KR100746311B1 - A preparing method of carbon nanotube from liquid phased-carbon source - Google Patents

A preparing method of carbon nanotube from liquid phased-carbon source Download PDF

Info

Publication number
KR100746311B1
KR100746311B1 KR1020030020858A KR20030020858A KR100746311B1 KR 100746311 B1 KR100746311 B1 KR 100746311B1 KR 1020030020858 A KR1020030020858 A KR 1020030020858A KR 20030020858 A KR20030020858 A KR 20030020858A KR 100746311 B1 KR100746311 B1 KR 100746311B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
delete delete
carbon
critical
carbon source
Prior art date
Application number
KR1020030020858A
Other languages
Korean (ko)
Other versions
KR20040085982A (en
Inventor
류병환
공기정
장현주
최영민
이재도
강윤찬
정하균
김창균
박한성
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020030020858A priority Critical patent/KR100746311B1/en
Priority to CN2004800086897A priority patent/CN1768002B/en
Priority to JP2006507792A priority patent/JP4126072B2/en
Priority to US10/551,484 priority patent/US8398948B2/en
Priority to PCT/KR2004/000745 priority patent/WO2004087565A1/en
Publication of KR20040085982A publication Critical patent/KR20040085982A/en
Priority to HK06110786.1A priority patent/HK1090018A1/en
Application granted granted Critical
Publication of KR100746311B1 publication Critical patent/KR100746311B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

본 발명은 액상법에 의한 탄소나노튜브의 제조방법에 관한 것으로서, 더욱 상세하게는 액상의 탄화수소계 물질을 탄소원으로 사용하고 상기 탄소원의 임계온도 및 임계압력 영역으로 가온 및 가압하여 액상과 기상이 평형을 이루는 조건을 유지한 후에 금속 핵(seed)물질의 존재 하에서 반응 및 냉각하여 탄소나노튜브 형태로 성장시키는 액상법에 의한 탄소나노튜브의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanotubes by a liquid phase method, and more particularly, by using a liquid hydrocarbon-based material as a carbon source and heating and pressurizing to a critical temperature and critical pressure region of the carbon source to achieve equilibrium between the liquid phase and the gas phase. The present invention relates to a method for producing carbon nanotubes by a liquid phase method in which carbon nanotubes are grown in the form of carbon nanotubes by reacting and cooling in the presence of a metal seed material after maintaining conditions to be achieved.

본 발명에 따른 탄소나노튜브의 제조방법은 기존에 탄소나노튜브 제조 시 일반적으로 적용되었던 기상법과는 달리 액상 탄소원을 사용하고 있어 원료 취급이 보다 용이하고, 그리고 사용된 탄소원의 임계영역 범위에 해당하는 비교적 낮은 온도 및 압력 조건이 유지되는 온화한 조건으로도 탄소나노튜브를 제조할 수 있어 보다 저렴한 비용으로 대량생산이 가능한 잇점이 있다.The carbon nanotube manufacturing method according to the present invention uses a liquid carbon source, unlike the gas phase method, which is generally applied in the manufacture of carbon nanotubes, and thus easier to handle raw materials, and corresponds to the critical range of the carbon source used. Carbon nanotubes can be manufactured even under mild conditions where relatively low temperature and pressure conditions are maintained, so that mass production can be performed at a lower cost.

탄소나노튜브, 액상법, 대량생산Carbon nanotubes, liquid phase method, mass production

Description

액상법에 의한 탄소나노튜브의 제조방법{A preparing method of carbon nanotube from liquid phased-carbon source}A preparing method of carbon nanotube from liquid phased-carbon source}

도 1은 본 발명에 따라 제조한 탄소나노튜브의 라만스펙트럼 분석 결과이다.1 is a Raman spectrum analysis of the carbon nanotubes prepared according to the present invention.

삭제delete

본 발명은 액상법에 의한 탄소나노튜브의 제조방법에 관한 것으로서, 더욱 상세하게는 액상의 탄화수소계 물질을 탄소원으로 사용하고 상기 탄소원의 임계온도 및 임계압력 영역으로 가온 및 가압하여 액상과 기상이 평형을 이루는 조건을 유지한 후에 금속 핵(seed)물질의 존재 하에서 반응 및 냉각하여 탄소나노튜브 형태로 성장시키는 액상법에 의한 탄소나노튜브의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanotubes by a liquid phase method, and more particularly, by using a liquid hydrocarbon-based material as a carbon source and heating and pressurizing to a critical temperature and critical pressure region of the carbon source to achieve equilibrium between the liquid phase and the gas phase. The present invention relates to a method for producing carbon nanotubes by a liquid phase method in which carbon nanotubes are grown in the form of carbon nanotubes by reacting and cooling in the presence of a metal seed material after maintaining conditions to be achieved.

탄소나노튜브(carbon nanotube)는 하나의 탄소원자에 이웃하는 세개의 탄소 원자들이 결합되어 있으며, 상기 탄소 원자들간의 결합에 의해서 육각 환형이 이루어지고, 이들이 벌집형태로 반복된 평면이 말려서 원통형 튜브구조를 이룬 물질이다. 상기와 같은 탄소나노튜브는 그 구조에 따른 전기적 특성의 변화, 열적, 화학적 및 기계적 안정성 등 우수한 특성과 다양한 응용 가능성이 제시되고 있으며, 그 응용 분야는 나노전자소자, 전계방출 에미터, 수소 및 이온 저장, 복합물(composite), 촉매담체, 센서 등으로 광범위하다.Carbon nanotubes (carbon nanotubes) are three carbon atoms adjacent to one carbon atom is bonded, the hexagonal ring is formed by the bond between the carbon atoms, they are honeycomb-shaped plane is rolled in a cylindrical tube structure Is a substance. The carbon nanotubes described above have been suggested to have excellent properties and various application possibilities, such as changes in electrical properties, thermal, chemical and mechanical stability according to their structure, and their application fields are nanoelectronic devices, field emission emitters, hydrogen and ions. Wide range of storage, composites, catalyst carriers, sensors, etc.

현재까지 알려져 있는 일반적인 탄소나노튜브의 제조방법은 다음과 같다. 개발초창기에는 전기방전 방법과 레이져 용발법으로 탄소나노튜브의 구조 및 전기적 특성 연구를 위한 소량의 탄소나노튜브를 제조하였다. 그 이후 탄소나노튜브를 대량 생산하기 위하여 개발된 방법으로서 아크 방전법(arc discharge), 레이저 기화법(laser evaporation), CVD(thermal chemical vapor deposition)법, 플라즈마(plasma) 합성법 등이 제시되었다[Chemical Physics Letters, Vol. 376, (5-6) 606-611 (2003) ; Surface and Coatings Technology, Vol. 174-175, (9-10) (2003) 81-87 ; 미국특허 제5,424,054호; 미국특허 제6,210,800호; 미국특허 제6,221,330호; 국제특허공개 WO99/006618 A1]. 이러한 방법들은 수백 내지 수천 도의 높은 온도 범위 조건에서 탄소나노튜브를 제조하거나 또는 진공 하에서 수행하는 등 가혹한 반응조건 하에서 탄소나노튜브를 소량 제조하고 있으며, 상기한 방법들은 모두 비싼 장비에 의존하고 있다. 따라서, 기존에 알려진 방법에 의해 상업적으로 탄소나노튜브를 생산하기에는 아직도 많은 어려움이 있다.Commonly known methods for producing carbon nanotubes are as follows. In the early stage of development, a small amount of carbon nanotubes were prepared for the structure and electrical properties of carbon nanotubes by the electric discharge method and the laser emission method. Since then, arc discharge, laser evaporation, CVD (thermal chemical vapor deposition), plasma synthesis, etc. have been proposed as methods developed for mass production of carbon nanotubes. Physics Letters, Vol. 376, (5-6) 606-611 (2003); Surface and Coatings Technology, Vol. 174-175, (9-10) (2003) 81-87; US Patent No. 5,424,054; US Patent No. 6,210,800; US Patent No. 6,221,330; International Patent Publication WO99 / 006618 A1. These methods produce a small amount of carbon nanotubes under harsh reaction conditions, such as the production of carbon nanotubes in a high temperature range of several hundred to thousands of degrees, or under vacuum, all of which are dependent on expensive equipment. Therefore, there are still many difficulties in producing carbon nanotubes commercially by known methods.

한편, 순수한 액상물질을 임계온도(critical temperature: Tc) 및 임계압력(critical pressure: Pc) 영역으로 가온 및 가압하게 되면 물리화학적 성질로 표현되는 단일상을 형성한다. 이러한 단일상을 '초임계유체(supercritical fluid)'라 정의하며, 유체의 상태는 임계온도와 임계압력에 의해 특정지어지게 된다. On the other hand, when the pure liquid material is heated and pressurized to the critical temperature (T c ) and critical pressure (P c ) region to form a single phase expressed in physicochemical properties. This single phase is defined as a 'supercritical fluid', and the state of the fluid is specified by the critical temperature and the critical pressure.

이와 같은 초임계유체는 기체와 같은(gas like) 전달특성과 액체와 같은(liquid like) 용액성질을 가지며, 온도와 압력을 적절히 조절함으로써 기체에서 액체로 변하는 상 경계를 거치지 않고 밀도, 확산도, 유전상수 등과 같은 물리화학적 성질의 특별한 영역에 접근할 수 있다. 상기한 특성에 의하여 초임계유체는 물성을 연속적으로 조절 가능한 용매로 볼 수 있으며, 액체와 기체의 중간적이고, 유일한 성질을 나타내기 때문에 다양한 과학 분야에서 커다란 관심을 받아왔다.Such supercritical fluids have gas-like delivery properties and liquid-like solution properties, and by appropriately controlling temperature and pressure, density, diffusivity, Access specific areas of physicochemical properties such as dielectric constants. Due to the above properties, supercritical fluids can be seen as solvents that can continuously control physical properties, and have received great attention in various scientific fields because they exhibit intermediate and unique properties of liquids and gases.

이에 본 발명의 발명자들은 상기와 같은 기상법에 기초한 탄소나노튜브 제조법의 단점인 고온합성, 고비용 생산성 및 소량생산 등의 문제를 해결하고자 연구를 거듭하였다. 그 결과, 탄소원으로서는 액상의 탄화수소계 물질을 사용하고, 사용된 탄소원의 임계온도 및 임계압력으로 반응조건을 조절함으로서 초임계유체 상태가 유지되는 조건에서 금속 핵물질의 존재하에 반응 및 냉각하여 탄소나노튜브 결정을 성장시키는 액상법에 의한 탄소나노튜브의 제조방법을 개발함으로써 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention have repeatedly studied to solve problems such as high temperature synthesis, high cost productivity, and small quantity production, which are disadvantages of the carbon nanotube manufacturing method based on the gas phase method. As a result, a carbonaceous material is used as the carbon source, and the reaction conditions are controlled by the critical temperature and the critical pressure of the carbon source used to react and cool in the presence of the metal nucleus material under the condition of maintaining a supercritical fluid. The present invention has been completed by developing a method for producing carbon nanotubes by a liquid phase method of growing tube crystals.

따라서 본 발명은 탄소나노튜브의 저온합성, 저비용 및 대량생산성을 이루도록한 액상법에 의한 탄소나노튜브의 제조방법을 제공하는데 그 목적이 있다.
Accordingly, an object of the present invention is to provide a method for producing carbon nanotubes by a liquid phase method to achieve low temperature synthesis, low cost, and mass productivity of carbon nanotubes.

본 발명은 액상의 탄화수소계 물질을 탄소원으로 사용하고, 상기 탄화수소계 물질 80 ∼ 99.999 중량%와 금속 핵(seed)물질 0.001 ∼ 20 중량%의 함량비로 사용하며, 상기 탄소원을 반응온도가 200 ∼ 800 ℃의 범위의 임계온도 및 1 ∼ 400 기압 범위의 임계압력 영역에 이르도록 0.01 ∼ 50 ℃/min 범위의 가온속도로 가온 및 가압하여 탄소원의 액상과 기상이 평형을 이룬 임계상태에 이르게 하여, 상기 임계상태를 1분 ∼ 10 시간 유지시켜 상기 금속 핵(seed)물질을 골격으로 탄소원을 튜브형태로 성장시킨 후 0.01 ∼ 50 ℃/min 범위의 냉각속도로 냉각하는 액상법에 의한 탄소나노튜브의 제조방법을 그 특징으로 한다.The present invention uses a liquid hydrocarbon-based material as a carbon source, the content ratio of 80 to 99.999% by weight of the hydrocarbon-based material and 0.001 to 20% by weight of the metal seed material, the reaction temperature is 200 to 800 Warmed and pressurized at a heating rate in the range of 0.01 to 50 ° C./min to reach a critical temperature in the range of 1 ° C. and a critical pressure range in the range of 1 to 400 atm, thereby bringing the liquid phase and the gas phase of the carbon source into equilibrium; Method of producing carbon nanotubes by a liquid phase method of maintaining a critical state for 1 minute to 10 hours to grow a carbon source in the form of a tube with the skeleton of the metal seed material and cooling at a cooling rate in the range of 0.01 to 50 ° C./min. It is characterized by.

이와 같이 본 발명을 상세하게 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명에 따른 탄소나노튜브의 제조방법은 기존에 탄소나노튜브 제조 시 일반적으로 적용되었던 기상법과는 달리 액상 탄소원을 사용하고 있어 원료 취급이 보다 용이하고, 그리고 사용된 탄소원의 임계영역 범위에 해당하는 비교적 낮은 온도 및 압력 조건이 유지되는 온화한 조건으로도 탄소나노튜브를 제조할 수 있어 보다 저렴한 비용으로 탄소나노튜브의 대량생산이 가능한 등의 효과를 얻을 수 있었다.The carbon nanotube manufacturing method according to the present invention uses a liquid carbon source, unlike the gas phase method, which is generally applied in the manufacture of carbon nanotubes, and thus easier to handle raw materials, and corresponds to the critical range of the carbon source used. Carbon nanotubes can be manufactured even under mild conditions in which relatively low temperature and pressure conditions are maintained, thereby enabling mass production of carbon nanotubes at a lower cost.

본 발명에서는 탄소나노튜브의 탄소골격을 성장시키기 위한 탄소원으로서 액상의 탄화수소계 물질을 사용하며, 상기의 탄소원을 밀폐된 고압 반응기에서 임계온도 및 임계압력 영역으로 가온 및 가압하여 액상과 기상이 평형을 이루는 초임계유체를 형성하는 조건에서 탄소나노튜브를 성장시키므로 기존의 기상법에 비교하여 낮은 온도에서도 충분히 탄소나노튜브의 대량 생산이 가능하다. 즉, 액상의 탄소원을 임계영역 부근으로 가온 및 가압하여 열분해하고, 이로 인하여 액상과 기상이 평형을 이루는 과정에서 탄소나노튜브 형태로 성장시키는 액상법을 개발한데 본 발명의 기술 구성상의 특징이다. 상기 탄소원으로는 본 발명의 액상법이 적용될 수 있도록 하는 액상의 탄화수소계 물질이라면 모두 사용될 수 있고, 구체적으로는 포화 탄화수소, 불포화 탄화수소, 방향족 탄화수소 및 이들의 유도체 중에서 선택된 1종 또는 2종 이상의 탄화수소계 물질을 사용할 수 있다.In the present invention, a liquid hydrocarbon-based material is used as a carbon source for growing a carbon skeleton of carbon nanotubes, and the liquid and gas phase are in equilibrium by heating and pressurizing the carbon source to a critical temperature and critical pressure region in a closed high pressure reactor. Since carbon nanotubes are grown under the conditions of forming supercritical fluids, carbon nanotubes can be mass-produced sufficiently even at low temperatures compared to conventional gas phase methods. That is, the liquid phase carbon source is thermally decomposed by heating and pressurizing to the vicinity of the critical region, thereby developing a liquid phase method of growing in the form of carbon nanotubes in the process of equilibrating the liquid phase and the gas phase. As the carbon source, any liquid hydrocarbon-based material to which the liquid phase method of the present invention can be applied may be used. Specifically, one or two or more hydrocarbon-based materials selected from saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, and derivatives thereof. Can be used.

삭제delete

삭제delete

본 발명에서는 금속 핵(seed)물질로서 코발트(Co), 니켈(Ni) 및 철(Fe) 등과 같은 전이금속, 백금(Pt), 팔라듐(Pd) 등과 같은 귀금속을 사용할 수 있고, 이들 금속은 1종 또는 2종 이상 혼합 사용할 수도 있다. 또한, 금속 핵(seed)물질은 상기한 금속의 나노입자로 제조하여 사용할 수 있고, 또는 반응 중에 자발적 핵(seed) 생성이 가능한 금속화합물을 사용할 수 있다. 즉, 핵(seed)물질로서 반응기 외부에서 별도로 제조한 50 nm 이하의 크기를 갖는 금속나노입자를 반응 초기부터 투입하여 액상의 탄화수소계 물질의 반응과정에서 금속 핵(seed)으로 작용하도록 하여 탄소나노튜브를 제조할 수 있고, 또는 액상의 탄화수소계 물질의 반응 중에 자발적 핵생성이 가능한 금속화합물을 핵(seed)물질로서 투입하여 액상의 탄화수소계 물질의 반응과정에서 자발적으로 금속 핵(seed)을 생성하여 탄소나노튜브를 제조할 수도 있다. 본 발명에서는 탄화수소계 물질의 가온 및 가압 속도 제어에 의해 반응진행 중에 자발적으로 생성된 핵물질을 '자생적 핵물질'이라고 지칭하기로 한다. 자발적 핵생성이 가능한 금속화합물은 금속을 포함하는 염으로서, 예를 들면 아세트산, 염산, 황산, 질산 등의 산(acid) 염이 포함될 수 있다. 또한, 금속 핵물질로서 금속염을 사용할 때는 환원제로서 알칼리금속, 알칼리 토금속 또는 이들의 혼합물을 함께 사용하는 것이 보다 바람직하다.In the present invention, as a metal seed material, transition metals such as cobalt (Co), nickel (Ni), iron (Fe), and the like, precious metals such as platinum (Pt), palladium (Pd), and the like may be used. You may use together species or 2 or more types. In addition, the metal seed material may be prepared by using the nanoparticles of the above metals, or a metal compound capable of spontaneous seed generation during the reaction may be used. That is, metal nanoparticles having a size of 50 nm or less prepared separately from the outside of the reactor as a seed material are added from the beginning of the reaction to act as a metal nucleus during the reaction of a liquid hydrocarbon-based material. A metal compound capable of producing a tube or spontaneously nucleating during the reaction of a liquid hydrocarbon-based material is introduced as a seed material to spontaneously generate a metal seed during the reaction of the liquid-based hydrocarbon material. To produce carbon nanotubes. In the present invention, the nuclear material spontaneously generated during the reaction process by controlling the heating and pressurization rate of the hydrocarbon-based material will be referred to as 'natural nuclear material'. Metal compounds capable of spontaneous nucleation are salts containing metals, and may include acid salts such as acetic acid, hydrochloric acid, sulfuric acid, and nitric acid. Moreover, when using a metal salt as a metal nucleus material, it is more preferable to use together alkali metal, alkaline earth metal, or a mixture thereof as a reducing agent.

삭제delete

삭제delete

본 발명의 탄소나노튜브를 제조함에 있어서는 액상의 탄화수소계 물질 80 ∼ 99.999 중량%와 금속 핵물질 0.001 ∼ 20 중량%의 함량비를 이루도록 한다. 상기 금속 핵물질의 함량이 0.001 중량% 미만이면 핵물질로서 작용하기 어려워 탄소나노튜브의 제조가 어려워지고, 20 중량%를 초과하면 탄소나노튜브의 길이가 매우 짧아지게 된다. 탄소나노튜브는 그 용도에 따라 길이와 직경이 달라짐은 자명하다. 따라서, 이러한 탄소나노튜브의 길이와 직경을 조절하고자 할 경우 상기한 바와 같이 탄화수소계 물질과 핵물질의 함량비를 조절하도록 한다. 즉, 탄화수소계 물질의 함량이 높아지면 길이가 짧은 비결정질의 탄소나노튜브가 얻어지고, 탄화수소계 물질의 함량이 너무 낮으면 결정질의 탄소가 생성되거나 길이가 긴 탄소나노튜브를 얻을 수 있으나 그 수율이 낮아지는 경향이 있으므로 적절히 조절하여야 한다.In preparing the carbon nanotubes of the present invention, a content ratio of 80 to 99.999% by weight of the liquid hydrocarbon-based material and 0.001 to 20% by weight of the metal nuclear material is achieved. When the content of the metal nuclear material is less than 0.001% by weight, it is difficult to act as a nuclear material, making the production of carbon nanotubes difficult, and when the content of the metal nuclear material exceeds 20% by weight, the length of the carbon nanotubes becomes very short. It is obvious that carbon nanotubes vary in length and diameter depending on their use. Therefore, if you want to control the length and diameter of the carbon nanotubes as described above to adjust the content ratio of the hydrocarbon-based material and nuclear material. In other words, when the content of the hydrocarbon-based material is increased, amorphous carbon nanotubes with short lengths are obtained. If the content of the hydrocarbon-based material is too low, crystalline carbon is produced or carbon nanotubes with long lengths can be obtained. It tends to be lowered and should be adjusted accordingly.

한편, 탄소원으로 사용되는 액상의 탄화수소계 물질 종류에 따라 임계온도 및 임계압력의 영역이 서로 다른 바, 이에 선택 사용되는 탄소원의 종류에 따라 반응기에 가해지는 가온 및 가압 범위도 당연히 달라질 수밖에 없다. 본 발명의 탄소원이 액상과 기상이 평형을 이루는 임계상태에 이르도록 하는 반응온도는 대략 200 ∼ 800 ℃ 범위이고, 이에 따라 반응기 내부압력은 대략 1 ∼ 400 기압 범위로 조절되도록 한다. 그리고, 상기한 임계조건에서 일정시간 동안 유지하여 탄소나노튜브가 형성되도록 하는데, 이러한 반응 유지 시간은 대략 1분 ∼ 10 시간 동안 유지하도록 하며, 이는 얻고자 하는 탄소나노튜브의 물리적 성질, 형상 및 수득량에 따라 조절할 수 있다. 즉, 임계조건에서의 유지기간이 길어지면 길이가 긴 탄소나노튜브가 얻어지며, 임계조건에서의 유지기간이 짧아지면 길이가 짧은 탄소나노튜브가 얻어지므로, 탄소나노튜브의 용도에 따라 그 유지기간을 조절하도록 한다.
또한, 본 발명에 따른 탄소나노튜브 제조방법을 수행하는데 있어 임계영역에 이르도록 하는 가온속도와 임계반응 후의 냉각속도 조절에 의해 탄소나노튜브의 물리적 성질, 형상 및 수득량에 지대한 영향을 미치게 되므로 이의 조절이 중요하다. 본 발명의 경우 가온 및 냉각속도는 0.01 ∼ 50 ℃/분 범위 내에서 조절될 수 있다. 일반적으로 가온속도가 빠를 경우 비결정질의 탄소가 생성되고, 가온속도가 느릴 경우 길이가 긴 탄소나노튜브가 생성된다. 또한, 냉각속도가 빠를 경우 비결정질의 탄소가 생성되거나 길이가 짧은 탄소나노튜브가 생성되고, 냉각속도가 느릴 경우 길이가 긴 고품질의 탄소나노튜브가 생성되므로 이의 조절이 필요하다.
Meanwhile, the ranges of the critical temperature and the critical pressure are different according to the type of liquid hydrocarbon-based material used as the carbon source, and thus the heating and pressurization ranges applied to the reactor may naturally vary according to the type of carbon source selected. The reaction temperature at which the carbon source of the present invention reaches a critical state in which the liquid phase and the gas phase are in equilibrium is in the range of approximately 200 to 800 ° C., so that the reactor internal pressure is controlled to be in the range of approximately 1 to 400 atmospheres. In addition, carbon nanotubes are formed by maintaining the above-described critical conditions for a predetermined time, and the reaction holding time is maintained for about 1 minute to 10 hours, which is the physical property, shape, and number of carbon nanotubes to be obtained. Can be adjusted according to the amount of gain. In other words, longer carbon nanotubes are obtained when the holding period is longer in the critical condition, and shorter carbon nanotubes are obtained when the holding period is shorter in the critical condition. To adjust.
In addition, the carbon nanotube manufacturing method according to the present invention has a significant effect on the physical properties, shape and yield of the carbon nanotubes by controlling the heating rate to reach the critical region and the cooling rate after the critical reaction. Adjustment is important. In the case of the present invention, the heating and cooling rate may be adjusted within the range of 0.01 to 50 ℃ / min. In general, when the heating rate is fast, amorphous carbon is produced, and when the heating rate is slow, long carbon nanotubes are produced. In addition, when the cooling rate is fast, amorphous carbon is produced or short carbon nanotubes are produced, and when the cooling rate is slow, high-quality carbon nanotubes are produced, which require a long control.

기존에 탄소나노튜브를 제조하기 위하여 사용되던 기상법에서는 800 ∼ 1000 ℃ 이상의 고온 조건과 CVD에 필요한 고가의 장비를 사용하게 되지만, 본 발명에 따른 액상법으로는 약 200 ∼ 800 ℃ 범위로 다소 완화된 조건으로 용이하게 대량으로 탄소나노튜브를 제조할 수 있다.In the gas phase method previously used to manufacture carbon nanotubes, high temperature conditions of 800 to 1000 ° C. or higher and expensive equipment required for CVD are used. However, the liquid phase method according to the present invention somewhat relaxes the condition to about 200 to 800 ° C. Carbon nanotubes can be easily produced in large quantities.

또한, 본 발명의 액상법에 따라 제조된 탄소나노튜브는 투과전자현미경(TEM) 사진으로 확인하였을 때 직경 15 ∼ 20 ㎚의 크기를 가지며, 라만스펙트럼 분석결과 1595 ㎝-1 부근에서 탄소의 sp2 결합을 확인할 수 있어 흑연구조가 잘 발달된 탄소나노튜브임을 알 수 있다.In addition, the carbon nanotubes prepared according to the liquid-phase method of the present invention has a diameter of 15 to 20 nm as confirmed by a transmission electron microscope (TEM) picture, sp 2 bond of carbon in the vicinity of 1595 cm -1 as a result of Raman spectrum analysis It can be seen that the graphite structure is well developed carbon nanotubes.

이와 같은 본 발명을 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다. The present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

A. 자생적 핵물질을 첨가한 액상법에 따른 탄소나노튜브의 제조A. Preparation of Carbon Nanotubes by Liquid Phase Method with Autogenous Nuclear Material

실시예 1 Example 1

자생적으로 핵물질을 생성하고 실시간으로 탄소나노튜브를 제조하기 위하여 직경이 약 10 ㎝이고, 용적이 1 ℓ인 스테인레스 재질의 고압 반응용기 내에, 코발트(Ⅱ) 아세테이트 사수화물(Co(Ac)2·4H2O) 2.49 g, 환원제로 금속 나트륨 0.6 g, 반응보조제로서 올레인산(oleic acid) 5.88 g, 탄화수소계 물질로서는 페닐에테르 143.4 g, 톨루엔 7.4 g을 모두 한번에 넣고 반응준비를 하였다. 상기한 환원제는 탄소나노튜브가 자생적으로 합성되도록 하는 핵물질 (seed)을 생성시키는 역할을 하는 성분이며, 반응보조제는 생성된 핵물질이 응집되는 것을 방지하고 입자가 커지는 것을 억제하여 핵물질로서 작용할 수 있도록 도와주는 역할을 한다.Cobalt (II) acetate tetrahydrate (Co (Ac) 2 ) in a stainless steel high pressure reaction vessel with a diameter of about 10 cm and a volume of 1 L for spontaneously producing nuclear material and producing carbon nanotubes in real time. 4H 2 O) 2.49 g, 0.6 g of metallic sodium as the reducing agent, 5.88 g of oleic acid as the reaction aid, 143.4 g of phenyl ether and 7.4 g of toluene were prepared at once. The reducing agent is a component that plays a role in generating a nuclear material (seed) that allows the carbon nanotubes to be spontaneously synthesized, and the reaction aid prevents agglomeration of the generated nuclear material and inhibits the growth of particles to act as a nuclear material. It helps to help.

반응온도는 500 ℃에서 1시간동안 유지시킨 후 반응을 종료하였으며, 가온 및 냉각속도는 10 ℃/min로 고정하였다. 반응이 끝난 후 반응물을 꺼내어, 분액 깔때기에서 증류수로 충분히 세정하여 부산물을 제거한 후 제조된 탄소나노튜브를 분리하고 건조하였다.The reaction was terminated after maintaining the reaction temperature at 500 ℃ for 1 hour, the heating and cooling rate was fixed at 10 ℃ / min. After the reaction was completed, the reaction product was taken out, thoroughly washed with distilled water in a separatory funnel to remove by-products, and the carbon nanotubes thus prepared were separated and dried.

상기 제조된 탄소나노튜브의 라만스펙트럼의 결과를 첨부도면 도 1에 나타내었다. Figure 1 shows the results of the Raman spectrum of the prepared carbon nanotubes.

실시예 2 Example 2

상기 실시예 1에서, 자생적 핵물질 생성시 복합화된 핵 생성을 위하여 Co(Ac)2·4H2O 1.5 g, Fe(Cl)2·4H2O 0.5 g 및 Ni(NO3)2·4H2O 0.45 g을 넣고 나머지는 모두 동일한 방법으로 탄소나노튜브를 제조하였다.In Example 1, 1.5 g of Co (Ac) 2 · 4H 2 O, Fe (Cl) 2 · 4H 2 O 0.5 g, and Ni (NO 3 ) 2 · 4H 2 for complexed nucleation upon generation of native nuclear material 0.45 g of O was added and the rest were all prepared in the same manner.

B. 금속나노입자를 첨가한 액상법에 따른 탄소나노튜브의 제조B. Preparation of Carbon Nanotubes by Liquid Phase Method Added Metal Nanoparticles

실시예 3 Example 3

상기 실시예 1에서와 동일한 방법으로 수행하되, 금속화합물 사용에 의하여 자생적으로 생성된 핵물질을 제조 사용하는 대신 미리 준비한 약 20 nm 크기의 Fe 나노입자를 0.5 g을 반응용액에 첨가하였을 뿐 나머지는 모두 동일한 방법으로 탄소나노튜브를 제조하였다.In the same manner as in Example 1, except that 0.5 g of Fe nanoparticles having a size of about 20 nm prepared in advance were added to the reaction solution instead of preparing and using the nuclear material naturally generated by using a metal compound. All of them prepared carbon nanotubes in the same manner.

실시예 4 Example 4

상기 실시예 3에서와 동일한 방법으로 수행하되, 핵물질로서 Fe3O4 페라이트 나노입자에 Co, Ni를 고용한 산화물을 제조하고 이를 400 ℃에서 30 분 환원하여 얻은 Co-Ni-Fe 합금계의 나노금속입자를 약 1 g 반응용액에 첨가하여 상기 실시예 3과 동일한 방법으로 탄소나노튜브를 제조하였다.In the same manner as in Example 3, except for producing an oxide in which Co, Ni is dissolved in Fe 3 O 4 ferrite nanoparticles as a nuclear material and reduced to 30 minutes at 400 ℃ of Co-Ni-Fe alloy system Carbon nanotubes were prepared in the same manner as in Example 3 by adding nano metal particles to the reaction solution of about 1 g.

상기 실시예 1 ∼ 4의 결과, 모두 약 20 ∼ 50 nm 정도의 직경을 갖는 탄소나노튜브가 합성되는 것을 확인하였다.As a result of Examples 1 to 4, it was confirmed that all carbon nanotubes having a diameter of about 20 to 50 nm were synthesized.

상기한 바와 같이, 본 발명에서는 액상의 탄화수소계 물질을 탄소원으로 사용하여 액상과 기상이 평형을 유지하는 임계영역 내에서 탄소나노튜브를 성장시키므로 탄소원의 취급이 용이해졌음은 물론이고 반응조건도 임계영역 범위로서 비교적 온화하여 상업적으로 적용하기에 충분한 안정성이 확보될 뿐만 아니라, 탄소나노튜브의 성장을 촉진시키는 핵물질로서 금속나노입자 또는 자발적 핵생성이 가능한 금속화합물의 존재 하에서 반응을 수행하므로 탄소나노튜브의 탄소골격을 보다 용이하게 형성할 수 있다.
따라서, 본 발명의 제조방법에 의하면 탄소원으로 사용된 액상의 탄화수소계 물질이 초임계 유체화하는 조건 또는 이 보다 훨씬 온화한 조건에서도 반응이 가능해짐으로써, 기존의 기상법보다 상대적으로 저온 및 저압인 다소 완화된 조건으로도 고가의 장비를 사용하지 않고도 전환효율이 높은 탄소나노튜브를 합성할 수 있으므로 보다 적은 비용으로 대량의 탄소나노튜브 합성이 기대된다.
As described above, in the present invention, since the carbon nanotubes are grown in the critical region in which the liquid phase and the gas phase are in equilibrium by using a liquid hydrocarbon-based material as the carbon source, the handling of the carbon source is easy and the reaction conditions are also in the critical region. It is relatively gentle as a range, and not only ensures sufficient stability for commercial application, but also reacts in the presence of metal nanoparticles or metal compounds capable of spontaneous nucleation as nuclear materials for promoting the growth of carbon nanotubes. The carbon skeleton of can be formed more easily.
Therefore, according to the manufacturing method of the present invention, the reaction can be performed under the conditions of supercritical fluidization of the liquid hydrocarbon-based material used as the carbon source, or even in a milder condition. Under these conditions, carbon nanotubes having high conversion efficiency can be synthesized without using expensive equipment, and thus, large-scale carbon nanotube synthesis is expected at a lower cost.

Claims (12)

포화 탄화수소, 불포화 탄화수소, 방향족 탄화수소 및 이들의 유도체로 구성되는 군으로부터 선택된 1종 또는 2종 이상의 액상 탄화수소계 물질 80 ∼ 99.999 중량%와, 탄소원으로 사용된 액상 탄화수소계 물질의 임계조건에서 환원반응하여 금속 핵(seed)물질을 자발적으로 생성하는 코발트(Co), 니켈(Ni), 철(Fe), 백금(Pt) 및 팔라듐(Pd)으로 구성되는 군으로부터 선택된 1종 또는 2종 이상의 금속이 아세트산, 염산, 황산 또는 질산과 염을 형성하는 금속화합물 0.001 ∼ 20 중량%를 사용하고, 상기 금속화합물이 환원하여 금속 핵(seed)물질을 자발적으로 생성하는 것을 도와주는 환원제로서 알칼리금속 또는 알칼리토금속을 사용하며,80 to 99.999% by weight of one or two or more liquid hydrocarbon-based materials selected from the group consisting of saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons and derivatives thereof are reduced under the critical conditions of the liquid hydrocarbon-based materials used as carbon sources. One or two or more metals selected from the group consisting of cobalt (Co), nickel (Ni), iron (Fe), platinum (Pt), and palladium (Pd) which spontaneously produce metal seed material are acetic acid Using a metal compound that forms a salt with hydrochloric acid, sulfuric acid or nitric acid, and alkali metal or alkaline earth metal is used as a reducing agent to help spontaneously generate metal seed material by reducing the metal compound. Use, 상기 액상 탄화수소계 물질이 초임계유체를 형성하는 임계온도(Tc) 200 ∼ 800 ℃ 및 임계압력(Pc) 1 ∼ 400 기압의 영역에 이르도록 0.01 ∼ 50 ℃/min 범위의 가온속도로 가온 및 가압하고, 상기 액상 탄화수소계 물질의 임계조건을 1분 ∼ 10 시간 유지시켜 자발적으로 생성된 금속 핵(seed)물질을 골격으로 탄소원을 튜브형태로 성장시키며, The liquid hydrocarbon-based material is heated at a heating rate in the range of 0.01 to 50 ° C./min so as to reach a region having a critical temperature (T c ) of 200 to 800 ° C. and a critical pressure (P c ) of 1 to 400 atmospheres. And pressurizing and maintaining a critical condition of the liquid hydrocarbon-based material for 1 minute to 10 hours to grow a carbon source in the form of a tube based on spontaneously produced metal seed material. 상기 성장된 탄소나노튜브는 0.01 ∼ 50 ℃/min 범위의 냉각속도로 냉각하는 것을 특징으로 하는 액상법에 의한 탄소나노튜브의 제조방법.The grown carbon nanotubes are cooled at a cooling rate in the range of 0.01 to 50 ° C./min. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020030020858A 2003-04-02 2003-04-02 A preparing method of carbon nanotube from liquid phased-carbon source KR100746311B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020030020858A KR100746311B1 (en) 2003-04-02 2003-04-02 A preparing method of carbon nanotube from liquid phased-carbon source
CN2004800086897A CN1768002B (en) 2003-04-02 2004-03-31 Method of preparing carbon nanotube from liquid phased-carbon source
JP2006507792A JP4126072B2 (en) 2003-04-02 2004-03-31 Method for producing carbon nanotubes from a liquid phase carbon source
US10/551,484 US8398948B2 (en) 2003-04-02 2004-03-31 Method of preparing carbon nanotube from liquid phased-carbon source
PCT/KR2004/000745 WO2004087565A1 (en) 2003-04-02 2004-03-31 Method of preparing carbon nanotube from liquid phased-carbon source
HK06110786.1A HK1090018A1 (en) 2003-04-02 2006-09-28 Method of preparing carbon nanotube from liquid phased-carbon source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030020858A KR100746311B1 (en) 2003-04-02 2003-04-02 A preparing method of carbon nanotube from liquid phased-carbon source

Publications (2)

Publication Number Publication Date
KR20040085982A KR20040085982A (en) 2004-10-08
KR100746311B1 true KR100746311B1 (en) 2007-08-06

Family

ID=36743303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030020858A KR100746311B1 (en) 2003-04-02 2003-04-02 A preparing method of carbon nanotube from liquid phased-carbon source

Country Status (6)

Country Link
US (1) US8398948B2 (en)
JP (1) JP4126072B2 (en)
KR (1) KR100746311B1 (en)
CN (1) CN1768002B (en)
HK (1) HK1090018A1 (en)
WO (1) WO2004087565A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425525C (en) * 2003-11-18 2008-10-15 鸿富锦精密工业(深圳)有限公司 Nano-super fluid
US7887771B2 (en) 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7718155B2 (en) * 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US7935276B2 (en) 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US7718156B2 (en) * 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
KR100931378B1 (en) * 2007-05-09 2009-12-11 한국화학연구원 Method for producing carbon nanotubes by methane group and liquid phase method
WO2009028451A1 (en) * 2007-08-27 2009-03-05 Toyo University Method for decomposing carbon-containing compound, method for producing carbon microstructure, and method for forming carbon thin film
CN101244817B (en) * 2008-03-13 2011-05-25 同济大学 Production of nano-carbon tube
BRPI0802018B1 (en) 2008-04-30 2019-01-29 Univ Minas Gerais synthesis process of carbon nanotubes on cement clinker and nanostructured composite
US9376320B1 (en) 2014-12-11 2016-06-28 Baker Hughes Incorporated Method of manufacturing carbon nanotubes and fibers using catalytic magnesium oxide nanoparticles
US9815700B2 (en) 2014-12-11 2017-11-14 Baker Hughes Method of manufacturing carbon nanotubes and fibers using catalytic metal oxide nanoparticles
WO2019028036A1 (en) * 2017-07-31 2019-02-07 Jiangsu Cnano Technology Co., Ltd. Controlled height carbon nanotube arrays
US10994990B1 (en) 2018-11-13 2021-05-04 United States Of America As Represented By The Secretary Of The Air Force Inline spectroscopy for monitoring chemical vapor deposition processes
CN109721046B (en) * 2018-12-24 2023-06-06 江苏电子信息职业学院 Preparation method of conductive carbon nano tube
JP7375487B2 (en) 2019-11-20 2023-11-08 株式会社Ihi Microorganism production equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000323A (en) * 2000-06-23 2002-01-05 윤종용 A method for formation of cylindrical capacitors of semiconductor devices
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
CH690720A5 (en) * 1996-12-18 2000-12-29 Eidgenoess Tech Hochschule Nanotubes, use of such nanotubes as well as methods for their preparation.
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
AT407754B (en) * 1999-09-29 2001-06-25 Electrovac METHOD AND DEVICE FOR PRODUCING A NANOTUBE LAYER ON A SUBSTRATE
CN1183031C (en) * 2000-03-23 2005-01-05 中国科学院成都有机化学研究所 Process for preparing nm-class carbon tubes
JP2002037614A (en) * 2000-07-24 2002-02-06 Kagawa Industry Support Foundation Filament carbon and method of producing it using hydrothermal synthesis
JP3463091B2 (en) * 2000-08-29 2003-11-05 独立行政法人産業技術総合研究所 Method for producing carbon nanotube
ATE430714T1 (en) * 2001-03-26 2009-05-15 Ca Nat Research Council METHOD AND APPARATUS FOR THE SYNTHESIS OF NANOTUBE
AU2002326021B2 (en) * 2001-09-06 2008-01-31 Rosseter Holdings Ltd Apparatus and method for nanoparticle and nanotube production, and use therefor for gas storage
JP4109952B2 (en) * 2001-10-04 2008-07-02 キヤノン株式会社 Method for producing nanocarbon material
JP2004292231A (en) * 2003-03-26 2004-10-21 Canon Inc Production process of nanocarbon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000323A (en) * 2000-06-23 2002-01-05 윤종용 A method for formation of cylindrical capacitors of semiconductor devices
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chemical Physics Letters 2002; 363: 583-590
Physica B 2002; 323: 324-326

Also Published As

Publication number Publication date
CN1768002B (en) 2010-12-22
WO2004087565A1 (en) 2004-10-14
JP4126072B2 (en) 2008-07-30
US8398948B2 (en) 2013-03-19
KR20040085982A (en) 2004-10-08
JP2006522000A (en) 2006-09-28
US20070160522A1 (en) 2007-07-12
HK1090018A1 (en) 2006-12-15
CN1768002A (en) 2006-05-03

Similar Documents

Publication Publication Date Title
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
JP6538115B2 (en) Synthesis of high quality carbon single-walled nanotubes
Lu et al. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
Sengupta Carbon nanotube fabrication at industrial scale: Opportunities and challenges
JP2000095509A (en) Production of carbon nanotube and catalyst therefor
JPH08225395A (en) Production of diamond doped with boron
Meng et al. High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism
JP4125638B2 (en) Nanofiber or nanotube comprising group V transition metal dichalcogenide crystal and method for producing the same
JP2002069643A (en) Method for producing carbon nanotube
Kim et al. The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst
Chen et al. Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR100931378B1 (en) Method for producing carbon nanotubes by methane group and liquid phase method
Venkatesh et al. Preparation of bamboo-like carbon nitride nanotubes, spheres, and study of their structural, morphological and optical properties
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
JP6623512B2 (en) Carbon nanostructure aggregate and method for producing the same
TWI247046B (en) A method for forming nanocarbon materials by chemical vapor deposition
JP2005350308A (en) Carbon nanotube and its producing method
Ishikawa et al. Synthesis of multiwalled carbon nanotubes at temperatures below 300 C by hot-filament assisted chemical vapor deposition
Filonenko et al. Carbon Nanotubes Growth in Converted Gas Atmosphere on Dispersed Iron Catalyst Obtained as Result of Ferrocene Decomposition
JP2003286016A (en) Method for manufacturing purified carbon tube encapsulating metal
Wulan et al. Synthesis Of Aligned Carbon Nanotube (ACNT) Through Catalytic Decomposition Of Methane By Water Assisted Chemical Vapor Deposition (WA-CVD)
JP2007001808A (en) Method for manufacturing carbon nanotube
Gowrisankar et al. Large-Scale Continuous Production of Carbon Nanotubes-A Review

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee