JP3463091B2 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube

Info

Publication number
JP3463091B2
JP3463091B2 JP2000259692A JP2000259692A JP3463091B2 JP 3463091 B2 JP3463091 B2 JP 3463091B2 JP 2000259692 A JP2000259692 A JP 2000259692A JP 2000259692 A JP2000259692 A JP 2000259692A JP 3463091 B2 JP3463091 B2 JP 3463091B2
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
carbon
plasma
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000259692A
Other languages
Japanese (ja)
Other versions
JP2002069643A (en
Inventor
文之 星
威文 石倉
守雄 湯村
修三 藤原
義紀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tokyo Gas Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000259692A priority Critical patent/JP3463091B2/en
Publication of JP2002069643A publication Critical patent/JP2002069643A/en
Application granted granted Critical
Publication of JP3463091B2 publication Critical patent/JP3463091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブを、含炭素材料のECR(電子サイクロトロン共
鳴)プラズマを用いるCVD法(化学蒸着法)により製
造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing carbon nanotubes by a CVD method (chemical vapor deposition method) using ECR (electron cyclotron resonance) plasma of a carbon-containing material.

【0002】[0002]

【従来の技術】カーボンナノチューブは、厚さ数原子層
の黒鉛シートが円筒状に閉じた構造を有するチューブ状
の炭素である。カーボンナノチューブの合成には、アー
ク放電、熱分解法、触媒熱CVD法、マイクロ波CVD
法等が多く用いられている。カーボンナノチューブを電
子放出源として利用する冷陰極の場合には、基板表面上
の所定の位置に直接堆積させるために、導電性の接着剤
で基板上に接着・固定する方法や、マイクロ波CVD法
や触媒熱CVD法により基板上に直接合成する方法が用
いられている。アーク放電法により合成したカーボンナ
ノチューブは、不純物の炭素材料も混合しており、精製
が必要となる。太さ、方向ともにランダムな場合が多
く、配向させることが、困難であり、大面積化も難し
い。また合成に非常に高い温度が必要となる。基板表面
上の所定の位置に直接堆積させるためには、導電性の接
着剤で基板上に接着・固定するという余分なプロセスが
必要とするという問題がある。この問題を解決するた
め、基板上に方向を制御したカーボンナノチューブを合
成する試みが行われている。吾郷らは熱CVDにより
(ApplPhys.Lett.,77,1,79)、村上らはマイクロ波CVD
により(特開2000-57934,Appl.Phys.Lett.,76,13,177
6)行っている。熱分解法や熱CVD法によるカーボン
ナノチューブの合成には800〜1000℃程度の加熱
が必要な場合が多く、反応漕の温度勾配などにより、生
成物の向きや径等の均一性が低い場合が多い。マイクロ
波CVD法を用いて、カーボンナノチューブを配向させ
ることは行われているが、配向のためには一般に電界印
加が必要であり、合成圧力が数千Pa以上と高い条件で
のみ合成に成功していた。またカーボンナノチューブが
付着する面積も実用的な大きさにすることは困難で産業
上の利用という観点から実用的ではない。
2. Description of the Related Art Carbon nanotubes are tubular carbons having a structure in which a graphite sheet having a thickness of several atomic layers is closed in a cylindrical shape. For carbon nanotube synthesis, arc discharge, thermal decomposition method, catalytic thermal CVD method, microwave CVD
The law is often used. In the case of a cold cathode that uses carbon nanotubes as an electron emission source, in order to deposit directly on a predetermined position on the surface of the substrate, a method of adhering and fixing the carbon nanotube on the substrate with a conductive adhesive or a microwave CVD method. A method of directly synthesizing on a substrate by a catalytic thermal CVD method is used. Carbon nanotubes synthesized by the arc discharge method also contain an impurity carbon material, and thus require purification. The thickness and the direction are often random, and it is difficult to align them, and it is difficult to increase the area. Moreover, a very high temperature is required for the synthesis. In order to deposit directly on a predetermined position on the substrate surface, there is a problem that an extra process of adhering and fixing on the substrate with a conductive adhesive is required. In order to solve this problem, attempts have been made to synthesize direction-controlled carbon nanotubes on a substrate. Ago et al. By thermal CVD (ApplPhys.Lett., 77,1,79), Murakami et al.
By (JP 2000-57934, Appl.Phys.Lett., 76,13,177
6) I am doing. In many cases, heating at about 800 to 1000 ° C. is required for the synthesis of carbon nanotubes by the thermal decomposition method or the thermal CVD method, and the uniformity of the direction and diameter of the product may be low due to the temperature gradient in the reaction tank. Many. Although the carbon nanotubes have been orientated by using the microwave CVD method, an electric field is generally required for the orientation, and the synthesis is successful only under the condition that the synthesis pressure is as high as several thousand Pa or more. Was there. Also, it is difficult to make the area where the carbon nanotubes adhere to a practical size, and it is not practical from the viewpoint of industrial use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、500〜8
50℃程度の低い温度及び10-4〜10-1Paという低
い圧力の条件下において、電界を印加することなく高品
質のカーボンナノチューブを効率よく製造する方法を提
供することをその課題とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
An object of the present invention is to provide a method for efficiently producing high-quality carbon nanotubes without applying an electric field under conditions of a low temperature of about 50 ° C. and a low pressure of 10 −4 to 10 −1 Pa.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、10-4〜10-1Pa
の圧力に保持され、かつマイクロ波が導入され、さらに
該マイクロ波に磁場が印加されているプラズマ発生室内
に含炭素材料の気体を導入して、該含炭素材料の電子サ
イクロトロン共鳴プラズマを発生させるとともに、該プ
ラズマを500〜850℃の温度に保持された基板と接
触させ、該基板上にカーボンナノチューブを垂直方向に
堆積させることを特徴とするカーボンナノチューブの製
造方法が提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, 10 -4 to 10 -1 Pa
Of the carbon-containing material is introduced into the plasma generation chamber in which the microwave is introduced and the microwave is introduced under the pressure of the carbon-containing material to generate electron cyclotron resonance plasma of the carbon-containing material. At the same time, there is provided a method for producing carbon nanotubes, which comprises contacting the plasma with a substrate held at a temperature of 500 to 850 ° C. and vertically depositing the carbon nanotubes on the substrate.

【0005】[0005]

【発明の実施の形態】本発明によるカーボンナノチュー
ブ(以下、単に、CNTと略記する)の製造方法におい
ては、基板表面に針状のCNTを堆積させてカーボンナ
ノチューブ膜を形成するために、ECR(電子サイクロ
トロン共鳴)プラズマCVD法を用いる。このECRプ
ラズマCVD法は、従来の熱CVD法やプラズマCVD
法と比較して以下の特徴がある。 磁場の印加によ
り、プラズマ密度が向上し、より低温下での合成を可能
とする。 低い圧力下(1.5〜2×10-1Pa)で
の合成が可能で、プラズマの制御性、安定性が優れてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a carbon nanotube (hereinafter simply referred to as CNT) according to the present invention, in order to form a carbon nanotube film by depositing needle-like CNTs on a substrate surface, an ECR ( Electron cyclotron resonance) plasma CVD method is used. This ECR plasma CVD method is a conventional thermal CVD method or plasma CVD method.
Compared with the law, it has the following features. By applying a magnetic field, the plasma density is improved, and synthesis can be performed at a lower temperature. It can be synthesized under a low pressure (1.5 to 2 × 10 −1 Pa), and has excellent plasma controllability and stability.

【0006】本発明においては、CNTを堆積させるた
めに、基板を用いるが、この基板としては、従来公知の
各種のものを用いることができる。このような基板とし
ては、耐熱性基板、例えば、石英基板、アルミナ基板、
シリコン基板等を使用することが出来る。本発明におい
ては、前記CNT堆積用基板には、必要に応じ、その表
面にCNT堆積助剤を超微粒子状(粒径4nm〜50n
m)で付着させることが好ましい。この堆積助剤の付着
によって、CNTは基板に対して垂直に成長するように
なる。このようなCNT堆積助剤としては、従来公知の
各種の遷移金属(合金を含む)を用いることができる。
その具体例としては、Pd、Fe、Co、Ni等の金属
及びその合金等を挙げることができる。基板に対する前
記金属の付着方法としては、基板に対してCVD法やス
パッタリング法等により付着させる方法の他、基板に対
して金属塩や金属有機錯体を含む溶液を塗布した後、金
属へ還元する方法等がある。基板上へ付着させる金属の
割合は、1cm2当り10-7〜10-4g、好ましくは1
-6〜10-5g程度である。基板上に前記したCNT堆
積助剤を付着させたものや、基板表面を粗面構造や突起
構造にしたものは、それらの粒子や、凸部又は突起部が
CNTの成長開始領域となり、この部分にCNTが堆積
する。
In the present invention, a substrate is used for depositing CNT, and various conventionally known substrates can be used as this substrate. As such a substrate, a heat resistant substrate, for example, a quartz substrate, an alumina substrate,
A silicon substrate or the like can be used. In the present invention, the CNT deposition substrate, if necessary, has a CNT deposition aid on its surface in the form of ultrafine particles (particle size 4 nm to 50 n).
It is preferable to attach it in m). The deposition aid causes the CNTs to grow perpendicular to the substrate. As such a CNT deposition aid, various conventionally known transition metals (including alloys) can be used.
Specific examples thereof include metals such as Pd, Fe, Co and Ni and alloys thereof. As a method of attaching the metal to the substrate, a method of attaching it to the substrate by a CVD method, a sputtering method, or the like, or a method of applying a solution containing a metal salt or a metal organic complex to the substrate and then reducing it to a metal Etc. The rate of metal deposited on the substrate is 10 -7 to 10 -4 g per cm 2 , preferably 1
It is about 0 -6 to 10 -5 g. In the case where the above-mentioned CNT deposition aid is adhered to the substrate or the substrate surface has a rough surface structure or a protrusion structure, those particles, the convex portion or the protrusion portion become the CNT growth start region, and this portion CNTs are deposited on.

【0007】本発明の方法は、反応容器内に基板を配置
し、該容器内に含炭素材料のECRプラズマを発生させ
るとともに、該基板を、500〜850℃、好ましくは
550〜600℃の温度に加熱し、含炭素材料から形成
されたECRプラズマを該基板に接触させることにより
実施される。この場合の反応時間は10〜60分、好ま
しくは15〜30分である。前記ECRプラズマは、含
炭素材料の気体を充填した容器内を10-4〜10-1
a、好ましくは10-2〜10-1Paの圧力に保持すると
ともに、マイクロ波を磁場の存在下で該容器内に照射す
ることによって発生させることができる。マイクロ波
は、その周波数が2.45GHzで、そのマイクロ波出
力は300〜1000W程度で十分である。マイクロ波
に印加する磁場は、マイクロ波の進行方法に対して、並
行に発生させるのが好ましい。磁場の強さは、容器内の
プラズマ発生部の中心部において、7mT(テスラ)以
上、好ましくは22mT以上である。その上限値は特に
制約されないが、通常、50mT程度である。反応部の
中心部では、5mT以上、好ましくは20mT以上であ
り、その上限値は、特に制約されないが、通常、40m
T程度である。
In the method of the present invention, a substrate is placed in a reaction vessel, ECR plasma of a carbon-containing material is generated in the vessel, and the substrate is heated to a temperature of 500 to 850 ° C., preferably 550 to 600 ° C. It is carried out by bringing the ECR plasma formed of a carbon-containing material into contact with the substrate. The reaction time in this case is 10 to 60 minutes, preferably 15 to 30 minutes. The ECR plasma contains 10 -4 to 10 -1 P in a container filled with a carbon-containing material gas.
a, preferably at a pressure of 10 -2 to 10 -1 Pa, and can be generated by irradiating the container with microwaves in the presence of a magnetic field. It is sufficient that the microwave has a frequency of 2.45 GHz and the microwave output is about 300 to 1000 W. The magnetic field applied to the microwaves is preferably generated in parallel with the microwave traveling method. The strength of the magnetic field is 7 mT (tesla) or more, preferably 22 mT or more in the central portion of the plasma generating portion in the container. The upper limit value is not particularly limited, but is usually about 50 mT. In the central part of the reaction part, it is 5 mT or more, preferably 20 mT or more, and the upper limit thereof is not particularly limited, but is usually 40 mT.
It is about T.

【0008】本発明で用いる含炭素材料は、常温におい
て気体状、液体状又は固体状を示すものであることがで
きるが、取扱い性の点から、好ましくは常温において気
体状を示すものである。常温において液体状を示すもの
は、これを加熱気化させることによって気体とすること
ができる。常温で固体のものは、あらかじめ分解ガス化
することによって気体とすることができる。本発明で好
ましく用いることのできる含炭素材料としては、メタ
ン、エタン、プロパン、ブタン等の気体状の炭化水素;
ベンゼン、トルエン、キシレン、ヘキサン、軽油等の液
体状の炭化水素を挙げることができる。
The carbon-containing material used in the present invention can be in a gaseous state, a liquid state or a solid state at room temperature, but from the viewpoint of handling, it is preferably a gas state at room temperature. A substance that is in a liquid state at room temperature can be turned into a gas by heating and vaporizing the substance. Those that are solid at room temperature can be made into gas by previously decomposing and gasifying. Carbon-containing materials that can be preferably used in the present invention include gaseous hydrocarbons such as methane, ethane, propane and butane;
Examples thereof include liquid hydrocarbons such as benzene, toluene, xylene, hexane, and light oil.

【0009】次に本発明を図面を参照して詳述する。図
1は本発明の方法の実施の用いるカーボンナノチューブ
製造装置の1つの実施例についての概略図を示す。図1
において、1は反応部、2はプラズマ発生部、3は絞り
板、4は導波管、5は反応用ガス供給管、6は排気管、
7は支持板、8は支持棒、10は反応容器を示す。11
〜13はマグネットコイルを示し、Sは基板を示す。反
応容器10は、プラズマ発生部2と反応部1とから構成
される。また、そのプラズマ発生部2の下部内壁には、
プラズマ発生部2から反応部1へ流入するプラズマガス
に絞り作用を与えるように、絞り板3が配設されてい
る。導波管4はマイクロ波発振器に連結され、排気管6
は真空ポンプに連結されている。マグネットコイル11
〜13は、反応部1及びプラズマ発生部2の外周に、そ
の磁場が導波管4を介して容器内に導入されるマイクロ
波の進行方向と並行になるように配設されている。
The present invention will now be described in detail with reference to the drawings. FIG. 1 shows a schematic view of one embodiment of a carbon nanotube manufacturing apparatus used for carrying out the method of the present invention. Figure 1
1, 1 is a reaction part, 2 is a plasma generation part, 3 is a diaphragm plate, 4 is a waveguide, 5 is a reaction gas supply pipe, 6 is an exhaust pipe,
7 is a support plate, 8 is a support rod, and 10 is a reaction vessel. 11
-13 shows a magnet coil, S shows a board | substrate. The reaction container 10 is composed of a plasma generating section 2 and a reaction section 1. Further, on the lower inner wall of the plasma generating part 2,
A diaphragm plate 3 is arranged so as to exert a throttling action on the plasma gas flowing from the plasma generating portion 2 into the reaction portion 1. The waveguide 4 is connected to the microwave oscillator, and the exhaust pipe 6
Is connected to a vacuum pump. Magnet coil 11
Nos. 13 to 13 are arranged on the outer circumferences of the reaction unit 1 and the plasma generation unit 2 so that the magnetic fields thereof are parallel to the traveling direction of the microwave introduced into the container via the waveguide 4.

【0010】図1に示した装置を用いてカーボンナノチ
ューブを製造するには、排気管を介して反応容器内の圧
力を10-4〜10-1Pa保持するとともに、支持板7に
配設されている電気加熱部材(図示されず)により、基
板温度を500〜850℃保持する。さらに、導波管4
を介してマイクロ波を容器内に導入するとともに、マグ
ネットコイル11〜13に直流電流を流して磁場を発生
させる。この状態において、反応用ガス供給管5を介し
てメタン等の含炭素材料の気体を反応容器のプラズマ発
生部2内に導入する。プラズマ発生部2内に導入された
反応用ガスは、ここでプラズマ化され、得られたプラズ
マ(ECRプラズマ)は、基板Sに衝突し、その基板表
面で反応してカーボンナノチューブがその基板表面に堆
積する。
In order to manufacture carbon nanotubes using the apparatus shown in FIG. 1, the pressure inside the reaction vessel is maintained at 10 −4 to 10 −1 Pa via an exhaust pipe, and the carbon nanotubes are arranged on the support plate 7. The substrate temperature is maintained at 500 to 850 ° C. by an electric heating member (not shown) that is installed. Furthermore, the waveguide 4
A microwave is introduced into the container via the magnet and a direct current is passed through the magnet coils 11 to 13 to generate a magnetic field. In this state, a gas of a carbon-containing material such as methane is introduced into the plasma generation part 2 of the reaction container through the reaction gas supply pipe 5. The reaction gas introduced into the plasma generating part 2 is turned into plasma here, and the obtained plasma (ECR plasma) collides with the substrate S and reacts on the substrate surface to cause carbon nanotubes to reach the substrate surface. accumulate.

【0011】[0011]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0012】実施例1 図1に示す装置を用いてカーボンナノチューブの製造を
行なった。この場合の主要操作条件を以下に示す。 (1)反応部1 (i) 直径:35cm (ii) 高さ:30cm (2)プラズマ発生部2 (i) 直径:15cm (ii) 長さ:30cm (iii)圧力:1.8×10-1Pa (3)基板S (i) 低電気抵抗のn型のSi基板上に真空蒸着によ
りNi、Pd、CoFe金属を付着させたものを用い
た。 (ii) 温度:600℃ (4)マイクロ波 (i) 周波数:2.45GHz (ii) 出力:800W (5)マグネットコイル (i) 電流:40Aの直流 (ii) 磁場の強さ (a)プラズマ発生部2の中心部:約34mT以上 (b)反応部1の中心部:22mT以上 (6)反応ガス (i) メタンガス(CH4)91%とキャリヤーガス
(Ar)9%との混合ガスを使用 (ii) CH4流量:2.2×10-4mol/分 (7)プラズマ (i) 直径:15cm (ii) 長さ:30cm (8)反応時間:30分 なお、反応時間としては、基板とプラズマとが連続的に
接触する時間を採用した。 (9)生成カーボンナノチューブ (i) 平均直径:50〜80nm、平均長さ:15〜
20 μmの針状チューブ (ii) 性状:基板に対して垂直に堆積 (iii)基板1cm2当の針状カーボンナノチューブの数
で109〜1010
Example 1 Carbon nanotubes were manufactured using the apparatus shown in FIG. The main operating conditions in this case are shown below. (1) Reaction part 1 (i) Diameter: 35 cm (ii) Height: 30 cm (2) Plasma generation part 2 (i) Diameter: 15 cm (ii) Length: 30 cm (iii) Pressure: 1.8 × 10 − 1 Pa (3) Substrate S (i) A substrate having Ni, Pd, and CoFe metals deposited on an n-type Si substrate having a low electric resistance by vacuum vapor deposition was used. (Ii) Temperature: 600 ° C (4) Microwave (i) Frequency: 2.45 GHz (ii) Output: 800 W (5) Magnet coil (i) Current: 40 A direct current (ii) Magnetic field strength (a) Plasma Center part of generating part 2: about 34 mT or more (b) Center part of reaction part 1: 22 mT or more (6) Reaction gas (i) Mixed gas of 91% methane gas (CH 4 ) and 9% carrier gas (Ar) Use (ii) CH 4 flow rate: 2.2 × 10 −4 mol / min (7) Plasma (i) Diameter: 15 cm (ii) Length: 30 cm (8) Reaction time: 30 minutes As the reaction time, The time during which the substrate and plasma were in continuous contact was adopted. (9) Produced carbon nanotube (i) Average diameter: 50 to 80 nm, average length: 15 to 15
20 μm needle-shaped tube (ii) Property: vertically deposited on the substrate (iii) 10 9 to 10 10 needle-like carbon nanotubes per 1 cm 2 of the substrate

【0013】[0013]

【発明の効果】本発明によれば、850℃以下の低い温
度及び10-4〜10-1Paという低い圧力条件下で、電
界を印加することなく、基板上に垂直に突出した平均直
径が50〜80nm、その平均長さが0.1〜20μm
の高品質の針状カーボンナノチューブを効率よく製造す
ることができる。
According to the present invention, under a low temperature of 850 ° C. or lower and a low pressure condition of 10 −4 to 10 −1 Pa, the average diameter of vertically protruding particles on the substrate can be increased without applying an electric field. 50-80 nm, the average length of which is 0.1-20 μm
It is possible to efficiently produce high quality acicular carbon nanotubes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施に際して用いるカーボンナ
ノチューブ製造装置の1つの実施例についての概略図を
示す。
FIG. 1 shows a schematic view of one embodiment of a carbon nanotube manufacturing apparatus used for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応部 2 プラズマ発生部 3 絞り板 4 マイクロ波導波管 5 反応用ガス供給管 6 排気管 7 基板支持板 8 支持棒 10 反応容器 11〜13 マグネットコイル S 基板 1 Reaction part 2 Plasma generator 3 diaphragm 4 microwave waveguide 5 Reaction gas supply pipe 6 exhaust pipe 7 Substrate support plate 8 support rods 10 reaction vessels 11-13 Magnet coil S substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石倉 威文 東京都港区海岸1−5−20 東京瓦斯株 式会社内 (72)発明者 湯村 守雄 茨城県つくば市東1丁目1番地 工業技 術院物質工学工業技術研究所内 (72)発明者 藤原 修三 茨城県つくば市東1丁目1番地 工業技 術院物質工学工業技術研究所内 (72)発明者 古賀 義紀 茨城県つくば市東1丁目1番地 工業技 術院物質工学工業技術研究所内 (56)参考文献 特開2001−192829(JP,A) 特開2001−295047(JP,A) 特開 平11−11917(JP,A) S.H.TSAI et al,Sy nthesis of charact erization of the a ligned hydrogenate d amorphous carbon nanotube by elect ron,Thin Solid Fil ms,2000年 5月 1日,Vol. 366,p.11−15 (58)調査した分野(Int.Cl.7,DB名) C01B 31/02 C23C 16/00 - 15/56 JICSTファイル(JOIS) INSPEC(DIALOG)─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takefumi Ishikura 1-5-20 Kaigan, Minato-ku, Tokyo Inside Tokyo Gas Co., Ltd. (72) Inventor Morio Yumura 1-1, Higashi, Tsukuba-shi, Ibaraki Industrial Technology Institute Institute of Materials Science and Technology (72) Inventor Shuzo Fujiwara, 1-1, Higashi, Tsukuba, Ibaraki Industrial Technology Institute, Institute of Materials and Engineering (72) Inventor, Yoshinori Koga, 1-1, Higashi, Tsukuba, Ibaraki (56) Reference JP 2001-192829 (JP, A) JP 2001-295047 (JP, A) JP 11-11917 (JP, A) S.S. H. TSAI et al, Synthesis of characterization of the a ligneed hydrogenated amorphous carbon carbon nanotube by elect ron, Thin Solid May, 6000, May 1st 2000, 2000. 11-15 (58) Fields investigated (Int.Cl. 7 , DB name) C01B 31/02 C23C 16/00-15/56 JISST file (JOIS) INSPEC (DIALOG)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 10-4〜10-1Paの圧力に保持され、
かつマイクロ波が導入され、さらに該マイクロ波に磁場
が印加されているプラズマ発生室内に含炭素材料の気体
を導入して、該含炭素材料の電子サイクロトロン共鳴プ
ラズマを発生させるとともに、該ガスプラズマを500
〜850℃の温度に保持された基板と接触させ、該基板
上にカーボンナノチューブを垂直方向に堆積させること
を特徴とするカーボンナノチューブの製造方法。
1. A pressure of 10 -4 to 10 -1 Pa is maintained,
And a microwave is introduced, and a gas of a carbon-containing material is introduced into a plasma generation chamber in which a magnetic field is applied to the microwave to generate an electron cyclotron resonance plasma of the carbon-containing material. 500
A method for producing carbon nanotubes, which comprises bringing the carbon nanotubes into contact with a substrate held at a temperature of 850 ° C. and vertically depositing the carbon nanotubes on the substrate.
【請求項2】 該カーボンナノチューブ平均直径が40
〜80nmである請求項1に記載のカーボンナノチュー
ブの製造方法。
2. The carbon nanotubes have an average diameter of 40.
The method for producing a carbon nanotube according to claim 1, wherein the carbon nanotube has a thickness of ˜80 nm.
【請求項3】 該基板が、その表面にカーボンナノチュ
ーブ堆積助剤を付着させたものであることを特徴とする
請求項1又は2に記載のカーボンナノチューブの製造方
法。
3. The method for producing carbon nanotubes according to claim 1, wherein the substrate has a carbon nanotube deposition aid attached to the surface thereof.
【請求項4】 該助剤が遷移金属の超微粒子である請求
項3に記載のカーボンナノチューブの製造方法。
4. The method for producing carbon nanotubes according to claim 3, wherein the auxiliary agent is ultrafine particles of a transition metal.
【請求項5】 該助剤が、Pd、Fe、Co及びNiの
いずれかの金属の中から選ばれる少なくとも1種の金属
であることを特徴とする請求項3に記載のカーボンナノ
チューブの製造方法。
5. The method for producing carbon nanotubes according to claim 3, wherein the auxiliary agent is at least one metal selected from the metals selected from the group consisting of Pd, Fe, Co and Ni. .
【請求項6】 該含炭素材料として炭化水素ガスを用い
ることを特徴とする請求項1〜5のいずれかに記載のカ
ーボンナノチューブの製造方法。
6. The method for producing carbon nanotubes according to claim 1, wherein a hydrocarbon gas is used as the carbon-containing material.
【請求項7】 該炭化水素ガスとしてメタンを用いるこ
とを特徴とする請求項6に記載のカーボンナノチューブ
の製造方法。
7. The method for producing carbon nanotubes according to claim 6, wherein methane is used as the hydrocarbon gas.
JP2000259692A 2000-08-29 2000-08-29 Method for producing carbon nanotube Expired - Lifetime JP3463091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259692A JP3463091B2 (en) 2000-08-29 2000-08-29 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259692A JP3463091B2 (en) 2000-08-29 2000-08-29 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2002069643A JP2002069643A (en) 2002-03-08
JP3463091B2 true JP3463091B2 (en) 2003-11-05

Family

ID=18747825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259692A Expired - Lifetime JP3463091B2 (en) 2000-08-29 2000-08-29 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP3463091B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815954B1 (en) * 2000-10-27 2003-02-21 Commissariat Energie Atomique PROCESS AND DEVICE FOR DEPOSIT BY PLASMA AT THE ELECTRONIC CYCLOTRON RESONANCE OF MONOPAROIS CARBON NANOTUBES AND NANOTUBES THUS OBTAINED
FR2833935B1 (en) * 2001-12-26 2004-01-30 Commissariat Energie Atomique METHOD FOR MANUFACTURING AT LEAST ONE NANOTUBE BETWEEN TWO ELECTRICALLY CONDUCTIVE ELEMENTS AND DEVICE FOR CARRYING OUT SUCH A METHOD
JP3842159B2 (en) 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 Doping equipment
JP3619240B2 (en) 2002-09-26 2005-02-09 キヤノン株式会社 Method for manufacturing electron-emitting device and method for manufacturing display
JP3625467B2 (en) 2002-09-26 2005-03-02 キヤノン株式会社 Electron emitting device using carbon fiber, electron source, and method of manufacturing image forming apparatus
KR100746311B1 (en) * 2003-04-02 2007-08-06 한국화학연구원 A preparing method of carbon nanotube from liquid phased-carbon source
EP1686092A4 (en) * 2003-11-17 2012-03-07 Konica Minolta Holdings Inc Method for producing nanostructured carbon material, nanostructured carbon material produced by such method, and substrate having such nanostructured carbon material
JP2005213104A (en) * 2004-01-30 2005-08-11 New Industry Research Organization Method of forming highly oriented carbon nanotube and apparatus suitable for forming highly oriented carbon nanotube
KR100582249B1 (en) * 2004-03-31 2006-05-23 엄환섭 Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
JP4807960B2 (en) * 2005-03-17 2011-11-02 株式会社アルバック Film forming apparatus and film forming method
JP5032042B2 (en) * 2006-03-17 2012-09-26 株式会社アルバック Plasma CVD apparatus and film forming method
US8945304B2 (en) * 2007-08-13 2015-02-03 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas University of Nevada Ultrahigh vacuum process for the deposition of nanotubes and nanowires
JP5967763B2 (en) * 2012-09-10 2016-08-10 住友電気工業株式会社 Carbon nanostructure manufacturing apparatus and carbon nanostructure manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.H.TSAI et al,Synthesis of characterization of the aligned hydrogenated amorphous carbon nanotube by electron,Thin Solid Films,2000年 5月 1日,Vol.366,p.11−15

Also Published As

Publication number Publication date
JP2002069643A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
JP4718742B2 (en) Method for producing a nanotube layer on a substrate
US7794797B2 (en) Synthesis of carbon nanotubes by selectively heating catalyst
US7591989B2 (en) Method and apparatus for producing single-wall carbon nanotubes
Terranova et al. The world of carbon nanotubes: an overview of CVD growth methodologies
JP2737736B2 (en) Method for producing carbon single-walled nanotube
US7235159B2 (en) Methods for producing and using catalytic substrates for carbon nanotube growth
JP3463091B2 (en) Method for producing carbon nanotube
US7846414B2 (en) Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch
US20050214197A1 (en) Methods for producing and using catalytic substrates for carbon nanotube growth
Shoukat et al. Carbon nanotubes/nanofibers (CNTs/CNFs): a review on state of the art synthesis methods
Zajíčková et al. Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch
WO2003018474A1 (en) Nanostructure synthesis
US10961123B2 (en) Apparatus and method for synthesizing vertically aligned carbon nanotubes
US7338554B2 (en) Method of synthesising and growing nanorods from a metal carbide on a substrate, substrates thus obtained and applications thereof
JP3524542B2 (en) Manufacturing method of carbon nanotube
JP2004083293A (en) Method for manufacturing carbon nanotube using fullerene
JP2005231952A (en) Synthesis of carbon nanotube by laser beam
Yardimci et al. Synthesis methods of carbon nanotubes
CA2499850C (en) Method and apparatus for producing single-wall carbon nanotubes
KR20100028894A (en) Chemical reactor for carbon nano tube
JP2003238124A (en) Method for manufacturing carbon nanotube
Hiramatsu et al. Preparation Methods
Gowrisankar et al. Large-Scale Continuous Production of Carbon Nanotubes-A Review
JP2011063468A (en) Process for producing single wall carbon nanotube

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3463091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term