KR19990073589A - Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition. - Google Patents

Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition. Download PDF

Info

Publication number
KR19990073589A
KR19990073589A KR1019990030696A KR19990030696A KR19990073589A KR 19990073589 A KR19990073589 A KR 19990073589A KR 1019990030696 A KR1019990030696 A KR 1019990030696A KR 19990030696 A KR19990030696 A KR 19990030696A KR 19990073589 A KR19990073589 A KR 19990073589A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
transition metal
metal film
low pressure
vapor deposition
Prior art date
Application number
KR1019990030696A
Other languages
Korean (ko)
Inventor
이철진
Original Assignee
이철진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이철진 filed Critical 이철진
Priority to KR1019990030696A priority Critical patent/KR19990073589A/en
Publication of KR19990073589A publication Critical patent/KR19990073589A/en
Priority to KR10-2000-0028005A priority patent/KR100372333B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D7/00Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals

Abstract

본 발명은 저압화학기상증착법을 사용하여 탄소나노튜브를 대량합성시키는 방법으로써, 특히 기판에 수직방향으로 정렬시켜 대면적 기판위에서 탄소나노튜브를 합성시키는 방법에 관한 것이다. 본 발명에 따른 탄소나노튜브의 대량합성은 대면적 기판위에 전이금속막을 증착시킨 후, 저압에서 열분해방식을 사용하여 상기 전이금속막의 표면을 암모니아가스로 식각시켜 상기 전이금속막의 표면에 미세한 그레인을 형성시킨 후, 상기 미세한 그레인위에 550 - 1100℃ 범위의 온도에서 아세틸렌가스 또는 탄화가스를 반응시켜, 상기 전이금속막위에 탄소나노튜브를 수직방향으로 정렬시켜 성장시킨다. 본 발명에 의한 탄소나노튜브는 기존의 전기방전법이나 레이저증착법으로 성장시킨 탄소나노튜브에 비해서 대면적 기판위에서 고순도의 탄소나노튜브를 수직방향으로 정렬시켜 대량으로 합성시키는 것이 가능하기 때문에 탄소나노튜브를 대량으로 생산할 수 있는 방법이다. 또한 저압화학기상증착법은 기존의 상압에서 탄소나노튜브를 합성하는 방법에 비해서 반응가스의 유량흐름을 반응로내에서 일정하게 조절하는 것이 용이하므로 고품질의 탄소나노튜브를 균일하게 합성할 수 있는 장점을 가지고 있다.The present invention relates to a method for mass synthesis of carbon nanotubes using low pressure chemical vapor deposition, and more particularly, to a method for synthesizing carbon nanotubes on a large-area substrate by aligning the substrate vertically. Mass synthesis of carbon nanotubes according to the present invention deposits a transition metal film on a large-area substrate, and then uses a pyrolysis method at low pressure to etch the surface of the transition metal film with ammonia gas to form fine grains on the surface of the transition metal film. After the reaction, acetylene gas or carbonized gas is reacted on the fine grains at a temperature in the range of 550-1100 ° C, and the carbon nanotubes are grown on the transition metal film in a vertical direction. Carbon nanotubes according to the present invention can be synthesized in large quantities by aligning high-purity carbon nanotubes vertically on a large-area substrate, compared to conventional carbon nanotubes grown by electric discharge or laser deposition. It is a way to produce large quantities of. In addition, the low pressure chemical vapor deposition method has the advantage of uniformly synthesizing high quality carbon nanotubes because it is easier to control the flow rate of the reaction gas uniformly in the reactor than the conventional method of synthesizing carbon nanotubes at normal pressure. Have.

Description

저압화학기상증착법에 의한 탄소나노튜브의 대량 합성.{Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.}Mass synthesis of carbon nanotubes using low pressure chemical vapor deposition.

본 발명은 저압화학기상증착법으로 대면적 기판위에서 탄소나노튜브를 대량으로 합성하는 방법을 제공하는데 있다.The present invention provides a method for synthesizing a large amount of carbon nanotubes on a large area substrate by low pressure chemical vapor deposition.

본 발명은 저압화학기상증착법을 사용하여 탄소나노튜브의 대량합성하는 방법에 관한 것으로써, 특히 저압에서 열화학기상증착법을 사용하여 대면적 기판위에 수직방향으로 정렬된 탄소나노튜브를 합성하는 방법에 관한 것이다. 근래에 탄소나노튜브 합성에 관한 여러 가지 방법이 제안되었는데, 전기방전법이나 레이저증착법은 탄소나노튜브의 합성수율이 비교적 낮고, 나노튜브의 직경이나 길이를 조절하기가 어렵우며, 또한 합성과정에서 탄소나노튜브이외에도 비정질상태의 탄소덩어리들이 동시에 다량으로 생성되기 때문에 반드시 복잡한 정제과정을 수반하게 될 뿐만아니라, 대량으로 대면적에서 탄소나노튜브를 성장시키는 것이 불가능하다. 한편 최근에 플라즈마 화학기상증착법이나 상압에서의 열화학기상증착법이 제안되고 있는데, 이 경우에 대면적에서 탄소나노튜브를 합성시킬 경우 합성된 탄소나노튜브의 균일도를 일정하게 유지하기가 어려운 점이 있다.The present invention relates to a method for mass synthesis of carbon nanotubes using low pressure chemical vapor deposition, and more particularly to a method for synthesizing carbon nanotubes vertically aligned on a large area substrate using thermochemical vapor deposition at low pressure. will be. Recently, various methods for synthesizing carbon nanotubes have been proposed. The electric discharge method and the laser deposition method have relatively low yields of carbon nanotubes, and it is difficult to control the diameter and length of the nanotubes. In addition to the nanotubes, a large amount of amorphous carbon masses are generated at the same time, which not only entails complex purification processes but also makes it impossible to grow carbon nanotubes in large areas. Recently, plasma chemical vapor deposition or thermochemical vapor deposition at atmospheric pressure has been proposed. In this case, when synthesizing carbon nanotubes in a large area, it is difficult to maintain uniformity of the synthesized carbon nanotubes.

본 발명은 상기 문제점을 해결하기 위하여 창출한 것으로써, 대면적 기판위에 전이금속막을 증착시킨 후, 상기 전이금속막위에 저압에서 화학기상증착법을 사용하여 탄소나노튜브를 대량합성시키는 방법에 관한 것으로써, 특히 기판에 수직인 방향으로 정렬된 고순도의 탄소나노튜브를 대량으로 합성하는 방법에 관한 것이다. 본 발명은 종래의 다공질 물질이나 다공질 기판을 사용하는 대신에 글라스 또는 알루미나 또는 실리콘 등의 대면적 기판위에 전이금속막을 증착시킨 후, 저압에서 암모니아가스를 사용하여 상기 전이금속막의 표면을 식각시켜 표면에 미세한 그레인을 형성시킨 다음, 저압에서 열화학기상증착법으로 아세틸렌 등의 탄화가스를 분해시켜 상기 전이금속막의 그레인위에 수직방향으로 정렬된 고순도 탄소나노튜브를 합성시키는 방법에 관한 것이다.The present invention has been made to solve the above problems, and relates to a method for mass-synthesizing carbon nanotubes by depositing a transition metal film on a large-area substrate and then using chemical vapor deposition at low pressure on the transition metal film. In particular, the present invention relates to a method for synthesizing a large amount of high-purity carbon nanotubes aligned in a direction perpendicular to the substrate. According to the present invention, instead of using a conventional porous material or a porous substrate, a transition metal film is deposited on a large area substrate such as glass, alumina or silicon, and then the surface of the transition metal film is etched using ammonia gas at low pressure. The present invention relates to a method for synthesizing high purity carbon nanotubes vertically aligned on the grains of the transition metal film by forming fine grains and then decomposing carbonic acid gas such as acetylene at low pressure by thermochemical vapor deposition.

도 1은 본 발명에 따른 저압화학기상증착법으로 탄소나노튜브를 대량합성하기 위한 장치의 구조도이다.1 is a structural diagram of a device for mass synthesis of carbon nanotubes by a low pressure chemical vapor deposition method according to the present invention.

상기 목적을 달성하기 위한 본 발명에 따른 저압화학기상증착법에 의한 탄소나노튜브의 대량합성은, 글라스 또는 알루미나 또는 실리콘 등의 대면적 기판(1)위에 철 또는 코발트 또는 니켈 또는 코발트-니켈 합금 등의 전이금속막(2)을 열증착법이나 스퍼터링법을 사용하여 약 50 - 200 nm 증착시키고 나서, 석영반응로안으로 상기 전이금속막(2)을 집어넣은 후, 700 - 1100。C 온도범위에서 상기 반응로내부로 암모니아가스를 80 - 400 sccm 범위로 공급하여 반응로의 압력을 0.1 - 수십 Torr 정도의 저압으로 유지하면서 10 - 30 min 동안 상기 전이금속막(2)의 표면을 식각시켜 표면에 미세한 그레인을 형성시키거나, 또는 플라즈마방식을 사용하여 상기 전이금속막(2)의 표면을 350 - 600 ℃ 온도범위에서 암모니아가스로 식각시켜 상기 전이금속막(2)의 표면에 미세한 그레인을 형성시킨 후, 상기 전이금속막(2)이 증착된 상기 대면적 기판(1)을 석영보트에 올려놓은 후, 상기 석영보트를 저압화학기상증착장치의 반응로안에 집어넣은 다음, 상기 열화학기상증착장치의 반응로온도를 500 - 1100 ℃ 범위에서 아세틸렌가스, 메탄가스, 프로판가스, 또는 에틸렌가스등의 탄화가스를 20 - 200 sccm 범위로 흘려주어 반응로의 압력을 0.1 - 수십 Torr 정도로 유지시키면서 10 - 60 min 동안 상기 전이금속막(2) 표면의 미세한 그레인위에 수직방향으로 정렬된 탄소나노튜브(3)를 합성시킨다. 이어서 상기 탄소나노튜부(3)의 끝부분에 존재하는 전이금속 덩어리와 탄소나노튜브의 표면에 존재하는 탄소파티클을 제거하기 위하여 500 - 1000 ℃ 온도범위에서 상기 반응로내부로 암모니아가스를 80 - 400 sccm 범위로 10 - 30 min 동안 공급함으로써, 상기 탄소나노튜브(3)의 끝부분에 존재하는 전이금속 덩어리와 탄소나노튜브의 표면에 존재하는 탄소파티클을 깨끗하게 제거시킨다.Mass synthesis of carbon nanotubes by the low pressure chemical vapor deposition method according to the present invention for achieving the above object, such as iron or cobalt or nickel or cobalt-nickel alloy on a large-area substrate 1 such as glass or alumina or silicon After the transition metal film 2 was deposited by thermal evaporation or sputtering, about 50-200 nm, the transition metal film 2 was put into a quartz reactor, and then the reaction was carried out at a temperature range of 700-1100 ° C. By supplying ammonia gas to the inside of the furnace in the range of 80-400 sccm, the surface of the transition metal film 2 is etched for 10-30 min while maintaining the pressure of the reactor at a low pressure of about 0.1-several tens of torr. Or the surface of the transition metal film 2 is etched with ammonia gas at a temperature range of 350 to 600 ° C. by using a plasma method. After the phosphorus was formed, the large-area substrate 1 on which the transition metal film 2 was deposited was placed on a quartz boat, and the quartz boat was placed in a reactor of a low pressure chemical vapor deposition apparatus. The reactor temperature of the vapor phase deposition apparatus is flowed into the carbonization gas such as acetylene gas, methane gas, propane gas or ethylene gas in the range of 500-1100 ℃ in the range of 20-200 sccm to maintain the pressure of the reactor to 0.1-several tens Torr The carbon nanotubes 3 aligned in the vertical direction on the fine grains of the surface of the transition metal film 2 are synthesized for 10-60 min. Subsequently, in order to remove the transition metal lumps present at the ends of the carbon nanotubes 3 and the carbon particles present on the surfaces of the carbon nanotubes, ammonia gas was introduced into the reactor in the temperature range of 500-1000 ° C. By supplying the sccm in the range of 10-30 min, the transition metal lumps present at the ends of the carbon nanotubes 3 and the carbon particles present on the surfaces of the carbon nanotubes are cleanly removed.

상술한 바와 같이 본 발명에 따른 저압화학기상증착법에 의한 탄소나노튜브의 대량합성은 기존의 전기방전법이나 레이저증착법에 비해서 탄소나노튜브의 수율이 훨씬 높고, 나노튜브의 반경이나 길이를 조절하기가 쉬우며, 고순도의 탄소나노튜브 합성이 가능하기 때문에 복잡한 정제과정이 불필요하며, 대면적 기판에서 합성이 가능하고, 다공질 물질이나 다공질상태로 가공한 기판을 사용하는 방법에 비해서 기판처리과정이 아주 간단하다. 또한 기존의 상압에서 실시하는 열화학기상증착방식에 비해서 저압에서 탄소나노튜브를 합성시키기 때문에 대면적에서 재현성이 높고 균일한 탄소나노튜브의 대량합성에 매우 효율적이다.As described above, the mass synthesis of carbon nanotubes by the low pressure chemical vapor deposition according to the present invention is much higher in yield of carbon nanotubes than conventional electric discharge or laser deposition, and it is difficult to control the radius or length of the nanotubes. Easy and high-purity carbon nanotube synthesis eliminates the need for complex purification processes. Synthesis is possible on large-area substrates. Substrate processing is simpler than methods using porous materials or substrates processed in a porous state. Do. In addition, since carbon nanotubes are synthesized at low pressure, compared to the conventional thermochemical vapor deposition method, it is highly reproducible in a large area and is very efficient for mass synthesis of uniform carbon nanotubes.

Claims (3)

저압화학기상증착법을 사용하여 전이금속막위에서 탄소나노튜브를 합성하는 방법.A method for synthesizing carbon nanotubes on a transition metal film using low pressure chemical vapor deposition. 제1항에 있어서, 플라즈마에너지 또는 열에너지를 이용하여 전이금속막의 표면에 미세한 그레인을 형성시키는 방법과 상기 전이금속막의 미세한 그레인위에 저압에서 아세틸렌등의 탄화가스를 사용하여 탄소나노튜브를 수직방향으로 정렬시켜 합성하는 방법과 상기 탄소나노튜브를 합성한 후, 암모니아 가스 또는 수소가스를 사용하여 상기 탄소나노튜브의 표면에 부착된 전이금속덩어리와 탄소파티클을 제거하는 방법을 구비하는 저압화학기상증착법에 의한 탄소나노튜브의 대량합성법.The method of claim 1, wherein the fine grains are formed on the surface of the transition metal film using plasma energy or thermal energy, and the carbon nanotubes are vertically aligned using a carbonization gas such as acetylene at low pressure on the fine grains of the transition metal film. By a low pressure chemical vapor deposition method comprising a method of synthesizing the carbon nanotubes, and a method of removing the transition metal mass and carbon particles attached to the surface of the carbon nanotubes by using ammonia gas or hydrogen gas. Mass synthesis method of carbon nanotubes. 제1항에 있어서, 전이금속막은 코발트-니켈 합금, 코발트, 니켈, 철, 이트륨, 코발트-니켈-철 합금, 코발트-철 합금, 니켈-철 합금, 코발트-니켈-이트륨 합금, 코발트-이트륨 합금 등을 포함하는 방법.The transition metal film of claim 1, wherein the transition metal film is cobalt-nickel alloy, cobalt, nickel, iron, yttrium, cobalt-nickel-iron alloy, cobalt-iron alloy, nickel-iron alloy, cobalt-nickel-yttrium alloy, cobalt-yttrium alloy And the like.
KR1019990030696A 1999-07-27 1999-07-27 Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition. KR19990073589A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019990030696A KR19990073589A (en) 1999-07-27 1999-07-27 Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.
KR10-2000-0028005A KR100372333B1 (en) 1999-07-27 2000-05-24 Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990030696A KR19990073589A (en) 1999-07-27 1999-07-27 Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.

Publications (1)

Publication Number Publication Date
KR19990073589A true KR19990073589A (en) 1999-10-05

Family

ID=19605142

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019990030696A KR19990073589A (en) 1999-07-27 1999-07-27 Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.
KR10-2000-0028005A KR100372333B1 (en) 1999-07-27 2000-05-24 Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR10-2000-0028005A KR100372333B1 (en) 1999-07-27 2000-05-24 Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition

Country Status (1)

Country Link
KR (2) KR19990073589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027422A (en) * 1999-09-13 2001-04-06 이영희 High yield purification of multiwalled carbon nanotubes by thermal annealing method
KR100513713B1 (en) * 2000-05-12 2005-09-07 삼성에스디아이 주식회사 Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878361B2 (en) 2001-07-10 2005-04-12 Battelle Memorial Institute Production of stable aqueous dispersions of carbon nanotubes
US6896864B2 (en) 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
KR20030033152A (en) * 2001-10-17 2003-05-01 남기석 Mass production of carbon nanotubes using catalytic tubular reactors
KR100478144B1 (en) * 2001-12-21 2005-03-22 재단법인 포항산업과학연구원 Method for Manufacturing Carbon Nanotube
KR100478145B1 (en) * 2002-03-06 2005-03-22 재단법인 포항산업과학연구원 Method for Manufacturing Carbon Nano Fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973352B2 (en) * 1995-07-10 1999-11-08 科学技術振興事業団 How to make graphite fiber
JP3365475B2 (en) * 1997-03-27 2003-01-14 三菱化学株式会社 Method for producing monoatomic carbon nanotubes
JP3136334B2 (en) * 1997-07-23 2001-02-19 工業技術院長 Method for producing carbon nanotube
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027422A (en) * 1999-09-13 2001-04-06 이영희 High yield purification of multiwalled carbon nanotubes by thermal annealing method
KR100513713B1 (en) * 2000-05-12 2005-09-07 삼성에스디아이 주식회사 Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films

Also Published As

Publication number Publication date
KR20010049398A (en) 2001-06-15
KR100372333B1 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP3442032B2 (en) Method of synthesizing carbon nanotube
KR19990073593A (en) Chemical vapor deposition system for massive synthesis of carbon nanotubes
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
Ferro Synthesis of diamond
EP1072693A1 (en) Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
US7682658B2 (en) Method for making carbon nanotube array
JPS5927753B2 (en) Diamond synthesis method
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
JPH08225395A (en) Production of diamond doped with boron
KR19990073590A (en) Massive synthesis of highly purified carbon nanotubes using plasma enhanced chemical vapor deposition.
KR19990073589A (en) Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.
JPH04958B2 (en)
AU2001256753A1 (en) Method and apparatus for production of high purity silicon
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
KR100513713B1 (en) Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
US20040038409A1 (en) Breath-alcohol measuring instrument
KR100382878B1 (en) Synthesis method of highly purified carbon nanotubes
TW201348494A (en) Method of diamond nucleation
CN114752916B (en) Method for converting graphite phase in nano diamond film into diamond phase under low pressure
JPH03141199A (en) Production of single crystal cvd diamond
Gogotsi et al. Hydrothermal synthesis of diamond: challenges and opportunities
JPS63176399A (en) Production of diamond film
US8608850B1 (en) Low-energy, hydrogen-free method of diamond synthesis
JPH04240190A (en) Formation of diamond film on si substrate by cvd method
JPS63239192A (en) Device for producing diamond film

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant