로 한 소자>
호스트 재료를 화합물(H-106)로 변경한 점 이외에는 실시예 1에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 466 nm, CIE 색도(x, y)=(0.125, 0.110)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.8 V, 외부 양자 효율은 5.1%였다.
또한, 실시예 15에 따른 유기 EL 소자를 제작하고, 1000cd/m2의 휘도를 얻을 수 있는 전류 밀도로 구동했을 때의 외부 양자 효율을 측정하였다. 제작한 유기 EL 소자에 있어서의, 각 층의 재료 구성, 및 EL특성 데이터를 하기 표 2에 나타내었다.
[표 2A]
Figure pct00148
[표 2B]
Figure pct00149
<실시예 15>
<화합물(3-5)을 호스트, 화합물(1-1159)을 도판트로 한 소자>
스퍼터링에 의해 180 nm의 두께로 제막한 ITO를 150 nm까지 연마한, 26 mm×28 mm×0.7 mm의 유리 기판((주)오프토사이언스)을 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판중인 증착 장치((주)조슈 산업)의 기판 홀더에 고정하고, HI를 넣은 탄탈제 증착 도가니, HAT-CN을 넣은 탄탈제 증착용 도가니, HT를 넣은 탄탈제 증착용 도가니, 화합물(3-5)(호스트 재료)을 넣은 탄탈제 증착용 도가니, 화합물(1-1159)(도판트 재료)을 넣은 탄탈제 증착용 도가니, ET-5를 넣은 탄탈제 증착용 도가니, ET-3를 넣은 탄탈제 증착용 도가니, LiF를 넣은 탄탈제 증착용 도가니 및 알루미늄을 넣은 질화 알루미늄제 증착용 도가니를 장착하였다.
투명 지지 기판의 ITO막 상에 순차적으로, 하기 각 층을 형성하였다. 진공조를 2.0×10-4 Pa까지 감압하고, 먼저, HI가 들어간 증착용 도가니를 가열하여 막 두께 40 nm로 되도록 증착하고, 이어서, HAT-CN이 들어간 증착용 도가니를 가열하여 막 두께 5 nm로 되도록 증착하고, 또한 HT가 들어간 증착용 도가니를 가열하여 막 두께 25 nm로 되도록 증착함으로써 3층으로 이루어지는 정공 주입층 및 정공 수송층을 형성하였다. 다음으로, 화합물(3-5)이 들어간 증착용 도가니와 화합물(1-1159)이 들어간 증착용 도가니를 동시에 가열하여 막 두께 20 nm로 되도록 증착하여 발광층을 형성하였다. 화합물(3-5)과 화합물(1-1159)의 중량비가 대략 95 대 5가 되도록 증착 속도를 조절하였다. 다음으로, ET-5가 들어간 증착용 도가니를 가열하여 막 두께 10 nm로 되도록 증착하고, 이어서, ET-3가 들어간 증착용 도가니를 가열하여 막 두께 20 nm로 되도록 증착함으로써 2층으로 이루어지는 전자 수송층을 형성하였다. 각 층의 증착 속도는 0.01∼1 nm/초였다.
그 후, LiF가 들어간 증착용 도가니를 가열하여 막 두께 1 nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하였다. 이어서, 알루미늄이 들어간 증착용 도가니를 가열하여 막 두께 100 nm로 되도록 증착하여 음극을 형성하였다. 이 때, 증착 속도가 0.1∼2 nm/초가 되도록 증착하여 음극을 형성하고 유기 EL 소자를 얻었다.
ITO 전극을 양극, LiF/알루미늄 전극을 음극으로 하여, 직류 전압을 인가하면, 약 456 nm에 피크탑을 가지는 청색 발광을 얻을 수 있었다. 이 때의 CIE 색도는 (x, y)=(0.140, 0.057)이며, 휘도 1000cd/m2에 있어서의 외부 양자 효율은 6.92%였다.
또한, 실시예 16∼18 및 비교예 7에 따른 유기 EL 소자를 제작하고, 1000cd/m2의 휘도를 얻을 수 있는 전류 밀도로 구동했을 때의 외부 양자 효율을 측정하였다. 제작한 유기 EL 소자에 있어서의, 각 층의 재료 구성, 및 EL 특성 데이터를 하기 표 3에 나타내었다.
[표 3A]
Figure pct00150
[표 3B]
Figure pct00151
<실시예 16>
<화합물(3-5)을 호스트, 화합물(1-2680)을 도판트로 한 소자>
스퍼터링에 의해 180 nm의 두께로 제막한 ITO를 150 nm까지 연마한, 26 mm×28 mm×0.7 mm의 유리 기판((주)오프토사이언스)을 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판중인 증착 장치((주) 조슈 산업)의 기판 홀더에 고정하고, HI를 넣은 탄탈제 증착 도가니, HAT-CN을 넣은 탄탈제 증착용 도가니, HT를 넣은 탄탈제 증착용 도가니, 화합물(3-5)(호스트 재료)을 넣은 탄탈제 증착용 도가니, 화합물(1-2680)(도판트 재료)을 넣은 탄탈제 증착용 도가니, ET-1을 넣은 탄탈제 증착용 도가니, ET-2를 넣은 탄탈제 증착용 도가니, Liq를 넣은 질화 알루미늄제 증착용 도가니, 마그네슘을 넣은 질화 알루미늄제 도가니 및 은을 넣은 질화 알루미늄제 증착용 도가니를 장착하였다.
투명 지지 기판의 ITO막 상에 순차적으로, 하기 각 층을 형성하였다. 진공조를 2.0×10-4 Pa까지 감압하고, 먼저, HI가 들어간 증착용 도가니를 가열하여 막 두께 40 nm로 되도록 증착하고, 이어서, HAT-CN이 들어간 증착용 도가니를 가열하여 막 두께 5 nm로 되도록 증착하고, 또한 HT가 들어간 증착용 도가니를 가열하여 막 두께 25 nm로 되도록 증착함으로써 3층으로 이루어지는 정공 주입층 및 정공 수송층을 형성하였다. 다음으로, 화합물(3-5)이 들어간 증착용 도가니와 화합물(1-2680)이 들어간 증착용 도가니를 동시에 가열하여 막 두께 20 nm로 되도록 증착하여 발광층을 형성하였다. 화합물(3-5)과 화합물(1-2680)의 중량비가 대략 95 대 5가 되도록 증착 속도를 조절하였다. 다음으로, ET-1이 들어간 증착용 도가니를 가열하여 막 두께 5 nm로 되도록 증착하고, 이어서, ET-2가 들어간 증착용 도가니를 가열하여 막 두께 25 nm로 되도록 증착함으로써 2층으로 이루어지는 전자 수송층을 형성하였다. 각 층의 증착 속도는 0.01∼1 nm/초였다.
그 후, Liq가 들어간 증착용 도가니를 가열하여 막 두께 1 nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하였다. 이어서, 마그네슘이 들어간 보트와 은이 들어간 보트를 동시에 가열하여, 막 두께 100 nm로 되도록 증착하여 음극을 형성하고, 유기 EL 소자를 얻었다. 이 때, 마그네슘과 은의 원자수비가 10 대 1이 되도록 0.1∼10 nm/초의 사이에서 증착 속도를 조절하였다.
ITO 전극을 양극, 마그네슘/은 전극을 음극으로 하여, 직류 전압을 인가하면, 약 455 nm에 피크탑을 가지는 청색 발광을 얻을 수 있었다. 이 때의 CIE 색도는 (x, y)=(0.142, 0.051)이며, 휘도 1000cd/m2에 있어서의 외부 양자 효율은 6.14%였다.
<실시예 17>
<화합물(3-5)을 호스트, 화합물(1-2679)을 도판트로 한 소자>
발광층의 도판트 재료를 화합물(1-2679)로 변경한 점 이외에는 실시예 16에 준한 방법으로 유기 EL 소자를 얻었다. 양 전극에 직류 전압을 인가하면, 약 463 nm에 피크탑을 가지는 청색 발광을 얻을 수 있었다. 이 때의 CIE 색도는 (x, y)=(0.129, 0.084)이며, 휘도 1000cd/m2에 있어서의 외부 양자 효율은 6.42%였다.
<실시예 18>
<화합물(3-5)을 호스트, 화합물(1-2676)을 도판트로 한 소자>
발광층의 도판트 재료를 화합물(1-2676)로 변경한 점 이외에는 실시예 16에 준한 방법으로 유기 EL 소자를 얻었다. 양 전극에 직류 전압을 인가하면, 약 459 nm에 피크탑을 가지는 청색 발광을 얻을 수 있었다. 이 때의 CIE 색도는 (x, y)=(0.124, 0.111)이며, 휘도 1000cd/m2에 있어서의 외부 양자 효율은 6.82%였다.
<비교예 7>
<화합물(3-5)을 호스트, 비교 화합물 1을 도판트로 한 소자>
비교 화합물 1은, 국제 공개 제2012/118164호 공보의 63페이지에 화합물 1로서 개시되어 있다. 발광층의 도판트 재료를 (비교 화합물 1)로 변경한 점 이외에는 실시예 16에 준한 방법으로 유기 EL 소자를 얻었다. 양 전극에 직류 전압을 인가하면, 약 471 nm에 피크탑을 가지는 청색 발광을 얻을 수 있었다. 이 때의 CIE 색도는 (x, y)=(0.145, 0.170)이며, 휘도 1000cd/m2에 있어서의 외부 양자 효율은 3.67%였다.
Figure pct00152
또한, 실시예 19 및 비교예 8에 따른 유기 EL 소자를 제작하고, 1000cd/m2의 휘도를 얻을 수 있는 전류 밀도로 구동했을 때의 외부 양자 효율을 측정하였다. 제작한 유기 EL 소자에 있어서의, 각 층의 재료 구성, 및 EL특성 데이터를 하기 표 4에 나타내었다.
[표 4A]
Figure pct00153
[표 4B]
Figure pct00154
표 4에 있어서의 「HT-2」(정공 수송층 재료), 식(3-48-O)의 화합물(호스트 재료), 「H-107」(호스트 재료), 식(1-2619)의 화합물(도판트 재료), 「ET-6」(전자 수송층 재료), 「ET-7」(전자 수송층 재료)의 화학 구조를 이하에 나타낸다.
Figure pct00155
<실시예 19>
<화합물(3-48-O)을 호스트, 화합물(1-2619)을 도판트로 한 소자>
스퍼터링에 의해 120 nm의 두께로 제막한 ITO로, 26 mm×28 mm×0.7 mm의 유리 기판((주)아쓰기 미크로 제조)을 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판 중인 증착 장치(조슈 산업(주) 제조)의 기판 홀더에 고정하고, HI(정공 주입층 재료)를 넣은 몰리브덴제 증착용 보트, HAT-CN(정공 주입층 재료)을 넣은 몰리브덴제 증착용 보트, HT(정공 수송층 재료)를 넣은 몰리브덴제 증착용 보트, HT-2(정공 수송층 재료)를 넣은 몰리브덴제 증착용 보트, 화합물(3-48-O)(호스트 재료)을 넣은 몰리브덴제 증착용 보트, 화합물(1-2619)(도판트 재료)을 넣은 몰리브덴제 증착용 보트, ET-6(전자 수송층 재료)을 넣은 몰리브덴제 증착용 보트, ET-7(전자 수송층 재료)을 넣은 몰리브덴제 증착용 보트, Liq를 넣은 몰리브덴제 증착용 보트, 마그네슘을 넣은 SiC제 도가니, 및 은을 넣은 SiC제 도가니를 장착하였다.
투명 지지 기판의 ITO막 상에 순차적으로, 하기 각 층을 형성하였다. 진공조를 1×10-4 Pa까지 감압하고, 먼저, HI가 들어간 증착용 보트를 가열하여 막 두께 40 nm로 되도록 증착하여 정공 주입층 1을 형성하였다. 다음으로, HAT-CN이 들어간 증착용 보트를 가열하여 막 두께 5 nm로 되도록 증착하여 정공 주입층 2를 형성하였다. 다음으로, HT가 들어간 증착용 보트를 가열하여 막 두께 35 nm로 되도록 증착하여 정공 수송층 1을 형성하였다. 다음으로, HT-2가 들어간 증착용 보트를 가열하여 막 두께 10 nm로 되도록 증착하여 정공 수송층 2를 형성하였다. 다음으로, 화합물(3-48-O)이 들어간 증착용 보트와 화합물(1-2619)이 들어간 증착용 보트를 동시에 가열하여 막 두께 25 nm로 되도록 증착하여 발광층을 형성하였다. 화합물(3-48-O)과 화합물(1-2619)의 중량비가 대략 98 대 2가 되도록 증착 속도를 조절하였다. 다음으로, ET-6이 들어간 증착용 보트를 가열하여 막 두께 5 nm로 되도록 증착하여 전자 수송층 1을 형성하였다. 다음으로, ET-7이 들어간 증착용 보트와 Liq가 들어간 증착용 보트를 동시에 가열하여 막 두께 25 nm로 되도록 증착하여 전자 수송층 2를 형성하였다. ET-7으로 Liq의 중량비가 대략 50 대 50이 되도록 증착 속도를 조절하였다. 각 층의 증착 속도는 0.01∼1 nm/초였다.
그 후, Liq가 들어간 증착용 보트를 가열하여 막 두께 1 nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하고, 이어서, 마그네슘이 들어간 도가니와 은이 들어간 도가니를 동시에 가열하여 막 두께 100 nm로 되도록 증착하여 음극을 형성하고, 유기 EL 소자를 얻었다. 이 때, 마그네슘과 은의 원자수비가 10 대 1로 되도록 0.1∼10 nm/초의 사이에서 증착 속도를 조절하였다.
ITO 전극을 양극, 마그네슘/은 전극을 음극으로 하여 직류 전압을 인가하고, 1000cd/m2 발광 시의 특성을 측정한 바, 파장 462 nm, CIE 색도(x, y)=(0.132, 0.088)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.6 V, 외부 양자 효율은 8.08%였다.
<비교예 8>
<화합물(H-107)을 호스트, 화합물(1-2619)을 도판트로 한 소자>
호스트 재료를 화합물(H-107)로 변경한 점 이외에는 실시예 19에 준한 방법으로 유기 EL 소자를 얻었다. 1000cd/m2 발광 시의 특성을 측정한 바, 파장 461 nm, CIE 색도(x, y)=(0.132, 0.082)의 청색 발광을 얻을 수 있었다. 또한, 구동 전압은 3.5 V, 외부 양자 효율은 7.66%였다.
[산업상 이용가능성]
본 발명의 바람직한 태양에 의하면, 신규한 다환 방향족 화합물과, 그것과 조합하여 최적의 발광 특성을 얻을 수 있는 안트라센계 화합물을 제공할 수 있고, 이들을 조합하여 이루어지는 발광층용 재료를 사용하여 유기 EL 소자를 제작함으로써, 양자 효율이 우수한 유기 EL 소자를 제공할 수 있다.
100: 유기 전계 발광 소자 101: 기판
102: 양극 103: 정공 주입층
104: 정공 수송층 105: 발광층
106: 전자 수송층 107: 전자 주입층
108: 음극

Claims (9)

  1. 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
    상기 발광층은, 하기 일반식(1)으로 표시되는 다환 방향족 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 하기 일반식(3)으로 표시되는 안트라센계 화합물을 포함하는, 유기 전계 발광 소자:
    Figure pct00156

    (상기 식(1) 중에서,
    A환, B환 및 C환은 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에 있어서의 1개 이상의 수소는 치환되어 있어도 되고,
    Y1은 B이며,
    X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한, 상기 N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 그리고,
    상기 식(1)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 됨)
    Figure pct00157

    (상기 식(3) 중에서,
    X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1) 및 식(3-X2)에 있어서의 나프틸렌 부위는 1개의 벤젠환으로 축합되어 있어도 되고, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 퀴터페닐릴, 나프틸, 페난트릴, 플루오레닐, 벤조플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4)으로 표시되는 기로 치환되어 있어도 되고,
    Ar4는 각각 독립적으로, 수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 또는 탄소수 1∼4의 알킬로 치환되어 있는 실릴이며, 그리고,
    상기 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소 또는 상기 식(4)으로 표시되는 기로 치환되어 있어도 되고,
    상기 식(4) 중에서, Y는 -O-, -S- 또는 >N-R29이며, R21∼R28은 각각 독립적으로 수소, 치환되어 있어도 되는 알킬, 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴, 치환되어 있어도 되는 알콕시, 치환되어 있어도 되는 아릴옥시, 치환되어 있어도 되는 아릴티오, 트리알킬실릴, 치환되어 있어도 되는 아미노, 할로겐, 하이드록시 또는 시아노이며, R21∼R28 중 인접하는 기는 서로 결합하여 탄화수소환, 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, R29는 수소 또는 치환되어 있어도 되는 아릴이며, 식(4)으로 표시되는 기는 *에 있어서 식(3-X1) 또는 식(3-X2)의 나프탈렌환, 식(3-X3)의 단결합, 식(3-X3)의 Ar3와 결합하고, 또한 식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소와 치환하고, 식(4)의 구조에 있어서는 어느 하나의 위치에서 이들과 결합함).
  2. 제1항에 있어서,
    상기 식(1) 중에서,
    A환, B환 및 C환은 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에 있어서의 1개 이상의 수소는 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노, 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시 또는 치환 또는 무치환의 아릴옥시로 치환되어 있어도 되고, 또한, 이들 환은 Y1, X1 및 X2로 구성되는 상기 식 중앙의 축합 2환 구조와 결합을 공유하는 5원환 또는 6원환을 가지고,
    Y1은 B이며,
    X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 알킬로 치환되어 있어도 되는 아릴, 알킬로 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한, 상기 N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 수소 또는 알킬이며,
    식(1)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
    다량체의 경우에는, 식(1)으로 표시되는 구조를 2개 또는 3개 가지는 2량체 또는 3량체인, 유기 전계 발광 소자.
  3. 제1항에 있어서,
    상기 발광층이, 하기 일반식(2)으로 표시되는 다환 방향족 화합물 및 하기 일반식(2)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체 중 하나 이상과, 하기 일반식(3)으로 표시되는 안트라센계 화합물을 포함하는, 유기 전계 발광 소자:
    Figure pct00158

    (상기 식(2) 중에서,
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 및 R11은 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고,
    Y1은 B이며,
    X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 탄소수 6∼12의 아릴, 탄소수 2∼15의 헤테로아릴 또는 탄소수 1∼6의 알킬이며, 또한, 상기 N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 탄소수 1∼6의 알킬이며, 그리고,
    식(2)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 됨)
    Figure pct00159

    Figure pct00160

    (상기 식(3) 중에서,
    X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 크리세닐, 트리페닐레닐, 피레닐릴, 또는 상기 식(4-1)∼식(4-11) 중 어느 하나로 표시되는 기로 치환되어 있어도 되고,
    Ar4는 각각 독립적으로, 수소, 페닐, 또는 나프틸이며, 그리고,
    식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 되고,
    상기 식(4-1)∼식(4-11) 중, Y는 -O-, -S- 또는 >N-R29이며, R29는 수소 또는 아릴이며, 식(4-1)∼식(4-11)으로 표시되는 기에 있어서의 1개 이상의 수소는 알킬, 아릴, 헤테로아릴, 알콕시, 아릴옥시, 아릴티오, 트리알킬실릴, 디아릴 치환 아미노, 디헤테로아릴 치환 아미노, 아릴헤테로아릴 치환 아미노, 할로겐, 하이드록시 또는 시아노로 치환되어 있어도 되고, 식(4-1)∼식(4-11)으로 표시되는 기는 *에 있어서 식(3-X1) 또는 식(3-X2)의 나프탈렌환, 식(3-X3)의 단결합, 식(3-X3)의 Ar3와 결합하되, 식(4-1)∼식(4-11)의 구조에 있어서는 어느 하나의 위치에서 이들과 결합함).
  4. 제3항에 있어서,
    상기 식(2) 중에서,
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 및 R11은 각각 독립적으로, 수소, 탄소수 6∼30의 아릴, 탄소수 2∼30의 헤테로아릴 또는 디아릴아미노(단 아릴은 탄소수 6∼12의 아릴)이며, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 탄소수 9∼16의 아릴환 또는 탄소수 6∼15의 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 탄소수 6∼10의 아릴로 치환되어 있어도 되고,
    Y1은 B이며,
    X1 및 X2는 각각 독립적으로 N-R이며, 상기 N-R의 R은 탄소수 6∼10의 아릴이며, 그리고,
    식(2)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 되고,
    상기 식(3) 중에서,
    X는 각각 독립적으로 상기 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기이며, 식(3-X1), 식(3-X2) 또는 식(3-X3)으로 표시되는 기는 *에 있어서 식(3)의 안트라센환과 결합하고, 2개의 X가 동시에 식(3-X3)으로 표시되는 기가 되는 것은 아니며, Ar1, Ar2 및 Ar3는 각각 독립적으로, 수소(Ar3를 제외함), 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 또는 상기 식(4-1)∼식(4-4) 중 어느 하나로 표시되는 기이며, Ar3에 있어서의 1개 이상의 수소는, 또한 페닐, 나프틸, 페난트릴, 플루오레닐, 또는 상기 식(4-1)∼식(4-4) 중 어느 하나로 표시되는 기로 치환되어 있어도 되고,
    Ar4는 각각 독립적으로, 수소, 페닐, 또는 나프틸이며, 그리고,
    식(3)으로 표시되는 화합물에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 되는, 유기 전계 발광 소자.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 발광층이, 하기 식(1-422), 식(1-1152), 식(1-1159), 식(1-2620), 식(1-2676), 식(1-2679), 또는 식(1-2680)으로 표시되는 다환 방향족 화합물 중 하나 이상과, 하기 식(3-1), 식(3-2), 식(3-3), 식(3-4), 식(3-5), 식(3-6), 식(3-7), 식(3-8), 또는 식(3-48-O)으로 표시되는 안트라센계 화합물 중 하나 이상을 포함하는, 유기 전계 발광 소자:
    Figure pct00161

    Figure pct00162
    .
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 음극과 상기 발광층의 사이에 배치되는 전자 수송층 및/또는 전자 주입층을 가지고, 상기 전자 수송층 및 전자 주입층 중 적어도 하나는, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체 및 퀴놀리놀계 금속 착체로 이루어지는 군으로부터 선택되는 하나 이상을 함유하는, 유기 전계 발광 소자.
  7. 제6항에 있어서,
    상기 전자 수송층 및/또는 전자 주입층이, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 하나 이상을 함유하는, 유기 전계 발광 소자.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 유기 전계 발광 소자를 포함하는, 표시 장치.
  9. 제1항 내지 제7항 중 어느 한 항에 기재된 유기 전계 발광 소자를 포함하는, 조명 장치.
KR1020177026972A 2015-03-24 2016-03-10 유기 전계 발광 소자 KR102595330B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-060728 2015-03-24
JP2015060728 2015-03-24
PCT/JP2016/057488 WO2016152544A1 (ja) 2015-03-24 2016-03-10 有機電界発光素子

Publications (2)

Publication Number Publication Date
KR20170130434A true KR20170130434A (ko) 2017-11-28
KR102595330B1 KR102595330B1 (ko) 2023-10-26

Family

ID=56978386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177026972A KR102595330B1 (ko) 2015-03-24 2016-03-10 유기 전계 발광 소자

Country Status (6)

Country Link
US (2) US20180301629A1 (ko)
JP (3) JP6526793B2 (ko)
KR (1) KR102595330B1 (ko)
CN (1) CN107851724B (ko)
TW (1) TWI688137B (ko)
WO (1) WO2016152544A1 (ko)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130435A (ko) * 2015-03-25 2017-11-28 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
KR20190042791A (ko) * 2017-10-16 2019-04-25 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치
WO2019164331A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019164340A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019221545A1 (ko) * 2018-05-17 2019-11-21 주식회사 엘지화학 유기발광소자
KR20190140417A (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
KR20190140421A (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
WO2020009363A1 (ko) * 2018-07-03 2020-01-09 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020009433A1 (ko) * 2018-07-02 2020-01-09 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020022751A1 (ko) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 유기 전계 발광 소자
WO2020022770A1 (ko) * 2018-07-24 2020-01-30 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20200018107A (ko) * 2018-08-10 2020-02-19 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20200021423A (ko) * 2018-08-20 2020-02-28 주식회사 엘지화학 유기 발광 소자
KR102094830B1 (ko) * 2018-11-30 2020-03-30 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2020076108A1 (ko) * 2018-10-12 2020-04-16 주식회사 엘지화학 유기발광소자
WO2020076109A1 (ko) * 2018-10-12 2020-04-16 주식회사 엘지화학 유기발광소자
KR20200047400A (ko) 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
WO2020101395A1 (ko) * 2018-11-16 2020-05-22 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20200058988A (ko) * 2018-11-20 2020-05-28 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2020105990A1 (ko) * 2018-11-19 2020-05-28 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20200062066A (ko) * 2018-11-26 2020-06-03 주식회사 엘지화학 유기 발광 소자
KR20200070141A (ko) * 2018-12-07 2020-06-17 주식회사 엘지화학 유기 발광 소자
WO2020138963A1 (ko) * 2018-12-27 2020-07-02 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자
KR20200081986A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081984A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081985A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
WO2020149666A1 (ko) * 2019-01-18 2020-07-23 주식회사 엘지화학 유기 발광 소자
WO2020153792A1 (ko) * 2019-01-23 2020-07-30 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200100008A (ko) * 2019-02-15 2020-08-25 주식회사 엘지화학 유기 발광 소자
KR20200101279A (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 유기 발광 소자
WO2020184834A1 (ko) * 2019-03-08 2020-09-17 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102191018B1 (ko) * 2019-06-12 2020-12-14 에스에프씨 주식회사 유기발광소자
WO2020256480A1 (ko) * 2019-06-19 2020-12-24 주식회사 엘지화학 유기 발광 소자
WO2021010656A1 (ko) * 2019-07-18 2021-01-21 주식회사 엘지화학 유기 발광 소자
KR20210010403A (ko) * 2019-07-19 2021-01-27 주식회사 엘지화학 유기 발광 소자
WO2021020948A1 (ko) * 2019-08-01 2021-02-04 주식회사 엘지화학 유기 발광 소자
WO2021020947A1 (ko) * 2019-07-31 2021-02-04 주식회사 엘지화학 유기 발광 소자
KR20210046437A (ko) 2019-10-18 2021-04-28 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
WO2021086148A1 (ko) * 2019-10-31 2021-05-06 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
WO2021107678A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2021107745A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
WO2021107711A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021107699A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
WO2021107728A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
KR20210067976A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
DE102020133439A1 (de) 2020-01-03 2021-07-08 Rohm And Haas Electronic Materials Korea Ltd. Mehrere organische elektrolumineszierende materialien und diese umfassende organische elektrolumineszierende vorrichtung
WO2021187925A1 (ko) * 2020-03-18 2021-09-23 에스에프씨 주식회사 고효율 및 장수명의 유기발광소자
KR102302965B1 (ko) * 2020-04-14 2021-09-27 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
DE102021108828A1 (de) 2020-04-13 2021-10-14 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
KR20210126943A (ko) * 2020-04-13 2021-10-21 주식회사 엘지화학 안트라센 화합물 및 이를 포함하는 유기 발광 소자
KR20210127076A (ko) 2020-04-13 2021-10-21 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20210131861A (ko) 2020-04-24 2021-11-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2021230653A1 (ko) * 2020-05-12 2021-11-18 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
DE102021122804A1 (de) 2020-09-04 2022-03-10 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
KR20220047740A (ko) 2020-04-24 2022-04-19 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US11653561B2 (en) 2019-06-19 2023-05-16 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
WO2023090783A1 (ko) * 2021-11-17 2023-05-25 에스에프씨 주식회사 고효율과 장수명을 가지는 유기발광소자
US11685751B2 (en) 2019-11-29 2023-06-27 Lg Chem, Ltd. Compound and organic light-emitting element comprising same
US11825733B2 (en) 2019-01-11 2023-11-21 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11832506B2 (en) 2019-12-13 2023-11-28 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US11950504B2 (en) 2018-07-03 2024-04-02 Lg Chem, Ltd. Polycyclic compound and organic light emitting diode comprising same
US11950500B2 (en) 2018-12-28 2024-04-02 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device having thereof
US11985891B2 (en) 2018-11-30 2024-05-14 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same
US12030900B2 (en) 2018-11-20 2024-07-09 Sfc Co., Ltd. Boron compound and organic light-emitting diode comprising same

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430648B1 (ko) * 2014-09-05 2022-08-09 롬엔드하스전자재료코리아유한회사 정공 전달 재료 및 이를 포함하는 유기 전계 발광 소자
KR102031678B1 (ko) 2014-09-19 2019-10-14 이데미쓰 고산 가부시키가이샤 신규의 화합물
US10312449B2 (en) 2015-05-27 2019-06-04 Samsung Display Co., Ltd. Organic light-emitting device
US10367147B2 (en) 2015-05-27 2019-07-30 Samsung Display Co., Ltd. Organic light-emitting device
JP6611825B2 (ja) * 2016-01-21 2019-11-27 学校法人関西学院 多環芳香族化合物
WO2017138526A1 (ja) * 2016-02-10 2017-08-17 学校法人関西学院 遅延蛍光有機電界発光素子
KR102409257B1 (ko) * 2016-04-26 2022-06-14 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
WO2018095397A1 (zh) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含硼有机化合物及应用、有机混合物、有机电子器件
US20190312207A1 (en) * 2017-02-16 2019-10-10 Kwansei Gakuin Educational Foundation Organic electroluminescent element
US20200035922A1 (en) * 2017-03-31 2020-01-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
JPWO2018186374A1 (ja) * 2017-04-03 2020-02-20 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US11414924B2 (en) * 2017-04-14 2022-08-16 3M Innovative Properties Company Durable low emissivity window film constructions
CN110225917B (zh) 2017-05-02 2022-11-25 株式会社Lg化学 新的化合物和使用其的有机发光器件
KR101876763B1 (ko) * 2017-05-22 2018-07-11 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
CN110692146B (zh) * 2017-06-30 2023-01-13 学校法人关西学院 有机电场发光元件及显示装置或照明装置
EP3647338A4 (en) * 2017-06-30 2021-03-24 Sumitomo Chemical Company Limited MACROMOLECULAR COMPOUND AND LIGHT EMITTING ELEMENT WITH USE THEREOF
CN107501311A (zh) * 2017-07-14 2017-12-22 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件
KR20240052073A (ko) 2017-08-17 2024-04-22 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
KR102386850B1 (ko) * 2017-08-25 2022-04-15 삼성디스플레이 주식회사 유기 전계 발광 소자
JP7232448B2 (ja) * 2017-11-24 2023-03-03 学校法人関西学院 有機デバイス用材料およびそれを用いた有機電界発光素子
JP6967433B2 (ja) 2017-11-27 2021-11-17 エスケーマテリアルズジェイエヌシー株式会社 有機電界発光素子
EP3503241B1 (en) * 2017-12-22 2022-08-24 Novaled GmbH Electronic device and method for preparing the same
JP7340171B2 (ja) * 2018-01-24 2023-09-07 学校法人関西学院 有機電界発光素子
JP7242283B2 (ja) * 2018-03-08 2023-03-20 エスケーマテリアルズジェイエヌシー株式会社 有機電界発光素子
CN112020778A (zh) * 2018-04-05 2020-12-01 出光兴产株式会社 有机电致发光元件和电子设备
WO2019198699A1 (ja) * 2018-04-12 2019-10-17 学校法人関西学院 シクロアルキル置換多環芳香族化合物
KR20200141983A (ko) * 2018-04-12 2020-12-21 가꼬우 호징 관세이 가쿠잉 불소 치환 다환 방향족 화합물
JP6738063B2 (ja) * 2018-04-12 2020-08-12 学校法人関西学院 シクロアルキル置換多環芳香族化合物
KR20190119701A (ko) 2018-04-12 2019-10-23 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
JP6506456B1 (ja) * 2018-05-21 2019-04-24 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
KR20210019025A (ko) * 2018-06-11 2021-02-19 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 그의 다량체
US11342506B2 (en) 2018-06-20 2022-05-24 Kwansei Gakuin Educational Foundation Organic electroluminescent element
JP2020004947A (ja) * 2018-06-20 2020-01-09 学校法人関西学院 有機電界発光素子
KR20190143558A (ko) * 2018-06-20 2019-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 함규소 화합물
US20200028084A1 (en) * 2018-07-19 2020-01-23 Lg Display Co., Ltd. Organic electroluminescent device
US20210336154A1 (en) * 2018-08-15 2021-10-28 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device and electronic appliance using the same
KR20200020538A (ko) * 2018-08-17 2020-02-26 엘지디스플레이 주식회사 유기전계발광소자
JP7226718B2 (ja) * 2018-08-23 2023-02-21 国立大学法人九州大学 有機発光素子、組成物および膜
CN109411633B (zh) * 2018-08-31 2020-12-15 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
WO2020054676A1 (ja) * 2018-09-10 2020-03-19 学校法人関西学院 有機電界発光素子
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
CN112789269A (zh) * 2018-10-09 2021-05-11 出光兴产株式会社 新型的化合物、有机电致发光元件、电子设备
WO2020075760A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075759A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US10777752B2 (en) 2018-10-09 2020-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
US10763444B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
WO2020075769A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
KR20210077690A (ko) * 2018-10-16 2021-06-25 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
US20220069232A1 (en) * 2018-11-07 2022-03-03 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device and electronic apparatus using the same
US20230058635A1 (en) * 2018-11-29 2023-02-23 Merck Patent Gmbh Electronic device
WO2020116561A1 (ja) * 2018-12-05 2020-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
KR20200071193A (ko) * 2018-12-10 2020-06-19 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR102316064B1 (ko) * 2018-12-26 2021-10-22 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자
KR20200081979A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR20200081983A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081977A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR20200081976A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR102541446B1 (ko) * 2019-01-22 2023-06-09 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
KR20200091979A (ko) * 2019-01-23 2020-08-03 삼성디스플레이 주식회사 유기 발광 소자
KR20200094262A (ko) 2019-01-29 2020-08-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
JP7283688B2 (ja) 2019-02-12 2023-05-30 学校法人関西学院 有機電界発光素子
CN111560030B (zh) * 2019-02-13 2024-01-16 三星显示有限公司 用于光电器件的有机分子
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices
KR20200107028A (ko) 2019-03-05 2020-09-16 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
JP6827135B2 (ja) * 2019-03-29 2021-02-10 住友化学株式会社 発光素子及び発光素子用組成物
KR20200119453A (ko) * 2019-04-09 2020-10-20 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR20200122117A (ko) * 2019-04-17 2020-10-27 엘지디스플레이 주식회사 유기전계 발광소자
WO2020217229A1 (en) * 2019-04-26 2020-10-29 Idemitsu Kosan Co., Ltd. Polycyclic compound and an organic electroluminescence device comprising the polycyclic compound or the composition
KR20200140744A (ko) * 2019-06-07 2020-12-16 가꼬우 호징 관세이 가쿠잉 아미노 치환 다환 방향족 화합물
JP7302813B2 (ja) * 2019-06-07 2023-07-04 学校法人関西学院 多環芳香族化合物
WO2020250700A1 (ja) * 2019-06-11 2020-12-17 学校法人関西学院 多環芳香族化合物
US20200395553A1 (en) * 2019-06-12 2020-12-17 Sfc Co., Ltd. Organic electroluminescent device
KR20220024468A (ko) * 2019-06-14 2022-03-03 가꼬우 호징 관세이 가쿠잉 다환방향족 화합물
KR20200145945A (ko) * 2019-06-21 2020-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 화합물
KR20210006554A (ko) 2019-07-08 2021-01-19 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
CN110407858B (zh) * 2019-07-18 2020-07-14 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
WO2021013986A1 (en) * 2019-07-25 2021-01-28 Cynora Gmbh Organic molecules for optoelectronic devices
US11944005B2 (en) 2019-07-30 2024-03-26 Samsung Display Co., Ltd. Organic molecules in particular for use in optoelectronic devices
CN112707923A (zh) * 2019-10-25 2021-04-27 环球展览公司 有机电致发光材料和装置
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN112778309B (zh) * 2019-11-06 2022-08-12 广州华睿光电材料有限公司 一种含n稠环化合物及其在有机电子器件中应用
KR20210056497A (ko) 2019-11-08 2021-05-20 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210064486A (ko) 2019-11-25 2021-06-03 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 유기 금속 화합물
KR20210067946A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
KR20210070453A (ko) 2019-12-04 2021-06-15 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합다환 화합물
KR20210073694A (ko) 2019-12-10 2021-06-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210078637A (ko) 2019-12-18 2021-06-29 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20210080216A (ko) * 2019-12-19 2021-06-30 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자 및 안트라센 화합물
CN113024567B (zh) * 2019-12-25 2022-11-25 广州华睿光电材料有限公司 多环化合物、聚合物、混合物、组合物及有机电子器件
JP7245770B2 (ja) * 2019-12-26 2023-03-24 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
KR20210085533A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20210085530A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20210105468A (ko) 2020-02-18 2021-08-27 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210108214A (ko) * 2020-02-25 2021-09-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20210117218A (ko) * 2020-03-18 2021-09-28 에스에프씨 주식회사 다환 방향족 유도체 화합물을 이용한 유기발광소자
KR20210117219A (ko) * 2020-03-18 2021-09-28 에스에프씨 주식회사 다환 방향족 유도체 화합물을 이용한 유기발광소자
KR20210118293A (ko) 2020-03-19 2021-09-30 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합환 화합물
CN115700046A (zh) * 2020-03-19 2023-02-03 Sfc株式会社 使用多环芳族化合物的有机电致发光器件
WO2021194216A1 (ko) * 2020-03-23 2021-09-30 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
JPWO2021215446A1 (ko) * 2020-04-22 2021-10-28
US20210376255A1 (en) * 2020-05-29 2021-12-02 Lg Display Co., Ltd. Organic light emitting device
US20210384439A1 (en) * 2020-05-29 2021-12-09 Lg Display Co., Ltd. Organic light emitting device
US20210376246A1 (en) * 2020-05-29 2021-12-02 Lg Display Co., Ltd. Organic light emitting device
US20210384444A1 (en) * 2020-05-29 2021-12-09 Lg Display Co., Ltd. Organic light emitting device
US20210376254A1 (en) * 2020-05-29 2021-12-02 Lg Display Co., Ltd. Organic light emitting device
US20220013733A1 (en) * 2020-06-16 2022-01-13 Arizona Board Of Regents On Behalf Of Arizona State University White oleds employing blue fluorescent emitters and orange phosphorescent excimers
CN114512618A (zh) * 2020-11-17 2022-05-17 北京鼎材科技有限公司 有机发光器件
KR102630972B1 (ko) * 2021-01-08 2024-01-29 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
KR102629146B1 (ko) * 2021-01-08 2024-01-24 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
CN112940026B (zh) * 2021-02-02 2022-12-02 吉林奥来德光电材料股份有限公司 一种多环类化合物及其制备方法和应用
CN113061146B (zh) * 2021-04-06 2023-07-14 武汉天马微电子有限公司 一种有机化合物及其电致发光的应用
US20220352474A1 (en) * 2021-04-15 2022-11-03 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
US20230001447A1 (en) * 2021-05-21 2023-01-05 Idemitsu Kosan Co.,Ltd. Mixed powder, method of vapor-depositing organic compound, method of fabricating organic electroluminescence device, method of selecting organic compounds, and method of vapor-depositing
KR20220169964A (ko) 2021-06-21 2022-12-29 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치
KR20230012413A (ko) 2021-07-15 2023-01-26 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치
KR20230024199A (ko) 2021-08-10 2023-02-20 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치
KR20230037436A (ko) 2021-09-09 2023-03-16 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치
EP4339259A1 (en) 2022-09-16 2024-03-20 Versitech Limited Metal-assisted multi-resonance thermally-activated delayed-fluorescence emitters for oled applications
KR20240047307A (ko) 2022-10-04 2024-04-12 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환방향족 화합물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2009512628A (ja) * 2005-09-12 2009-03-26 メルク パテント ゲーエムベーハー 有機電子素子のための化合物
WO2011107186A2 (de) 2010-03-02 2011-09-09 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012118164A1 (ja) 2011-03-03 2012-09-07 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス
KR20160119683A (ko) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
KR20170126888A (ko) * 2015-03-09 2017-11-20 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796582B2 (ja) * 2011-01-27 2015-10-21 Jnc株式会社 新規アントラセン化合物およびこれを用いた有機電界発光素子
CN104040747B (zh) * 2012-01-10 2016-08-24 捷恩智株式会社 发光层用材料、使用其的有机电场发光元件、显示装置及照明装置
JP2015216135A (ja) * 2012-08-10 2015-12-03 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
EP2924029B1 (en) * 2013-03-15 2018-12-12 Idemitsu Kosan Co., Ltd Anthracene derivative and organic electroluminescence element using same
US20160181542A1 (en) * 2013-09-06 2016-06-23 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using same
JP6696971B2 (ja) * 2015-03-25 2020-05-20 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
JP6634838B2 (ja) * 2016-01-12 2020-01-22 コニカミノルタ株式会社 電子デバイス材料、有機エレクトロルミネッセンス素子、表示装置、及び、照明装置
WO2017138526A1 (ja) * 2016-02-10 2017-08-17 学校法人関西学院 遅延蛍光有機電界発光素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2009512628A (ja) * 2005-09-12 2009-03-26 メルク パテント ゲーエムベーハー 有機電子素子のための化合物
WO2011107186A2 (de) 2010-03-02 2011-09-09 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012118164A1 (ja) 2011-03-03 2012-09-07 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス
KR20140013001A (ko) * 2011-03-03 2014-02-04 고쿠리쓰다이가쿠호진 규슈다이가쿠 신규 화합물, 전하 수송 재료 및 유기 디바이스
KR20160119683A (ko) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
KR20160134881A (ko) * 2014-02-18 2016-11-23 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
KR20170126888A (ko) * 2015-03-09 2017-11-20 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HirokiHirai 외, 'One-StepBorylationof1,3-DiaryloxybenzenesTowardsEfficientMaterialsforOrganicLight-EmittingDiodes', Angew.Chem.Int.Ed.,54,13581-13585 (2015) *
Truong Ba Tai 외, 'Theoretical Design of π-Conjugated Heteropolycyclic Compounds Containing a Tricoordinated Boron Center', J. Phys. Chem. C, 117, 14999-15008 (2013) *
Zhiguo Zhou 외, 'Planarized Triarylboranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion', J. Am. Chem. Soc., 134, 4529-4532 (2012) *

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130435A (ko) * 2015-03-25 2017-11-28 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
KR20190042791A (ko) * 2017-10-16 2019-04-25 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치
WO2019164340A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US11631821B2 (en) 2018-02-23 2023-04-18 Lg Chem, Ltd. Polycyclic aromatic compounds containing a 1,11-dioxa-,1,11-dithia-, or 1-oxa-11-thia-4,8-diaza-11b-boradicyclopenta[a,j]phenalene core and organic light-emitting device comprising same
KR20190101900A (ko) * 2018-02-23 2019-09-02 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019164331A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN111433216B (zh) * 2018-02-23 2023-07-18 株式会社Lg化学 杂环化合物和包含其的有机发光器件
CN111433216A (zh) * 2018-02-23 2020-07-17 株式会社Lg化学 杂环化合物和包含其的有机发光器件
WO2019221545A1 (ko) * 2018-05-17 2019-11-21 주식회사 엘지화학 유기발광소자
KR20190132282A (ko) * 2018-05-17 2019-11-27 주식회사 엘지화학 유기발광소자
US11980093B2 (en) 2018-05-17 2024-05-07 Lg Chem, Ltd. Organic light emitting diode
KR20190140417A (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
KR20190140421A (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
WO2020009433A1 (ko) * 2018-07-02 2020-01-09 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20210257550A1 (en) * 2018-07-03 2021-08-19 Lg Chem, Ltd. Polycyclic compound and organic light emitting diode comprising same
US11950504B2 (en) 2018-07-03 2024-04-02 Lg Chem, Ltd. Polycyclic compound and organic light emitting diode comprising same
WO2020009363A1 (ko) * 2018-07-03 2020-01-09 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20200004248A (ko) * 2018-07-03 2020-01-13 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20200019272A (ko) * 2018-07-24 2020-02-24 머티어리얼사이언스 주식회사 유기 전계 발광 소자
US12006336B2 (en) 2018-07-24 2024-06-11 Lg Chem, Ltd. Polycyclic compound and organic light-emitting device comprising same
WO2020022770A1 (ko) * 2018-07-24 2020-01-30 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020022751A1 (ko) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20200018107A (ko) * 2018-08-10 2020-02-19 머티어리얼사이언스 주식회사 유기 전계 발광 소자
CN110828701A (zh) * 2018-08-10 2020-02-21 材料科学有限公司 有机电致发光元件
KR20200021423A (ko) * 2018-08-20 2020-02-28 주식회사 엘지화학 유기 발광 소자
CN112106218A (zh) * 2018-08-20 2020-12-18 株式会社Lg化学 有机发光二极管
WO2020076108A1 (ko) * 2018-10-12 2020-04-16 주식회사 엘지화학 유기발광소자
US11991922B2 (en) 2018-10-12 2024-05-21 Lg Chem, Ltd. Organic light-emitting device
KR20200041804A (ko) * 2018-10-12 2020-04-22 주식회사 엘지화학 유기발광소자
KR20200041803A (ko) * 2018-10-12 2020-04-22 주식회사 엘지화학 유기발광소자
WO2020076109A1 (ko) * 2018-10-12 2020-04-16 주식회사 엘지화학 유기발광소자
KR20200047400A (ko) 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
US12018039B2 (en) 2018-11-16 2024-06-25 Sfc Co., Ltd. Boron compound, and organic light-emitting diode comprising same
WO2020101395A1 (ko) * 2018-11-16 2020-05-22 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2020105990A1 (ko) * 2018-11-19 2020-05-28 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
US12030900B2 (en) 2018-11-20 2024-07-09 Sfc Co., Ltd. Boron compound and organic light-emitting diode comprising same
KR20200058988A (ko) * 2018-11-20 2020-05-28 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2020106032A1 (ko) * 2018-11-20 2020-05-28 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR20200062066A (ko) * 2018-11-26 2020-06-03 주식회사 엘지화학 유기 발광 소자
WO2020111728A1 (ko) * 2018-11-26 2020-06-04 주식회사 엘지화학 유기 발광 소자
US10981938B2 (en) 2018-11-30 2021-04-20 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same
KR102094830B1 (ko) * 2018-11-30 2020-03-30 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
US11985891B2 (en) 2018-11-30 2024-05-14 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same
KR20200070141A (ko) * 2018-12-07 2020-06-17 주식회사 엘지화학 유기 발광 소자
WO2020138963A1 (ko) * 2018-12-27 2020-07-02 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자
KR20200081302A (ko) * 2018-12-27 2020-07-07 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자
KR20200081984A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081985A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
US11950500B2 (en) 2018-12-28 2024-04-02 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device having thereof
KR20200081986A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
US11963443B2 (en) 2018-12-28 2024-04-16 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
US11825733B2 (en) 2019-01-11 2023-11-21 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2020149666A1 (ko) * 2019-01-18 2020-07-23 주식회사 엘지화학 유기 발광 소자
WO2020153792A1 (ko) * 2019-01-23 2020-07-30 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200100008A (ko) * 2019-02-15 2020-08-25 주식회사 엘지화학 유기 발광 소자
KR20200101279A (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 유기 발광 소자
CN113039189A (zh) * 2019-03-08 2021-06-25 株式会社Lg化学 杂环化合物和包含其的有机发光器件
US12006335B2 (en) 2019-03-08 2024-06-11 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
CN113039189B (zh) * 2019-03-08 2023-12-26 株式会社Lg化学 杂环化合物和包含其的有机发光器件
WO2020184834A1 (ko) * 2019-03-08 2020-09-17 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102191018B1 (ko) * 2019-06-12 2020-12-14 에스에프씨 주식회사 유기발광소자
US11653561B2 (en) 2019-06-19 2023-05-16 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
CN113661584A (zh) * 2019-06-19 2021-11-16 株式会社Lg化学 有机发光器件
CN113661584B (zh) * 2019-06-19 2024-04-26 株式会社Lg化学 有机发光器件
KR20200145762A (ko) * 2019-06-19 2020-12-30 주식회사 엘지화학 유기 발광 소자
WO2020256480A1 (ko) * 2019-06-19 2020-12-24 주식회사 엘지화학 유기 발광 소자
KR20210010356A (ko) * 2019-07-18 2021-01-27 주식회사 엘지화학 유기 발광 소자
WO2021010656A1 (ko) * 2019-07-18 2021-01-21 주식회사 엘지화학 유기 발광 소자
KR20220047558A (ko) * 2019-07-18 2022-04-18 주식회사 엘지화학 유기 발광 소자
CN113875034A (zh) * 2019-07-18 2021-12-31 株式会社Lg化学 有机发光器件
KR20210010403A (ko) * 2019-07-19 2021-01-27 주식회사 엘지화학 유기 발광 소자
WO2021020947A1 (ko) * 2019-07-31 2021-02-04 주식회사 엘지화학 유기 발광 소자
WO2021020948A1 (ko) * 2019-08-01 2021-02-04 주식회사 엘지화학 유기 발광 소자
KR20210046437A (ko) 2019-10-18 2021-04-28 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
WO2021086148A1 (ko) * 2019-10-31 2021-05-06 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
WO2021107745A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
WO2021107678A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210067968A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
WO2021107711A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021107742A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
WO2021107699A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
US11685751B2 (en) 2019-11-29 2023-06-27 Lg Chem, Ltd. Compound and organic light-emitting element comprising same
WO2021107728A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
KR20210067976A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
US11832506B2 (en) 2019-12-13 2023-11-28 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
DE102020133439A1 (de) 2020-01-03 2021-07-08 Rohm And Haas Electronic Materials Korea Ltd. Mehrere organische elektrolumineszierende materialien und diese umfassende organische elektrolumineszierende vorrichtung
KR20210087735A (ko) 2020-01-03 2021-07-13 롬엔드하스전자재료코리아유한회사 복수 종의 유기 전계 발광 재료 및 이를 포함하는 유기 전계 발광 소자
WO2021187925A1 (ko) * 2020-03-18 2021-09-23 에스에프씨 주식회사 고효율 및 장수명의 유기발광소자
DE102021108828A1 (de) 2020-04-13 2021-10-14 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
KR20210126943A (ko) * 2020-04-13 2021-10-21 주식회사 엘지화학 안트라센 화합물 및 이를 포함하는 유기 발광 소자
KR20210127076A (ko) 2020-04-13 2021-10-21 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR102302965B1 (ko) * 2020-04-14 2021-09-27 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
KR20210131861A (ko) 2020-04-24 2021-11-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20220047740A (ko) 2020-04-24 2022-04-19 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2021230653A1 (ko) * 2020-05-12 2021-11-18 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
DE102021122804A1 (de) 2020-09-04 2022-03-10 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
WO2023090783A1 (ko) * 2021-11-17 2023-05-25 에스에프씨 주식회사 고효율과 장수명을 가지는 유기발광소자

Also Published As

Publication number Publication date
TWI688137B (zh) 2020-03-11
CN107851724A (zh) 2018-03-27
JP6919104B2 (ja) 2021-08-18
TW201703305A (zh) 2017-01-16
JP6526793B2 (ja) 2019-06-05
US20180301629A1 (en) 2018-10-18
KR102595330B1 (ko) 2023-10-26
JPWO2016152544A1 (ja) 2018-02-15
WO2016152544A1 (ja) 2016-09-29
JP2020113781A (ja) 2020-07-27
JP2019110305A (ja) 2019-07-04
CN107851724B (zh) 2020-10-09
US20200091431A1 (en) 2020-03-19
JP6703149B2 (ja) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6919104B2 (ja) 有機電界発光素子
KR102409257B1 (ko) 유기 전계 발광 소자
KR102512378B1 (ko) 유기 전계 발광 소자
KR101955648B1 (ko) 다환 방향족 화합물
KR102633060B1 (ko) 유기 전계 발광 소자
KR20190069295A (ko) 중수소 치환 다환 방향족 화합물
KR20180108604A (ko) 지연 형광 유기 전계 발광 소자
KR20200041832A (ko) 유기 전계 발광 소자
JP7197861B2 (ja) 有機電界発光素子
KR20180108559A (ko) 다환 방향족 화합물
JP7398711B2 (ja) フッ素置換多環芳香族化合物
JP7113455B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant