JP2001081564A - Chemical vapor deposition system and method for synthesizing carbon nanotube using the same - Google Patents

Chemical vapor deposition system and method for synthesizing carbon nanotube using the same

Info

Publication number
JP2001081564A
JP2001081564A JP2000225525A JP2000225525A JP2001081564A JP 2001081564 A JP2001081564 A JP 2001081564A JP 2000225525 A JP2000225525 A JP 2000225525A JP 2000225525 A JP2000225525 A JP 2000225525A JP 2001081564 A JP2001081564 A JP 2001081564A
Authority
JP
Japan
Prior art keywords
gas
carbon nanotubes
reaction furnace
carbon
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000225525A
Other languages
Japanese (ja)
Inventor
Cheol Jin Lee
鉄真 李
Jae-Eun Yoo
在銀 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iljin Nanotech Co Ltd
Original Assignee
Iljin Nanotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019990030700A external-priority patent/KR19990073593A/en
Application filed by Iljin Nanotech Co Ltd filed Critical Iljin Nanotech Co Ltd
Publication of JP2001081564A publication Critical patent/JP2001081564A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally

Abstract

PROBLEM TO BE SOLVED: To provide a chemical vapor deposition system for synthesizing carbon nanotubes in a large amount and to provide a method for synthesizing carbon nanotubes using same. SOLUTION: In a chemical vapor deposition system growing carbon nanotubes 3000 on substrates 1300, a boat containing supporting projections respectively supporting substrates 1300 numerously amounted parallely in the horizontal direction and many vertical axes provided with the supporting projections is utilized. Moreover, the system contains a reaction furnace having passages for feeding and exhausting reaction gas on both edge parts and having an internal shape of a rectangular parallelpiped so that the boat is mounted on the inside and a heating means provided on the outside of the reaction furnace. By using such chemical vapor deposition system, carbon nanotubes can be synthesized in a large amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカーボンナノチュー
ブ合成に関し、特に、カーボンナノチューブの大量合成
のための化学気相蒸着(CVD;Chemical V
apor Deposition)装置およびこれを用
いたカーボンナノチューブ合成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carbon nanotube synthesis, and more particularly, to chemical vapor deposition (CVD) for mass synthesis of carbon nanotubes.
and a method for synthesizing carbon nanotubes using the same.

【0002】[0002]

【従来の技術】カーボンナノチューブは、一つの炭素原
子に隣接する3つの炭素原子が結合されており、このよ
うな炭素原子間の結合によって蜂の巣模様(六方格子)
の構造が得られ、このような六方格子の始点と終点とを
重なるように丸めると、円筒形のカーボンナノチューブ
が得られる。一般に、円筒形の構造はその直径が数nm
〜数十nmであり、その長さは直径より数十倍〜数千倍
以上に長い特性を有すると知られている。このようなカ
ーボンナノチューブはその活用によって導電性はもちろ
ん、半導体的特性に至るまでの幅広い特性を示せる材料
であって、各種の技術分野において各種の方法として応
用できると期待される物質である。
2. Description of the Related Art In a carbon nanotube, three carbon atoms adjacent to one carbon atom are bonded, and a honeycomb pattern (hexagonal lattice) is formed by such a bond between carbon atoms.
When the starting point and the end point of such a hexagonal lattice are rounded so as to overlap, a carbon nanotube having a cylindrical shape is obtained. Generally, a cylindrical structure has a diameter of several nm.
It is known to have a characteristic that the length is several tens to several thousand times or more longer than the diameter. Such a carbon nanotube is a material that can exhibit a wide range of properties, including conductivity, as well as semiconductor properties, and is expected to be applicable as various methods in various technical fields.

【0003】近年、カーボンナノチューブを合成するた
めの各種の方法が提案されている。例えば、カーボンナ
ノチューブを大量合成するための技術としてアーク放電
法が広く知られている。アーク放電法は炭素を電極とし
てアーク放電によりカーボンナノチューブを成長させる
方法である。
In recent years, various methods for synthesizing carbon nanotubes have been proposed. For example, an arc discharge method is widely known as a technique for mass-producing carbon nanotubes. The arc discharge method is a method of growing carbon nanotubes by arc discharge using carbon as an electrode.

【0004】一方、電気放電装置を用いるアーク放電法
のほか、このようなカーボンナノチューブを合成するた
め各種の方法、例えば、レーザー蒸着装置を用いる方
法、プラズマ化学気相蒸着装置を用いる方法または熱化
学気相蒸着装置を用いる方法などが提案されている。
On the other hand, in addition to the arc discharge method using an electric discharge device, various methods for synthesizing such carbon nanotubes, for example, a method using a laser deposition apparatus, a method using a plasma chemical vapor deposition apparatus, or a thermochemical method A method using a vapor deposition apparatus has been proposed.

【発明が解決しようとする課題】アーク放電法ではカー
ボンナノチューブの半径または長さが調節し難く、かつ
生成される炭素質材料の構造が制御し難い。したがっ
て、合成過程中に結晶質に優れた物質が得られ難いだけ
でなく、カーボンナノチューブの他に非晶質状態の炭素
の塊りが同時に多量生成される。この理由から、カーボ
ンナノチューブの合成後には複雑な精製過程を必ず経な
ければならない。また、この方法は、カーボンナノチュ
ーブを大面積の基板上に大量成長させることが不可能で
ある。したがって、各種の素子への適用に制限を受ける
ことになる。今までの方法や装置ではカーボンナノチュ
ーブの大量合成が極めて困難である。
In the arc discharge method, it is difficult to control the radius or length of the carbon nanotube, and it is difficult to control the structure of the carbonaceous material to be produced. Therefore, not only is it difficult to obtain a substance having excellent crystallinity during the synthesis process, but also a large amount of amorphous carbon lumps are generated simultaneously with the carbon nanotubes. For this reason, a complicated purification process must be performed after the synthesis of carbon nanotubes. In addition, this method cannot grow a large amount of carbon nanotubes on a large-area substrate. Therefore, application to various devices is limited. It is extremely difficult to synthesize carbon nanotubes in large quantities using conventional methods and apparatuses.

【0005】本発明の主な目的は、カーボンナノチュー
ブを大量に合成する化学気相蒸着装置を提供することに
ある。本発明の他の目的は、前述の化学気相蒸着装置を
用いてカーボンナノチューブを大量に合成する方法を提
供することにある。
An object of the present invention is to provide a chemical vapor deposition apparatus for synthesizing a large amount of carbon nanotubes. It is another object of the present invention to provide a method for synthesizing a large amount of carbon nanotubes using the above-described chemical vapor deposition apparatus.

【0006】[0006]

【課題を解決するための手段】本発明の化学気相蒸着装
置は、水平方向に平行に多数枚搭載される基板を各々支
持する多数の支持突起、および支持突起が設けられた多
数の垂直軸を含むボートを備えている。また、両端部に
反応ガスの供給および排出のための通路をもち、ボート
が内部に装着されるように直方体形状をなす反応炉、お
よび反応炉の外部に設けられた加熱手段を備えている。
ボートは、長方形をなすように配列された少なくとも4
本の垂直軸、およびいずれか一本の垂直軸の両端部から
隣接する他の垂直軸の両端部各々に連結される横棒を含
む3次元フレームからなる。
According to the present invention, there is provided a chemical vapor deposition apparatus comprising: a plurality of support projections each supporting a plurality of substrates mounted in parallel in a horizontal direction; and a plurality of vertical axes provided with the support projections. Equipped with a boat. In addition, a reaction furnace having a passage for supplying and discharging a reaction gas at both ends and having a rectangular parallelepiped shape so that a boat is mounted therein, and a heating means provided outside the reaction furnace are provided.
The boat shall have at least 4 arranged in a rectangular
The three-dimensional frame includes a vertical axis and horizontal bars connected from both ends of any one vertical axis to both ends of an adjacent vertical axis.

【0007】本発明のカーボンナノチューブ合成方法
は、まず、基板上に触媒金属膜を形成する。次に、支持
突起および支持突起が連結される多数本の垂直軸を含む
ボート、両端部に反応ガスの供給および排出のための通
路をもち、ボートが内部に装着されるように直方体形状
の内部形状をなす反応炉、および反応炉の外部に設けら
れる加熱手段を含む化学気相蒸着装置の支持突起に水平
方向に平行に基板を多数枚搭載する。次に、反応炉にエ
ッチングガスを供給して触媒金属膜をナノ寸法(本明細
書中で、ナノ寸法とは数nm〜数百nmの寸法を表わす
ものとする。)の触媒金属粒子に分離する。次に、反応
炉に炭素ソースガスを供給して触媒金属粒子上にカーボ
ンナノチューブを各々垂直方向に成長させる。
In the method for synthesizing carbon nanotubes of the present invention, first, a catalytic metal film is formed on a substrate. Next, a support projection and a boat including a number of vertical shafts to which the support projections are connected, having a passage for supplying and discharging a reaction gas at both ends, and having a rectangular parallelepiped internal shape so that the boat is mounted inside. A large number of substrates are mounted in parallel with a support projection of a chemical vapor deposition apparatus including a reaction furnace having a shape and a heating means provided outside the reaction furnace. Next, an etching gas is supplied to the reaction furnace to separate the catalytic metal film into catalytic metal particles having a nano size (in the present specification, the nano size means a size of several nm to several hundred nm). I do. Next, a carbon source gas is supplied to the reaction furnace to grow carbon nanotubes on the catalyst metal particles in a vertical direction.

【0008】このように本発明では、多数枚の大面積の
基板を同時に反応炉内に搭載した化学気相蒸着装置によ
り、多数枚の大面積の各々の基板上にカーボンナノチュ
ーブを形成させることができ、カーボンナノチューブの
大量合成が可能になる。
As described above, according to the present invention, carbon nanotubes can be formed on each of a large number of large-area substrates by a chemical vapor deposition apparatus in which a large number of large-area substrates are simultaneously mounted in a reactor. As a result, mass synthesis of carbon nanotubes becomes possible.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は、本発明の一実施例による化学
気相蒸着装置の概略構成図であり、図2は、化学気相蒸
着装置に用いられるボートの概略構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a chemical vapor deposition apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a boat used in the chemical vapor deposition apparatus.

【0010】図1に示すように、化学気相蒸着装置は、
反応炉1100、加熱手段1200、および基板130
0が搭載されるボート1400を備えている。反応炉1
100の内部にボート1400が装着されるため、ボー
ト1400の形状に応じて反応炉1100の内部形状が
決定される。
As shown in FIG. 1, the chemical vapor deposition apparatus comprises:
Reaction furnace 1100, heating means 1200, and substrate 130
0 is mounted on the boat 1400. Reactor 1
Since the boat 1400 is mounted inside the 100, the internal shape of the reaction furnace 1100 is determined according to the shape of the boat 1400.

【0011】ボート1400は、カーボンナノチューブ
が形成される大面積の基板1300が多数枚搭載される
ようにその形状が決定される。例えば、多数枚の基板1
300が水平方向に平行に搭載されるように、ボート1
400は直方体形状をもつ3次元フレームからなる。
The shape of the boat 1400 is determined so that a large number of large-sized substrates 1300 on which carbon nanotubes are formed are mounted. For example, a large number of substrates 1
Boat 1 so that 300 is mounted in parallel in the horizontal direction.
Reference numeral 400 is a three-dimensional frame having a rectangular parallelepiped shape.

【0012】図2に示すように、ボート1400は、長
方形をなすように配列された少なくとも4本の垂直軸1
410と、垂直軸1410の両端部の間に各々連結され
る横棒1430とにより3次元構造をなすフレームから
なる。このとき、フレームがなす直方体形状の内部空間
に大面積の基板1300が多数枚搭載される。このた
め、垂直軸1410には、一定間隔をあけて垂直軸14
10を沿って支持突起1450が多数個設けられる。支
持突起1450は搭載される基板1300が相互に一定
間隔をあけて隣接され、水平方向に平行に配列されるよ
うに基板1300を支持する役割を果たす。
As shown in FIG. 2, the boat 1400 has at least four vertical axes 1 arranged in a rectangular shape.
The frame comprises a frame having a three-dimensional structure including a base 410 and horizontal bars 1430 connected between both ends of the vertical shaft 1410. At this time, a large number of large-sized substrates 1300 are mounted in the rectangular parallelepiped internal space formed by the frame. For this reason, the vertical axis 1410
A large number of support protrusions 1450 are provided along 10. The support protrusions 1450 serve to support the substrates 1300 such that the substrates 1300 mounted thereon are adjacent to each other at a certain interval and arranged in parallel in a horizontal direction.

【0013】ボート1400は、カーボンナノチューブ
の合成に要する温度で形状の変形または材質の変質がな
い物質、例えば、石英からなる。したがって、前述した
垂直軸1410および横棒1430からなるフレームお
よび支持突起1450はいずれも石英から構成され、一
体的に加工できる。また、垂直軸1410および横棒1
430からなるフレームおよび支持突起1450は部品
毎に石英から構成された後、各種の締結方法によって締
結されて前述したボート1400が構成される。
The boat 1400 is made of a substance that does not deform or change its material at the temperature required for synthesizing carbon nanotubes, for example, quartz. Therefore, the frame including the vertical shaft 1410 and the horizontal bar 1430 and the support protrusion 1450 are both made of quartz and can be integrally processed. Also, the vertical axis 1410 and the horizontal bar 1
The frame 430 and the support protrusions 1450 are made of quartz for each component, and then fastened by various fastening methods to configure the boat 1400 described above.

【0014】前述したように、ボート1400は、多数
枚の大面積の基板1300、例えば、必要に応じて長方
形の大面積の基板1300が搭載できるように3次元形
状、例えば、直方体形状のフレームからなる。このた
め、反応炉1100はボート1400がその内部に装着
されるようにその内部形状が決定される。例えば、直方
体形状の内部形状をなすように反応炉1100が形成さ
れる。このとき、反応炉1100の両端部1110、1
130は反応ガスの供給および排出のための通路151
0、1530が形成される。反応ガスの供給および排出
を制御するため、通路1510、1530には弁151
5、1535が形成される。
As described above, the boat 1400 is formed from a three-dimensional frame, for example, a rectangular parallelepiped frame so that a large number of large-area substrates 1300, for example, a rectangular large-area substrate 1300 can be mounted as required. Become. For this reason, the internal shape of the reaction furnace 1100 is determined so that the boat 1400 is mounted therein. For example, the reaction furnace 1100 is formed to have a rectangular parallelepiped internal shape. At this time, both ends 1110 of the reactor 1100, 1
130 is a passage 151 for supplying and discharging the reaction gas.
0, 1530 are formed. In order to control the supply and discharge of the reaction gas, valves 15110 and 1530
5, 1535 are formed.

【0015】また、排出通路1530にはポンプ160
0が設けられ、反応済みのガスを排出する駆動力を与え
る。このようなポンプ1600としてはロータリーポン
プなどが利用できる。またポンプ1600は、反応炉1
100内の圧力を常圧よりも低く維持するために利用さ
れる。すなわち、反応炉1100内はカーボンナノチュ
ーブの合成条件に応じて常圧に維持できる。しかし、約
0.1Torr〜数十Torrに維持されることが必要
な場合もある。したがって、このように常圧よりも低い
圧力を反応炉1100内に供給するとき、前述したポン
プ1600が利用される。
The discharge passage 1530 has a pump 160
0 is provided to provide a driving force for discharging reacted gas. As such a pump 1600, a rotary pump or the like can be used. The pump 1600 is connected to the reactor 1
It is used to maintain the pressure in 100 below normal pressure. That is, the inside of the reaction furnace 1100 can be maintained at normal pressure according to the synthesis conditions of carbon nanotubes. However, it may need to be maintained at about 0.1 Torr to tens of Torr. Therefore, when supplying a pressure lower than the normal pressure into the reaction furnace 1100, the above-described pump 1600 is used.

【0016】反応炉1100の外周にはコイル形態の抵
抗発熱体などの加熱手段1200が設けられ、反応炉1
100の温度を調節するのに利用される。反応炉110
0の温度はカーボンナノチューブの合成に用いられる各
種の条件によって変化し、約500℃〜1100℃程度
の温度範囲に調節される。したがって、このような反応
炉1100の内部には熱電対(図示せず)が導入されて
前述の加熱手段1200の発熱程度を制御し、これによ
り反応炉1100の内部温度を所定の値に制御できる。
一方、反応炉1100の周りには断熱材が設けられて反
応炉1100の温度を均一に維持するように働く。
A heating means 1200 such as a coil-shaped resistance heating element is provided on the outer periphery of the reaction furnace 1100.
Used to regulate the temperature of 100. Reactor 110
The temperature of 0 varies depending on various conditions used for the synthesis of carbon nanotubes, and is adjusted to a temperature range of about 500 ° C to 1100 ° C. Therefore, a thermocouple (not shown) is introduced into the inside of the reaction furnace 1100 to control the degree of heat generation of the heating means 1200, thereby controlling the internal temperature of the reaction furnace 1100 to a predetermined value. .
On the other hand, a heat insulating material is provided around the reaction furnace 1100 so as to keep the temperature of the reaction furnace 1100 uniform.

【0017】前述のように、本発明の一実施例による化
学気相蒸着装置を用いてカーボンナノチューブを合成す
る場合、カーボンナノチューブの大量生産が可能にな
る。一つの反応炉1100内に大面積の基板1300が
相互に平行にボート1400に搭載できる。したがっ
て、一回のカーボンナノチューブ合成工程によって、多
数枚の大面積の基板1300上にカーボンナノチューブ
を同時に合成できる。結果的に、一回の工程によりカー
ボンナノチューブの大量合成が可能になる。
As described above, when carbon nanotubes are synthesized using the CVD apparatus according to one embodiment of the present invention, mass production of carbon nanotubes becomes possible. A large-sized substrate 1300 can be mounted on a boat 1400 in one reaction furnace 1100 in parallel with each other. Therefore, carbon nanotubes can be simultaneously synthesized on a large number of large-area substrates 1300 by one carbon nanotube synthesis step. As a result, mass synthesis of carbon nanotubes becomes possible in one step.

【0018】図3から図6は、本発明の一実施例による
カーボンナノチューブ合成方法を工程順に示す断面図で
ある。このような方法に従いカーボンナノチューブを合
成するときには、図1および図2に記載の本発明の実施
例による化学気相蒸着装置を利用する。
FIGS. 3 to 6 are sectional views showing a method of synthesizing carbon nanotubes according to an embodiment of the present invention in the order of steps. When synthesizing carbon nanotubes according to such a method, the chemical vapor deposition apparatus according to the embodiment of the present invention shown in FIGS. 1 and 2 is used.

【0019】図3は、大面積の基板1300上に触媒金
属膜1310を形成する段階を示す概略断面図である。
大面積の基板1300を用意し、その上に金属膜131
0を約数nm〜数百nmの厚さ、好ましくは、約20n
m〜100nm程度の厚さで形成する。大面積の基板1
300はその使用目的に応じて各種の物質から各種の形
状に形成できるが、好ましくはガラス、石英、シリコ
ン、アルミナ(Al23)またはシリコン酸化物を用い
る。また基板1300も各種の形状に形成できる。好ま
しくは、長方形に形成する。
FIG. 3 is a schematic sectional view showing a step of forming a catalytic metal film 1310 on a large-sized substrate 1300.
A large-sized substrate 1300 is prepared, and a metal film 131 is formed thereon.
0 to a thickness of about several nm to several hundred nm, preferably about 20 n
It is formed with a thickness of about m to 100 nm. Large area substrate 1
300 can be formed from various materials into various shapes according to the purpose of use, but preferably glass, quartz, silicon, alumina (Al 2 O 3 ) or silicon oxide is used. The substrate 1300 can also be formed in various shapes. Preferably, it is formed in a rectangular shape.

【0020】触媒金属膜1310は、その上にカーボン
ナノチューブを垂直配向させて成長させるときに触媒と
して用いられる。したがって、触媒金属膜1310は、
カーボンナノチューブを垂直配向成長させるときに触媒
として機能できる遷移金属物質、例えば、コバルト(C
o)、ニッケル(Ni)、鉄(Fe)、イットリウム
(Y)またはこれらの合金、例えば、コバルト−ニッケ
ル、コバルト−鉄、コバルト−イットリウム、ニッケル
−鉄、コバルト−鉄またはコバルト−ニッケル−イット
リウムからなる。このような触媒金属膜1310は各種
の金属薄膜形成方法を用いて形成できる。例えば、熱蒸
着法またはスパッタ法などが利用できる。
The catalytic metal film 1310 is used as a catalyst when growing carbon nanotubes with the carbon nanotubes oriented vertically. Therefore, the catalytic metal film 1310
A transition metal material that can function as a catalyst when vertically growing carbon nanotubes, for example, cobalt (C
o), nickel (Ni), iron (Fe), yttrium (Y) or alloys thereof, for example from cobalt-nickel, cobalt-iron, cobalt-yttrium, nickel-iron, cobalt-iron or cobalt-nickel-yttrium Become. Such a catalytic metal film 1310 can be formed using various metal thin film forming methods. For example, a thermal evaporation method or a sputtering method can be used.

【0021】前述したように触媒金属膜1310が形成
された基板1300を、本発明の実施例に従い用意され
たボート1400(図2参照)に搭載する。すなわち、
基板1300が水平方向に平行に、ボート1400の支
持突起1450上に搭載する。支持突起1450は同一
の垂直軸1410上に一定の間隔をあけて設けられてお
り、これにより搭載される基板1300は相互に一定間
隔離れていることになる。
The substrate 1300 on which the catalytic metal film 1310 is formed as described above is mounted on a boat 1400 (see FIG. 2) prepared according to the embodiment of the present invention. That is,
The substrate 1300 is mounted on the support protrusion 1450 of the boat 1400 in parallel with the horizontal direction. The support protrusions 1450 are provided at regular intervals on the same vertical axis 1410, so that the mounted substrates 1300 are spaced apart from each other by a constant distance.

【0022】このように大面積の基板1300が多数枚
搭載されたボート1400を反応炉(図1の1100)
内に装着する。このとき、先ずボート1400を反応炉
1100内に装着した後に基板1300を支持突起14
50間に掛け渡すこともできる。このように反応炉11
00内に多数枚の大面積の基板1300を搭載した後に
反応炉1100内を窒素ガスまたは不活性ガスを使って
パージし、後続の工程に要する圧力に反応炉1100内
の圧力を調節する。
The boat 1400 on which a large number of substrates 1300 having a large area are mounted is placed in a reaction furnace (1100 in FIG. 1).
Install inside. At this time, first, the boat 1400 is mounted in the reaction furnace 1100 and then the substrate 1300 is
You can also cross over 50. Thus, the reaction furnace 11
After mounting a large number of large-area substrates 1300 in the chamber 00, the inside of the reaction furnace 1100 is purged using a nitrogen gas or an inert gas, and the pressure in the reaction furnace 1100 is adjusted to the pressure required for the subsequent process.

【0023】図4は、触媒金属膜1310をエッチング
して触媒金属粒子1310’に分離する段階を示す概略
断面図である。前述したように反応炉1100に基板1
300を多数枚搭載した後に、反応炉1100内の圧力
を大気圧または0.1Torr〜数十Torr程度に維
持する。そして、反応炉1100の温度を加熱手段12
00を使って上げた後、反応炉1100内にアンモニア
(NH3)ガスなど触媒金属膜300の粒界エッチング
が可能なエッチングガスを反応炉1100内に供給す
る。このようなエッチングガスは反応炉1100の一方
の端部1110に設けられた通路1510に供給され、
このとき、エッチングガスの流量は弁1515によって
制御できる。
FIG. 4 is a schematic cross-sectional view showing the step of etching the catalytic metal film 1310 to separate it into catalytic metal particles 1310 ′. As described above, the substrate 1 is placed in the reaction furnace 1100.
After mounting a large number of 300s, the pressure in the reactor 1100 is maintained at atmospheric pressure or about 0.1 Torr to several tens Torr. Then, the temperature of the reaction furnace 1100 is reduced by the heating means 12.
Then, an etching gas such as ammonia (NH 3 ) gas, which can etch the catalytic metal film 300 at the grain boundary, is supplied into the reaction furnace 1100. Such an etching gas is supplied to a passage 1510 provided at one end 1110 of the reaction furnace 1100,
At this time, the flow rate of the etching gas can be controlled by the valve 1515.

【0024】エッチングガスは、触媒金属膜1310を
エッチングして触媒金属粒子1310’を形成するのに
用いられる。このとき、エッチングガスは、触媒金属膜
1310の粒界に沿って触媒金属膜1310をエッチン
グする役割を果たすものが好ましい。このような粒界エ
ッチングには、エッチングガスに反応性を与えることが
必須となっている。すなわち、前述したアンモニアガス
は反応炉1100のボート1400に搭載された基板1
300のところに達する前に分解されて反応性を与えら
れることが好ましい。
The etching gas is used to etch the catalytic metal film 1310 to form catalytic metal particles 1310 '. At this time, the etching gas preferably plays a role of etching the catalyst metal film 1310 along the grain boundaries of the catalyst metal film 1310. For such grain boundary etching, it is essential to impart reactivity to the etching gas. That is, the above-described ammonia gas is supplied to the substrate 1 mounted on the boat 1400 of the reaction furnace 1100.
It is preferred that it be decomposed to provide reactivity before reaching 300.

【0025】前述のエッチングガスとしてアンモニアガ
スを用いる場合、アンモニアガスに反応性を与える方法
として熱分解(pyrolysis)を利用できる。し
たがって、前述した反応炉1100の温度は少なくとも
与えられるアンモニアガスが熱分解できる程度の温度、
例えば、少なくとも700℃以上に維持されることが好
ましい。より好ましくは、700℃〜1100℃程度で
ある。
When ammonia gas is used as the above-mentioned etching gas, pyrolysis can be used as a method for imparting reactivity to the ammonia gas. Therefore, the temperature of the reaction furnace 1100 is at least a temperature at which the given ammonia gas can be thermally decomposed,
For example, the temperature is preferably maintained at least at 700 ° C. or higher. More preferably, it is about 700C to 1100C.

【0026】前述した温度に維持される反応炉1100
内に供給されたアンモニアガス2100は熱分解され、
分解されたアンモニアガス2100は触媒金属膜131
0を粒界エッチングすることになる。このとき、反応炉
1100内に供給されるアンモニアガスの流量は約80
sccm〜1000sccmであり、このようなアンモ
ニアガスの供給によるエッチング工程は約10分〜30
分間行う。
Reactor 1100 maintained at the aforementioned temperature
The ammonia gas 2100 supplied to the inside is thermally decomposed,
The decomposed ammonia gas 2100 is used as the catalyst metal film 131.
0 will be grain boundary etched. At this time, the flow rate of the ammonia gas supplied into the reaction furnace 1100 is about 80
sccm to 1000 sccm, and the etching process by supplying the ammonia gas is performed for about 10 minutes to 30 minutes.
Do for a minute.

【0027】前述のように、エッチングガスとしてはア
ンモニアガスを用いることが好ましい。アンモニアガス
の他に、必要に応じて水素ガスまたは水素化物ガスまた
はこれらの混合ガスも利用できる。
As described above, it is preferable to use ammonia gas as the etching gas. In addition to the ammonia gas, a hydrogen gas, a hydride gas, or a mixed gas thereof can be used as necessary.

【0028】反応性が与えられ、分解されたアンモニア
ガス2100が触媒金属膜1310を粒界エッチングす
る工程は、触媒金属膜1310下部の基板1300が露
出されるまで行われることが好ましく、これにより、ナ
ノ寸法の微細な孤立された触媒金属粒子1310’が形
成される。実質的に、このような触媒金属粒子131
0’が後続するカーボンナノチューブを合成するときに
触媒として働く。
It is preferable that the step of grain boundary etching of the catalytic metal film 1310 by the ammonia gas 2100 which has been given the reactivity and decomposed is performed until the substrate 1300 below the catalytic metal film 1310 is exposed. Nano-sized fine isolated catalytic metal particles 1310 'are formed. Substantially, such catalytic metal particles 131
0 'acts as a catalyst when synthesizing the subsequent carbon nanotube.

【0029】触媒金属粒子1310’の寸法は、初期触
媒金属膜1310の厚さおよび前述した粒界エッチング
時のアンモニアガスの供給量、エッチング工程中の温度
またはエッチング工程に要される時間などを調節するこ
とによって調節できる。互いに分離されたナノ寸法の触
媒金属粒子1310’は粒界に沿ってなされたエッチン
グによって形成されるので、均一な密度をもって下部基
板1300上に微細に分布される。エッチング条件によ
って分離されたナノ寸法の触媒金属粒子1310’の寸
法および形状が変わる。触媒金属粒子1310’は、約
10nm〜60nm程度の寸法に形成されることが好ま
しい。
The size of the catalyst metal particles 1310 ′ is adjusted by adjusting the thickness of the initial catalyst metal film 1310, the supply amount of ammonia gas at the time of the above-described grain boundary etching, the temperature during the etching process, or the time required for the etching process. Can be adjusted. Since the separated nano-sized catalytic metal particles 1310 'are formed by etching along the grain boundaries, they are finely distributed on the lower substrate 1300 with a uniform density. The size and shape of the separated nano-sized catalytic metal particles 1310 'are changed according to the etching conditions. It is preferable that the catalyst metal particles 1310 'are formed to have a size of about 10 nm to about 60 nm.

【0030】図5は、触媒金属粒子1310’上にカー
ボンナノチューブ3000を形成する段階を示す概略断
面図である。前述のように、触媒金属粒子1310’が
形成された後、分解されたアンモニアガス2100の供
給を止め、ガス供給のための通路1510を通して炭素
ソースガス2300を反応炉1100内の各々の基板1
300上の触媒金属粒子1310’上に供給する。供給
される炭素ソースガス2300としては、炭素ダイマー
が提供できる炭化水素ガスを挙げることができる。炭化
水素ガスとしては、炭素数が20個以下である炭化水素
ガス、例えば、アセチレンガス、エチレンガス、プロピ
レンガス、プロパンガスまたはメタンガスを挙げること
ができる。好ましくは、炭素ソースガス2300として
アセチレンガスを用いる。
FIG. 5 is a schematic cross-sectional view showing a step of forming carbon nanotubes 3000 on catalytic metal particles 1310 '. As described above, after the catalytic metal particles 1310 ′ are formed, the supply of the decomposed ammonia gas 2100 is stopped, and the carbon source gas 2300 is supplied to each substrate 1 in the reaction furnace 1100 through the gas supply passage 1510.
It is supplied on the catalyst metal particles 1310 ′ on 300. Examples of the supplied carbon source gas 2300 include a hydrocarbon gas that can be provided by a carbon dimer. Examples of the hydrocarbon gas include a hydrocarbon gas having 20 or less carbon atoms, for example, acetylene gas, ethylene gas, propylene gas, propane gas, or methane gas. Preferably, acetylene gas is used as the carbon source gas 2300.

【0031】供給される炭素ソースガスと共に、水素ま
たはアルゴンガスなど、不活性ガスのキャリアガスを反
応炉1100内に供給できる。また、炭素ソースガスと
共に、反応炉1100内に、水素化物ガスなどを希釈ガ
スとして供給できる。
An inert carrier gas such as hydrogen or argon gas can be supplied into the reactor 1100 together with the supplied carbon source gas. In addition, a hydride gas or the like can be supplied as a diluting gas into the reaction furnace 1100 together with the carbon source gas.

【0032】反応炉1100内の温度は、炭素ソースガ
スを炭素ダイマーに変えられる温度、例えば、約500
℃〜1100℃に維持されることが好ましい。このと
き、炭素ソースガス2300として用いられるアセチレ
ンガスは、約20sccm〜500sccmの流量にて
約10〜60分間供給できる。このとき、反応炉110
0内の圧力は、約0.1Torr〜数十Torr程度の
低圧に維持されることが好ましい。
The temperature in the reactor 1100 is set to a temperature at which the carbon source gas can be converted into a carbon dimer, for example, about 500 ° C.
It is preferable that the temperature be maintained at from 1C to 1100C. At this time, the acetylene gas used as the carbon source gas 2300 can be supplied at a flow rate of about 20 sccm to 500 sccm for about 10 to 60 minutes. At this time, the reactor 110
The pressure within zero is preferably maintained at a low pressure of about 0.1 Torr to several tens Torr.

【0033】反応炉1100内に供給された炭素ソース
ガス2300は、熱分解されて炭素ユニットを形成す
る。熱分解されて形成された炭素ユニットは分離された
ナノ寸法の触媒金属粒子1310’の表面に吸着されて
その表面および触媒金属粒子1310’内に拡散され
る。このとき、触媒金属粒子1310’の表面または内
部で炭素ユニットは炭素ダイマー(C=C)の形に変わ
る。
The carbon source gas 2300 supplied into the reactor 1100 is thermally decomposed to form carbon units. The carbon units formed by the thermal decomposition are adsorbed on the surfaces of the separated nano-sized catalytic metal particles 1310 ′ and diffused into the surface and the catalytic metal particles 1310 ′. At this time, the carbon unit is changed into a carbon dimer (C = C) on the surface or inside the catalytic metal particle 1310 '.

【0034】触媒金属粒子1310’が炭素ダイマーに
過飽和すると、触媒金属粒子1310’の表面でこのよ
うな炭素ダイマーは互いに反応をおこし、平面からみて
蜂の巣模様(六方格子)をなす。次に、触媒金属粒子1
310’への炭素ダイマーの供給が続くと、触媒金属粒
子1310’の上部で蜂の巣模様のカーボンナノチュー
ブ3000が合成される。
When the catalyst metal particles 1310 'are supersaturated with the carbon dimer, such carbon dimers react with each other on the surface of the catalyst metal particles 1310' to form a honeycomb pattern (hexagonal lattice) when viewed from a plane. Next, the catalyst metal particles 1
When the supply of the carbon dimer to 310 ′ continues, the honeycomb-shaped carbon nanotubes 3000 are synthesized on the catalytic metal particles 1310 ′.

【0035】図6は、カーボンナノチューブ3000を
垂直配向されるように成長させる段階を示す概略断面図
である。形成されたカーボンナノチューブ3000は炭
素ダイマーの継続的な供給によって合成できる。炭素ダ
イマーが触媒金属粒子1300’の縁部に継続的に供給
されると、カーボンナノチューブ3000の合成が継続
的になされる。このとき、触媒金属粒子1310’の密
度が十分高い場合、分布された多数の触媒金属粒子13
10’で形成されるカーボンナノチューブ3000は押
し合い作用によって垂直配向されて形成される。
FIG. 6 is a schematic sectional view showing a stage in which the carbon nanotubes 3000 are grown so as to be vertically aligned. The formed carbon nanotube 3000 can be synthesized by continuous supply of carbon dimer. When the carbon dimer is continuously supplied to the edge of the catalyst metal particle 1300 ', the synthesis of the carbon nanotube 3000 is continuously performed. At this time, if the density of the catalyst metal particles 1310 ′ is sufficiently high, a large number of distributed catalyst metal particles 1310 ′.
The carbon nanotubes 3000 formed at 10 ′ are vertically aligned by a pressing action.

【0036】カーボンナノチューブ3000の合成に適
した触媒金属粒子1310’が周りの触媒金属粒子13
10’と結合されて塊りにならず、互いに分離されて独
立的に形成されるので、カーボンナノチューブ3000
もやはり塊りにならず、独立的に形成される。すなわ
ち、カーボンナノチューブ3000の形成に際して、非
晶質状態の炭素の塊りが形成されることが抑えられる。
したがって、高純度のカーボンナノチューブ3000が
形成でき、カーボンナノチューブ3000が基板130
0に垂直配向されて形成される。
The catalyst metal particles 1310 ′ suitable for the synthesis of the carbon nanotube 3000 are formed by surrounding catalyst metal particles 1310 ′.
The carbon nanotubes 3000 are separated from each other and independently formed without being clumped together with 10 ′.
Also do not clump and are formed independently. That is, when the carbon nanotubes 3000 are formed, formation of a lump of amorphous carbon is suppressed.
Therefore, a high-purity carbon nanotube 3000 can be formed, and the carbon nanotube 3000
It is formed to be vertically oriented to 0.

【0037】加えて、生成されるカーボンナノチューブ
3000にさらなる純度を持たせるため、前述のように
カーボンナノチューブ3000を形成した後に精製する
段階をさらに行なうことができる。例えば、前述したよ
うな炭素ソースガス2300の供給を止め、反応炉11
00内にアンモニアガスまたは水素ガスを供給して、カ
ーボンナノチューブ3000に存在できる遷移金属の塊
りまたは炭素パーチクルなどを除去する。遷移金属の塊
りは触媒金属粒子1300’から落とされて残存でき、
一般的にカーボンナノチューブ3000の先端部(チッ
プ)に残存できる。また、炭素パーチクルはカーボンナ
ノチューブ3000の表面に残存できる。
In addition, in order to further increase the purity of the resulting carbon nanotubes 3000, a step of purifying the carbon nanotubes 3000 after forming them may be further performed as described above. For example, the supply of the carbon source gas 2300 as described above is stopped, and the reaction furnace 11
Ammonia gas or hydrogen gas is supplied into the carbon nanotubes 00 to remove transition metal lumps or carbon particles that may be present in the carbon nanotubes 3000. The lumps of the transition metal can be dropped from the catalyst metal particles 1300 ′ and remain,
Generally, it can remain at the tip (tip) of the carbon nanotube 3000. Further, the carbon particles can remain on the surface of the carbon nanotube 3000.

【0038】前述した精製のためのアンモニアガスまた
は水素ガス、好ましくはアンモニアガスは約80scc
m〜1000sccmの流量にて約10分〜30分間反
応炉1100内に供給できる。このとき、反応炉110
0の温度は約500℃〜1000℃程度に維持されるこ
とが好ましい。前述の精製段階によって、カーボンナノ
チューブ3000の表面または先端部に残存できる炭素
パーチクルまたは遷移金属の塊りを除去でき、これによ
りさらに高純度のカーボンナノチューブ3000を形成
できる。
The above-described ammonia gas or hydrogen gas for purification, preferably, ammonia gas is about 80 scc.
It can be supplied into the reactor 1100 at a flow rate of m to 1000 sccm for about 10 to 30 minutes. At this time, the reactor 110
Preferably, the temperature of 0 is maintained at about 500C to 1000C. Through the above-described purification step, the lump of carbon particles or transition metal remaining on the surface or the tip of the carbon nanotube 3000 can be removed, thereby forming the carbon nanotube 3000 with higher purity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による化学気相蒸着装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of a chemical vapor deposition apparatus according to one embodiment of the present invention.

【図2】本発明の一実施例による化学気相蒸着装置のボ
ートの断面図である。
FIG. 2 is a cross-sectional view of a boat of a chemical vapor deposition apparatus according to one embodiment of the present invention.

【図3】本発明の一実施例によるカーボンナノチューブ
合成方法を工程順に示す断面図である。
FIG. 3 is a cross-sectional view illustrating a method of synthesizing carbon nanotubes according to an embodiment of the present invention in the order of steps.

【図4】本発明の一実施例によるカーボンナノチューブ
合成方法を工程順に示す断面図である。
FIG. 4 is a cross-sectional view illustrating a method of synthesizing carbon nanotubes according to an embodiment of the present invention in the order of steps.

【図5】本発明の一実施例によるカーボンナノチューブ
合成方法を工程順に示す断面図である。
FIG. 5 is a cross-sectional view illustrating a method of synthesizing carbon nanotubes according to an embodiment of the present invention in the order of steps.

【図6】本発明の一実施例によるカーボンナノチューブ
合成方法を工程順に示す断面図である。
FIG. 6 is a sectional view illustrating a method of synthesizing carbon nanotubes according to an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1100 反応炉 1200 加熱手段 1300 基板 1310’ 触媒金属粒子 1400 ボート 3000 カーボンナノチューブ 1100 Reaction furnace 1200 Heating means 1300 Substrate 1310 'Catalytic metal particle 1400 Boat 3000 Carbon nanotube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳 在銀 大韓民国ソウル特別市城北区貞陵1洞1015 番地慶南アパート106棟1001号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yanagi, Bank of Japan, 1015 Jeolyeong-dong, Seongbuk-gu, Seoul, Republic of Korea

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 基板上にカーボンナノチューブを形成さ
せる化学気相蒸着装置において、 水平方向に平行に多数枚搭載される前記基板を各々支持
する支持突起、および前記支持突起が設けられた多数本
の垂直軸を含むボートと、 両端部に反応ガスの供給および排出のための通路をも
ち、前記ボートを装着するため内部が直方体形状をなす
反応炉と、 前記反応炉の外部に設けられる加熱手段と、を備えてい
ることを特徴とする化学気相蒸着装置。
1. A chemical vapor deposition apparatus for forming carbon nanotubes on a substrate, comprising: a plurality of support projections each supporting the plurality of substrates mounted in parallel in a horizontal direction; and a plurality of support projections provided with the support projections. A boat having a vertical axis, a reaction furnace having a passage for supplying and discharging a reaction gas at both ends, and having a rectangular parallelepiped inside for mounting the boat, and a heating means provided outside the reaction furnace A chemical vapor deposition apparatus characterized by comprising:
【請求項2】 前記基板は、長方形であることを特徴と
する請求項1に記載の化学気相蒸着装置。
2. The apparatus according to claim 1, wherein the substrate is rectangular.
【請求項3】 前記ボートは、 長方形をなすように配列された少なくとも4本の前記垂
直軸と、 いずれか1本の前記垂直軸の両端部から隣接する他の前
記垂直軸の両端部各々に連結される横棒と、を備えてい
る3次元のフレームであることを特徴とする請求項1に
記載の化学気相蒸着装置。
3. The boat according to claim 1, wherein at least four of the vertical axes are arranged in a rectangular shape, and at least two of the vertical axes are arranged at both ends of one of the vertical axes. The chemical vapor deposition apparatus according to claim 1, wherein the three-dimensional frame includes a connected horizontal bar.
【請求項4】 前記フレームは、前記基板を導入するた
め、前記垂直軸および前記横棒によって直方体形状の内
部空間をなすことを特徴とする請求項3に記載の化学気
相蒸着装置。
4. The chemical vapor deposition apparatus according to claim 3, wherein the frame forms a rectangular parallelepiped internal space by the vertical axis and the horizontal bar for introducing the substrate.
【請求項5】 前記ボートは、石英からなることを特徴
とする請求項1に記載の化学気相蒸着装置。
5. The CVD apparatus according to claim 1, wherein the boat is made of quartz.
【請求項6】 基板上に触媒金属膜を形成する段階と、 支持突起および前記支持突起が連結される多数本の垂直
軸を含むボートと、両端部に反応ガスの供給および排出
のための通路をもち、前記ボートを装着するため内部が
直方体形状をなす反応炉と、前記反応炉の外部に設けら
れる加熱手段とを含む化学気相蒸着装置の前記支持突起
上に水平方向に平行に前記基板を多数枚搭載する段階
と、 前記反応炉にエッチングガスを供給して前記触媒金属膜
を触媒金属粒子に分離する段階と、 前記反応炉に炭素ソースガスを供給して前記触媒金属粒
子上にカーボンナノチューブを各々垂直方向に成長させ
る段階と、を備えていることを特徴とするカーボンナノ
チューブ合成方法。
6. A step of forming a catalytic metal film on a substrate, a boat including a support protrusion and a plurality of vertical shafts connected to the support protrusion, and a passage for supplying and discharging a reaction gas at both ends. The substrate has a rectangular parallelepiped reaction furnace for mounting the boat, and the support substrate of a chemical vapor deposition apparatus including a heating means provided outside the reaction furnace, and is horizontally parallel to the support projection. Loading an etching gas to the reaction furnace to separate the catalyst metal film into catalyst metal particles, and supplying a carbon source gas to the reaction furnace to deposit carbon on the catalyst metal particles. Growing carbon nanotubes in a vertical direction, respectively.
【請求項7】 前記基板はガラス、石英、シリコン、ア
ルミナまたはシリコン酸化物からなることを特徴とする
請求項6に記載のカーボンナノチューブ合成方法。
7. The method of claim 6, wherein the substrate is made of glass, quartz, silicon, alumina, or silicon oxide.
【請求項8】 前記触媒金属膜は、コバルト、ニッケ
ル、鉄、イットリウムまたはそれらの合金からなること
を特徴とする請求項6に記載のカーボンナノチューブ合
成方法。
8. The method according to claim 6, wherein the catalytic metal film is made of cobalt, nickel, iron, yttrium, or an alloy thereof.
【請求項9】 前記触媒金属膜は、20nm〜100n
mの厚さで形成されることを特徴とする請求項6に記載
のカーボンナノチューブ合成方法。
9. The catalyst metal film has a thickness of 20 nm to 100 n.
The carbon nanotube synthesis method according to claim 6, wherein the carbon nanotubes are formed with a thickness of m.
【請求項10】 前記エッチングガスは、アンモニアガ
ス、水素ガスまたは水素化物ガスを含むことを特徴とす
る請求項6に記載のカーボンナノチューブ合成方法。
10. The method according to claim 6, wherein the etching gas includes an ammonia gas, a hydrogen gas, or a hydride gas.
【請求項11】 前記エッチングガスは、アンモニアガ
スであることを特徴とする請求項10に記載のカーボン
ナノチューブ合成方法。
11. The method according to claim 10, wherein the etching gas is an ammonia gas.
【請求項12】 反応炉にエッチングガスを供給して触
媒金属膜を触媒金属粒子に分離する段階において、前記
反応炉は、前記アンモニアガスが熱分解される温度以上
に維持されることを特徴とする請求項11に記載のカー
ボンナノチューブ合成方法。
12. The step of supplying an etching gas to a reaction furnace to separate the catalyst metal film into catalyst metal particles, wherein the reaction furnace is maintained at a temperature higher than a temperature at which the ammonia gas is thermally decomposed. The method for synthesizing carbon nanotubes according to claim 11.
【請求項13】 前記反応炉は、700℃〜1100℃
の温度に維持されることを特徴とする請求項12に記載
のカーボンナノチューブ合成方法。
13. The reactor according to claim 1, wherein the temperature of the reactor is 700 ° C. to 1100 ° C.
The carbon nanotube synthesis method according to claim 12, wherein the temperature is maintained at:
【請求項14】 前記炭素ソースガスは、C1〜C20
の炭化水素ガスであることを特徴とする請求項6に記載
のカーボンナノチューブ合成方法。
14. The carbon source gas comprises C1 to C20.
The carbon nanotube synthesizing method according to claim 6, wherein the hydrocarbon gas is a hydrocarbon gas.
【請求項15】 前記炭素ソースガスは、アセチレン、
エチレン、プロピレン、プロパンまたはメタンガスであ
ることを特徴とする請求項14に記載のカーボンナノチ
ューブ合成方法。
15. The carbon source gas is acetylene,
The method for synthesizing carbon nanotubes according to claim 14, wherein the gas is ethylene, propylene, propane, or methane gas.
【請求項16】 前記炭素ソースガスは、前記反応炉を
500℃〜1100℃の温度に維持しながら供給される
ことを特徴とする請求項6に記載のカーボンナノチュー
ブ合成方法。
16. The method according to claim 6, wherein the carbon source gas is supplied while maintaining the temperature of the reaction furnace at 500 ° C. to 1100 ° C.
【請求項17】 前記カーボンナノチューブを各々垂直
方向に成長させる段階の後、前記反応炉内にアンモニア
ガスまたは水素ガスを前記反応炉に供給し、前記カーボ
ンナノチューブを精製する段階をさらに含むことを特徴
とする請求項6に記載のカーボンナノチューブ合成方
法。
17. The method of claim 17, further comprising, after growing the carbon nanotubes in a vertical direction, supplying ammonia gas or hydrogen gas into the reaction furnace and purifying the carbon nanotubes. The method for synthesizing carbon nanotubes according to claim 6, wherein
【請求項18】 前記カーボンナノチューブを精製する
段階は、前記反応炉の温度を500℃〜1000℃の温
度に維持しながら行われることを特徴とする請求項17
に記載のカーボンナノチューブ合成方法。
18. The method according to claim 17, wherein the step of purifying the carbon nanotubes is performed while maintaining the temperature of the reaction furnace at a temperature of 500 ° C. to 1000 ° C.
The method for synthesizing a carbon nanotube according to the above.
【請求項19】 前記反応炉は、大気圧または0.1T
orr〜数十Torrの低圧に維持されることを特徴と
する請求項6に記載のカーボンナノチューブ合成方法。
19. The reactor may be at atmospheric pressure or 0.1 T
The carbon nanotube synthesis method according to claim 6, wherein the pressure is maintained at a low pressure of orr to several tens Torr.
JP2000225525A 1999-07-27 2000-07-26 Chemical vapor deposition system and method for synthesizing carbon nanotube using the same Pending JP2001081564A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1019990030700A KR19990073593A (en) 1999-07-27 1999-07-27 Chemical vapor deposition system for massive synthesis of carbon nanotubes
KR1999P30700 2000-06-29
KR2000P36509 2000-06-29
KR1020000036509A KR100345079B1 (en) 1999-07-27 2000-06-29 Apparatus of chemical vapor deposition system and synthesizing method of carbon nanotubes using the same

Publications (1)

Publication Number Publication Date
JP2001081564A true JP2001081564A (en) 2001-03-27

Family

ID=26635948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225525A Pending JP2001081564A (en) 1999-07-27 2000-07-26 Chemical vapor deposition system and method for synthesizing carbon nanotube using the same

Country Status (3)

Country Link
EP (1) EP1072693A1 (en)
JP (1) JP2001081564A (en)
CN (1) CN1282801A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082534A (en) * 2001-09-12 2003-03-19 Ulvac Japan Ltd Apparatus for producing graphite nanofiber powder
WO2005023705A1 (en) * 2003-09-05 2005-03-17 Sony Corporation Fine structure body-producing method, fine structure body, display device, recording device-producing method, and recording device
JP2007091481A (en) * 2005-09-26 2007-04-12 Sonac Kk Method for production of carbon nanofiber, and production apparatus for carrying out the method
WO2007108132A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Process for producing carbon nanotube
JP2008156205A (en) * 2006-12-21 2008-07-10 Semes Co Ltd Reaction chamber for manufacturing carbon nanotube, carbon nanotube manufacturing apparatus, and carbon nanotube manufacturing system
JP2009046378A (en) * 2007-08-21 2009-03-05 Semes Co Ltd Method for synthesizing carbon nanotube, and device and system for synthesizing carbon nanotube to which the method is applied
US7531156B2 (en) 2001-06-26 2009-05-12 Japan Science And Technology Agency Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JP2011148658A (en) * 2010-01-22 2011-08-04 Hitachi Zosen Corp Thermal cvd apparatus
US8048396B2 (en) 2004-12-13 2011-11-01 Nikkiso Company Limited Method for manufacturing single-walled carbon nanotubes
US20140147800A1 (en) * 2010-07-23 2014-05-29 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360470B1 (en) * 2000-03-15 2002-11-09 삼성에스디아이 주식회사 Method for depositing a vertically aligned carbon nanotubes using thermal chemical vapor deposition
AT409637B (en) 2001-03-16 2002-09-25 Electrovac Catalytic chemical vapor deposition, used in production of tubular carbon nano-fibers, comprises applying nickel- or cobalt-based catalyst layer to carrier without using current
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
CA2584508A1 (en) 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
US7727588B2 (en) * 2003-09-05 2010-06-01 Yield Engineering Systems, Inc. Apparatus for the efficient coating of substrates
JP4550040B2 (en) * 2005-12-16 2010-09-22 セメス株式会社 Carbon nanotube synthesis apparatus and method
KR100732516B1 (en) * 2005-12-16 2007-06-27 세메스 주식회사 Apparatus and method for collection carbon nano tube
US8617650B2 (en) 2006-09-28 2013-12-31 The Hong Kong University Of Science And Technology Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
KR101912798B1 (en) * 2011-01-31 2018-10-30 한화에어로스페이스 주식회사 Apparatus and method for manufacturing graphene
CN102280401A (en) * 2011-06-29 2011-12-14 彩虹(佛山)平板显示有限公司 Substrate supporting rod device for quartz boat
CN103014617B (en) * 2011-09-22 2014-05-14 株式会社新柯隆 Thin film forming apparatus
FR2993555B1 (en) 2012-07-19 2015-02-20 Herakles INSTALLATION OF HEAVY DUTY CHEMICAL INFILTRATION WITH HIGH LOAD CAPACITY
CN106517147B (en) * 2016-12-09 2018-07-27 北京科技大学 Prepare the method and device of high-purity highly-conductive hot carbon nano pipe array thermal interfacial material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077408A1 (en) * 1981-10-16 1983-04-27 Helmut Seier GmbH A method and apparatus for the heat treatment of semiconductor articles
JP3218164B2 (en) * 1995-05-31 2001-10-15 東京エレクトロン株式会社 Support boat for object to be processed, heat treatment apparatus and heat treatment method
WO1997032339A1 (en) * 1996-02-29 1997-09-04 Tokyo Electron Limited Heat-treating boat for semiconductor wafer
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893645B2 (en) 2001-06-26 2014-11-25 Japan Science And Technology Agency Method of and apparatus for synthesizing highly oriented, aligned carbon nanotubes from an organic liquid
US7531156B2 (en) 2001-06-26 2009-05-12 Japan Science And Technology Agency Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JP4691282B2 (en) * 2001-09-12 2011-06-01 株式会社アルバック Graphite nanofiber powder manufacturing equipment
JP2003082534A (en) * 2001-09-12 2003-03-19 Ulvac Japan Ltd Apparatus for producing graphite nanofiber powder
WO2005023705A1 (en) * 2003-09-05 2005-03-17 Sony Corporation Fine structure body-producing method, fine structure body, display device, recording device-producing method, and recording device
US8048396B2 (en) 2004-12-13 2011-11-01 Nikkiso Company Limited Method for manufacturing single-walled carbon nanotubes
JP2007091481A (en) * 2005-09-26 2007-04-12 Sonac Kk Method for production of carbon nanofiber, and production apparatus for carrying out the method
WO2007108132A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Process for producing carbon nanotube
JP4615549B2 (en) * 2006-12-21 2011-01-19 セメス株式会社 Reaction chamber for carbon nanotube production, carbon nanotube production apparatus, and carbon nanotube production system
JP2008156205A (en) * 2006-12-21 2008-07-10 Semes Co Ltd Reaction chamber for manufacturing carbon nanotube, carbon nanotube manufacturing apparatus, and carbon nanotube manufacturing system
JP2009046378A (en) * 2007-08-21 2009-03-05 Semes Co Ltd Method for synthesizing carbon nanotube, and device and system for synthesizing carbon nanotube to which the method is applied
JP2011148658A (en) * 2010-01-22 2011-08-04 Hitachi Zosen Corp Thermal cvd apparatus
US20140147800A1 (en) * 2010-07-23 2014-05-29 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment

Also Published As

Publication number Publication date
EP1072693A1 (en) 2001-01-31
CN1282801A (en) 2001-02-07

Similar Documents

Publication Publication Date Title
JP2001081564A (en) Chemical vapor deposition system and method for synthesizing carbon nanotube using the same
KR100345079B1 (en) Apparatus of chemical vapor deposition system and synthesizing method of carbon nanotubes using the same
EP1061041A1 (en) Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
JP2001020072A (en) Method of low temperature synthesis of carbon nanotube using catalyst metal film for decomposition of carbon source gas
EP1149932A2 (en) Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
JP2006347878A (en) Method for manufacturing carbon nanotube
CN1277145A (en) Method for synthetizing vertical arrangement high-purity carbon nanometre tube in large-scale on large size substrate using hot CVD method
JP2007161576A (en) Method for producing carbon nanotube array
JPS5927753B2 (en) Diamond synthesis method
WO1999014405A1 (en) Method and apparatus for producing silicon carbide single crystal
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
US20150353363A1 (en) Method and System to Produce Large Size Diamonds
WO2010147191A1 (en) Apparatus and method for producing carbon nanotube
KR100372334B1 (en) Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition
KR100372333B1 (en) Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
JP2004161561A (en) Manufacturing process of boron nitride nanotube
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
KR100513713B1 (en) Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
KR100334351B1 (en) Low temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
KR20040082949A (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
KR100382878B1 (en) Synthesis method of highly purified carbon nanotubes
JP2003277031A (en) Method for manufacturing carbon nanotube
KR20100028895A (en) Co-feeding chemical reactor for carbon nano tube
KR100447167B1 (en) Method for developing carbon nanotube perpendicularly
CN1618733A (en) Preparation method of carbon nano-pipe