KR100385633B1 - Method of preparing a carbon nanotube under a vapor-phase condition - Google Patents

Method of preparing a carbon nanotube under a vapor-phase condition Download PDF

Info

Publication number
KR100385633B1
KR100385633B1 KR10-2000-0053277A KR20000053277A KR100385633B1 KR 100385633 B1 KR100385633 B1 KR 100385633B1 KR 20000053277 A KR20000053277 A KR 20000053277A KR 100385633 B1 KR100385633 B1 KR 100385633B1
Authority
KR
South Korea
Prior art keywords
gas
present
carbon nanotube
carbon nanotubes
under
Prior art date
Application number
KR10-2000-0053277A
Other languages
Korean (ko)
Other versions
KR20020020282A (en
Inventor
유창모
이건홍
홍은화
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2000-0053277A priority Critical patent/KR100385633B1/en
Publication of KR20020020282A publication Critical patent/KR20020020282A/en
Application granted granted Critical
Publication of KR100385633B1 publication Critical patent/KR100385633B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Abstract

본 발명은 탄소 나노튜브의 기상 합성방법에 관한 것으로서, 500 내지 3,000torr의 압력 하에서 촉매 및 탄화수소 가스를 함유하는 반응기 내에 고전압 방전시켜 플라즈마를 발생시키는 본 발명의 탄소 나노튜브 기상 합성방법에 의하면, 온화한 반응 조건하에서 탄소 나노튜브를 대량으로 간단하게 합성할 수 있다.The present invention relates to a gas phase synthesis method of carbon nanotubes, and according to the carbon nanotube gas phase synthesis method of the present invention, which generates plasma by high voltage discharge in a reactor containing a catalyst and a hydrocarbon gas under a pressure of 500 to 3,000 torr, Under the reaction conditions, carbon nanotubes can be simply synthesized in large quantities.

Description

탄소 나노튜브의 기상 합성방법{METHOD OF PREPARING A CARBON NANOTUBE UNDER A VAPOR-PHASE CONDITION}METHOD OF PREPARING A CARBON NANOTUBE UNDER A VAPOR-PHASE CONDITION}

본 발명은 탄소 나노튜브의 기상 합성방법에 관한 것으로, 구체적으로는 상압 근방에서 고전압 방전에 의해 플라즈마를 발생시켜 탄소 나노튜브를 대량으로합성할 수 있는 기상 합성방법에 관한 것이다.The present invention relates to a gas phase synthesis method of carbon nanotubes, and more particularly, to a gas phase synthesis method capable of synthesizing carbon nanotubes in large quantities by generating a plasma by high voltage discharge in the vicinity of atmospheric pressure.

나노튜브는 1991년 최초로 발견된 나노 미터의 직경을 갖는 신소재로서, 여러 가지 독특한 전기적 특성 및 기계적 특성을 가지고 있어 전자 장치, 수소 저장장치, 필터 등에 폭넓게 응용될 것으로 생각되고 있다.Nanotubes, a new material with a diameter of nanometers first discovered in 1991, have many unique electrical and mechanical properties and are expected to be widely applied to electronic devices, hydrogen storage devices, and filters.

나노튜브를 합성하는 방법으로는 아크 방전에 의한 합성법, 레이저 증착법, 화학 증착법 및 열분해법 등이 사용되어 왔다. 종래의 아크 방전에 의한 합성법 및 레이저 증착법에 따르면 고품질의 나노튜브를 만들 수는 있으나, 아크 방전의 경우 진공조건하에서 탄소 전극에 비교적 저전압의 직류(DC) 방전을 수행하여 전극에 나노튜브를 미량으로 생성시키고 있기 때문에 나노튜브를 대량으로 합성하기 어렵고, 레이저 증착법의 경우 장치 제작비가 비싸고 역시 나노튜브의 양산이 어렵다는 문제를 갖는다. 또한, 화학 증착법은 가장 널리 사용되는 방법으로(대한민국 특허공개공보 제 99-73589 호 및 제 99-73590 호 참조) 대면적의 기재에 대해 나노튜브의 성장을 적용하기가 용이하다는 장점은 있으나, 긴 시간이 소요되고 650℃ 이상의 고온을 필요로 하는 문제를 갖는다.As a method for synthesizing nanotubes, synthesis by arc discharge, laser deposition, chemical vapor deposition, and pyrolysis have been used. According to the conventional arc discharge synthesis method and laser deposition method, high quality nanotubes can be produced, but in the case of arc discharge, a relatively low voltage direct current (DC) discharge is performed on the carbon electrode under vacuum conditions, and the nanotubes are applied to the electrode in a small amount. It is difficult to synthesize a large amount of nanotubes because of the production, and in the case of laser deposition, the manufacturing cost of the device is expensive and the production of nanotubes is difficult. In addition, chemical vapor deposition is the most widely used method (see Korean Patent Laid-Open Publication Nos. 99-73589 and 99-73590), but it is easy to apply the growth of nanotubes to a large-area substrate. It takes time and requires a high temperature of 650 DEG C or higher.

따라서, 나노튜브를 신소재로서 광범위하게 사용하기 위한 나노튜브 대량 합성법의 개발이 요구되었고, 미국의 스몰리(Smalley) 팀은 900℃ 이상의 온도 및 1 내지 10기압의 압력 조건하에서 일산화탄소 가스를 촉매 기체와 반응시켜 탄소 나노튜브를 대량으로 합성하는 방법을 개발한 바 있다(문헌["Advances in Cutting Edge Applications Scalable Production of Carbon Nanotube", Proceedings, April 1011(2000)] 참조). 그러나, 이 방법은 고온 및 고압 조건하에서 반응을수행하여야 하는 단점을 갖는다.Therefore, the development of large-scale synthesis of nanotubes for the widespread use of nanotubes as a new material has been required, and the US Smalley team has reacted carbon monoxide gas with a catalyst gas at a temperature of 900 ° C. or higher and a pressure of 1 to 10 atm. Has been developed to synthesize carbon nanotubes in large quantities (see "Advances in Cutting Edge Applications Scalable Production of Carbon Nanotube", Proceedings, April 1011 (2000)). However, this method has the disadvantage that the reaction must be carried out under high temperature and high pressure conditions.

이에 본 발명자들은 예의 연구를 계속한 결과, 고전압 방전에 의해 플라즈마를 발생시켜 탄화수소 가스의 반응성을 높임으로써 상압 근방 및 저온 하에서 탄소 나노튜브를 대량으로 간단하게 합성할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively researched and found that carbon nanotubes can be easily synthesized in large quantities under atmospheric pressure and under low temperature by generating plasma by high voltage discharge to increase the reactivity of hydrocarbon gas. Was done.

본 발명의 목적은 탄소 나노튜브를 온화한 조건하에서 대량으로 합성할 수 있는 기상 합성방법을 제공하는 것이다.It is an object of the present invention to provide a gas phase synthesis method capable of synthesizing carbon nanotubes in large quantities under mild conditions.

도 1은 본 발명에 사용되는 탄소 나노튜브 기상 합성 장치의 개략도이고,1 is a schematic diagram of a carbon nanotube gas phase synthesis apparatus used in the present invention,

도 2 및 3은 각각 본 발명의 실시예에 따라 합성된 탄소 나노튜브를 3,000배 및 60,000배로 확대한 주사 전자 현미경(SEM) 사진이다.2 and 3 are scanning electron microscopy (SEM) photographs of 3,000 and 60,000 times the carbon nanotubes synthesized according to the embodiment of the present invention, respectively.

[도면부호에 대한 간단한 설명][Brief Description of Drawings]

1a, 1b 및 1c : 투입량 조절기(Mass Flow Controller)1a, 1b and 1c: Mass Flow Controller

2 : 항온조(water bath) 3 : 온도 판독기2: water bath 3: temperature reader

4 : 석영 반응기 5 : 전극4: quartz reactor 5: electrode

6 : 교류(AC) 전원 7 : 촉매6 AC power 7 Catalyst

상기 목적을 달성하기 위하여 본 발명에서는, 500 내지 3,000torr의 압력 하에서 촉매 및 탄화수소 가스를 함유하는 반응기 내에 고전압 방전시켜 플라즈마를 발생시키는 것을 포함하는, 탄소 나노튜브의 기상 합성방법을 제공한다.In order to achieve the above object, the present invention provides a gas phase synthesis method of carbon nanotubes, including generating a plasma by high-voltage discharge in a reactor containing a catalyst and a hydrocarbon gas under a pressure of 500 to 3,000 torr.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 탄소 나노튜브 기상 합성에 사용되는 장치의 개략도가 도 1에 도시된다. 도 1의 장치에 의하면, 투입량 조절기 중 (1a)를 통해 세척용 가스를 흘려 보낸 후 (1b) 및/또는 (1c)를 통해 기상의 탄화수소원을 흘려 보내는데, 이때 탄화수소원은 항온조(2)를 거치면서 불순물이 제거되어 반응기(4)로 투입된다. 한편, 이 반응기(4)에는 미리 고체 촉매(7)를 넣어 두고, 탄화수소 가스의 투입과 함께 히터(도시하지 않음)를 이용하여 반응기를 260 내지 600℃의 온도로 가열하여 촉매를 기상 상태로 만든다. 촉매가 충분히 기상 상태로 존재함이 확인되면, 500 내지 3,000torr의 압력 하에서 반응기와 연결된 전극(5)에 10 내지 20KV의 교류 전압을 인가하여 탄화수소 가스에 플라즈마를 발생시켜 탄소 나노튜브를 합성한다.A schematic of the device used in the carbon nanotube gas phase synthesis of the present invention is shown in FIG. 1. According to the apparatus of FIG. 1, the washing gas is flowed through (1a) of the input regulator, and then the hydrocarbon source in the gas phase is flowed through (1b) and / or (1c), where the hydrocarbon source is a thermostat (2). The impurities are removed while passing through the reactor (4). On the other hand, in the reactor 4, the solid catalyst 7 is put in advance, and the reactor is heated to a temperature of 260 to 600 DEG C using a heater (not shown) with the addition of hydrocarbon gas to bring the catalyst into a gaseous state. . When it is confirmed that the catalyst is present in a sufficiently gaseous state, a plasma of hydrocarbon gas is generated by applying an alternating voltage of 10 to 20 KV to the electrode 5 connected to the reactor under a pressure of 500 to 3,000 torr to synthesize carbon nanotubes.

플라즈마 방전은 주파수가 높아질수록 쉽게 일어나므로, 필요에 따라, 상기 교류 고전압 방전 대신에, 100W 내지 100KW의 RF(1MHz 내지 1GHz) 또는 마이크로웨이브(1 내지 10GHz) 플라즈마 발생 장치를 사용할 수 있다. 또한, 필요에 따라, 전극의 경우 직선형 외에도 평면, 곡면 및 코일과 같은 여러 형태로 변형될 수 있는 등, 본 발명의 합성 장치는 당 분야의 통상의 지식을 가진 자에 의해 변형 또는 개량될 수 있다.Since plasma discharge easily occurs as the frequency increases, an RF (1 MHz to 1 GHz) or microwave (1 to 10 GHz) plasma generator of 100 W to 100 KW may be used instead of the AC high voltage discharge as necessary. In addition, if necessary, the electrode of the present invention can be modified or improved by those skilled in the art, such as in the case that the electrode can be modified in various forms such as flat, curved and coil in addition to the straight. .

본 발명의 방법에 따른 탄화수소원으로는 메탄, 아세틸렌, 프로판 또는 벤젠 가스, 또는 이들과 수소 또는 헬륨 가스와의 혼합물 등을 사용할 수 있다.As the hydrocarbon source according to the method of the present invention, methane, acetylene, propane or benzene gas, or a mixture of these and hydrogen or helium gas may be used.

본 발명의 방법에 따른 고체 촉매로는 Fe, Co 또는 Ni, 또는 이들을 함유하는 금속 착체(예: 페로센(FeC10H10) 및 펜타카보닐 철(Fe(CO)5)) 등을 사용할 수 있다.As the solid catalyst according to the method of the present invention, Fe, Co or Ni, or a metal complex containing them (eg, ferrocene (FeC 10 H 10 ) and pentacarbonyl iron (Fe (CO) 5 )) may be used. .

본 발명에 따른 탄소 나노튜브 기상 합성방법은, 기존의 플라즈마 합성에 요구되는 진공 장치나 대량 생산을 위한 기상 합성에 요구되는 고압 장치가 불필요함으로써, 상압 근방 및 저온 조건하에서 탄소 나노튜브를 대량으로 합성할 수 있는 획기적인 방법일 뿐만 아니라 저온 기상 합성이 가능해짐에 따라 유리 또는 플라스틱과 같은 고분자 물질을 기재로서 사용하는 분야를 포함하는 다양한 분야에 응용될 수 있다.The carbon nanotube gas phase synthesis method according to the present invention does not require a vacuum device required for conventional plasma synthesis or a high pressure device required for gas phase synthesis for mass production, thereby synthesizing a large amount of carbon nanotubes under atmospheric pressure and under low temperature conditions. Not only is it a breakthrough method that can be achieved, but as low-temperature gas phase synthesis becomes possible, it can be applied to various fields including the field of using a polymer material such as glass or plastic as a substrate.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예Example

도 1에 도시된 본 발명에 따른 탄소 나노튜브 기상 합성 장치를 사용하여 탄소 나노튜브를 합성하였다.Carbon nanotubes were synthesized using the carbon nanotube gas phase synthesis apparatus according to the present invention shown in FIG. 1.

먼저, 고체 촉매로서 페로센(7)을 작은 스푼에 담아 반응기(4) 안에 넣고, 투입량 조절기 중 (1a)를 통해 H2가스를 흘려 보내 장치 전체를 세척하였다. 이어, (1b) 및 (1c)를 통해 아세틸렌 가스 및 헬륨 가스를 흘려 보내 아세틸렌 가스와 헬륨 가스의 혼합물을 반응기 내로 투입하면서, 반응기를 260℃로 가열하였다. 촉매가 충분히 기상 상태로 존재함을 확인한 다음, 대기압 하에서 반응기와 연결된 전극(5)에 15KV의 전압을 인가하여 탄화수소 가스에 플라즈마를 발생시켰다. 이때, 교류 전원(6)에는 15.7KHz 및 20mA가 사용되었다.First, the ferrocene (7) was put in a small spoon into the reactor (4) as a solid catalyst, and the entire apparatus was washed by flowing H 2 gas through (1a) in the input regulator. Subsequently, the reactor was heated to 260 ° C while flowing acetylene gas and helium gas through (1b) and (1c) to introduce a mixture of acetylene gas and helium gas into the reactor. After confirming that the catalyst was present in a sufficiently gaseous state, a plasma of hydrocarbon gas was generated by applying a voltage of 15 KV to the electrode 5 connected to the reactor under atmospheric pressure. At this time, 15.7 KHz and 20 mA were used for the AC power supply 6.

반응기 내에 다량으로 생성된 검은색의 합성물의 3,000배 및 60,000배 SEM 사진을 도 2 및 3에 각각 나타내었는데, 이로부터 상기 반응을 통해 탄소 나노튜브가 합성되었음을 확인할 수 있다.SEM photographs of 3,000 and 60,000 times of the black compound produced in a large amount in the reactor are shown in FIGS. 2 and 3, respectively, from which the carbon nanotubes were synthesized.

본 발명의 방법에 따르면, 상압 근방 및 저온 조건하에서 탄소 나노튜브를 대량으로 간편하게 합성할 수 있다. 또한, 본 발명의 방법은, 탄소 나노튜브의 저온 기상 합성이 가능해짐에 따라 유리 또는 플라스틱과 같은 고분자 물질을 기재로서 사용하는 분야를 포함하는 다양한 분야에 응용될 수 있다.According to the method of the present invention, carbon nanotubes can be easily synthesized in large quantities under atmospheric pressure and under low temperature conditions. In addition, the method of the present invention can be applied to various fields including the field of using a polymer material such as glass or plastic as a substrate as low temperature vapor phase synthesis of carbon nanotubes becomes possible.

Claims (4)

500 내지 3,000torr의 압력 및 260 내지 600℃의 온도 조건하에서 촉매 및 탄화수소 가스를 함유하는 반응기 내에 10 내지 20KV의 교류 전압을 방전시켜 플라즈마를 발생시키는 것을 포함하는, 탄소 나노튜브의 기상 합성방법.A gas phase synthesis method of carbon nanotubes comprising generating a plasma by discharging an alternating voltage of 10 to 20 KV in a reactor containing a catalyst and a hydrocarbon gas under a pressure of 500 to 3,000 torr and a temperature of 260 to 600 ° C. 삭제delete 삭제delete 제 1 항에 있어서,The method of claim 1, 탄화수소 가스가 메탄, 아세틸렌, 프로판 또는 벤젠 가스, 또는 이들과 수소 또는 헬륨 가스와의 혼합물인 것을 특징으로 하는 방법.Wherein the hydrocarbon gas is methane, acetylene, propane or benzene gas, or a mixture of these with hydrogen or helium gas.
KR10-2000-0053277A 2000-09-08 2000-09-08 Method of preparing a carbon nanotube under a vapor-phase condition KR100385633B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0053277A KR100385633B1 (en) 2000-09-08 2000-09-08 Method of preparing a carbon nanotube under a vapor-phase condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0053277A KR100385633B1 (en) 2000-09-08 2000-09-08 Method of preparing a carbon nanotube under a vapor-phase condition

Publications (2)

Publication Number Publication Date
KR20020020282A KR20020020282A (en) 2002-03-15
KR100385633B1 true KR100385633B1 (en) 2003-05-27

Family

ID=19688094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0053277A KR100385633B1 (en) 2000-09-08 2000-09-08 Method of preparing a carbon nanotube under a vapor-phase condition

Country Status (1)

Country Link
KR (1) KR100385633B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376202B1 (en) * 2000-10-02 2003-03-15 일진나노텍 주식회사 Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
KR20020090976A (en) * 2002-10-30 2002-12-05 이영희 A method for carbon nanotube synthesis using arc gun

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761803A (en) * 1993-08-26 1995-03-07 Nec Corp Production of fullerene and carbon nanotube
JPH09188509A (en) * 1996-01-12 1997-07-22 Nec Corp Production of monolayer carbon manotube
JPH10203810A (en) * 1997-01-21 1998-08-04 Canon Inc Production of carbon nanotube
KR19990073590A (en) * 1999-07-27 1999-10-05 이철진 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761803A (en) * 1993-08-26 1995-03-07 Nec Corp Production of fullerene and carbon nanotube
JPH09188509A (en) * 1996-01-12 1997-07-22 Nec Corp Production of monolayer carbon manotube
JPH10203810A (en) * 1997-01-21 1998-08-04 Canon Inc Production of carbon nanotube
KR19990073590A (en) * 1999-07-27 1999-10-05 이철진 Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.

Also Published As

Publication number Publication date
KR20020020282A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
Cho et al. Synthesis of carbon nanotubes from bulk polymer
Tomai et al. Carbon materials syntheses using dielectric barrier discharge microplasma in supercritical carbon dioxide environments
Mohsenian et al. Hydrogen and carbon black nano-spheres production via thermal plasma pyrolysis of polymers
US20080182027A1 (en) Synthesis of Carbon Nanotubes by Selectively Heating Catalyst
BRPI0618737B1 (en) Fullerene-functionalized carbon nanotube, a method for producing one or more fullerene-functionalized carbon nanotubes, functional material, thick or thin film, a line, wire or layered or three-dimensional structure, and device
EP3567130B1 (en) Reactor for fabrication of graphene
Zajíčková et al. Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch
JP2007145674A (en) Method for manufacturing fibrous carbon material
CN102993053A (en) Electronegative plasma assisted carbon dioxide emission reduction processing method and device thereof
EP0539050B1 (en) Chemical vapor deposition of diamond
JPS61158899A (en) Production of diamond film
KR100385633B1 (en) Method of preparing a carbon nanotube under a vapor-phase condition
JP2002069643A (en) Method for producing carbon nanotube
KR100582249B1 (en) Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
KR100372334B1 (en) Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition
JP5032042B2 (en) Plasma CVD apparatus and film forming method
Yardimci et al. Synthesis methods of carbon nanotubes
JP4930918B2 (en) Diamond manufacturing method
Koinuma et al. Synthesis of carbon clusters and thin films by low temperature plasma chemical vapor deposition under atmospheric pressure
KR20090019533A (en) Apparatus for synthesizing carbon nano-tube using plasma enhanced chemical vapor deposition
KR100478144B1 (en) Method for Manufacturing Carbon Nanotube
KR20010049547A (en) Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns
KR20030093666A (en) Carbon nanotubes synthesis method using magnetic fluids
JPH0448757B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090519

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee