KR19990073590A - Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition. - Google Patents

Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition. Download PDF

Info

Publication number
KR19990073590A
KR19990073590A KR1019990030697A KR19990030697A KR19990073590A KR 19990073590 A KR19990073590 A KR 19990073590A KR 1019990030697 A KR1019990030697 A KR 1019990030697A KR 19990030697 A KR19990030697 A KR 19990030697A KR 19990073590 A KR19990073590 A KR 19990073590A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
transition metal
metal film
vapor deposition
chemical vapor
Prior art date
Application number
KR1019990030697A
Other languages
Korean (ko)
Inventor
이철진
Original Assignee
이철진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이철진 filed Critical 이철진
Priority to KR1019990030697A priority Critical patent/KR19990073590A/en
Publication of KR19990073590A publication Critical patent/KR19990073590A/en
Priority to KR10-2000-0029583A priority patent/KR100372334B1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/06Electrically-operated educational appliances with both visual and audible presentation of the material to be studied
    • G09B5/062Combinations of audio and printed presentations, e.g. magnetically striped cards, talking books, magnetic tapes with printed texts thereon

Abstract

본 발명은 플라즈마화학기상증착법을 사용하여 고순도 탄소나노튜브를 대면적 기판위에서 합성시키는 방법으로써, 특히 탄소나노튜브를 기판에 수직방향으로 정렬시켜 대량으로 합성시키는 방법에 관한 것이다.The present invention relates to a method for synthesizing high-purity carbon nanotubes on a large area substrate using plasma chemical vapor deposition, and more particularly, to a method for synthesizing carbon nanotubes in a vertical direction on a substrate in large quantities.

본 발명에 따른 탄소나노튜브의 합성은 대면적 글라스 기판위에 전이금속막을 증착시킨 후, 플라즈마를 이용하여 저온에서 상기 전이금속막의 표면을 암모니아가스로 식각시켜 상기 전이금속막의 표면에 미세한 그레인을 형성시킨 후, 상기 미세한 그레인위에 350 - 650℃ 범위의 온도에서 플라즈마에너지를 이용하여 아세틸렌가스 등의 탄화가스를 반응시켜, 상기 전이금속막위에 탄소나노튜브를 수직방향으로 정렬시켜 성장시킨다. 본 발명에 의한 탄소나노튜브는 기존의 전기방전법 또는 레이저증착법 또는 열화학기상증착법으로 성장시킨 탄소나노튜브에 비해서 저온에서 대면적 기판위에 고순도의 탄소나노튜브를 수직방향으로 정렬시켜 합성하는 것이 가능하기 때문에 기존의 글라스기판을 사용하여 대면적으로 고순도의 탄소나노튜브를 대량으로 합성할 수 있는 장점이 있다.In the synthesis of carbon nanotubes according to the present invention, after depositing a transition metal film on a large-area glass substrate, the surface of the transition metal film is etched with ammonia gas at low temperature using plasma to form fine grains on the surface of the transition metal film. Thereafter, carbon dioxide tubes such as acetylene gas are reacted with plasma energy at a temperature in the range of 350 to 650 ° C. on the fine grains, and the carbon nanotubes are vertically aligned on the transition metal film to grow. Carbon nanotubes according to the present invention can be synthesized by aligning high-purity carbon nanotubes vertically on a large-area substrate at low temperature, compared to conventional carbon nanotubes grown by electric discharge, laser deposition, or thermochemical vapor deposition. Therefore, there is an advantage that a large amount of high-purity carbon nanotubes can be synthesized using a conventional glass substrate.

Description

플라즈마 화학기상증착법에 의한 고순도 탄소나노튜브의 대량 합성.{Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.}Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.

본 발명은 플라즈마 화학기상증착법을 사용하여 대면적 기판위에서 고순도 탄소나노튜브를 저온에서 대량으로 합성하는 방법을 제공하는데 있다.The present invention provides a method for synthesizing a large amount of high-purity carbon nanotubes on a large-area substrate at low temperature by using plasma chemical vapor deposition.

본 발명은 플라즈마 화학기상증착법을 사용하여 저온에서 탄소나노튜브를 대량으로 합성하는 방법에 관한 것으로써, 특히 대면적 기판위에 증착된 전이금속막위에 수직방향으로 정렬된 탄소나노튜브를 합성하는 방법에 관한 것이다. 근래에 탄소나노튜브 합성에 관한 여러 가지 방법이 제안되었는데, 전기방전법이나 레이저증착법은 탄소나노튜브의 합성수율이 비교적 낮고, 나노튜브의 직경이나 길이를 조절하기가 어렵우며, 또한 합성과정에서 탄소나노튜브이외에도 비정질상태의 탄소덩어리들이 동시에 다량으로 생성되기 때문에 반드시 복잡한 정제과정을 수반하기 때문에 대량생산에 어려움이 많다. 한편 최근에 제안된 열화학기상증착법은 탄소나노튜브를 대면적으로 합성하는 것이 가능하고 고품질의 탄소나노튜브를 합성할 수 있는 장점이 있지만 탄소나노튜브를 합성하기 위한 온도가 높아서 글라스기판을 이용하는 소자에 응용하기에 부적합한 문제점을 가지고 있다.The present invention relates to a method for synthesizing a large amount of carbon nanotubes at a low temperature using plasma chemical vapor deposition, in particular to a method for synthesizing carbon nanotubes vertically aligned on a transition metal film deposited on a large area substrate. It is about. Recently, various methods for synthesizing carbon nanotubes have been proposed. The electric discharge method and the laser deposition method have relatively low yields of carbon nanotubes, and it is difficult to control the diameter and length of the nanotubes. In addition to nanotubes, a large amount of amorphous carbon masses are produced at the same time, which is difficult to mass-produce because it necessarily involves complicated purification processes. On the other hand, the recently proposed thermochemical vapor deposition method can synthesize carbon nanotubes in a large area and can synthesize high quality carbon nanotubes. However, since the temperature for synthesizing carbon nanotubes is high, a device using a glass substrate is used. It has a problem that is not suitable for application.

본 발명은 상기 문제점을 해결하기 위하여 창출한 것으로써, 대면적 기판위에 전이금속막을 증착시킨 후, 상기 전이금속막위에 저온에서 플라즈마화학기상증착법을 사용하여 탄소나노튜브를 합성시키는 방법에 관한 것으로써, 특히 기판에 수직인 방향으로 정렬된 고순도의 탄소나노튜브를 대량으로 합성하는 방법에 관한 것이다. 본 발명은 종래의 다공질 물질이나 다공질 기판을 사용하는 대신에 대면적 글라스기판위에 전이금속막을 증착시킨 후, 플라즈마에너지를 이용하여 암모니아가스로 상기 전이금속막의 표면을 식각시켜 표면에 미세한 그레인을 형성시킨 다음, 역시 저온에서 플라즈마화학기상증착법으로 아세틸렌 등의 탄화가스를 분해시켜 상기 전이금속막의 그레인위에 수직방향으로 정렬된 고순도 탄소나노튜브를 합성시킨 후, 이어서 암모니아가스 또는 수소가스를 반응챔버로 공급한 후 RF-power를 인가하여 상기 탄소나노튜브의 끝부분에 존재하는 전이금속 덩어리와 탄소나노튜브의 표면에 존재하는 탄소파티클을 깨끗하게 제거시킴으로써 고순도의 탄소나노튜브를 합성하는 방법에 관한 것이다.The present invention has been made to solve the above problems, and relates to a method of synthesizing carbon nanotubes by depositing a transition metal film on a large-area substrate and then using plasma chemical vapor deposition at a low temperature on the transition metal film. In particular, the present invention relates to a method for synthesizing a large amount of high-purity carbon nanotubes aligned in a direction perpendicular to the substrate. According to the present invention, instead of using a conventional porous material or a porous substrate, a transition metal film is deposited on a large area glass substrate, and then the surface of the transition metal film is etched with ammonia gas using plasma energy to form fine grains on the surface. Next, carbonaceous gases such as acetylene were decomposed by plasma chemical vapor deposition at low temperature to synthesize high-purity carbon nanotubes arranged vertically on the grains of the transition metal film, and then ammonia gas or hydrogen gas was supplied to the reaction chamber. The present invention relates to a method for synthesizing carbon nanotubes having high purity by applying RF-power to cleanly remove the transition metal lumps and carbon particles present on the surface of the carbon nanotubes.

도 1은 본 발명에 따른 플라즈마 화학기상증착법으로 탄소나노튜브를 대량합성하기 위한 장치의 구조도이다.1 is a structural diagram of a device for mass synthesis of carbon nanotubes by the plasma chemical vapor deposition method according to the present invention.

상기 목적을 달성하기 위한 본 발명에 따른 플라즈마화학기상증착법에 의한 탄소나노튜브의 대량합성은, 대면적 글라스기판(1)위에 코발트 또는 철 또는 코발트-니켈 합금 등의 전이금속막(2)을 열증착법이나 스퍼터링법을 사용하여 약 50 - 200 nm 증착시키고 나서, 플라즈마 화학기상증착기의 반응챔버내부로 상기 전이금속막(2)을 집어넣은 후, 350 - 650 ℃ 온도범위에서 상기 반응챔버내부로 암모니아가스를 80 - 400 sccm 범위로 공급하여 챔버의 압력을 0.1 - 수십 Torr 정도의 저압으로 유지하고 100 - 600 W 정도의 RF-power를 10 - 30 min 동안 인가하여 상기 전이금속막(2)의 표면을 식각시켜 표면에 미세한 그레인을 형성시킨 후, 상기 플라즈마 화학기상증착장치의 반응챔버의 온도를 350 - 650 ℃ 범위로 조절하여 아세틸렌가스, 메탄가스, 프로판가스, 또는 에틸렌가스등의 탄화가스를 20 - 200 sccm 범위로 공급하여 챔버의 압력을 0.1 - 수십 Torr 정도로 유지시킨 다음, 100 - 600 W 정도의 RF-power를 10 - 60 min 동안 인가하여 상기 전이금속막(2) 표면의 미세한 그레인위에 수직방향으로 정렬된 탄소나노튜브(3)를 합성시킨다. 이어서 상기 탄소나노튜브(3)의 끝부분에 존재하는 전이금속 덩어리와 탄소나노튜브의 표면에 존재하는 탄소파티클을 제거하기 위하여 350 - 650 ℃ 온도범위에서 상기 반응챔버내부로 암모니아가스를 80 - 400 sccm 범위로 공급하여 챔버의 압력을 0.1 - 수십 Torr 정도의 저압으로 유지하고 100 - 600 W 정도의 RF-power를 10 - 30 min 동안 인가하여 상기 탄소나노튜브(3)의 끝부분에 존재하는 전이금속 덩어리와 탄소나노튜브의 표면에 존재하는 탄소파티클을 깨끗하게 제거시킨다.The mass synthesis of carbon nanotubes by the plasma chemical vapor deposition method according to the present invention for achieving the above object, heat the transition metal film (2) such as cobalt or iron or cobalt-nickel alloy on the large-area glass substrate (1) After deposition of about 50-200 nm by vapor deposition or sputtering, the transition metal film 2 was inserted into the reaction chamber of the plasma chemical vapor deposition machine, and then ammonia was introduced into the reaction chamber at a temperature range of 350-650 ° C. The gas is supplied in the range of 80-400 sccm to maintain the chamber pressure at a low pressure of about 0.1-several tens of Torr and the RF-power of about 100-600 W is applied for 10-30 min to provide a surface of the transition metal film (2). After etching to form fine grains on the surface, by adjusting the temperature of the reaction chamber of the plasma chemical vapor deposition apparatus in the range of 350-650 ℃ acetylene gas, methane gas, propane gas, or ethylene By supplying carbonized gas such as carbon in the range of 20-200 sccm, the pressure of the chamber is maintained at about 0.1-several tens of Torr, and then the transition metal film (2) is applied with an RF-power of about 100-600 W for 10-60 min. The carbon nanotubes 3 vertically aligned on the fine grain of the surface are synthesized. Subsequently, in order to remove the transition metal mass present at the end of the carbon nanotubes 3 and the carbon particles present on the surface of the carbon nanotubes, ammonia gas was introduced into the reaction chamber at a temperature range of 350-650 ° C., 80-400. It is supplied in the sccm range to maintain the chamber pressure at a low pressure of about 0.1 to several tens of torr, and a transition existing at the end of the carbon nanotubes (3) by applying RF power of about 100 to 600 W for 10 to 30 min. The carbon particles present on the surface of the metal mass and the carbon nanotubes are cleanly removed.

상술한 바와 같이 본 발명에 따른 플라즈마 화학기상증착법에 의한 탄소나노튜브의 합성은 기존의 전기방전법이나 레이저증착법에 비해서 저온에서 탄소나노튜브의 합성이 가능하고, 탄소나노튜브의 수율이 훨씬 높으며, 탄소나노튜브의 반경이나 길이를 조절하기가 쉬우며, 고순도의 탄소나노튜브 합성이 가능하기 때문에 복잡한 정제과정이 불필요하고 대면적 기판에서 합성이 가능하다. 또한 기존의 열분해법이나 열화학기상증착법에 비해서 저온에서 합성이 가능하기 때문에 글라스기판위에서 탄소나노튜브의 대량합성에 유리한 장점이 있다.As described above, the synthesis of carbon nanotubes by the plasma chemical vapor deposition method according to the present invention enables the synthesis of carbon nanotubes at low temperature, and the yield of carbon nanotubes is much higher than that of conventional electric discharge or laser deposition methods. It is easy to control the radius and length of carbon nanotubes, and it is possible to synthesize high-purity carbon nanotubes, which eliminates the need for complicated purification processes and enables synthesis on large-area substrates. In addition, since it can be synthesized at a low temperature compared to the conventional pyrolysis method or thermochemical vapor deposition method, there is an advantage in the mass synthesis of carbon nanotubes on the glass substrate.

Claims (2)

플라즈마에너지를 이용하여 전이금속막의 표면에 미세한 그레인을 형성시키는 방법과 상기 전이금속막의 미세한 그레인위에 저온에서 탄소나노튜브를 수직방향으로 정렬시켜 합성하는 방법과 암모니아 가스 또는 수소가스를 사용하여 상기 탄소나노튜브의 표면에 부착된 전이금속덩어리와 탄소파티클을 제거하는 방법을 구비하는 플라즈마 화학기상증착법에 의한 고순도 탄소나노튜브의 대량합성법.A method of forming fine grain on the surface of the transition metal film using plasma energy, a method of synthesizing by aligning carbon nanotubes vertically at a low temperature on the fine grain of the transition metal film, and using the ammonia gas or hydrogen gas. A mass synthesis method of high purity carbon nanotubes by plasma chemical vapor deposition, comprising a method for removing carbon particles and transition metal masses attached to the surface of a tube. 제1항에 있어서, 전이금속막은 코발트-니켈 합금, 코발트, 니켈, 철, 이트륨, 코발트-니켈-철 합금, 코발트-철 합금,The method of claim 1, wherein the transition metal film is cobalt-nickel alloy, cobalt, nickel, iron, yttrium, cobalt-nickel-iron alloy, cobalt-iron alloy, 니켈-철 합금, 코발트-니켈-이트륨 합금, 코발트-이트륨 합금 등을 포함하는 방법.Nickel-iron alloys, cobalt-nickel-yttrium alloys, cobalt-yttrium alloys, and the like.
KR1019990030697A 1999-07-27 1999-07-27 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition. KR19990073590A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019990030697A KR19990073590A (en) 1999-07-27 1999-07-27 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.
KR10-2000-0029583A KR100372334B1 (en) 1999-07-27 2000-05-31 Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990030697A KR19990073590A (en) 1999-07-27 1999-07-27 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.

Publications (1)

Publication Number Publication Date
KR19990073590A true KR19990073590A (en) 1999-10-05

Family

ID=19605144

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019990030697A KR19990073590A (en) 1999-07-27 1999-07-27 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.
KR10-2000-0029583A KR100372334B1 (en) 1999-07-27 2000-05-31 Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR10-2000-0029583A KR100372334B1 (en) 1999-07-27 2000-05-31 Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition

Country Status (1)

Country Link
KR (2) KR19990073590A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088087A (en) * 2000-03-10 2001-09-26 장 진 Selective deposition method of carbon nanotubes
KR100371161B1 (en) * 1999-12-18 2003-02-07 엘지전자 주식회사 Fabricating method of field emission device
KR100377630B1 (en) * 2000-09-25 2003-03-26 엘지전자 주식회사 Selective excluding method of Carbon Nanotube having various characteristics
KR100385633B1 (en) * 2000-09-08 2003-05-27 학교법인 포항공과대학교 Method of preparing a carbon nanotube under a vapor-phase condition
KR100513713B1 (en) * 2000-05-12 2005-09-07 삼성에스디아이 주식회사 Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
KR100571803B1 (en) * 2002-05-03 2006-04-17 삼성전자주식회사 Semiconductor carbon nano tube functionalized by hydrogen, electronic device and method of fabrication thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878361B2 (en) 2001-07-10 2005-04-12 Battelle Memorial Institute Production of stable aqueous dispersions of carbon nanotubes
US6896864B2 (en) 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
KR20030028296A (en) * 2001-09-28 2003-04-08 학교법인 한양학원 Plasma enhanced chemical vapor deposition apparatus and method of producing a cabon nanotube using the same
KR101197288B1 (en) 2012-02-13 2012-11-05 금호석유화학 주식회사 Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973352B2 (en) * 1995-07-10 1999-11-08 科学技術振興事業団 How to make graphite fiber
JP3441923B2 (en) * 1997-06-18 2003-09-02 キヤノン株式会社 Manufacturing method of carbon nanotube
JPH11116218A (en) * 1997-10-17 1999-04-27 Osaka Gas Co Ltd Production of single layered nanotube
JPH11139821A (en) * 1997-11-06 1999-05-25 Natl Inst For Res In Inorg Mater Production of multicomponent nanotube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371161B1 (en) * 1999-12-18 2003-02-07 엘지전자 주식회사 Fabricating method of field emission device
KR20010088087A (en) * 2000-03-10 2001-09-26 장 진 Selective deposition method of carbon nanotubes
KR100513713B1 (en) * 2000-05-12 2005-09-07 삼성에스디아이 주식회사 Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
KR100385633B1 (en) * 2000-09-08 2003-05-27 학교법인 포항공과대학교 Method of preparing a carbon nanotube under a vapor-phase condition
KR100377630B1 (en) * 2000-09-25 2003-03-26 엘지전자 주식회사 Selective excluding method of Carbon Nanotube having various characteristics
KR100571803B1 (en) * 2002-05-03 2006-04-17 삼성전자주식회사 Semiconductor carbon nano tube functionalized by hydrogen, electronic device and method of fabrication thereof

Also Published As

Publication number Publication date
KR100372334B1 (en) 2003-02-17
KR20010049453A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
KR19990073593A (en) Chemical vapor deposition system for massive synthesis of carbon nanotubes
US7682658B2 (en) Method for making carbon nanotube array
US7713589B2 (en) Method for making carbon nanotube array
EP1059266A2 (en) Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
JP2001081564A (en) Chemical vapor deposition system and method for synthesizing carbon nanotube using the same
KR20010091389A (en) Method for depositing a vertically aligned carbon nanotubes using thermal chemical vapor deposition
JPS5927753B2 (en) Diamond synthesis method
KR19990073590A (en) Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
JPH04958B2 (en)
KR19990073589A (en) Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
CN109775690A (en) A kind of method of continuous producing carbon nano-tube array
KR20160062810A (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR100513713B1 (en) Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
CN110451496B (en) Method for preparing powder graphene through continuous release
TWI429779B (en) Method of diamond nucleation
US5824368A (en) Process of diamond growth from C70
CN114752916B (en) Method for converting graphite phase in nano diamond film into diamond phase under low pressure
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
JPS63176399A (en) Production of diamond film
JPH03141199A (en) Production of single crystal cvd diamond
JPH01148790A (en) Synthesis of diamond
JPH04304377A (en) Method and device for forming diamond thin film

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant