JP6531560B2 - Catalyst for carbon nanotube synthesis - Google Patents

Catalyst for carbon nanotube synthesis Download PDF

Info

Publication number
JP6531560B2
JP6531560B2 JP2015163502A JP2015163502A JP6531560B2 JP 6531560 B2 JP6531560 B2 JP 6531560B2 JP 2015163502 A JP2015163502 A JP 2015163502A JP 2015163502 A JP2015163502 A JP 2015163502A JP 6531560 B2 JP6531560 B2 JP 6531560B2
Authority
JP
Japan
Prior art keywords
catalyst
axis
carbon nanotube
nanotube synthesis
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015163502A
Other languages
Japanese (ja)
Other versions
JP2017039099A (en
Inventor
増田 幹
幹 増田
渡辺 克己
克己 渡辺
雄 森田
雄 森田
信之 名畑
信之 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyocolor Co Ltd
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2015163502A priority Critical patent/JP6531560B2/en
Publication of JP2017039099A publication Critical patent/JP2017039099A/en
Application granted granted Critical
Publication of JP6531560B2 publication Critical patent/JP6531560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はカーボンナノチューブ合成用触媒に関する。更に詳しくは、カーボンナノチューブ合成用触媒と、それを用いて製造されるカーボンナノチューブに関する。   The present invention relates to a catalyst for carbon nanotube synthesis. More specifically, the present invention relates to a catalyst for carbon nanotube synthesis and a carbon nanotube produced using the same.

直径が1μm以下のカーボンナノチューブは、例えば樹脂へ配合され、導電性や強度等の特性を付与するフィラーとして、種々の検討がなされている。そして、このようなカーボンナノチューブは、従来、主にアーク放電法、レーザー蒸着法、気相成長法などで製造されていた。   For example, carbon nanotubes having a diameter of 1 μm or less are blended into a resin, and various studies have been made as a filler that imparts properties such as conductivity and strength. Such carbon nanotubes are conventionally manufactured mainly by an arc discharge method, a laser deposition method, a vapor phase growth method or the like.

その中でも、気相成長法は、アーク放電法やレーザー蒸着法に比べて効率良く不純物の少ないカーボンナノチューブが得られるという利点がある。また、気体状態の原料を使用することによって、連続反応が可能であり、更には原料ガスとなる炭化水素や一酸化炭素等の炭素を含むガスが安価に入手できるので、カーボンナノチューブの量産化に適した技術といえる。   Among them, the vapor phase growth method has an advantage that carbon nanotubes with few impurities can be obtained more efficiently than the arc discharge method or the laser deposition method. In addition, continuous reaction is possible by using the raw material in the gaseous state, and furthermore, since a gas containing carbon such as hydrocarbon and carbon monoxide which is a raw material gas can be obtained at low cost, mass production of carbon nanotubes is possible. It can be said that it is a suitable technology.

気相成長法によりカーボンナノチューブを得る際に使用される触媒(以下、カーボンナノチューブ合成用触媒と称する)は、例えばシリカ、アルミナ、マグネシア、ゼオライト等の担持成分に、鉄、コバルト、ニッケル等の活性成分の金属を担持させたもの等が提案されている。(例えば特許文献1参照)   The catalyst (hereinafter referred to as a catalyst for carbon nanotube synthesis) to be used when obtaining carbon nanotubes by vapor phase growth method has an activity such as iron, cobalt, nickel, etc. for supporting components such as silica, alumina, magnesia, zeolite and the like. What supported the metal of the component etc. are proposed. (For example, refer to patent document 1)

このようにして製造される微粒子状の触媒を用いて炭素繊維を気相成長させた場合、炭素繊維は曲がりくねって互いに絡み合った状態で成長する。カーボンナノチューブを樹脂中に分散させることにより絶縁性の樹脂に導電性を付与させることができることが一般に知られているが、このようにして得られる炭素繊維の絡まり凝集体は樹脂中での分散が悪く、その結果、所望の導電性を得るためには多量の炭素繊維を混入させる必要が生じることが多い。また、分散性の悪い多量の炭素繊維の絡まり凝集体を樹脂に混入させると、樹脂の強度劣化を引き起こすという課題を有していた。   When carbon fibers are vapor-phase-grown using the particulate catalyst thus produced, the carbon fibers grow in a winding and entangled state. It is generally known that electrical conductivity can be imparted to an insulating resin by dispersing carbon nanotubes in a resin, but the carbon fiber entangled aggregate thus obtained has a dispersion in the resin Unfortunately, this often results in the need to incorporate large amounts of carbon fiber to achieve the desired conductivity. Moreover, when the entangled aggregate of a large amount of poorly dispersed carbon fibers is mixed into the resin, it has a problem of causing the strength deterioration of the resin.

また、このように強固に凝集した炭素繊維の分散性を改良するために、粉砕等の後処理によって微細化を行う方法が提案されている(特許文献2)。しかしながら、粉砕処理はコスト増加及び炭素繊維の切断等を招く可能性がある。   Moreover, in order to improve the dispersibility of the carbon fiber thus strongly coagulated, there has been proposed a method of refining by post-treatment such as pulverization (Patent Document 2). However, the grinding process may result in increased cost and cutting of carbon fibers.

これに対して、炭素繊維が1本1本独立しているか、或いは複数本が寄り集まって束状に集合したものであれば、樹脂への分散性が良く、少ない分散量で導電性に優れた樹脂成形体を供給することができると紹介されている(特許文献3)。   On the other hand, if the carbon fibers are independent one by one or plural fibers are gathered together in a bundle, the dispersibility in the resin is good and the conductivity is excellent with a small amount of dispersion. It is introduced that it is possible to supply the resin molded product (Patent Document 3).

一方で、気相成長法により束状に集合した炭素繊維を製造する従来の方法としては、基盤法による方法が知られている。即ち、基盤の表面に触媒をスパッタ等で添着し、この基盤面から炭素繊維を直線状に成長させるという方法である。このような基盤法により、長さが2.5mmで1ないし2層の炭素繊維のチューブ壁を形成した、カーボンナノチューブを製造した実施例が開示されている(非特許文献1)。同様にシリコンもしくは石英基盤に触媒成分をパターン化添着して行う実施例も開示されている(特許文献4)。しかし、これらの方法では、成長点となる触媒の面積が絶対的に少なく、そこを基盤として成長するカーボンナノチューブの量も少ないことから産業的な量産には不向きである。   On the other hand, as a conventional method for producing bundled carbon fibers by a vapor phase growth method, a method by a base method is known. That is, a catalyst is attached to the surface of the substrate by sputtering or the like, and carbon fibers are linearly grown from the surface of the substrate. An example of producing a carbon nanotube in which a tube wall of carbon fiber having a length of 2.5 mm and 1 to 2 layers is formed by such a base method is disclosed (Non-patent Document 1). Similarly, an embodiment is also disclosed in which the catalyst component is patterned and attached to a silicon or quartz substrate (Patent Document 4). However, these methods are not suitable for industrial mass production because the area of the catalyst which is the growth point is absolutely small and the amount of carbon nanotubes grown there on is also small.

これに対して、Co、Ni及びFeより選ばれる1種以上の金属を含む金属化合物と、Al及びMgより選ばれる1種以上の金属を含む金属化合物を、分解温度が300℃以下の有機化合物の存在下で焼成することで、表面に平面を有する金属含有材料から成る粉体を得る方法が提案されている。しかしながら、この方法では、多量の有機化合物を使用するため触媒焼成の際に高温になりやすく、焼結が進行してしまい、その結果、カーボンナノチューブの析出効率が低く、生成したカーボンナノチューブ中に触媒由来の不純物が多量に残留し、カーボンナノチューブの生産性が著しく低くなってしまうという問題があった。さらに、有機化合物が触媒焼成の際に灰分として残りやすいため、カーボンナノチューブ中に不純物として灰分が混入しやすいという問題があった(特許文献5)。   On the other hand, a metal compound containing one or more metals selected from Co, Ni and Fe, and a metal compound containing one or more metals selected from Al and Mg, an organic compound having a decomposition temperature of 300 ° C. or less It has been proposed to obtain a powder comprising a metal-containing material having a flat surface on the surface by firing in the presence of However, in this method, since a large amount of organic compounds are used, the temperature tends to be high during catalyst calcination and sintering progresses, and as a result, the deposition efficiency of carbon nanotubes is low, and the catalyst in the generated carbon nanotubes There is a problem that a large amount of impurities derived from the catalyst remain and the productivity of carbon nanotubes is significantly reduced. Furthermore, there is a problem that the ash tends to be mixed as an impurity into the carbon nanotube because the organic compound tends to remain as ash during catalyst calcination (Patent Document 5).

特表2010−540220号公報Japanese Patent Publication No. 2010-540220 特開平2−276839号公報Unexamined-Japanese-Patent No. 2-276839 特開2004−230690号公報Japanese Patent Application Publication No. 2004-230690 特表2002−530805号公報Japanese Patent Application Publication No. 2002-530805 特開2009−090251号公報JP, 2009-090251, A

Science、第306巻、November、19(2004)Science, Vol. 306, November, 19 (2004)

本発明がしようとする課題は、導電性に優れたカーボンナノチューブを効率良く製造するためのカーボンナノチューブ合成用触媒およびその製造方法を提供することである。   The problem to be solved by the present invention is to provide a carbon nanotube synthesis catalyst for efficiently producing carbon nanotubes excellent in conductivity and a method for producing the same.

本発明者らは、上記課題を解決すべく、鋭意検討の結果、本発明を完成するに至った。すなわち本発明の実施態様は、Co、MgおよびMnを含有し、走査型電子顕微鏡を用いた三次元解析により観察される形状が平板状であり、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした場合のX軸平均(μm)とY軸平均(μm)の積であるXY平面面積(μm 2 が0.2〜10μm2 であり、かつ、触媒中のMn含有量が1〜5モル%であることを特徴とするカーボンナノチューブ合成用触媒に関する。 MEANS TO SOLVE THE PROBLEM The present inventors came to complete this invention, as a result of earnest examination, in order to solve the said subject. That is, the embodiment of the present invention contains Co, Mg and Mn, and the shape observed by three-dimensional analysis using a scanning electron microscope is a flat plate, and any axis on the catalyst plane is the X axis, the same. When the axis orthogonal to the X axis on the plane is Y axis and the axis orthogonal to the X axis and Y axis is Z axis, the XY plane area (the product of X axis average (μm) and Y axis average (μm) [mu] m 2) is 0.2 to 10 [mu] m 2, and relates to a catalyst for carbon nanotube synthesis, wherein the Mn content in the catalyst is 1 to 5 mol%.

また、本発明の実施態様は、Co、MgおよびMnを含有し、走査型電子顕微鏡を用いた三次元解析により観察される形状が平板状であり、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした場合のX軸平均(μm)とY軸平均(μm)の積であるXY平面面積(μm 2 が0.2〜10μm2 であり、かつ、触媒中のMn含有量が1〜5モル%であるカーボンナノチューブ合成用触媒の製造方法であって、CoHO2を含む触媒前駆体を焼成することを特徴とするカーボンナノチューブ合成用触媒の製造方法に関する。 In addition, an embodiment of the present invention contains Co, Mg and Mn, and the shape observed by three-dimensional analysis using a scanning electron microscope is flat, and an arbitrary axis on the catalyst plane is an X-axis, An XY plane area which is the product of the X axis average (μm) and the Y axis average (μm) in the case where an axis orthogonal to the X axis on the same plane is the Y axis and an axis orthogonal to the X axis and the Y axis is the Z axis ([mu] m 2) is 0.2 to 10 [mu] m 2, and, Mn content in the catalyst is a method of manufacturing the carbon nanotube synthesizing catalyst is 1 to 5 mol%, a catalyst precursor comprising CoHO 2 The present invention relates to a method for producing a catalyst for carbon nanotube synthesis, which is characterized by calcining.

また、本発明の実施態様は、Mgを含む金属塩およびMnを含む金属塩と、CoHO2とを混合する工程を含む前記カーボンナノチューブ合成用触媒の製造方法に関する。 Further, embodiments of the present invention, a metal salt containing a metal salt and Mn containing Mg, a method of manufacturing the carbon nanotube synthesis catalyst comprising a step of mixing and CoHO 2.

また、本発明の実施態様は、MnCO3を含む触媒前駆体を焼成することを特徴とする前記カーボンナノチューブ合成用触媒の製造方法に関する。 In addition, an embodiment of the present invention relates to the method for producing a catalyst for carbon nanotube synthesis, which comprises calcining a catalyst precursor containing MnCO 3 .

また、本発明の実施態様は、前記カーボンナノチューブ合成用触媒または前記方法により製造されたカーボンナノチューブ合成用触媒の存在下、炭化水素および/またはアルコールを含んでなる炭素源を接触反応させるカーボンナノチューブの製造方法に関する。   Also, an embodiment of the present invention is a carbon nanotube in which a carbon source comprising a hydrocarbon and / or an alcohol is catalytically reacted in the presence of the catalyst for carbon nanotube synthesis or the catalyst for carbon nanotube synthesis produced by the method. It relates to the manufacturing method.

本発明のカーボンナノチューブ合成用触媒を用いることにより、導電性に優れたカーボンナノチューブを効率良く製造することができるようになった。よって、少ない配合量で、樹脂成形体における導電性発現性にも優れ、従って、樹脂の成型性や樹脂成形体の機械的特性を損なうことなく、優れた導電性樹脂成形体を実現することができる。この導電性樹脂成形体は、帯電防止用電子部材、静電塗装用樹脂成形体、導電性透明樹脂組成物等への応用が可能である。また、本発明のカーボンナノチューブは成形体以外にも、シート、テープ、透明フィルム、インキ、導電塗料などの樹脂組成物へ適用することができる。   By using the catalyst for carbon nanotube synthesis of the present invention, carbon nanotubes excellent in conductivity can be efficiently produced. Therefore, with a small amount of compounding, it is also excellent in conductivity development in a resin molded product, and therefore, an excellent conductive resin molded product can be realized without impairing the resin moldability and the mechanical properties of the resin molded product. it can. This conductive resin molded product can be applied to an antistatic electronic member, a resin molded product for electrostatic coating, a conductive transparent resin composition, and the like. Moreover, the carbon nanotube of this invention can be applied to resin compositions, such as a sheet | seat, a tape, a transparent film, ink, and a conductive paint, besides a molded object.

以下に本発明の実施の態様を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のカーボンナノチューブ合成用触媒は、Co、MgおよびMnを含むことを特徴とする。Co、MnおよびMgの原料としては、これら金属単体やその金属塩を用いることができる。具体的には、酢酸コバルト、酢酸コバルト・4水和物、水酸化コバルト、クエン酸コバルト・n水和物、硝酸コバルト・6水和物、硫酸コバルト、硫酸コバルト・7水和物、塩化マグネシウム、塩化マグネシウム・6水和物、水酸化マグネシウム、酢酸マグネシウム・4水和物、クエン酸マグネシウム・9水和物、酢酸マグネシウム、硫酸マグネシウム・7水和物、硝酸マグネシウム・6水和物、炭酸マンガン、酢酸マンガン・4水和物、二酸化マンガン、マンガン等が挙げられる。   The catalyst for carbon nanotube synthesis of the present invention is characterized by containing Co, Mg and Mn. As a raw material of Co, Mn, and Mg, such metal simple substance and its metal salt can be used. Specifically, cobalt acetate, cobalt acetate tetrahydrate, cobalt hydroxide, cobalt citrate n hydrate, cobalt nitrate hexahydrate, cobalt sulfate, cobalt sulfate heptahydrate, magnesium chloride , Magnesium chloride hexahydrate, magnesium hydroxide, magnesium acetate tetrahydrate, magnesium citrate 9 hydrate, magnesium acetate, magnesium sulfate heptahydrate, magnesium nitrate hexahydrate, carbonate Manganese, manganese acetate tetrahydrate, manganese dioxide, manganese and the like can be mentioned.

また、本発明のカーボンナノチューブ合成用触媒は触媒中のMn含有量が1〜5モル%であることを特徴とする。Mn含有量が上記範囲であると、その触媒より製造されたカーボンナノチューブの導電性が良好となり、触媒活性が高くカーボンナノチューブの生産効率が高くなる。   The catalyst for carbon nanotube synthesis of the present invention is characterized in that the Mn content in the catalyst is 1 to 5 mol%. When the Mn content is in the above range, the conductivity of the carbon nanotube produced from the catalyst becomes good, the catalyst activity is high, and the production efficiency of the carbon nanotube is high.

触媒中のMn含有量(モル%)はMn/(Co+Mg+Mn)の元素比で表わされる。   The Mn content (mol%) in the catalyst is expressed by the element ratio of Mn / (Co + Mg + Mn).

上記マンガン塩の内、酢酸マンガン好ましく、炭酸マンガンはさらに好ましい。その理由として、焼成の際に炭酸マンガンは発泡するためより均一に触媒中に分布することが挙げられる。   Among the above-mentioned manganese salts, manganese acetate is preferred, and manganese carbonate is more preferred. The reason is that manganese carbonate is more uniformly distributed in the catalyst because it foams during calcination.

また、本発明のカーボンナノチューブ合成用触媒は走査型電子顕微鏡を用いた三次元解析により観察される形状が平板状であり、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした場合のX軸平均(μm)とY軸平均(μm)の積であるXY平面面積(μm 2 が0.2〜10μm2を有していることを特徴とする。その平面の平坦さの程度は、本発明のカーボンナノチューブが得られる程度であれば任意である。尚、ここでいう「平面」とは、数学における厳密な平面のことではなく、巨視的な視点で見た時の、平面が平らな状態を有する面のことを指す。

In the catalyst for carbon nanotube synthesis of the present invention, the shape observed by three-dimensional analysis using a scanning electron microscope is a flat plate, and an arbitrary axis on the catalyst plane is an X axis, and an X axis on the same plane. When an orthogonal axis is Y axis, and an axis orthogonal to X axis and Y axis is Z axis, an XY plane area (μm 2 ) which is a product of X axis average (μm) and Y axis average (μm ) is 0. It is characterized by having 2 to 10 μm 2 . The degree of flatness of the plane is arbitrary as long as the carbon nanotube of the present invention can be obtained. The term "plane" as used herein is not a strict plane in mathematics but refers to a plane having a flat state when viewed from a macroscopic viewpoint.

触媒のXY平面面積(平面方向、「表面面積」ともいう)は、0.2〜10μm2であることが好ましく、Z軸(厚み方向)は100nm以下であることが好ましい。上記範囲内であれば、触媒が平面となり、かつ効率的に原料が触媒に接触できるため、カーボンナノチューブの生産効率が向上するため好ましい。 The XY plane area (also referred to as a plane direction, also referred to as “surface area”) of the catalyst is preferably 0.2 to 10 μm 2 , and the Z axis (thickness direction) is preferably 100 nm or less. If it is within the above range, the catalyst becomes flat and the raw material can contact the catalyst efficiently, so that the production efficiency of carbon nanotubes is improved, which is preferable.

触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした際、X軸、Y軸およびZ軸を測定し、その平均値をそれぞれX軸平均(μm)、Y軸平均(μm)、Z軸平均(μm)として求めた。またX軸平均(μm)とY軸平均(μm)の積を、XY平面面積(μm2)とした。 When an arbitrary axis on the catalyst plane is X axis, an axis orthogonal to the X axis on the same plane is Y axis, and an axis orthogonal to the X axis and Y axis is Z axis, the X axis, Y axis and Z axis are It measured and calculated | required the average value as X-axis average (micrometer), Y-axis average (micrometer), and Z-axis average (micrometer), respectively. Further, the product of the X-axis average (μm) and the Y-axis average (μm) was taken as the XY plane area (μm 2 ).

カーボンナノチューブ合成用触媒前駆体とは、コバルト成分を30%以上含有する金属、金属酸化物、金属窒化物、金属ハロゲン化物、金属水酸化物、金属塩、およびそれらの混合物であり、焼成によってカーボンナノチューブ合成用触媒として機能するものであれば、特に限定されない。   The catalyst precursor for carbon nanotube synthesis is a metal containing 30% or more of a cobalt component, a metal oxide, a metal nitride, a metal halide, a metal hydroxide, a metal hydroxide, a metal salt, and a mixture thereof There is no particular limitation as long as it functions as a catalyst for nanotube synthesis.

本発明のカーボンナノチューブ製造用触媒は、下記の工程(1)〜(2)を順次行い製造することが好ましい。
(1)コバルト塩、マグネシウム塩、マンガン塩を混合を行い触媒前駆体を得る工程。
(2)カーボンナノチューブ触媒前駆体を、焼成してカーボンナノチューブ合成用触媒を得る工程。
The catalyst for carbon nanotube production of the present invention is preferably produced by sequentially performing the following steps (1) and (2).
(1) A step of mixing a cobalt salt, a magnesium salt and a manganese salt to obtain a catalyst precursor.
(2) A step of calcining the carbon nanotube catalyst precursor to obtain a catalyst for carbon nanotube synthesis.

上記コバルト塩、マグネシウム塩、マンガン塩は水和物が好ましく、その理由として、融点が低く焼成の際に他の金属塩と混ざり易く均一な触媒が製造できるためである。   The cobalt salt, magnesium salt and manganese salt are preferably hydrates, because they have a low melting point and can be easily mixed with other metal salts at the time of calcination to produce a uniform catalyst.

上記コバルト塩、マグネシウム塩、マンガン塩が水和物の場合、100℃以上で乾燥を行うのが好ましい。また、減圧化で行う場合100℃以下で行っても良い。その理由として、焼成前に脱水を行うことで焼成時間を短くするためである。   When the said cobalt salt, magnesium salt and manganese salt are hydrates, it is preferable to dry at 100 degreeC or more. Moreover, when performing by pressure reduction, you may carry out at 100 degrees C or less. The reason is that dehydration is performed before firing to shorten the firing time.

上記乾燥はコバルト塩として水酸化コバルトを使用する場合、150℃以上で行い、触媒前駆体としてCoHO2を含むコバルト組成物を得ることが好ましい。その理由として、段階的に酸化を進めることにより、コバルト塩の結晶構造を壊さずに触媒を得ることができるため、触媒上に平面を得られやすくなる。 When cobalt hydroxide is used as the cobalt salt, the drying is preferably performed at 150 ° C. or higher to obtain a cobalt composition containing CoHO 2 as a catalyst precursor. The reason is that by progressing the oxidation step by step, the catalyst can be obtained without breaking the crystal structure of the cobalt salt, so it is easy to obtain a plane on the catalyst.

上記コバルト組成物はCoHO2を主成分として含有するコバルト金属、コバルト酸化物、コバルト水酸化物、コバルト塩、およびそれらの混合物である。 The cobalt composition is a cobalt metal containing CoHO 2 as a main component, a cobalt oxide, a cobalt hydroxide, a cobalt salt, and a mixture thereof.

上記混合はコバルト塩として水酸化コバルトを使用する場合、乾燥によりCoHO2を含むコバルト組成物を得た後に行うのが好ましい。その理由として、水酸化コバルトからCoHO2に変化する際、他の化合物と作用し、結晶構造が変化することで平板構造が壊れるのを防ぐためである。 When cobalt hydroxide is used as a cobalt salt, the above mixing is preferably performed after obtaining a cobalt composition containing CoHO 2 by drying. The reason is that when cobalt hydroxide is changed to CoHO 2 , it works with other compounds to prevent the flat plate structure from being broken by changing the crystal structure.

「混合」は、ミキサー等を使用して乾式で行ってもよく、湿式で行っても良い。湿式で混合する場合、上記前駆体を混合した後、水等の溶媒に溶解および/または分散させてもよく、また、予め各々の前駆体を水等の溶媒に溶解させた後に混合してもよい。また、水等の溶媒に溶解させる場合には加熱してもよい。湿式で混合する場合、上記で得られる溶液および/または分散液は、乾燥させることによりカーボンナノチューブ合成用触媒前駆体を得ることができる。乾燥させる際の雰囲気は、空気あるいは、窒素、アルゴン等の不活性ガス下のいずれでもよい。また、乾燥温度は、特に限定されるものではないが、溶媒として水を使用する場合、150〜200℃が好ましく、さらに好ましくは180〜200℃がさらに好ましい。   The “mixing” may be performed dry using a mixer or the like, or may be performed wet. In the case of wet mixing, the above precursors may be mixed and then dissolved and / or dispersed in a solvent such as water, or may be mixed after each precursor is previously dissolved in a solvent such as water Good. Moreover, when dissolving in solvents, such as water, you may heat. In the case of wet mixing, the solution and / or dispersion obtained above can be dried to obtain a catalyst precursor for carbon nanotube synthesis. The atmosphere for drying may be either air or under an inert gas such as nitrogen or argon. The drying temperature is not particularly limited, but when using water as the solvent, 150 to 200 ° C. is preferable, and 180 to 200 ° C. is more preferable.

上記の如く乾式または湿式により得られるカーボンナノチューブ合成用触媒前駆体は、さらに粉砕機等を用いて粉砕して微細化処理を行なうのが好ましい。微細化処理することにより、適度な空隙を含むことになるため、後述の工程(2)において、触媒前駆体を焼成する際に、粒径を小さく均一に制御できるようになるためである。   It is preferable that the catalyst precursor for carbon nanotube synthesis obtained by the dry process or the wet process as described above is further pulverized by using a pulverizer or the like to carry out the refining treatment. By carrying out the refining process, since appropriate voids are included, the particle diameter can be controlled to be small and uniform when the catalyst precursor is fired in the step (2) described later.

次に、工程(2)について説明する。工程(2)は、カーボンナノチューブ触媒前駆体を、焼成してカーボンナノチューブ合成用触媒を得る工程である。   Next, step (2) will be described. Step (2) is a step of calcining the carbon nanotube catalyst precursor to obtain a catalyst for carbon nanotube synthesis.

触媒前駆体を焼成するとき、焼成する際の雰囲気は、酸素の存在下であれば良いが、空気あるいは、空気と窒素との混合ガスであることが好ましい。また、焼成温度は、450〜550℃の範囲であることが好ましい。焼成温度が450〜550℃の範囲であれば、過度の焼結が起きにくいため一次粒子が大きくなりにくく、また、炭素質不純物が触媒中に残りにくいため好ましい。   When calcining the catalyst precursor, the atmosphere for calcining may be in the presence of oxygen, but is preferably air or a mixed gas of air and nitrogen. The firing temperature is preferably in the range of 450 to 550 ° C. If the firing temperature is in the range of 450 to 550 ° C., it is preferable because excessive sintering is unlikely to occur and primary particles are unlikely to be large, and carbonaceous impurities are unlikely to remain in the catalyst.

上記で得られた焼成物は、さらに微細化処理を行なうのが好ましい。焼成物を粉砕する場合、カーボンナノチューブ合成用触媒と、炭化水素および/またはアルコールを含んでなる炭素源とを接触させて、カーボンナノチューブを合成する際に、カーボンナノチューブ製造用触媒に炭素源が十分に接触することが出来るため好ましい。   The fired product obtained above is preferably further subjected to a refinement treatment. When the calcined product is crushed, the carbon nanotube synthesis catalyst is brought into contact with a carbon source comprising a hydrocarbon and / or an alcohol to synthesize carbon nanotubes, and the carbon source is sufficient as a carbon nanotube production catalyst. It is preferable because it can be in contact with

微粉化処理する手段は、特に制限はないが、少量の場合は乳鉢を用いて、一度に多量を処理する場合は、ピンミル、ハンマーミル、パルペライザー、ジェットミル等を用いることができる。   The means for pulverizing treatment is not particularly limited, but in the case of a small amount, a mortar may be used, and in the case of treating a large amount at one time, a pin mill, hammer mill, palperizer, jet mill or the like may be used.

(カーボンナノチューブとその製造方法)
次に、本発明のカーボンナノチューブ合成用触媒を用いたカーボンナノチューブの製造方法について説明する。
(Carbon nanotube and its manufacturing method)
Next, a method for producing carbon nanotubes using the catalyst for carbon nanotube synthesis of the present invention will be described.

カーボンナノチューブを製造するためには、触媒として前記カーボンナノチューブ合成用触媒を用いて、炭素源としての原料ガスを加熱下、この触媒に接触反応させて、カーボンナノチューブを製造する。   In order to produce carbon nanotubes, the catalyst for carbon nanotube synthesis is used as a catalyst, and a raw material gas as a carbon source is brought into contact with the catalyst under heating to produce carbon nanotubes.

炭素源としての原料ガスとしては、従来公知の任意のものを使用でき、例えば、炭素を含むガスとしてメタンやエチレン、プロパン、ブタン、アセチレンなどの炭化水素や、一酸化炭素、アルコールなどを用いることが出来るが、特に使い易さの理由により、炭化水素および/またはアルコールが好ましい。   As a source gas as a carbon source, any conventionally known one can be used, and for example, as a gas containing carbon, hydrocarbons such as methane, ethylene, propane, butane and acetylene, carbon monoxide, alcohol and the like can be used However, hydrocarbons and / or alcohols are preferred, in particular for reasons of ease of use.

また、必要に応じて、還元雰囲気下で触媒を活性化した後、又は還元性ガスと共にカーボンナノチューブ原料ガスと接触させて製造することが好ましい。活性化時における還元性ガスは、水素、アンモニア等を用いることができるが、水素が好ましく、その濃度は、原料ガス濃度100体積%に対して0.1〜100体積%が好ましく、1〜100体積%であることがより好ましい。1〜100体積%の範囲であれば、還元性ガスとしての効果が期待でき、かつ原料ガスのも適切な濃度となり、カーボンナノチューブが効率よく回収できるため好ましい。   In addition, it is preferable that the catalyst be activated in a reducing atmosphere, or be brought into contact with a carbon nanotube source gas together with a reducing gas, if necessary. Hydrogen, ammonia, etc. can be used as the reducing gas at the time of activation, but hydrogen is preferred, and its concentration is preferably 0.1 to 100% by volume with respect to 100% by volume of the source gas concentration, 1 to 100 More preferably, it is volume%. If it is in the range of 1 to 100% by volume, the effect as a reducing gas can be expected, and the concentration of the source gas will be appropriate, and carbon nanotubes can be efficiently recovered, which is preferable.

製造時の温度や原料ガスの供給量は、従来公知の任意の値から、適宜選択し決定すれば良いが、本発明の触媒においては、600〜850℃、特に650〜750℃が好ましく、反応圧力は大気圧以上40kPa以下、特に常圧以上30kPa以下とすることが好ましい。反応時間は反応温度や触媒と原料ガスとの触媒比率に応じて任意に設定されるが、通常0.5〜6時間程度である。本発明での反応速度は反応開始から約20分で最大となり、その後、徐々に失速して反応開始から5〜5.5時間で停止する。従って、反応時間は0.5〜6時間の範囲で管理することが好ましい。   The temperature at the time of production and the supply amount of the raw material gas may be appropriately selected and determined from conventionally known arbitrary values, but in the catalyst of the present invention, 600 to 850 ° C., particularly 650 to 750 ° C. are preferable, and the reaction The pressure is preferably atmospheric pressure or more and 40 kPa or less, and particularly preferably atmospheric pressure or more and 30 kPa or less. The reaction time is arbitrarily set according to the reaction temperature and the catalyst ratio between the catalyst and the raw material gas, but is usually about 0.5 to 6 hours. The reaction rate in the present invention reaches its maximum in about 20 minutes from the start of the reaction, and then gradually slows down and stops in 5 to 5.5 hours from the start of the reaction. Therefore, it is preferable to manage reaction time in 0.5 to 6 hours.

反応終了後の原料ガス置換には、アルゴンガスや窒素等の不活性ガスを用いることが好ましい。   It is preferable to use inert gas, such as argon gas and nitrogen, for source gas substitution after completion | finish of reaction.

このような本発明のカーボンナノチューブ製造用触媒を用いるカーボンナノチューブの製造方法によれば、担持部分に均一に担持された微粒子の酸化コバルト部分を核として、触媒の平面部分よりカーボンナノチューブが析出、成長しカーボンナノチューブが得られる。   According to the method of producing a carbon nanotube using the catalyst for producing a carbon nanotube of the present invention, the carbon nanotube is precipitated and grown from the plane portion of the catalyst, with the cobalt oxide portion of the fine particles uniformly supported on the support portion as a core. Carbon nanotubes are obtained.

以下に実施例を挙げて、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、「カーボンナノチューブ」を「CNT」と略記することがある。   EXAMPLES The present invention will be more specifically described below by way of Examples, but the present invention is not limited to the following Examples as long as the gist thereof is not exceeded. Also, "carbon nanotube" may be abbreviated as "CNT".

[カーボンナノチューブ合成用触媒(触媒)の製造]
(実施例1)[触媒(a)の製造]
水酸化コバルト(II)37g耐熱性容器に秤取り、電気オーブンを用いて、雰囲気温度170±5℃の温度で1時間乾燥させCoHO2を含むコバルト組成物(A)を得た。酢酸マグネシウム・4水和物86g、酢酸マンガン・4水和物5gを耐熱性容器に秤取り、電気オーブンを用いて、雰囲気温度170±5℃の温度で1時間乾燥させた後、CoHO2を含むコバルト組成物(A)を36gと混合し触媒(a)の前駆体を得た。得られた触媒(a)前駆体50gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(a)を得た。
[Production of catalyst for carbon nanotube synthesis (catalyst)]
Example 1 Production of Catalyst (a)
It was weighed in a 37 g heat resistant container of cobalt (II) hydroxide and dried at a temperature of 170 ± 5 ° C. for 1 hour using an electric oven to obtain a cobalt composition (A) containing CoHO 2 . 86 g of magnesium acetate tetrahydrate and 5 g of manganese acetate tetrahydrate are weighed in a heat resistant container and dried at a temperature of 170 ± 5 ° C. for 1 hour using an electric oven, and then CoHO 2 is dissolved. The cobalt composition (A) contained was mixed with 36 g to obtain a precursor of catalyst (a). After 50 g of the obtained catalyst (a) precursor was weighed in a heat resistant container and calcined in an atmosphere of 500 ° C. ± 5 ° C. in air for 30 minutes in a muffle furnace, it was pulverized in a mortar to obtain a catalyst (a) .

(実施例2〜6)[触媒(b)〜(f)の製造]
表1に掲載した原料と仕込み量に変更した以外は、実施例1と同様の方法により触媒(b)〜(f)を製造した。
(Examples 2 to 6) [Production of Catalysts (b) to (f)]
Catalysts (b) to (f) were produced in the same manner as in Example 1 except that the raw materials and charge amounts listed in Table 1 were changed.

(実施例7)[触媒(g)の製造]
水酸化コバルト(II)37g、酢酸マグネシウム・4水和物86g、酢酸マンガン・4水和物5gを耐熱性容器に秤取り、混合した後、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(g)を得た。
(Example 7) [Manufacture of catalyst (g)]
After weighing and mixing 37 g of cobalt (II) hydroxide, 86 g of magnesium acetate tetrahydrate and 5 g of manganese acetate tetrahydrate in a heat resistant container, in a muffle furnace, an atmosphere of 500 ° C. ± 5 ° C. in air. After firing for 30 minutes under, the mixture was ground in a mortar to obtain a catalyst (g).

(実施例8)[触媒(h)の製造]
水酸化コバルト(II)37g、酢酸マグネシウム・4水和物86g、酢酸マンガン・4水和物5gを混合後、同じ耐熱性容器に移し、電気オーブンを用いて、雰囲気温度170±5℃の温度で1時間乾燥させ触媒(h)の前駆体を得た。得られた触媒(h)前駆体50gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(h)を得た。
Example 8 Production of Catalyst (h)
After mixing 37 g of cobalt (II) hydroxide, 86 g of magnesium acetate tetrahydrate, and 5 g of manganese acetate tetrahydrate, the mixture is transferred to the same heat-resistant container, and an electric oven is used at a temperature of 170 ± 5 ° C. The resultant was dried for 1 hour to obtain a precursor of catalyst (h). After 50 g of the obtained catalyst (h) precursor was weighed in a heat resistant container and calcined in an atmosphere of 500 ° C. ± 5 ° C. in air for 30 minutes in a muffle furnace, it was pulverized in a mortar to obtain a catalyst (h) .

(比較例1)[触媒(i)の製造]
表1に掲載した仕込み量に変更した以外は、実施例1と同様の方法により触媒(i)を製造した。
(Comparative Example 1) [Production of Catalyst (i)]
A catalyst (i) was produced in the same manner as in Example 1 except that the preparation amounts listed in Table 1 were changed.

<XRD測定>
水酸化コバルト(II)を170℃で1時間乾燥させた物についてXRD測定(理学電気工業社製、Ultima2100)を行った。19.8°、36.8°、50.3°にピークが観測され、CoHO2を含有することが確認された。
<XRD measurement>
An XRD measurement (Ultima 2100, manufactured by Rigaku Denki Co., Ltd.) was performed on a substance obtained by drying cobalt (II) hydroxide at 170 ° C. for 1 hour. Peaks were observed at 19.8 °, 36.8 °, and 50.3 °, and it was confirmed that CoHO 2 was contained.

<走査型電子顕微鏡による形状観察とXY平面面積の測定>
走査型電子顕微鏡(日本電子(JEOL)社製、JSM−6700M))によって、カーボンナノチューブ合成用触媒の形態観察を実施した。観察は、カーボンナノチューブ合成用触媒をカーボンペーパー上にそのままの状態で散布して実施した。
<Shape observation by scanning electron microscope and measurement of XY plane area>
The morphology of the catalyst for carbon nanotube synthesis was observed by a scanning electron microscope (JSM-6700M, manufactured by JEOL Ltd.). The observation was carried out by spraying a catalyst for carbon nanotube synthesis as it is on carbon paper.

さらに、カーボンナノチューブ合成用触媒について、走査型電子顕微鏡(株式会社エリオニクス社製ERA―9000)による三次元解析を行い、9個のカーボンナノチューブ合成用触媒について、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした際、X軸、Y軸およびZ軸を測定し、その平均値をそれぞれX軸平均(μm)、Y軸平均(μm)、Z軸平均(μm)を求めた。またX軸平均(μm)とY軸平均(μm)の積を、XY平面面積(μm2)として求めた。 Furthermore, the carbon nanotube synthesis catalyst was subjected to three-dimensional analysis with a scanning electron microscope (ERA-9000 manufactured by Elionix Co., Ltd.), and for nine carbon nanotube synthesis catalysts, an arbitrary axis on the catalyst plane was taken along the X axis. When an axis orthogonal to the X axis on the same plane is the Y axis and an axis orthogonal to the X axis and the Y axis is the Z axis, the X axis, the Y axis and the Z axis are measured, and the average value is the X axis The average (μm), the Y-axis average (μm), and the Z-axis average (μm) were determined. The product of the X-axis average (μm) and the Y-axis average (μm) was determined as the XY plane area (μm 2 ).

表2に触媒の形状、X軸平均(μm)、Y軸平均(μm)、Z軸平均(μm)、XY平面面積(μm2)を示す。 Table 2 shows the shape of the catalyst, X-axis average (μm), Y-axis average (μm), Z-axis average (μm), and XY plane area (μm 2 ).

表2より、触媒(a)〜(i)は表面に平面を有することが明らかとなった。   From Table 2, it became clear that catalysts (a)-(i) have a plane on the surface.

(実施例9)[カーボンナノチューブの製造]
加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、カーボンナノチューブ合成用触媒(a)1gを散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入しながら排気を行い、反応管内の空気をアルゴンガスで置換し、横型反応管中の雰囲気を酸素濃度1体積%以下とした。次いで、外部ヒーターにて加熱し、横型反応管内の中心部温度が700℃になるまで加熱した。700℃に到達した後、毎分0.1リットルの流速で1分間、水素ガスを反応管内に導入し、触媒を活性化処理した。その後、炭素源としてエタノールを毎分1リットルの流速で反応管内に導入し、4時間接触反応させた。反応終了後、反応管内のガスをアルゴンガスで置換し、反応管内の温度を100℃以下になるまで冷却し、得られたカーボンナノチューブを採取した。得られたカーボンナノチューブは、導電性、分散性を比較するため、80メッシュの金網で粉砕ろ過した。
(Example 9) [Production of carbon nanotube]
In a central portion of a horizontal reaction tube capable of being pressurized and heated by an external heater and having an inner volume of 10 liters, a quartz glass heat-resistant dish in which 1 g of a catalyst (a) for carbon nanotube synthesis was dispersed was installed. The exhaust was performed while injecting argon gas, the air in the reaction tube was replaced with argon gas, and the atmosphere in the horizontal reaction tube was adjusted to an oxygen concentration of 1% by volume or less. Subsequently, it heated with an external heater and heated until the center temperature in a horizontal reaction tube became 700 degreeC. After reaching 700 ° C., hydrogen gas was introduced into the reaction tube for 1 minute at a flow rate of 0.1 liter per minute to activate the catalyst. Thereafter, ethanol as a carbon source was introduced into the reaction tube at a flow rate of 1 liter per minute, and contact reaction was carried out for 4 hours. After completion of the reaction, the gas in the reaction tube was replaced with argon gas, the temperature in the reaction tube was cooled to 100 ° C. or less, and the obtained carbon nanotubes were collected. The obtained carbon nanotubes were ground and filtered with an 80 mesh wire mesh in order to compare conductivity and dispersibility.

(実施例10〜16、比較例2)
実施例9で使用したカーボンナノチューブ合成用触媒(a)の代わりに表3に掲載したカーボンナノチューブ合成用触媒に変更した以外は、実施例9と同様な方法によりそれぞれカーボンナノチューブを得た。
(Examples 10 to 16, Comparative Example 2)
Carbon nanotubes were obtained in the same manner as in Example 9, except that the catalyst for carbon nanotube synthesis listed in Table 3 was changed to the catalyst for carbon nanotube synthesis (a) used in Example 9.

<物性の測定方法>
カーボンナノチューブ合成用触媒およびカーボンナノチューブの物性は、以下の方法により測定した。
<Method of measuring physical properties>
The physical properties of the catalyst for carbon nanotube synthesis and the carbon nanotube were measured by the following method.

<カーボンナノチューブ含有塗膜の体積抵抗率とカーボンナノチューブの導電性評価>
カーボンナノチューブの導電性を評価するために、カーボンナノチューブを分散した塗膜を作成し、その体積抵抗率を測定することにより導電性評価を行った。
三菱化学社製エポキシ樹脂グレード1256を、ブチルカルビトールアセテートに溶解して、固形分40%のエポキシ樹脂溶液を作製し、エポキシ樹脂溶液の固形分15gに対して、評価用のカーボンナノチューブ0.789gを混合し、フーバーマーラーで150lb、100回転の条件でそれぞれ3回練り、評価用のカーボンナノチューブ分散体を得た。その後、東洋紡績社製ポリエチレンテレフタレート(PET)フィルムに、アプリケーターを用いて、乾燥後の塗膜厚さが10±1μmとなるように塗工後、電気オーブン中で150±5℃にて60分間乾燥させて、カーボンナノチューブを含有する塗膜を得た。(株)三菱化学アナリテック社製:ロレスターGP粉体抵抗率測定システムMCP−PD−51を用いて、上記塗膜の体積抵抗率(Ω・cm)とした。
<Volume Resistivity of Coating Film Containing Carbon Nanotube and Conductivity Evaluation of Carbon Nanotube>
In order to evaluate the conductivity of the carbon nanotube, a coating film in which the carbon nanotube is dispersed is prepared, and the conductivity is evaluated by measuring its volume resistivity.
An epoxy resin grade 1256 manufactured by Mitsubishi Chemical Corp. is dissolved in butyl carbitol acetate to prepare an epoxy resin solution having a solid content of 40%, and 0.789 g of carbon nanotubes for evaluation with respect to 15 g of solid content of the epoxy resin solution. The resulting mixture was mixed with a Hoover-Maller at 150 lb and 100 revolutions three times respectively to obtain a carbon nanotube dispersion for evaluation. After that, using a applicator, apply polyethylene terephthalate (PET) film manufactured by Toyobo Co., Ltd. so that the thickness of the coated film after drying becomes 10 ± 1 μm, then, in an electric oven, at 150 ± 5 ° C. for 60 minutes After drying, a coating film containing carbon nanotubes was obtained. It was set as the volume resistivity (ohm * cm) of the said coating film using Mitsubishi Chemical Analytech Co., Ltd. make: Loresta GP powder resistivity measuring system MCP-PD-51.

カーボンナノチューブの導電性の評価基準は、上記3回練りの塗膜の表面抵抗が、3×100(Ω・cm)以下の場合を◎(優良)、3×100(Ω・cm)を超えて6×100(Ω・cm)以下の場合を○(良)、6×100(Ω・cm)を超える場合を×(不良)とした。 The evaluation criteria for the conductivity of the carbon nanotube are: ◎ (excellent), 3 × 10 0 (Ω · cm) when the surface resistance of the coating film of the above three times is 3 × 10 0 (Ω · cm) or less In the case of exceeding 6 × 10 0 (Ω · cm) or less, the case of) (good) and the case of exceeding 6 × 10 0 (Ω · cm) are shown as x (defect).

表3より、比較例2のMn含有量が多い触媒より製造されたカーボンナノチューブと比較して、実施例9、11、13、15および16は優れた導電性を有している。   From Table 3, Examples 9, 11, 13, 15 and 16 have superior conductivity as compared to the carbon nanotubes produced from the catalyst having a high Mn content of Comparative Example 2.

表3より、実施例15の水酸化コバルトを含む前駆体を焼成して作製した触媒から製造されたカーボンナノチューブと比較して、実施例9のCoHO2を含む前駆体を焼成して作製した触媒から製造されたカーボンナノチューブは優れた導電性を有することが明らかとなった。 From Table 3, a catalyst prepared by calcining a precursor containing CoHO 2 of Example 9 in comparison with a carbon nanotube produced from a catalyst prepared by calcining a precursor containing cobalt hydroxide of Example 15 It became clear that the carbon nanotube manufactured from has excellent conductivity.

表3より、実施例16と比較して、実施例9のマグネシウムとマンガンを含む金属塩をCoHO2と混合する工程を含む製造方法にて作製された触媒より製造されたカーボンナノチューブは優れた導電性を有している。 From Table 3, compared with Example 16, the carbon nanotube manufactured from the catalyst manufactured by the manufacturing method including the process of mixing the metal salt containing magnesium and manganese of Example 9 with CoHO 2 has excellent conductivity. Have sex.

表3より、実施例9、11および13のマンガン成分の原料として酢酸マンガン・4水和物を使用して作製した触媒から製造されたカーボンナノチューブと比較して、実施例10、12および14の炭酸マンガンを使用して作製した触媒から製造されたカーボンナノチューブは優れた導電性を有している。   From Table 3, it is compared with the carbon nanotube produced from the catalyst produced using manganese acetate tetrahydrate as a raw material of the manganese component of Example 9, 11 and 13 compared with the carbon nanotube of Example 10, 12 and 14 Carbon nanotubes produced from catalysts made using manganese carbonate have excellent conductivity.

以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。   While the present invention has been described in terms of specific embodiments, variations and modifications obvious to one skilled in the art are included within the scope of the present invention.

Claims (5)

Co、MgおよびMnを含有し、走査型電子顕微鏡を用いた三次元解析により観察される形状が平板状であり、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした場合のX軸平均(μm)とY軸平均(μm)の積であるXY平面面積(μm 2 が0.2〜10μm2 であり、かつ、触媒中のMn含有量が1〜5モル%であることを特徴とするカーボンナノチューブ合成用触媒。 Containing Co, Mg and Mn, the shape observed by three-dimensional analysis using a scanning electron microscope is flat, and any axis on the catalyst plane is orthogonal to the X axis and the X axis on the same plane The XY plane area (μm 2 ) which is the product of the X axis average (μm) and the Y axis average (μm) when the axis is Y axis and the axis orthogonal to the X axis and Y axis is Z axis is 0.2 to 0.2 A catalyst for carbon nanotube synthesis, characterized in that it is 10 μm 2 and the Mn content in the catalyst is 1 to 5 mol%. Co、MgおよびMnを含有し、走査型電子顕微鏡を用いた三次元解析により観察される形状が平板状であり、触媒平面上の任意の軸をX軸、同一平面上のX軸と直交する軸をY軸、X軸およびY軸と直交する軸をZ軸とした場合のX軸平均(μm)とY軸平均(μm)の積であるXY平面面積(μm 2 が0.2〜10μm2 であり、かつ、触媒中のMn含有量が1〜5モル%であるカーボンナノチューブ合成用触媒の製造方法であって、CoHO2を含む触媒前駆体を焼成することを特徴とするカーボンナノチューブ合成用触媒の製造方法。 Containing Co, Mg and Mn, the shape observed by three-dimensional analysis using a scanning electron microscope is flat, and any axis on the catalyst plane is orthogonal to the X axis and the X axis on the same plane The XY plane area (μm 2 ) which is the product of the X axis average (μm) and the Y axis average (μm) when the axis is Y axis and the axis orthogonal to the X axis and Y axis is Z axis is 0.2 to 0.2 A method for producing a catalyst for carbon nanotube synthesis, having a particle size of 10 μm 2 and an Mn content in the catalyst of 1 to 5 mol%, comprising calcining a catalyst precursor containing CoHO 2. Method for producing a catalyst for synthesis. Mgを含む金属塩およびMnを含む金属塩と、CoHO2とを混合する工程を含む請求項
2記載のカーボンナノチューブ合成用触媒の製造方法。
The method for producing a catalyst for carbon nanotube synthesis according to claim 2, comprising the step of mixing CoHO 2 with a metal salt containing Mg and a metal salt containing Mn.
MnCO3を含む触媒前駆体を焼成することを特徴とする請求項2または3記載のカーボ
ンナノチューブ合成用触媒の製造方法。
The method for producing a catalyst for carbon nanotube synthesis according to claim 2 or 3, wherein the catalyst precursor containing MnCO 3 is calcined.
請求項1記載のカーボンナノチューブ合成用触媒または請求項2〜4いずれか記載の方法により製造されたカーボンナノチューブ合成用触媒の存在下、炭化水素および/またはアルコールを含んでなる炭素源を接触反応させるカーボンナノチューブの製造方法。 A catalyst for carbon nanotube synthesis comprising a hydrocarbon and / or an alcohol in the presence of the catalyst for carbon nanotube synthesis according to claim 1 or the catalyst for carbon nanotube synthesis produced by the method according to any one of claims 2 to 4 Method of producing carbon nanotubes.
JP2015163502A 2015-08-21 2015-08-21 Catalyst for carbon nanotube synthesis Expired - Fee Related JP6531560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163502A JP6531560B2 (en) 2015-08-21 2015-08-21 Catalyst for carbon nanotube synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163502A JP6531560B2 (en) 2015-08-21 2015-08-21 Catalyst for carbon nanotube synthesis

Publications (2)

Publication Number Publication Date
JP2017039099A JP2017039099A (en) 2017-02-23
JP6531560B2 true JP6531560B2 (en) 2019-06-19

Family

ID=58203509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163502A Expired - Fee Related JP6531560B2 (en) 2015-08-21 2015-08-21 Catalyst for carbon nanotube synthesis

Country Status (1)

Country Link
JP (1) JP6531560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394357B1 (en) * 2017-03-15 2022-05-06 토요잉크Sc홀딩스주식회사 Multi-walled carbon nanotube, method for producing multi-walled carbon nanotube, dispersion liquid, resin composition, and coating film
KR102303667B1 (en) * 2017-10-31 2021-09-16 에스케이이노베이션 주식회사 Catalyst for synthesizing carbon nanotube and method of preparing carbon nanotube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912583B2 (en) * 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 Method for producing oriented carbon nanotube film
JP5017747B2 (en) * 2001-04-23 2012-09-05 株式会社豊田中央研究所 Cobalt oxide hydroxide plate-like particles
DE102006007147A1 (en) * 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Process for the continuous production of catalysts
JP5018387B2 (en) * 2007-10-11 2012-09-05 三菱化学株式会社 Catalyst and method for producing fine hollow carbon fiber using the same
JP6237225B2 (en) * 2013-12-26 2017-11-29 東洋インキScホールディングス株式会社 Catalyst for carbon nanotube synthesis

Also Published As

Publication number Publication date
JP2017039099A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP6131516B2 (en) Catalyst for producing carbon nanotube and carbon nanotube produced using the same
EP3053880B1 (en) Method for controlling bulk density of carbon nanotube agglomerate
JP6369048B2 (en) Method for producing catalyst for carbon nanotube synthesis and method for producing aggregate of carbon nanotubes
KR101303061B1 (en) A catalyst composition for the synthesis of multi-walled carbon nanotubes
JP2010137222A (en) Metal nano catalyst, manufacturing method therefor, and adjusting method of growth mode of carbon nanotube using therewith
JP2010188337A (en) Catalyst composition for producing thin multi-walled carbon nanotube, and method for preparing the catalyst composition
EP3156125B1 (en) Method for manufacturing carbon nanotube agglomerate having controlled bulk density
KR101357628B1 (en) Metal Nano Catalyst, Method for Preparing thereof and Carbon Nanotube Synthesized Using the Same
JP5194455B2 (en) Catalyst for producing vapor grown carbon fiber and vapor grown carbon fiber
JP6237225B2 (en) Catalyst for carbon nanotube synthesis
JP6237311B2 (en) Catalyst for carbon nanotube synthesis
KR100962171B1 (en) Metal Nano Catalyst for Synthesizing Carbon Nanotube and Method for Preparing Carbon Nanotubes Using thereof
JP6531560B2 (en) Catalyst for carbon nanotube synthesis
KR101241035B1 (en) Process for preparing catalyst compositions for the synthesis of carbon nanotube having high bulk density
JP2017196579A (en) Production method of catalyst precursor for production of carbon nanotube
JP5845515B2 (en) Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes
JP4639798B2 (en) Vapor growth method carbon fiber production catalyst and carbon fiber production method
JP2009062230A (en) Method for manufacturing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP2009041127A (en) Method for producing vapor-grown carbon fiber, and vapor-grown carbon fiber
JP2020525385A (en) Entangled carbon nanotube and method for producing the same
KR101180435B1 (en) Catalyst for Synthesizing multi-walled Carbon Nanotube having high conductivity and dispersibility and manufacturing method thereof
JP2017177053A (en) Catalyst for carbon nanotube synthesis and method for producing the same
KR20140043772A (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP2009062646A (en) Method for producing vapor growth carbon fiber, and vapor growth carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R151 Written notification of patent or utility model registration

Ref document number: 6531560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees