JPWO2016084763A1 - 真空断熱材およびその製造方法 - Google Patents

真空断熱材およびその製造方法 Download PDF

Info

Publication number
JPWO2016084763A1
JPWO2016084763A1 JP2016561569A JP2016561569A JPWO2016084763A1 JP WO2016084763 A1 JPWO2016084763 A1 JP WO2016084763A1 JP 2016561569 A JP2016561569 A JP 2016561569A JP 2016561569 A JP2016561569 A JP 2016561569A JP WO2016084763 A1 JPWO2016084763 A1 JP WO2016084763A1
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
resin member
vacuum heat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016561569A
Other languages
English (en)
Inventor
伸広 篠原
伸広 篠原
裕也 濱田
裕也 濱田
弘法 佐藤
弘法 佐藤
孝夫 土居
孝夫 土居
知治 林
知治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2016084763A1 publication Critical patent/JPWO2016084763A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

穴加工や凹状加工等の加工が安定して行える真空断熱材であって、作製時の作業性が良好であり、かつ表面平坦性が確保された真空断熱材およびその製造方法を提供する。片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、板厚方向に貫通する欠落部を有する板状の芯材と、前記欠落部を閉塞するように前記欠落部に配設される、前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する、置換材と、を備え、前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材は気密性が保持されるように前記外被材と接合された真空断熱材。

Description

本発明は、真空断熱材およびその製造方法に関し、特に穴加工や凹状加工等の加工に適する真空断熱材およびその製造方法に関する。
通常、真空断熱材は、ガラス繊維やシリカ等の粉末を固めた多孔体の芯材を、内面に熱溶着層を有する気密性フィルム中に装填し、減圧下で気密性フィルムの芯材が存在しない部分、すなわち芯材の外周の外側部分の熱溶着層同士を熱溶着することで熱シール等を施すことによって作製される。したがって、一旦真空断熱材が構成されると、フィルムに傷を付けたり、穴を開けることはできないため、後から真空断熱材を加工することができないという問題を有していた。
このような問題に対して、例えば、図10A、Bに示すように板状の芯材5に対して貫通孔4を形成し、芯材5の外周の外側部分について気密性フィルム2の熱溶着層1同士を熱溶着させてシール部分Yとするとともに、芯材5のない貫通孔部分についても気密性フィルム2の熱溶着層1同士を上記同様に熱溶着させて貫通孔4に対応する熱溶着部分Xを有する真空断熱材10Fを製造する技術が知られている(例えば、特許文献1参照)。このような、真空断熱材10Fにおいては、貫通孔4に対応する熱溶着部分Xを穴加工等に利用することができる。
しかしながら、上記方法で得られる真空断熱材10Fにおける穴加工等に利用可能な熱溶着部分Xは、真空断熱材10Fの芯材5が収納されている部分に比べて厚みが小さく真空断熱材10F全体としての表面平坦性が損なわれるばかりでなく、その部分は機械的強度が十分でない。また、段差を有するために熱溶着における作業性が悪く、シワ等を生じやすい。結果として、熱溶着が十分に行われず、穴を開けることで密封性が損なわれるという恐れもあった。
特開2011−153715号公報
本発明は、上記観点からなされたものであって、穴加工や凹状加工等の加工が安定して行える真空断熱材であって、作製時の作業性が良好であり、かつ表面平坦性が確保された真空断熱材およびその製造方法を提供することを目的とする。
本発明は、以下の構成を有する。
[1]片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、
板厚方向に貫通する欠落部を有する板状の芯材と、
前記欠落部を閉塞するように前記欠落部に配設される、前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する、置換材と、を備え、
前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材は気密性が保持されるように前記外被材と接合された真空断熱材。
[2]前記樹脂部材の少なくとも前記一対の表面近傍は前記熱溶着層の構成材料と熱溶着可能な樹脂で構成され、前記樹脂部材は前記一対の表面において前記外被材の前記熱溶着層と熱溶着された[1]の真空断熱材。
[3]前記芯材の厚みに対する前記置換材の厚みの比は、0.8〜1.2である[1]または[2]の真空断熱材。
[4]前記樹脂部材は気孔率が10〜98%の独立気泡性の樹脂部材である[1]〜[3]のいずれかに記載の真空断熱材。
[5]前記置換材は、前記樹脂部材のみで構成される[1]〜[4]のいずれかに記載の真空断熱材。
[6]前記樹脂部材は前記表面に対して直交する方向に貫通する貫通孔を有し、前記置換材は、前記樹脂部材の貫通孔に嵌合するように配設される前記樹脂部材の樹脂とは異なる材料からなる異種材料部材をさらに有する[1]〜[4]のいずれかに記載の真空断熱材。
[7]前記異種材料部材を構成する材料が、前記樹脂部材の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、またはセラミックスである[6]の真空断熱材。
[8]前記置換材の周縁部を除く領域に穴加工が施された[1]〜[7]のいずれかに記載の真空断熱材。
[9]前記穴加工された穴は、配線および/または配管を通す、前記真空断熱材を被断熱材に固定する固定部材を配する、および前記真空断熱材を被断熱材の突起部に掛ける、から選ばれる用途に用いられる[8]の真空断熱材。
[10]板状の芯材に、板厚方向に貫通する欠落部を形成し、
前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記欠落部を閉塞するように前記欠落部に配設し、
片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納し、前記外被材の内部を減圧状態とするとともに前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着し、さらに、前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する真空断熱材の製造方法。
[11]前記樹脂部材と前記外被材の前記熱溶着層との接合は、前記樹脂部材の前記一対の表面に対応する前記外被材の領域を前記外被材の外側から加熱圧着して熱溶着することで行う[10]の真空断熱材の製造方法。
本発明によれば、表面平坦性が確保された真空断熱材であって、作製時の作業性が良好であり、かつ穴加工や凹状加工等の加工が安定して行える真空断熱材およびその製造方法を提供できる。
本発明の真空断熱材の実施形態の一例を示す平面図である。 図1Aに示す真空断熱材のA−A線における断面図である。 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す展開図である。 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す平面図である。 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す断面図である。 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。 本発明の真空断熱材の実施形態の変形例を示す平面図である。 図4Aに示す真空断熱材のB−B線における断面図である。 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す展開図である。 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す平面図である。 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す断面図である。 本発明の真空断熱材の実施形態の別の変形例を示す平面図である。 図6Aに示す真空断熱材のC−C線における断面図である。 本発明の真空断熱材の実施形態のさらに別の変形例を示す平面図である。 図7Aに示す真空断熱材のD−D線における断面図(b)である。 本発明の真空断熱材の実施形態のまた別の変形例を示す平面図である。 図8Aに示す真空断熱材のE−E線における断面図である。 本発明の真空断熱材の製造方法の一例を模式的に示す図である。 従来の真空断熱材の一例を示す平面図である。 図10Aに示す真空断熱材のF−F線における断面図である。
以下、本発明の実施の形態について図面を参照しながら説明する。本発明はこれに限定されない。以下の説明において、「略同寸」等における略は目視で見た際にそう見える範囲を意味する。本明細書において、ある部材が「欠落部」を有するとは、所定の形状において該部材が主体となるように該形状の一部が欠落した状態をいう。本発明の真空断熱材においては、芯材が主体となって真空断熱材の充填部分を構成し、芯材の欠落部を置換材が補填する構成である。
[真空断熱材]
図1A、B、図4A、Bは本発明の真空断熱材の実施形態の一例および変形例を示すそれぞれ平面図(図1A、図4A)および断面図(図1B、図4B)である。図2A−Cおよび図5A−Cは、図1A、Bおよび図4A、Bに示す真空断熱材におけるそれぞれ置換材が配設された芯材を示す図である。図2A−C、図5A−Cに示す芯材において、欠落部は貫通孔である。図3A−Cは、種々の形状の欠落部に置換材が配設された芯材の平面図を示す。図6A、B、図7A、B、図8A、Bは本発明の実施形態の別の変形例およびさらに別の変形例を示すそれぞれ平面図(図6A、図7A、図8A)および断面図(図6B、図7B、図8B)である。図6A、B、図7A、Bおよび図8A、Bに示す真空断熱材は穴加工がされた実施形態の真空断熱材の例である。
図1A、Bに示す真空断熱材10Aは、片面に熱溶着層1を有する気密性のフィルム2を有し、フィルム2を熱溶着層1同士が対向するように配置してなる外被材3と、図2A−Cに細部を示す板厚方向に貫通する貫通孔4を有する板状の芯材5と、貫通孔4と嵌合するように貫通孔4に配設される、芯材5の貫通孔内面4aに接する外周面6cおよび芯材5の両面5a、5bに平行する一対の表面6a、6bを有する気密性の樹脂部材6からなる置換材7と、を備える。図1A、Bにおいて置換材7と樹脂部材6は同一の部材であり符号は6(7)とする。図2A−Cにおいても同様である。
真空断熱材10Aにおいては、熱溶着層1同士が対向する外被材3の内部に、置換材7が配設された芯材5が収納され、芯材5の外周よりも外側に位置し芯材5の周囲全体に亘る領域Yが熱溶着層1同士の熱溶着により密着され、外被材3の内部は減圧状態とされている。以下、熱溶着された上記の領域Yをシール領域Yともいう。
また、真空断熱材10Aにおいては、樹脂部材6は熱溶着層1を構成する材料と接合可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて気密性が保持されるように接合されている。ここで、接合された界面は、樹脂部材6が有する一対の表面6a、6bに相当する。
なお、樹脂部材6と熱溶着層1は必ずしも樹脂部材6の表面6a、6bの全面と接合されていなくてもよい。必要に応じて表面6a、6bの端部の一部が接合されない状態であってもよい。すなわち、真空断熱材10Aは通常、使用に際して樹脂部材6(置換材7)に対応する部分に、特には略中央部に穴開けや釘打ち等の加工が施される。なお、気密性が保持されるように接合されていれば、略中央部以外に穴開けや釘打ち等の加工がされてもよい。少なくとも該加工が施される部分の周辺を取り囲む位置の樹脂部材6の表面6a、6bと熱溶着層1が気密性を保持されるように接合されていれば、加工後においても真空断熱材10A内部を安定して減圧状態に維持することが可能である。具体的には、上記穴等の加工が施された部分の外周から5mm以上の範囲が接合されていることが好ましい。
ただし、穴開けや釘打ち等の加工の自由度を大きくする点や、より安定して真空断熱材10A内部を減圧状態に維持する観点から、好ましくは、表面6a、6bの全面において樹脂部材6と熱溶着層1が接合される。また、樹脂部材6の表面6a、6bは、該表面において熱溶着層1と接合が可能な程度に、芯材5の両面5a、5bに対して若干の傾きをもって、あるいは微小な凹凸をもって設けられてもよい。
熱溶着層1と樹脂部材6の表面6a、6bは公知の手法によって接合することができる。具体的には、接着剤による接合や熱溶着による接合が挙げられる。接合に接着剤を使用する場合には、熱溶着層と樹脂部材の表面の間に接着剤層が介在し、接着剤の接着力により両者が接合される。したがって、この場合には、樹脂部材の表面は必ずしも熱溶着層と熱溶着できる材料から構成されなくてもよい。また、熱溶着層と樹脂部材の表面が気密性をもって接合される限り接着剤の種類は特に制限されない。
熱溶着層1と樹脂部材6の表面6a、6bは、作業性の観点から、熱溶着により接合されることが好ましい。熱溶着を行う場合、少なくとも樹脂部材表面6a、6bは熱溶着層1と熱溶着できる材料から構成されていることが好ましい。接合が熱溶着により行われる場合、加熱の方法は特に制限されない。公知の加熱方法、例えば超音波溶着、高周波溶着、熱媒体の接触による熱溶着等が挙げられる。
図1A、Bに示す真空断熱材10Aにおいて、具体的には、樹脂部材6は熱溶着層1を構成する材料と熱溶着可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて外被材3の熱溶着層1と熱溶着されている。なお、樹脂部材6と熱溶着層1との界面は、実際には熱溶着により明確に存在するものではない。図1Bでは、樹脂部材6と熱溶着層1との界面を熱溶着の前における界面として破線で示している。
真空断熱材10Aにおける貫通孔4を有する芯材5と、樹脂部材6からなる置換材7の関係を図2A−Cに示す。図2Aは展開図であり、図2Bは平面図であり、図2Cは図2BのA’−A’線における断面図である。真空断熱材10Aにおいて芯材5は1対の主面5a、5bが正方形の板状の形状を有し略中央に開口部が正方形の貫通孔4を有する。樹脂部材6からなる置換材7は芯材5の貫通孔4に嵌合するように配設されている。すなわち、樹脂部材6の外周面6cは、貫通孔4の内面4aと接するように配設される。
樹脂部材6は、貫通孔により切り欠かれた部分と略同寸、同形である。すなわち、樹脂部材6は、芯材5の主面5a、5bに平行な1対の表面6a、6bを有し、厚みが芯材5の厚みと略同じである。したがって、芯材5の貫通孔4に樹脂部材6が嵌め込まれた部材において主面は全体として平坦な面となる。なお、芯材5の厚みについては、特に制限されないが、通常の真空断熱材における芯材の厚みとして3〜40mm程度が挙げられる。
ここで、真空断熱材10Aにおいて、芯材5が有する貫通孔4の内面4aは、主面5a、5bに対して垂直となるように形成されているが、本発明の実施形態の真空断熱材において、必ずしも垂直である必要はなく、必要に応じてテーパー状、階段状等であってもよい。作業性の観点からは、芯材における貫通孔はその内面が芯材の主面に対して垂直となるように形成されることが好ましい。
貫通孔4の開口部の形状、すなわち置換材7の表面の形状は、三角形、四角形、多角形、略円形、略楕円形、L型、およびこれらの組み合わせからなる任意形状とすることができる。なお、置換材7の表面の形状は後述のようにして置換材7に対応する部分に施される穴開けや釘打ち等の加工に支障のない形状が好ましい。併せて、置換材7の表面の面積についても穴開けや釘打ち等の加工に問題がない面積に設定する。置換材7の表面の形状や面積は、真空断熱材の用途に応じて適宜調整される。
また、芯材5と樹脂部材6の厚みについても必ずしも同じでなくてもよい。樹脂部材6が有する一対の表面6a、6bにおいて外被材3が有する熱溶着層1との接合が十分に行われる限りは、樹脂部材の厚みは芯材の厚みよりも厚くても、薄くてもよい。樹脂部材6の厚みは、上記熱溶着性の観点に加えて、真空断熱材に求められる平坦性を考慮に入れて適宜選択される。具体的には、樹脂部材6すなわち置換材7の厚みは、芯材5の厚みの0.8〜1.2倍が好ましい。なお、樹脂部材6の厚みが芯材5の厚みの1.0超1.2倍であると、芯材5を外被材3の中に減圧密封した後でも樹脂部材6の位置が外被材3の外から確認しやすいため好ましい。
真空断熱材10Aにおいて、芯材5が有する貫通孔4の数は1個である。本発明の実施形態の真空断熱材において、芯材は必要に応じて貫通孔を複数個有し、該貫通孔の全てに置換材が嵌め込まれた構成であってもよい。置換材は、断熱性が小さい樹脂部材を含む。したがって、真空断熱材としての断熱性を考慮すれば、貫通孔の開口部の合計面積は、芯材の主面の面積(貫通孔開口部を含まない)の20%までとすることが好ましい。貫通孔を複数個有する場合、貫通孔と貫通孔の外周間の間隔は特に制限はないが、貫通孔間での芯材の割れや不要な欠落等を防ぐためには少なくとも5mm以上であることが好ましい。
本発明の真空断熱材において置換材を構成する樹脂部材の材質は気密性を有する樹脂であれば特に制限されない。また、真空断熱材の断熱性を高く維持する観点からは、置換材を構成する樹脂部材は気密性のある独立気泡性樹脂であることが好ましい。なお、気密性があるとは、具体的には、JIS K 6400−7によって規定される通気性の評価手法により、通気量が0cm/cmsecであることをいう。置換材が気密性のある独立気泡性樹脂であると、熱伝導率の上昇を小さく抑えることができる。また軽量かつ強度の維持もされる。
樹脂部材は例えば表面に平行な方向、または直交する方向に複数の樹脂層が積層された構成であってもよく、単一部材で構成されていてもよい。複数の樹脂層からなる場合、各樹脂層は同一の樹脂からなってもよく、異なる樹脂からなってもよい。樹脂部材が独立気泡性樹脂からなる場合には、表面に直行する方向に複数の樹脂層が積層された構成である場合、すべての樹脂層が独立気泡性樹脂からなってもよく、一部の樹脂層のみが独立気泡性樹脂からなってもよい。例えば、中心部の層や所定の層をくり抜いて穴開けを行う設計がされている場合、それらの層は独立気泡性樹脂で形成されなくてもよい。
熱溶着層と樹脂部材を熱溶着で接合する場合、樹脂部材が単一の樹脂からなる場合であっても複数の樹脂からなる場合であっても、少なくとも樹脂部材は上記一対の表面近傍は、外被材が有する熱溶着層の構成材料と熱溶着可能な樹脂で構成される。生産性の観点から樹脂部材は全体が、外被材が有する熱溶着層の構成材料と熱溶着可能な樹脂で構成されることが好ましい。なお、樹脂部材が表面に平行な方向に複数の層が積層された構成の場合は、層間が気密性を保持するように密着していることが必須である。
熱溶着層と樹脂部材を熱溶着で接合する場合、具体的な樹脂としては、外被材が有する熱溶着層を構成する材料による。外被材が有する熱溶着層を構成する材料としては、低密度ポリエチレン、鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリアクリロニトリル、無延伸ポリエチレンテレフタレート、エチレン−ビニルアルコール共重合体等が挙げられる。したがって、熱溶着層と樹脂部材を熱溶着で接合する場合、樹脂部材を構成する樹脂は、これらの樹脂と熱溶着可能な樹脂材料が好ましく、具体的にはこれらの樹脂と同様の樹脂を用いることができる。好ましくは、外被材が有する熱溶着層を構成する材料と、樹脂部材を構成する樹脂は同じ樹脂である。
また、例えば、樹脂部材に後述のようにして穴開け加工を行う場合、形成された穴の壁面からガスや水分が侵入し芯材にまで拡散するのを低く抑えることが求められる。このような観点から樹脂部材を構成する樹脂は、上記のなかでもガス拡散性の低い高密度の樹脂が好ましく、高密度ポリエチレンおよびポリプロピレンが特に好ましい。
また、樹脂部材はアウトガスを減らすために予め乾燥してあることが好ましい。
樹脂部材を構成する樹脂が独立気泡性樹脂の場合、その気孔率は、樹脂部材による熱伝導率の上昇を抑制しつつ、軽量かつ強度維持が可能な点から、10〜98%であるのが好ましく、20〜90%がより好ましく、30〜80%が特に好ましい。気孔率が高すぎると樹脂部材の強度が低いために真空封止後に大気圧によって破壊されてしまうおそれがある。気孔率が低すぎると樹脂部材の断熱性が芯材と比較して小さいために熱橋を生じ、真空断熱材の断熱性を低下させるおそれがある。独立気泡性樹脂の気孔率は、独立気泡性樹脂の全体積を100%とした際の該樹脂中に占める気泡の体積の割合として求められる。
独立気泡性樹脂としては、気密性を確保でき、好ましくは上記気泡率を確保できる独立気泡性樹脂であれば、特に制限されない。例えば、連通孔をもたない発泡樹脂や中空粒子をフィラーとするコンパウンド樹脂が挙げられる。作業性および中空気泡内から真空断熱材内への気体の流入を抑制する観点から、中空粒子をフィラーとするコンパウンド樹脂が好ましい。
コンパウンド樹脂の場合、気孔率は、フィラーとして用いる中空粒子自体の気孔率とコンパウンド樹脂中の中空粒子の含有割合による。独立気泡性樹脂の気孔率を上記範囲にするために、用いる中空粒子の気孔率は、60〜98%程度が好ましく、粒子径はD50で5〜300μm程度が好ましい。中空粒子のシェルを構成する材料は、樹脂部材による熱伝導率の上昇を抑制する観点から熱伝導性が低い材料、例えば、樹脂が好ましい。一方、気密性の観点からは無機材料が好ましい。また、熱伝導性を低くできる観点から、中空粒子の内部は減圧状態であるものが好ましい。
コンパウンド樹脂のフィラーとして用いる中空粒子として、具体的には、ガラスバルーン、シリカバルーン、シラスバルーン、セラミックバルーン、樹脂バルーン等が挙げられる。これらのうちでも、上記熱伝導率の上昇を抑制する観点からは樹脂バルーンが好ましく、気密性の観点からはシェルの気密性の高いガラスバルーン、シリカバルーンが好ましい。中空粒子の内部を減圧状態とできる点ではシラスバルーン、セラミックバルーン等が好ましい。
独立気泡性樹脂を構成する樹脂、例えば、連通孔をもたない発泡樹脂やコンパウンド樹脂の樹脂としては、特に制限されないが、外被材が有する熱溶着層との接合性が良好な樹脂が好ましい。さらには、熱溶着層と樹脂部材を熱溶着で接合する場合、上記のとおり、樹脂部材を構成する樹脂はこれらの樹脂と熱溶着可能な樹脂材料が好ましく、具体的にはこれらの樹脂と同様の樹脂を用いることができる。
真空断熱材10Aにおいて、外被材3は、例えば、片面に熱溶着層1を有する同形、同寸の2枚の気密性のフィルム2を、各フィルム2が有する熱溶着層1を互いに対向させて重ね合わせた構成とすることができる。
外被材3の大きさおよび形状は、貫通孔4に樹脂部材6が嵌め込まれた芯材5を上記2枚の気密性のフィルム2の間に収納し、かつ芯材5の外周よりも外側にシール領域Yが設けられる大きさおよび形状であれば特に限定されない。芯材5の大きさおよび形状に合わせて適宜選択可能である。また、図1A、BにおいてYwで示すシール領域Yの幅は、外被材3内部を減圧状態に密封可能な幅であれば特に制限されない。シール領域Yの幅Ywは、具体的には5〜20mm程度が好ましい。
真空断熱材10Aにおいて、外被材3のシール領域Yの内側における外被材3内部の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、1×10Pa以下が好ましく、1×10Pa以下がより好ましい。
外被材3の材料としては、真空断熱材に使用される公知のものを制限なく使用できる。外被材3の材料として用いる熱溶着層1を有する気密性のフィルム2としては、ガスバリア層と表面保護層を有するラミネートフィルムが挙げられる。前記ラミネートフィルムとしては、例えば、ガスバリア層としての金属箔または金属蒸着層を表面保護層の片面上に有するラミネートフィルムが適用できる。この場合、外被材は、最も内側に熱溶着層を有し、中間層として金属箔または金属蒸着層を有し、最外層として表面保護層を有する構成となる。また、ラミネートフィルムは、金属箔を有するラミネートフィルムと金属蒸着層を有するラミネートフィルムの2種類のラミネートフィルムを組み合わせて適用してもよい。
熱溶着層としては、上に説明した熱溶着層を構成する材料からなるフィルムやこれらのフィルムを組み合わせた複合体からなってもよい。表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品など、公知の材料が利用できる。
芯材としては、真空断熱材に用いられる公知の芯材を使用できる。具体的には、気相比率90%前後の多孔体を材料として、これを板状に加工した芯材が挙げられる。工業的に利用できる多孔体として、通気性を有する発泡体、粉体、および繊維体等がある。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。
このうち、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。真空封入時の真空引きが容易になる点から、芯材として利用する連続気泡体の通気量は1cm/cmsec以上が好ましい。また、粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが使用できる。
また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。
さらに、これらの発泡体、粉体、および繊維体等の混合物や複合体も芯材に適用することができる。このような芯材として、具体的には、多孔質粉体と繊維体の複合体、例えば、エアロゲルブランケットが挙げられる。
これらのうち、粉体を含む断熱材材料が板状に成形された芯材について以下に説明する。粉体を含む芯材の断熱材材料としては、高強度な芯材を得やすい点から、粉体に加えて繊維およびバインダのいずれか一方もしくは両方が含まれていることが好ましい。
≪粉体≫
以下に粉体を含む芯材の場合を例にとって説明する。
粉体としては、芯材に通常用いられる公知の粉体を使用できる。具体的には、ヒュームドシリカ、多孔質シリカ、輻射抑制材等が挙げられる。粉体としては、充分な強度を有する芯材が得られやすい点から、ヒュームドシリカを含むことが好ましい。
粉体は、1種のみを使用してもよく、2種以上を併用してもよい。
ヒュームドシリカは極めて微細な粉末であるため、粒の大きさを表す指標としては通常比表面積が用いられる。
ヒュームドシリカの比表面積は、50〜400m/gが好ましく、100〜350m/gがより好ましく、200〜300m/gが特に好ましい。ヒュームドシリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。ヒュームドシリカの比表面積が前記範囲の上限値以下であれば、粒子の表面にバインダを付けやすい。
比表面積は、窒素吸着法(BET法)により測定される。
ヒュームドシリカの具体例としては、例えば、アエロジル200(比表面積200m/g、日本アエロジル株式会社製)、アエロジル300(比表面積300m/g、日本アエロジル株式会社製)、CAB−O−SIL M−5(比表面積200m/g、キャボットジャパン株式会社製)、CAB−O−SIL H−300(比表面積300m/g、キャボットジャパン株式会社製)、レオロシールQS30(比表面積300m/g、株式会社トクヤマ製)等が挙げられる。
ヒュームドシリカは、1種のみを使用してもよく、2種以上を併用してもよい。
多孔質シリカを併用する場合、多孔質シリカの比表面積は、100〜800m/gが好ましく、200〜750m/gがより好ましく、300〜700m/gが特に好ましい。多孔質シリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。多孔質シリカの比表面積が前記範囲の上限値以下であれば、バインダを用いた場合に多孔質シリカに吸収されるバインダ量を少なくできる。そのため、添加するバインダ量が少なくてもより低い圧力で芯材を成形できる。その結果、芯材の密度を低くでき、優れた断熱性能が得られやすくなる。
多孔質シリカの気孔率は、60〜90%が好ましく、65〜85%がより好ましく、70〜80%が特に好ましい。多孔質シリカの気孔率が前記範囲の下限値以上であれば、固体の熱伝導を少なくできるため、優れた断熱性能が得られやすい。多孔質シリカの気孔率が前記範囲の上限値以下であれば、成形時に多孔質シリカ粒子がつぶれにくく、多孔性が維持されるために優れた断熱性能が得られやすい。
多孔質シリカの気孔率は、窒素吸着法(BJH法)により測定される。
多孔質シリカの平均粒子径は、コールターカウンター法により、体積基準で測定された場合において、1〜300μmが好ましく、2〜150μmがより好ましく、3〜100μmが特に好ましい。多孔質シリカの平均粒子径が前記範囲の下限値以上であれば、高い気孔率を有する多孔質シリカが得られやすく、優れた断熱性能が得られやすい。多孔質シリカの平均粒子径が前記範囲の上限値以下であれば、芯材の密度が高くなりすぎず、優れた断熱性能が得られやすい。
多孔質シリカの具体例としては、例えば、M.S.GELやサンスフェア(いずれもAGCエスアイテック株式会社製)等が挙げられる。
輻射抑制材としては、例えば、金属粒子(アルミニウム粒子、銀粒子、金粒子等)、無機粒子(グラファイト、カーボンブラック、炭化ケイ素、酸化チタン、酸化スズ、酸化鉄、チタン酸カリウム等)等が挙げられる。
≪バインダ≫
芯材を低密度にしても充分な強度が得られやすい点から、芯材の形状を維持するために断熱材材料はバインダを含むことができる。例えば、粉体としてヒュームドシリカを使用し、予め該ヒュームドシリカの表面にバインダを付与してバインダ付きヒュームドシリカとすることができる。ヒュームドシリカの表面に付与されたバインダによって、成形時の圧力が低くても、バインダ付きヒュームドシリカ同士、またはバインダ付きヒュームドシリカと他の材料(多孔質シリカ、繊維等)が互いに接着される。
多孔質シリカにバインダを付与しても、バインダが多孔質シリカに吸収されてしまうためにバインダによる効果は得られにくい。
バインダとしては、有機バインダであってもよく、無機バインダであってもよい。なかでも、バインダとしては、熱伝導性が低く、優れた断熱性能が得られやすい点から、無機バインダが好ましい。
無機バインダとしては、例えば、ケイ酸ナトリウム、リン酸アルミニウム、硫酸マグネシウム、塩化マグネシウム等が挙げられる。なかでも、優れた断熱性能が得られやすい点から、ケイ酸ナトリウムが特に好ましい。
バインダは溶媒に溶解してバインダ液として用いることが好ましく、水溶液がより好ましい。
≪繊維≫
断熱材材料に繊維が含まれると、高強度な芯材が得られやすい。
繊維としては、真空断熱材に通常使用される繊維が使用でき、例えば、樹脂繊維、無機繊維が挙げられる。なかでも、真空下でのアウトガスが少なく、真空度の低下による断熱性能の低下を抑制しやすい点、および耐熱性に優れる点から、無機繊維が好ましい。
無機繊維としては、例えば、アルミナ繊維、ムライト繊維、シリカ繊維、グラスウール、グラスファイバー、ロックウール、スラグウール、炭化ケイ素繊維、カーボン繊維、シリカアルミナ繊維、シリカアルミナマグネシア繊維、シリカアルミナジルコニア繊維、シリカマグネシアカルシア繊維等が挙げられる。
使用する繊維の繊維長D30は、100μm以上が好ましく、200μm以上がより好ましい。繊維長D30が前記下限値以上であれば、芯材に割れが生じることを抑制しやすい。
使用する繊維の繊維長D90は、20mm以下が好ましく、10mm以下がより好ましい。繊維長D90が前記上限値以下であれば、繊維同士が過度に絡まりにくいために粉体と均一に混合しやすく、繊維による効果が得られやすい。
繊維の太さ(直径)は、繊維による固体伝熱の増大を抑制できる点から、15μm以下が好ましい。また、繊維の太さ(直径)は、芯材に割れが生じることを抑制しやすい点から、1μm以上が好ましい。
なお、本明細書において「繊維長D30」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において30%となる点の繊維長を意味する。また、「繊維長D90」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において90%となる点の繊維長を意味する。繊維長分布は、光学顕微鏡で観察した写真において無作為に50本以上の繊維の長さを測定して得られる頻度分布および累積個数分布曲線で求められる。
≪粉体、バインダ、繊維の割合≫
粉体(100質量%)中のヒュームドシリカの割合は、50〜100質量%が好ましく、70〜100質量%がより好ましく、80〜100質量%が特に好ましい。ヒュームドシリカの割合が前記範囲の下限値以上であれば、強度の高い芯材が得られやすい。
粉体(100質量%)中の多孔質シリカの割合は、0〜50質量%が好ましく、0〜30質量%がより好ましく、0〜20質量%が特に好ましい。多孔質シリカの割合が多いほど、断熱性能に優れた真空断熱材が得られやすい。多孔質シリカの割合が前記範囲の上限値以下であれば、強度の高い芯材が得られやすい。
粉体が予め表面にバインダを付与したバインダ付きヒュームドシリカと多孔質シリカを含む場合、バインダ付与前のヒュームドシリカの質量Mと多孔質シリカの質量Mとの比M/Mは、50/50以上が好ましく、70/30以上がより好ましく、80/20以上が特に好ましい。前記比M/Mが前記下限値以上であれば、より低密度で優れた断熱性能を有し、かつ充分な強度を有する芯材が得られやすい。
粉体が輻射抑制材を含む場合、粉体(100質量%)中の輻射抑制材の割合は、3〜30質量%が好ましく、5〜25質量%がより好ましく、10〜20質量%が特に好ましい。輻射抑制材の割合が前記範囲の下限値以上であれば、輻射抑制材の効果が得られやすい。輻射抑制材の割合が前記範囲の上限値以下であれば、輻射抑制材による固体伝熱の増大を抑制できるため、優れた断熱性能が得られやすい。
バインダの割合は、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用する場合、バインダ付与前のヒュームドシリカ100質量部に対して、0.1〜15質量部が好ましく、0.5〜10質量部がより好ましく、1〜4質量部が特に好ましい。前記バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。前記バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
なお、芯材の形状維持性が確保できれば、より良い断熱性能を得るために、断熱材材料におけるバインダの含有割合は少ないことが好ましい。芯材の形状維持性が確保できればヒュームドシリカ表面へのバインダの付与は行わなくてもよい。
また、ヒュームドシリカ、バインダおよびそれ以外の成分(多孔質シリカ、繊維等)を同時に混合する場合等、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用しない場合のバインダの割合は、粉体100質量部に対して、0.1〜15質量部が好ましく、0.5〜10質量部がより好ましく、1〜4質量部が特に好ましい。バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
芯材として粉体を用いる場合の、粉体の好ましい組成は質量比で、ヒュームドシリカ:多孔質シリカ:輻射抑制材が、70〜90:0〜20:10〜20が好ましい。
繊維の割合は、粉体100質量部に対して、1〜30質量部が好ましく、2〜20質量部がより好ましく、4〜10質量部が特に好ましい。繊維の割合が前記範囲の下限値以上であれば、高強度な芯材が得られやすい。繊維の割合が前記範囲の上限値以下であれば、繊維による固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
以上、図1A、Bに示す置換材7が樹脂部材6からなる場合の真空断熱材10Aの構成について説明した。上記構成の真空断熱材10Aにおいては、真空断熱材10Aの略中央部に芯材5に代わって気密性の樹脂部材6が配設され、樹脂部材6は両表面6a、6bにおいて外被材3の熱溶着層1と熱溶着されている。したがって、真空断熱材10Aの樹脂部材6に相当する部分に、樹脂部材6の外周面から内側にかけて所定の領域を残すようにして、外被材3の一方の表層から他方の表層まで貫通して、穴を開ける、釘等を打ち付ける等の加工を施した場合においても、真空断熱材10A内部を安定して減圧状態に維持することが可能である。真空断熱材10Aは、釘打ちや穴開け可能な真空断熱材として有用である。
真空断熱材10Aにおいて芯材は図2A−Cに示すとおり略中央部に欠落部として貫通孔を有する構成であるが、本発明に係る芯材の欠落部は貫通孔に限定されない。真空断熱材10Aが有する芯材と外形は略同一の正方形の板状の芯材であるが、芯材が有する欠落部が貫通孔ではない場合の例を図3A−Cに示す。なお、本明細書において正方形との記載には正方形ではない四角形も含まれるものとする。
図3Aは、正方形の芯材5が、その一辺の略中央部を芯材より小さい正方形状にかつ板厚方向に貫通するように切欠いた欠落部を有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7が配設された例を示す。
図3Bは、正方形の芯材5が、その4か所の角を頂点とする三角形状にかつ板厚方向に貫通するように切欠いた欠落部を4箇所有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7の4個が配設された例を示す。
図3Cは、正方形の芯材5が、一辺の内側に所定の距離を置いて、該辺に平行し該辺と同じ長さで所定の幅を有する帯状にかつ板厚方向に貫通するように設けられた欠落部を有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7が配設された例を示す。
このように本発明の真空断熱材において芯材が有する欠落部が図2A−Cに示すような貫通孔ではない場合についても、形状は特に限定されない。また、芯材は図2A−Cに示すような貫通孔と図3A−Cに示すような切欠き部等を組み合わせた欠落部を有していてもよい。なお、真空断熱材としての断熱性を考慮すれば、欠落部の主面(板厚方向に直交する面)の合計面積は、芯材の主面の面積(欠落部を含まない)の20%までとすることが好ましい。
図3A−Cに示す、芯材の欠落部を閉塞するように配設された、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7は、上記図2A−Cに示す貫通孔に嵌め込まれた樹脂部材6からなる置換材7と、材料、厚み等同様にできる。さらに、樹脂部材6からなる置換材7に施されてもよい穴加工や釘打ち等の加工についても、上記図2A−Cに示す貫通孔に嵌め込まれた樹脂部材6からなる置換材7の場合と、全て同様にできる。
次に、図4A、Bに示す置換材7が樹脂部材6と異種材料部材8からなる真空断熱材10Bについて説明する。真空断熱材10Bは、図5A−Cに細部を示す、芯材5が有する貫通孔4の開口部の形状が真空断熱材10Aと異なり円形であること、および置換材7が樹脂部材6と異種材料部材8からなること以外は、真空断熱材10Aと同様である。
真空断熱材10Bにおける貫通孔4を有する芯材5と、樹脂部材6と異種材料部材8からなる置換材7の関係を図5A−Cに示す。図5Aは展開図であり、図5Bは平面図であり、図5Cは図5BのB’−B’線における断面図である。真空断熱材10Bにおいて芯材5は1対の主面5a、5bが正方形の板状の形状を有し略中央に開口部が円形の貫通孔4を有する。樹脂部材6と異種材料部材8からなる置換材7は芯材5の貫通孔4に嵌合するように配設されている。
置換材7は、貫通孔4により切り欠かれた部分と略同寸、同形である。すなわち、置換材7は、高さが芯材5の厚さと略同等、かつ直径が貫通孔4の開口部の直径と略同等の円柱形状であり、芯材5の両面5a、5bに平行する一対の表面を有する部材である。したがって、芯材5の貫通孔4に置換材7が嵌め込まれた部材において主面は全体として平坦な面となる。なお、芯材5の厚みについては、真空断熱材10Aにおける芯材5の厚みと同様にできる。また、置換材7の表面は、該表面において熱溶着層1と接合が可能な程度に、芯材5の両面5a、5bに対して若干の傾きをもって、あるいは微小な凹凸をもって設けられてもよい。
置換材7は、略中央部に置換材7と同じ高さであるが直径が置換材7より小さい円柱形状の異種材料部材8を有し、その周囲を囲むようにしてリング状の気密性の樹脂部材6を備える。すなわち、樹脂部材6は、芯材5の両面5a、5bに平行する一対の表面6a、6bを有し、芯材5の貫通孔内面4aに接する外周面6cを有するとともに、該表面6a、6bに対して直交する方向に貫通する貫通孔を有し、この貫通孔に嵌合するように異種材料部材8が配設されて置換材7を構成している。また、置換材7は、樹脂部材6の外周面6cが、貫通孔4の内面4aと接するように芯材5の貫通孔4に嵌め込まれている。
異種材料部材8は、樹脂部材6の樹脂とは異なる材料からなる。置換材7において、樹脂部材6は加工後においても真空断熱材10Bの減圧状態が維持できるように設けられる部材であり、異種材料部材8は主として、真空断熱材10Bに、例えば、穴開けや釘打ち等の加工を施すために設けられる層である。したがって、異種材料部材8を構成する材料としては、加工が容易に行える材料が好ましい。具体的には、樹脂部材6の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、セラミックス等が挙げられる。樹脂部材6の樹脂とは異なる樹脂としては、例えば、ウレタン樹脂、スチロール樹脂、シリコーン樹脂等が挙げられる。異種材料部材8は通気性を有していてもよく、気密性を有していてもよい。
異種材料部材8は例えば表面に平行な方向、または直交する方向に複数の層が積層された構成であってもよく、単一部材で構成されていてもよい。複数の層からなる場合、各層は同一の材料からなってもよく、異なる材料からなってもよい。例えば、異種材料部材8の両表面である円筒形状の上面と底面近傍を熱溶着層1の構成材料と熱溶着可能な樹脂からなる層で形成して、樹脂部材6と同様に、異種材料部材8を上面と底面において外被材3の熱溶着層1と熱溶着してもよい。なお、このように異種材料部材8を上面と底面において外被材3の熱溶着層1と熱溶着する場合、例えば、異種材料部材8の全体を樹脂部材6を構成する樹脂とは異なる熱溶着層1の構成材料と熱溶着可能な樹脂で構成してもよい。
図5A−Cに示す、異種材料部材8、樹脂部材6、芯材5は、厚みが略同等であるが、本発明の効果を損なわない範囲において、必要に応じて異種材料部材8および樹脂部材6の芯材5に対する厚みを厚くしたり、薄くしたりしてもよい。異種材料部材8および樹脂部材6の芯材5に対する厚みは、具体的は、真空断熱材10Aにおける芯材5の厚みと樹脂部材6の厚みの関係と同様にできる。なお、該範囲内であれば異種材料部材8の厚みと樹脂部材6の厚みは同一であっても異なってもよい。
樹脂部材6は、形状が異なる以外は真空断熱材10Aにおける樹脂部材6と同様とできる。真空断熱材10Bにおいては、樹脂部材6は熱溶着層1を構成する材料と接合可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて外被材3の熱溶着層1と気密性を保持するように接合されている。なお、接合が熱溶着により行われた場合、樹脂部材6と熱溶着層1との界面は、明確に存在するものではない。図4Bでは、樹脂部材6と熱溶着層1とを熱溶着した場合の界面を熱溶着の前における界面として破線で示す。ここで、該界面は、樹脂部材6が有する一対の表面6a、6bに相当する。
ここで、樹脂部材6と熱溶着層1は必ずしも樹脂部材6の表面6a、6bの全面と接合されていなくてもよい。必要に応じて表面6a、6bの端部の一部が接合されない状態であってもよい。好ましくは、表面6a、6bの全面において樹脂部材6と熱溶着層1が接合される。
樹脂部材6において、上記熱溶着層1との接合による効果を十分に発揮するために、樹脂部材6におけるリング形状の内周と外周の距離である肉厚w1は、5mm以上が好ましい。
真空断熱材10Bにおいては、真空断熱材10Bの略中央部に芯材5に代わって外側に気密性の樹脂部材6、内側に異種材料部材8を有する置換材7が配設され、樹脂部材6がその両表面において外被材3の熱溶着層1と気密性を保持するように接合されている。したがって、真空断熱材10Bから、異種材料部材8と共に、異種材料部材8に相当する部分の外被材3を真空断熱材10Bの両面において、取り除くことで真空断熱材10Bに異種材料部材8に相当する大きさの穴を開けることが可能である。その場合、置換材7のうち気密性の樹脂部材6は除去されずに真空断熱材10Bの一部として残るので、異種材料部材8相当部分を除去した後でも、真空断熱材10B内部を安定して減圧状態に維持することが可能である。
真空断熱材10Bが上記のようにして使用される場合、穴開け加工については異種材料部材8に相当する部分の外被材3のみを切断する加工のみで穴開けが可能であり作業効率の点で有利である。
また、同様に真空断熱材10Bの異種材料部材8に相当する部分に、外被材3の一方の表層から他方の表層まで貫通して、穴を開ける、釘等を打ち付ける等の加工を施すことも可能であり、その場合においても、樹脂部材6の存在により真空断熱材10B内部を安定して減圧状態に維持することが可能である。この場合、異種材料部材8の材料を加工に有利な材料とすることで、置換材7全体が樹脂部材6で構成されている場合に比べて、加工性が良好となる。
さらに、必要に応じて、真空断熱材10Bの異種材料部材8相当部分に加えて樹脂部材6についてもその外周面から内側にかけて所定の領域を残すようにして、それ以外の部分を切り取る加工を真空断熱材10Bに施してもよい。このような加工を施す場合においても、加工後について真空断熱材10B内部を安定して減圧状態に維持することが可能である。このように、真空断熱材10Bは、釘打ちや穴開け可能な真空断熱材として有用である。
次に、図6A、B、図7A、Bおよび図8A、Bに示す穴加工が施された実施形態の真空断熱材の例について説明する。なお、本発明の真空断熱材において、置換材が図6A、B、図7A、B、図8A、Bに示す穴を有する場合、該穴は置換材の周縁部を除く領域に設けられる。置換材の周縁部領域に穴が存在すると、置換材を構成する樹脂部材と外被材、熱溶着層との接合部における密着性が確保できなくなるおそれがある。このような観点から、上記周縁部の幅は5mm以上とすることが好ましい。また、図8A、Bに示す実施形態の真空断熱材のように置換材に複数の穴加工が施される場合の穴同士の間隔についても上記周縁部の幅と同様の理由から5mm以上とすることが好ましい。
図6A、Bに示す真空断熱材10Cは、芯材5が貫通孔4を2か所に有し、該2か所の貫通孔4のそれぞれに、芯材5の貫通孔内面4aに接する外周面6cおよび芯材5の両面5a、5bに平行する一対の表面6a、6bを有する気密性の樹脂部材6からなる置換材7が嵌め込まれ、さらに各置換材7(=樹脂部材6)の略中央部に相当する位置に穴9が形成されている点を除いては、図1A、Bに示す真空断熱材10Aと同様である。
真空断熱材10Cにおいて、樹脂部材6の略中央部に相当する位置に形成された穴9は、平面図である図6Aにおける形状が、一か所において円形であり、他の一か所において正方形である。図6Bは、図6Aに示す真空断熱材10Cの、正方形の穴9を有する樹脂部材6の中心を通るC−C線における断面図である。
真空断熱材10Cにおける、平面図において正方形の穴9を有する樹脂部材6は、例えば、真空断熱材10Aが有する樹脂部材6に相当する部分に、樹脂部材6の外周面から内側にかけて所定の領域、すなわち周縁部領域を残すようにして、外被材3の一方の表層から他方の表層まで貫通して、穴9を開けた構成と同様である。真空断熱材10Cにおいては、図6A、Bに示すように、上記でいう残された所定の領域が、外周面6cと内周面の距離として肉厚w2を有する角筒状の樹脂部材6である。樹脂部材6の肉厚w2は真空断熱材10Cにおいて、安定して減圧状態を保持する観点から5mm以上が好ましい。
図6Bに示すように、樹脂部材6は両表面6a、6bにおいて外被材3の熱溶着層1と気密性を保持するように接合されている。このような構造の真空断熱材10Cによれば、穴9を有しているにも関わらず、真空断熱材10Aと同等程度に、その内部が安定して減圧状態に維持されている。
真空断熱材10Cに示す穴9の形状は平面図において円形、正方形であるが、形状は特に制限されない。例えば、三角形、四角形、多角形、略円形、略楕円形、L型、およびこれらの組み合わせからなる任意形状とすることができる。また、穴9を形成する真空断熱材10Cの内面は、樹脂部材6の主面に対して垂直となるように形成されているが、本発明の実施形態の真空断熱材において、必ずしも垂直である必要はなく、必要に応じてテーパー状、階段状等であってもよい。作業性の観点からは、穴を形成する内面は樹脂部材6の主面に対して垂直となるように形成されることが好ましい。
図7A、Bに示す真空断熱材10Dは、図4A、Bに示す真空断熱材10Bから、異種材料部材8に相当する部分の外被材3を異種材料部材8と共に取り除いて、異種材料部材8に相当する大きさの穴9を開けて得られた穴加工済の真空断熱材である。
このような構成の真空断熱材10Dは、上記特性を有するとともに、比較的大きな穴9を形成する場合の作業性も良好である。
図6A、B、図7A、Bに示す真空断熱材において、各置換材は各1個の穴を有するが、本発明の真空断熱材において置換材が有する穴の個数は1個に限定されない。図8A、Bは複数個の穴加工がされた置換材を有する真空断熱材10Eの平面図(図8A)および、図8Aに示す真空断熱材10EのE−E線における断面図(図8B)を示す。
図8A、Bに示す真空断熱材10Eは、図7A、Bに示す真空断熱材10Dにおいて樹脂部材6が中央部に有する1個の穴9の代わりにそれよりも小さい5個の穴9が設けられた構成の真空断熱材である。真空断熱材10Eには、樹脂部材6の略中央部に円筒状の穴9が1個とその周りに均等にそれより小さい円筒状の穴9が4個設けられている。
真空断熱材10Eにおいて、図8A、B中、例えば、w12、w13等で示される各穴9の間隔は5mm以上が好ましい。また、図8A、B中、例えば、w11、w14等で示される樹脂部材6の外周に最も近い穴9の樹脂部材6の外周側の外周と樹脂部材6の外周の距離は5mm以上が好ましい。上記、各間隔や距離を5mm以上とすることで、樹脂部材6と外被材3の熱溶着層1との接合部における密着性が十分に確保できる。なお、図8A、Bにおいて各穴9の間隔はw12、w13を代表して示したが、他の穴9同士の間隔についても同様である。また、穴9と樹脂部材6の外周との距離についても、w11、w14を代表して示したが、他の穴9と樹脂部材6の外周との距離についても同様である。
なお、真空断熱材10Eは、例えば、図4A、Bに示す真空断熱材10Bにおいて、中央部に有する1個の異種材料部材8の代わりに、図8A、Bに示す5個の穴9に相当する位置に5個の異種材料部材8を設け、該異種材料部材8に相当する部分の外被材3を異種材料部材8と共に取り除いて、異種材料部材8に相当する大きさの穴9を開けることで作製できる。
本発明の実施形態の真空断熱材において、真空断熱材中の複数箇所に置換材を有する場合、その個数や配置は用途に応じて適宜調整される。複数箇所に置換材を有する真空断熱材においては、置換材に相当する部分の一部または全部の置換材に相当する部分に上記のような穴加工が施されていてもよい。また、複数箇所に置換材を有する真空断熱材においては、全部の置換材に相当する部分に穴加工が施されていなくてもよい。さらに、置換材に穴加工が施される場合、1個の置換材に複数個の穴加工が施されてもよい。また、複数個の置換材を用いる場合、その全てを、樹脂部材のみからなる置換材としてもよく、樹脂部材と異種材料部材からなる置換材としてもよく、さらにはこれらの組み合わせとしてもよい。
本発明の実施形態の真空断熱材において上記のように置換材に設けられた穴は、例えば、配線および/または配管を通す用途や、真空断熱材を被断熱材に固定する際に固定部材、例えば、ネジや釘を配する用途、真空断熱材を被断熱材の突起部に掛ける用途等に用いられる。真空断熱材を被断熱材の突起部に掛ける用途においては、被断熱材自体が突起して突起部を形成していてもよく、被断熱材に設けられたフック等の掛け具を突起部としてもよい。なお、真空断熱材を被断熱材に固定する際には、真空断熱材と被断熱材の間にさらに別の部材を設けてもよい。
ここで、本発明の実施形態の真空断熱材に穴加工が施されていない場合においても、置換部材や異種材料部材が設けられた部分に釘打ち等して真空断熱材を被断熱材に固定することができる。上記同様に、真空断熱材を被断熱材に固定する際には、真空断熱材と被断熱材の間にさらに別の部材を設けてもよい。
[真空断熱材の製造方法]
本発明の真空断熱材の製造方法は以下の(1)〜(5)の工程を備える。
(1)板状の芯材に、板厚方向に貫通する貫通孔を形成する工程
(2)前記芯材の貫通孔内面に接する外周面および前記芯材の両面に平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記貫通孔と嵌合するように前記貫通孔に配設する工程
(3)片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納する工程
(4)前記外被材の内部を減圧状態とするとともに、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着する工程
(5)前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する工程
以下、図9を参照しながら、図1A、Bで示す真空断熱材10Aの製造方法を例にして本発明の真空断熱材の製造方法の実施形態の1例を説明する。真空断熱材10Aは、樹脂部材と外被材の接合が熱溶着で行われた例である。なお、図9において(1)〜(5)の符号は、それぞれ、上記(1)〜(5)の工程に対応する。
図9において(1)は板状の芯材5に貫通孔4を形成する工程を示す。貫通孔4を形成する手段や方法は特に限定されない。芯材を板状に加工し、所定の大きさに切断する際に、通常用いられる手段や方法がそのまま適用可能である。
図9において(2)は、芯材5の貫通孔4に貫通孔4と略同形、同寸の気密性の樹脂部材6からなる置換材7を嵌め込む工程を示す。本例において樹脂部材6と置換材7は同一部材であり、図9において符号は6(7)を用いている。樹脂部材6の外周面は、貫通孔内面に接するように形成され、芯材5の厚みと樹脂部材6の厚みは略同じである。ここで、樹脂部材6を構成する樹脂は、次の工程で説明する外被材3が内面に有する熱溶着層と熱溶着可能な樹脂で構成される。
図9において(3)は、上記(2)工程で得られた樹脂部材6が嵌め込まれた芯材5を、熱溶着層を有する気密性のフィルムを有し、前記フィルムを前記熱溶着層同士が対向するように配置してなる外被材3の内部に、収納する工程を示す。
(3)において、外被材3は片面に熱溶着層を有する正方形で同じ大きさの2枚の気密性のフィルムを、各フィルムが有する熱溶着層を互いに対向させて重ね合わせた構成であり、3辺が予め所定の幅で熱溶着された袋状の外被材である。すなわち、(3)の工程で、最終的に4辺で構成されるシール領域Yの一部がすでに形成された外被材3を使用する。袋状に成形された外被材3の開口部から樹脂部材6が嵌め込まれた芯材5を、その内部に挿入する。なお、このように袋状に成形された外被材を用いることは通常行われる手法である。
このように、本発明の製造方法において(4)工程の外被材の芯材の外周よりも外側に位置し芯材の周囲全体に亘る領域(シール領域Y)を対向する熱溶着層同士の熱溶着により密着する工程は、(4)工程において、シール領域Yが全て熱溶着により密着された状態を得る工程である。(4)工程においてシール領域Y全て密着された状態が得られれば、上記のように(3)の収納工程の前にシール領域Yの一部がすでに形成され、(4)工程において残りのシール領域Yを密着する操作を行う態様も、本発明の製造方法に含まれる。
図9では、(4)・(5)において、(3)で準備した内部に樹脂部材6が嵌め込まれた芯材5が収納された袋状の外被材3を減圧条件下に置き、外被材3の開口部を対向する熱溶着層同士の熱溶着により密着する(上記(4)の工程)。その後、外被材3の外部を大気圧条件に戻し、樹脂部材6に相当する領域に外被材3の外側から熱と圧力を加えて、樹脂部材6をその表面を介して熱溶着層と熱溶着する((5)の工程)ことで真空断熱材10Aを得る。
ここで、上記の説明において、(5)の工程は、(4)の工程後に行われている。しかしながら、(5)の工程は(4)の工程の前に行われてもよく、同時に行われてもよい。通常、(4)の工程、(5)の工程の順に行われる。
上記(4)の工程を実行するための装置としては、板状の芯材を袋状の外被材に挿入して製造される真空断熱材において、通常使用される装置を、特に制限なく使用できる。また、製造時の減圧条件および熱溶着の条件についても、通常、このような装置を用いて上記のような真空断熱材を製造する場合と同様の条件を適用できる。
なお、真空断熱材10Aにおいて、外被材3のシール領域Yの内側における外被材3内部の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、上記のとおり1×10Pa以下が好ましく、1×10Pa以下がより好ましい。
製造条件は、好ましくは上記真空度が達成できる条件に設定される。また、外被材3が有する熱溶着層を構成する材料は上記のとおりであり、上記熱溶着の際には該材料に合わせて好適な溶着温度を設定する。さらに、通常1〜5kg/cm程度の加圧条件下で熱溶着が行われる。
樹脂部材6に相当する領域に外被材3の外側から熱と圧力を加えて、樹脂部材6をその表面を介して熱溶着層と熱溶着する際の温度条件は、外被材3が有する熱溶着層を構成する材料および樹脂部材6を構成する樹脂の種類に合わせて好適な溶着温度を設定する。また、圧力条件としては、上記、熱溶着層同士を熱溶着させる際の加圧条件と同様の加圧条件が適用できる。加熱時間は1〜15秒間程度が好ましい。また、熱溶着を安定させる観点より、加熱後に加圧を保持する冷却時間を設けることが好ましい。冷却時間は1〜15秒間程度が好ましい。
以上、図1A、B〜図8A、Bに示す真空断熱材10A〜10Eを例にして本発明の実施の形態の真空断熱材を説明したが、本発明の真空断熱材においては、本発明の趣旨に反しない限度において各構成部材の形状や材料等の設計を適宜変更できる。また、必要に応じて上に説明した以外の構成部材を設けてもよい。例えば、本発明の真空断熱材を発泡系や繊維系等他の断熱材や、軟質ポリウレタンフォーム等の弾性部材と組み合わせた複合部材とすることができる。
また、図9に示す模式図によって真空断熱材10Aを例に本発明の実施の形態の真空断熱材の製造方法を説明したが、本発明の製造方法においては、本発明の趣旨に反しない限度において、各工程における条件や工程の順番等を適宜変更できる。また、必要に応じて上に説明した以外の工程を設けてもよい。
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されない。
[例1]
図1A、Bに示す真空断熱材10Aと同様の構成の真空断熱材A1を、図9に示す製造方法により製造した。
(1)板状の芯材5の作製
ヒュームドシリカ(商品名「アエロジル300」、比表面積300m/g、日本アエロジル株式会社製。以下、同じ。)40質量部に対して、けい酸ソーダ3号(AGCエスアイテック株式会社製)の3.4質量部(固形分換算にて1.3質量部)をイオン交換水22.9質量部で希釈したバインダ液をブレンダによって混合した。次いで、ヒュームドシリカ40質量部と、多孔質シリカとしてM.S.GEL(AGCエスアイテック株式会社製、平均粒径70μm)10質量部を加え、輻射抑制材としてグラファイト(商品名「CP.B」、日本黒鉛工業株式会社製)を10重量部、さらに無機繊維としてシリカマグネシアカルシア繊維(商品名「スーパーウール」、D30:227μm、D90:902μm、新日本サーマルセラミックス株式会社製)10質量部を追加して、ブレンダにより混合して断熱材材料を得た。
得られた断熱材材料を金型に投入し、圧力をかけて縦150mm×横150mm×厚み5mmの平板状に成形した後、200℃で1時間加熱して芯材を作製した。
(2)貫通孔4の形成
上記(1)で得られた芯材5の中央部にカッターを用いて、50mm×50mmの貫通孔4を形成した。
(3)置換材7(樹脂部材6)の嵌め込み
フィラーとしてのガラスバルーン(商品名「グラスバブルズiM16K」、粒子径D50;20μm、スリーエムジャパン株式会社製)34gと低密度ポリエチレン(融点120℃)100gからなるコンパウンド樹脂(気孔率32%、通気性0cm/cmsecの独立気泡性樹脂)を50mm×50mm×厚み5mmのシート状に加工した樹脂シートを置換材7(樹脂部材6)として準備し、上記(2)で得られた貫通孔4を有する芯材5の貫通孔4内に嵌め込んだ。
(4)減圧密封
市販のガスバリアフィルム(ADY−134、エーディーワイ株式会社製、熱溶着層/金属層/表面保護層の3層構造)の2枚を熱溶着層が対向するように重ね合わせ、その三方のみをヒートシールした袋状の外被材3の内部に上記(3)で得られた樹脂部材6が嵌め込まれた芯材5を入れ、ヒートシール機能付きの真空チャンバー内に設置した。その後、チャンバー内を3Paまで減圧し、その状態で袋状の外被材3の開口部を熱溶着層同士の熱溶着により密着して密封した。その後、外被材3の外部を大気圧条件に戻して、芯材5に対応する部分が縦150mm×横150mm×厚み5mmサイズの真空断熱材前駆体を得た。
(5)置換材7(樹脂部材6)相当部の加熱加圧による熱溶着
上記で得られた真空断熱材前駆体の置換材7(樹脂部材6)相当部を外被材3の両側から加圧条件下(2kg/cm)において、150℃で10秒間加熱した。これにより、置換材7(樹脂部材6)がその両表面を介して外被材3の熱溶着層と熱溶着された、真空断熱材A1を得た。
[例2]
置換材7(樹脂部材6)として上記独立気泡性樹脂の樹脂シートのかわりに低密度ポリエチレンの樹脂シートを50mm×50mm×厚み5mmに加工したものを用いた点以外は例1と同様の真空断熱材A2を得た。
[例3]
芯材5としてエアロゲルブランケット(商品名「PyrogelXT」、Aspen Aerogels,Inc.製)を縦150mm×横150mm×厚み5mmにカッターで切断した後、200℃で1時間加熱したものを用いた点以外は例1と同様の真空断熱材B1を得た。
[例4]
芯材5としてエアロゲルブランケット(商品名「PyrogelXT」、Aspen Aerogels,Inc.製)を縦150mm×横150mm×厚み5mmにカッターで切断した後、200℃で1時間加熱したものを用いた点以外は例2と同様の真空断熱材B2を得た。
(穴開け試験)
上記のようにして得られた真空断熱材A1、A2、B1およびB2の置換材7(樹脂部材6)に相当する部分の略中央に、それぞれ外被材の一方の表層面から他方の表層面まで貫通するように釘を打ち込んで穴を開けたが、真空断熱材A1、A2、B1およびB2の芯材5に対応する部分の減圧密封状態にはいずれも変化はなかった。
(熱伝導率測定)
上記のようにして得られた真空断熱材A1とA2の熱伝導率を測定したところ、A1と比較してA2の熱伝導率は高い値を示していた。真空断熱材A1とA2では穴開け加工性において差がないものの断熱性については真空断熱材A1の方が優れることがわかる。
また、上記のようにして得られた真空断熱材B1とB2の熱伝導率を測定したところ、B1と比較してB2の熱伝導率は高い値を示していた。真空断熱材B1とB2では穴開け加工性において差がないものの断熱性については真空断熱材B1の方が優れることがわかる。
本発明の真空断熱材は、省エネルギー化が求められる、保温や保冷、断熱が必要な箇所に適用できる。具体的には、例えば住宅およびビルの壁・屋根・床・配管、太陽光・熱設備等の住設分野;恒温槽、湯沸かし器、温水タンク、炊飯器、冷蔵庫、冷凍庫、保冷庫・保冷タンク、液化ガスタンク、自動販売機、クーラーボックス、保冷カバー、防寒服等の保温・保冷分野;ノートパソコン、液晶プロジェクター、コピー機、バッテリー、燃料電池等の電気・電子機器、半導体製造装置等の産業機器分野;自動車、バス、トラック、保冷車、列車、貨物車、船舶等の移動体分野;プラントの配管等に適用が可能である。
また、本発明の真空断熱材(図1A、図3C等)に穴を施して施工すると真空断熱材の外周が固定されずに取り付けられるので、被断熱面の寸法が変化しても真空断熱材に変形応力が伝達しにくい。また寸法変化が大きい用途においては特に有用である。さらに軟質ポリウレタンフォーム等の弾性部材を被断熱部材と本発明の真空断熱材との間に設置するとより高い断熱効果が得られる。
10A,10B,10C,10D,10E,10F…真空断熱材
1…熱溶着層、2…フィルム、3…外被材、4…貫通孔、5…芯材、6…樹脂部材、7…置換材、8…異種材料部材、9…穴、Y…シール領域。

Claims (11)

  1. 片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、
    板厚方向に貫通する欠落部を有する板状の芯材と、
    前記欠落部を閉塞するように前記欠落部に配設される、前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する、置換材と、を備え、
    前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材は気密性が保持されるように前記外被材と接合された真空断熱材。
  2. 前記樹脂部材の少なくとも前記一対の表面近傍は前記熱溶着層の構成材料と熱溶着可能な樹脂で構成され、前記樹脂部材は前記一対の表面において前記外被材の前記熱溶着層と熱溶着された請求項1記載の真空断熱材。
  3. 前記芯材の厚みに対する前記置換材の厚みの比は、0.8〜1.2である請求項1または2に記載の真空断熱材。
  4. 前記樹脂部材は気孔率が10〜98%の独立気泡性の樹脂部材である請求項1〜3に記載の真空断熱材。
  5. 前記置換材は、前記樹脂部材のみで構成される請求項1〜4記載のいずれか1項に記載の真空断熱材。
  6. 前記樹脂部材は前記表面に対して直交する方向に貫通する貫通孔を有し、前記置換材は、前記樹脂部材の貫通孔に嵌合するように配設される前記樹脂部材の樹脂とは異なる材料からなる異種材料部材をさらに有する請求項1〜4記載のいずれか1項に記載の真空断熱材。
  7. 前記異種材料部材を構成する材料が、前記樹脂部材の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、またはセラミックスである請求項6記載の真空断熱材。
  8. 前記置換材の周縁部を除く領域に穴加工が施された請求項1〜7のいずれか1項に記載の真空断熱材。
  9. 前記穴加工された穴は、配線および/または配管を通す、前記真空断熱材を被断熱材に固定する固定部材を配する、および前記真空断熱材を被断熱材の突起部に掛ける、から選ばれる用途に用いられる請求項8記載の真空断熱材。
  10. 板状の芯材に、板厚方向に貫通する欠落部を形成し、
    前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記欠落部を閉塞するように前記欠落部に配設し、
    片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納し、前記外被材の内部を減圧状態とするとともに前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着し、さらに、前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する真空断熱材の製造方法。
  11. 前記樹脂部材と前記外被材の前記熱溶着層との接合は、前記樹脂部材の前記一対の表面に対応する前記外被材の領域を前記外被材の外側から加熱圧着して熱溶着することで行う請求項10記載の真空断熱材の製造方法。
JP2016561569A 2014-11-26 2015-11-24 真空断熱材およびその製造方法 Pending JPWO2016084763A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014238735 2014-11-26
JP2014238735 2014-11-26
JP2015031807 2015-02-20
JP2015031807 2015-02-20
PCT/JP2015/082834 WO2016084763A1 (ja) 2014-11-26 2015-11-24 真空断熱材およびその製造方法

Publications (1)

Publication Number Publication Date
JPWO2016084763A1 true JPWO2016084763A1 (ja) 2017-08-31

Family

ID=56074323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016561569A Pending JPWO2016084763A1 (ja) 2014-11-26 2015-11-24 真空断熱材およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2016084763A1 (ja)
WO (1) WO2016084763A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036790A (ja) 2015-08-10 2017-02-16 川崎重工業株式会社 断熱構造
CN109477606A (zh) * 2016-07-11 2019-03-15 三菱瓦斯化学株式会社 绝热材料及其制造方法
CN109642695A (zh) * 2016-08-09 2019-04-16 松下知识产权经营株式会社 隔热片及其制造方法
JP6917549B2 (ja) * 2016-11-30 2021-08-11 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法
JP2019199877A (ja) * 2017-04-20 2019-11-21 Agc株式会社 断熱構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312880A (ja) * 1995-05-19 1996-11-26 Mitsubishi Chem Corp 真空断熱パネルおよびその製造方法
JPH0972488A (ja) * 1995-08-31 1997-03-18 Sekisui Plastics Co Ltd 真空断熱体及びその製造方法
JP4742605B2 (ja) * 2005-02-15 2011-08-10 パナソニック株式会社 真空断熱材およびその製造方法
JP2007016834A (ja) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd 真空断熱材の折り曲げ及び切断方法
KR101263577B1 (ko) * 2010-12-24 2013-05-13 (주)엘지하우시스 페놀수지 경화 발포체로 이루어진 진공단열재용 심재와 이를 이용한 진공단열재 및 그 제조 방법

Also Published As

Publication number Publication date
WO2016084763A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2016084763A1 (ja) 真空断熱材およびその製造方法
US10603865B2 (en) Insulating member and its attaching method
TWI457233B (zh) 槽狀真空絕熱材料及其製造方法
US20090031659A1 (en) Evacuated Thermal Insulation Panel
JP5261616B2 (ja) 気体吸着デバイス及びそれを備えた真空断熱材
JP2018502261A5 (ja)
JP2017172724A (ja) 断熱パネルおよび断熱構造
CN107565067A (zh) 热封装件
JP6617540B2 (ja) 断熱部材およびその取付方法
WO2016190176A1 (ja) 貫通穴付き積層断熱体および断熱構造
JP5907204B2 (ja) 真空断熱材の製造方法
JP2014228135A (ja) 真空断熱材の製造方法および真空断熱材
TW201623858A (zh) 真空隔熱材料、隔熱箱以及真空隔熱材料之製造方法
JP2009168091A (ja) 真空断熱材および真空断熱材を壁に適用した建物
JP2008008431A (ja) 真空断熱材と発泡ポリスチレンとからなる一体成形した複合断熱材とその製造方法
JP2007138976A (ja) 真空断熱材及びその製造方法
JP2001279904A (ja) 断熱性壁材および断熱性壁の工法
JP6422713B2 (ja) 袋体及び当該袋体を用いた真空断熱材
JP2001128860A (ja) 真空断熱容器
EP3181980B1 (en) Method for manufacturing vacuum heat insulator and vacuum heat insulator
JP2010024673A (ja) 複合断熱材
JP2017137955A (ja) 真空断熱材用外装材及びそれを用いた真空断熱材
JP2017116097A (ja) 真空断熱材の製造方法および真空断熱材
JP2010139006A (ja) 真空断熱材
JP2002370300A (ja) 断熱体