JPS63310795A - Vapor phase synthesis method for diamond by microwave plasma jet - Google Patents

Vapor phase synthesis method for diamond by microwave plasma jet

Info

Publication number
JPS63310795A
JPS63310795A JP14400687A JP14400687A JPS63310795A JP S63310795 A JPS63310795 A JP S63310795A JP 14400687 A JP14400687 A JP 14400687A JP 14400687 A JP14400687 A JP 14400687A JP S63310795 A JPS63310795 A JP S63310795A
Authority
JP
Japan
Prior art keywords
plasma
diamond
microwave
jet
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14400687A
Other languages
Japanese (ja)
Other versions
JPH0449518B2 (en
Inventor
Kazuaki Kurihara
和明 栗原
Kenichi Sasaki
謙一 佐々木
Motonobu Kawarada
河原田 元信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14400687A priority Critical patent/JPS63310795A/en
Publication of JPS63310795A publication Critical patent/JPS63310795A/en
Publication of JPH0449518B2 publication Critical patent/JPH0449518B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase a film forming rate by concentrating a microwave in the raw gas contg. hydrogen and a gaseous carbon compd., injecting the formed plasma having high chemical activity on a substrate, and quenching the plasma. CONSTITUTION:The microwave generated from a magnetron 1 is passed through a rectangular waveguide 2 and a coaxial waveguide 3, and an extremely high electric field is generated at the tip of a single electrode 7 with the electrode as a receiving antenna. The raw gas passes through a coaxial cylindrical quartz tube 5 at atmospheric pressure or higher, and forms high-temp. plasma having high activity at the tip of the electrode. A plasma jet A is formed by the rapid thermal expansion at this time, and injected from a nozzle 8. The jet A of the plasma having higher activity than the plasma obtained by the conventional CVD method is thus obtained. The jet A is injected on a water-cooled substrate 9, and diamond can be synthesized in the vapor phase at a high rate.

Description

【発明の詳細な説明】 〔概 要〕 水素とガス状の炭素化合物とを含む原料ガスにマイクロ
波を集中させて、生成した化学的活性度の高い熱プラズ
マを基板に向けて噴出し、急冷させて基板上にダイヤモ
ンド薄膜を形成する。
[Detailed Description of the Invention] [Summary] Microwaves are concentrated on a raw material gas containing hydrogen and a gaseous carbon compound, and the generated thermal plasma with high chemical activity is ejected toward the substrate to rapidly cool it. A diamond thin film is formed on the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明はダイヤモンドの気相合成方法に関し、特に、製
膜速度が高く、連続的にダイヤモンドを合成できる方法
に関する。
The present invention relates to a method for vapor phase synthesis of diamond, and in particular to a method that has a high film forming rate and can synthesize diamond continuously.

〔従来の技術〕[Conventional technology]

良質の結晶質ダイヤモンドの気相合成法としては、熱フ
イラメント法(S、Matsumoto et al、
:Jpn。
As a vapor phase synthesis method for high-quality crystalline diamond, the hot filament method (S, Matsumoto et al.
:Jpn.

J、^pp1.Phys、21(1981)L183)
 、マイクロ波プラズマCVD法(M、Kamo et
 al、:J、Cryst、Growth 62(19
83) 642)、電子線照射CVD法(A、5aiv
abe etal、:Appl、Phys、Lett、
46(1985)146)等のCVD法が知られている
J, ^pp1. Phys, 21 (1981) L183)
, microwave plasma CVD method (M, Kamo et al.
al, :J,Cryst, Growth 62(19
83) 642), electron beam irradiation CVD method (A, 5aiv
abe etal, :Appl, Phys, Lett,
46 (1985) 146) are known.

気相合成によって形成したダイヤモンド膜は、熱伝導率
、硬度、絶縁性、透光性、耐食性が優れているので、半
導体素子の高密度実装用の基板、各種工具の高硬度コー
テイング膜、光学部品等として使用することが、期待さ
れているが、上記いずれの製法によっても、製膜速度が
llRn/h以下と遅いので、コスト、生産性の上で問
題であった。
Diamond films formed by vapor phase synthesis have excellent thermal conductivity, hardness, insulation, translucency, and corrosion resistance, so they can be used as substrates for high-density mounting of semiconductor devices, as hard coating films for various tools, and as optical components. However, since the film formation rate is slow at less than 11Rn/h by any of the above-mentioned manufacturing methods, there are problems in terms of cost and productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の問題点を解決し、製膜速度の高いダイ
ヤモンドの気相合成法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a method for vapor phase synthesis of diamond with a high film forming rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、マイクロ波を導波管(3)内の単電極(
8)に集中させるとともに、この単電極(8)に向けて
水素とガス状の炭素化合物とを含む原料ガスを導入し、
これによってマイクロ波のエネルギーを原料ガスに移行
させて、化学的活性度の高い熱プラズマを生成し、この
熱プラズマを真空中の基板に向けて噴出し、急冷させて
基板上にダイヤモンド薄膜を形成することを特徴とする
、マイクロ波プラズマジェットによるダイヤモンド気相
合成方法によって解決することができる。
The problem mentioned above is that the microwave is transmitted to a single electrode in the waveguide (3) (
8), and introduce a raw material gas containing hydrogen and a gaseous carbon compound toward this single electrode (8),
This transfers microwave energy to the source gas to generate a highly chemically active thermal plasma, which is ejected towards the substrate in vacuum and rapidly cooled to form a diamond thin film on the substrate. This problem can be solved by a diamond vapor phase synthesis method using a microwave plasma jet, which is characterized by the following.

〔作 用〕[For production]

第1図に示すように、マグネトロン1から発生したマイ
クロ波は、矩型導波管2、同軸導波管3を通り、単電極
7を受信アンテナとし、電極先端部で極めて高い電界を
発生する。大気圧もしくは、それ以上の圧力で同軸円筒
石英管5の中を通った原料ガスは電極先端で活性度の高
い高温熱プラズマとなり、この際の急激な熱膨張により
、プラズマジェットAとなり、ノズル8から噴出する。
As shown in Figure 1, microwaves generated from a magnetron 1 pass through a rectangular waveguide 2 and a coaxial waveguide 3, and a single electrode 7 serves as a receiving antenna, generating an extremely high electric field at the tip of the electrode. . The raw material gas that passes through the coaxial cylindrical quartz tube 5 at atmospheric pressure or higher pressure becomes a highly active high-temperature thermal plasma at the tip of the electrode, and due to rapid thermal expansion at this time, it becomes a plasma jet A, and the nozzle 8 erupts from.

こうして、従来のCVD法で得られるよりも、活性度の
高いプラズマをプラズマジエッI−Aとして得られる。
In this way, a plasma with higher activity than that obtained by the conventional CVD method can be obtained as Plasma Jet I-A.

このプラズマジェットAを、水冷された基板9に噴き当
てることにより、従来のCVDに比べ格段に高い速度で
ダイヤモンドを気相合成させることができる。
By spraying this plasma jet A onto the water-cooled substrate 9, diamond can be synthesized in a vapor phase at a much higher rate than conventional CVD.

原料ガスは、従来よりCVD法によるダイヤモンド合成
に用いられたもの、たとえば、H2−1%CH4を使用
できる。プラズマの安定度を高めるために、HeやAr
等の希ガスを加えても良い。
As the raw material gas, those conventionally used in diamond synthesis by CVD method, such as H2-1% CH4, can be used. In order to increase the stability of the plasma, He and Ar
A rare gas such as may be added.

ただし、製膜速度は、希ガス混合によりいくぶん、低下
する。また、単電極7としては電子を放出しやすく、消
耗が少ないTh0z 、 LazOt+YzOt等を添
加したWが好ましい。
However, the film forming speed is somewhat reduced by the rare gas mixture. Further, as the single electrode 7, it is preferable to use W added with Th0z, LazOt+YzOt, etc., which easily emits electrons and consumes less.

〔実施例〕〔Example〕

2.45GHz 、2に−のマグネトロン1は、第1図
に示すように、断面96 X 37 mmの導波管2お
よび同軸導波管3を介して真空チャンバ11に接続され
ている。同軸導波管3と石英管4との内にある同軸石英
管5に、ガス導入管6から原料ガスを圧力2kg/ a
m” 、流IHz 101!/min XC840,5
ff/minで導入した。同軸石英管5の先端はノズル
8となって開口し、同軸石英管5内にはノズル8に近い
位置に単電極7があり、単電極7の先端で活性度の高い
高温度の熱プラズマシェアドAを発生させた。真空チャ
ンバ11内の圧力を200Torrとし、ノズル8から
4On離して、水冷基板ホルダIO上に30X30鰭、
厚み0.5 uのSiウェハ9を置き、Siウェハ9の
温度が900℃になるように、冷却水管13からの水流
をコントロールし、1時間、ダイヤモンドの合成を行な
った。
A 2.45 GHz, 2-min magnetron 1 is connected to a vacuum chamber 11 via a waveguide 2 and a coaxial waveguide 3 with a cross section of 96 x 37 mm, as shown in FIG. Source gas is supplied from the gas introduction tube 6 to the coaxial quartz tube 5 between the coaxial waveguide 3 and the quartz tube 4 at a pressure of 2 kg/a.
m”, current IHz 101!/min XC840,5
It was introduced at a rate of ff/min. The tip of the coaxial quartz tube 5 is opened as a nozzle 8, and inside the coaxial quartz tube 5 there is a single electrode 7 at a position close to the nozzle 8. A was generated. The pressure inside the vacuum chamber 11 was set to 200 Torr, and a 30×30 fin was placed on the water-cooled substrate holder IO, 4 On apart from the nozzle 8.
A Si wafer 9 having a thickness of 0.5 μm was placed, and the water flow from the cooling water pipe 13 was controlled so that the temperature of the Si wafer 9 was 900° C., and diamond synthesis was performed for 1 hour.

生成した膜は厚み30Irmの無色透明の膜で、X線回
折では、ダイヤモンドのピークのみが検出され、ラマン
分光では、ダイヤモンドのピークの他に、ブロードな非
晶質炭素によるピークもいくらか、検出された。
The produced film was a colorless and transparent film with a thickness of 30 Irm, and in X-ray diffraction, only the diamond peak was detected, and in Raman spectroscopy, in addition to the diamond peak, some broad peaks due to amorphous carbon were also detected. Ta.

〔発明の効果〕〔Effect of the invention〕

本発明のマイクロ波プラズマジェットを利用することに
より、気相合成ダイヤモンドの成膜速度を迅速化するこ
とができ、コストおよび生産性の向上を達成できる。
By utilizing the microwave plasma jet of the present invention, it is possible to speed up the deposition rate of vapor-phase synthetic diamond, and it is possible to achieve improvements in cost and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロ波プラズマジェット気相合成装置の説
明図である。 A・・・プラズマジェット、 ■・・・マグネトロン、  2・・・導波管、3・・・
同軸導波管、   4・・・石英管、5・・・同軸石英
管、   6・・・ガス導入管、7・・・単電極、  
    8・・・ノズル、9・・・基板、      
 10・・・基板ホルダ、11・・・真空チャンバ、 
 12・・・排気管、13・・・冷却水管。
FIG. 1 is an explanatory diagram of a microwave plasma jet vapor phase synthesis apparatus. A...Plasma jet, ■...Magnetron, 2...Waveguide, 3...
Coaxial waveguide, 4... Quartz tube, 5... Coaxial quartz tube, 6... Gas introduction tube, 7... Single electrode,
8... Nozzle, 9... Board,
10... Substrate holder, 11... Vacuum chamber,
12...Exhaust pipe, 13...Cooling water pipe.

Claims (1)

【特許請求の範囲】 1、マイクロ波を導波管(3)内の単電極(8)に集中
させるとともに、この単電極(8)に向けて、水素とガ
ス状の炭素化合物とを含む原料ガスを導入し、これによ
ってマイクロ波のエネルギーを原料ガスに移行させて、
化学的活性度の高い熱プラズマを生成し、この熱プラズ
マを真空中の基板に向けて噴出し、急冷させて基板上に
ダイヤモンド薄膜を形成することを特徴とする、マイク
ロ波プラズマジェットによるダイヤモンド気相合成方法
。 2、炭素化合物がメタンである、特許請求の範囲第1項
記載の方法。 3、原料ガスがさらに希ガスを含む、特許請求の範囲第
1または2項に記載の方法。
[Claims] 1. The microwave is concentrated on a single electrode (8) in the waveguide (3), and a raw material containing hydrogen and a gaseous carbon compound is directed toward the single electrode (8). Introducing a gas, which transfers the microwave energy to the raw material gas,
Diamond vaporization using a microwave plasma jet is characterized by generating thermal plasma with high chemical activity, ejecting this thermal plasma toward a substrate in vacuum, and rapidly cooling it to form a diamond thin film on the substrate. Phase synthesis method. 2. The method according to claim 1, wherein the carbon compound is methane. 3. The method according to claim 1 or 2, wherein the raw material gas further contains a rare gas.
JP14400687A 1987-06-11 1987-06-11 Vapor phase synthesis method for diamond by microwave plasma jet Granted JPS63310795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14400687A JPS63310795A (en) 1987-06-11 1987-06-11 Vapor phase synthesis method for diamond by microwave plasma jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14400687A JPS63310795A (en) 1987-06-11 1987-06-11 Vapor phase synthesis method for diamond by microwave plasma jet

Publications (2)

Publication Number Publication Date
JPS63310795A true JPS63310795A (en) 1988-12-19
JPH0449518B2 JPH0449518B2 (en) 1992-08-11

Family

ID=15352119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14400687A Granted JPS63310795A (en) 1987-06-11 1987-06-11 Vapor phase synthesis method for diamond by microwave plasma jet

Country Status (1)

Country Link
JP (1) JPS63310795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126164A (en) * 1988-06-06 1992-06-30 Research Development Corporation Of Japan Method of forming a thin polymeric film by plasma reaction under atmospheric pressure
US6593507B2 (en) 1998-10-23 2003-07-15 Mitsubishi Heavy Industries, Ltd. Method of decomposing organic halide
JP2009533872A (en) * 2006-04-14 2009-09-17 シリカ テック リミテッド ライアビリティ カンパニー Plasma deposition apparatus and method for manufacturing solar cells
GB2513439A (en) * 2013-03-15 2014-10-29 Agilent Technologies Inc Integrated microwave source and plasma torch and related methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126164A (en) * 1988-06-06 1992-06-30 Research Development Corporation Of Japan Method of forming a thin polymeric film by plasma reaction under atmospheric pressure
US6593507B2 (en) 1998-10-23 2003-07-15 Mitsubishi Heavy Industries, Ltd. Method of decomposing organic halide
US6600084B2 (en) 1998-10-23 2003-07-29 Mitsubishi Heay Industries, Ltd. Method of decomposing organic halide
US6635997B2 (en) 1998-10-23 2003-10-21 Mitsubishi Heavy Industries, Ltd. Microwave plasma generator, method of decomposing organic halide, and system for decomposing organic halide
US6650059B2 (en) 1998-10-23 2003-11-18 Mitsubishi Heavy Industries, Ltd. Method of decomposing organic halide
DE19982291C2 (en) * 1998-10-23 2003-11-27 Mitsubishi Heavy Ind Co Microwave plasma generator and method of decomposing organic halides
JP2009533872A (en) * 2006-04-14 2009-09-17 シリカ テック リミテッド ライアビリティ カンパニー Plasma deposition apparatus and method for manufacturing solar cells
GB2513439A (en) * 2013-03-15 2014-10-29 Agilent Technologies Inc Integrated microwave source and plasma torch and related methods
US9427821B2 (en) 2013-03-15 2016-08-30 Agilent Technologies, Inc. Integrated magnetron plasma torch, and related methods
GB2513439B (en) * 2013-03-15 2019-02-06 Agilent Technologies Inc Integrated microwave source and plasma torch, and related methods

Also Published As

Publication number Publication date
JPH0449518B2 (en) 1992-08-11

Similar Documents

Publication Publication Date Title
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
Bachmann et al. Diamond deposition technologies
US5124179A (en) Interrupted method for producing multilayered polycrystalline diamond films
JP3167938B2 (en) Method and apparatus for plasma treatment of surfaces
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
Konyashin et al. A novel approach to deposition of cubic boron nitride coatings
JPH01179789A (en) Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0814024B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH0449520B2 (en)
JP2646438B2 (en) Diamond vapor phase synthesis method
JPH0449517B2 (en)
JP2840750B2 (en) Coating method
JPH0674199B2 (en) Diamond synthesis method
Matsumoto Development of CVD diamond synthesis techniques
JPH0226894A (en) Method and device for synthesizing diamond in vapor phase
JPH0660411B2 (en) Optical plasma vapor phase synthesis method and apparatus
JPH0226895A (en) Method and device for synthesizing diamond in vapor phase
JPH0667797B2 (en) Diamond synthesis method
JPH01100092A (en) Diamond vapor-phase synthesis and device therefor
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JPS63185891A (en) Production of diamond thin film or diamond-like thin film
JPH04202663A (en) Formation of boron nitride film and apparatus therefor