JP5272136B2 - Method for producing nanocarbon material - Google Patents

Method for producing nanocarbon material Download PDF

Info

Publication number
JP5272136B2
JP5272136B2 JP2007101327A JP2007101327A JP5272136B2 JP 5272136 B2 JP5272136 B2 JP 5272136B2 JP 2007101327 A JP2007101327 A JP 2007101327A JP 2007101327 A JP2007101327 A JP 2007101327A JP 5272136 B2 JP5272136 B2 JP 5272136B2
Authority
JP
Japan
Prior art keywords
halogen
catalyst
carbon
organic solvent
nanocarbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007101327A
Other languages
Japanese (ja)
Other versions
JP2008254985A (en
Inventor
治男 横道
直樹 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
National Institute for Materials Science
Original Assignee
Toyama Prefecture
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, National Institute for Materials Science filed Critical Toyama Prefecture
Priority to JP2007101327A priority Critical patent/JP5272136B2/en
Publication of JP2008254985A publication Critical patent/JP2008254985A/en
Application granted granted Critical
Publication of JP5272136B2 publication Critical patent/JP5272136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a nanocarbon material whereby the nanocarbon material can be easily produced at a low cost. <P>SOLUTION: An alkali metal and/or an alkaline earth metal 6 are immersed in a halogen-containing organic solvent 4 while a catalyst 8 for forming a nanocarbon material is added to the solvent. The halogen-containing organic solvent is then irradiated with ultrasonic waves 10 to form a nanocarbon material on the surface of the catalyst. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、カーボンナノチューブ等のナノカーボン材料の製造方法に関する。   The present invention relates to a method for producing a nanocarbon material such as a carbon nanotube.

近年、いわゆるカーボンナノチューブ等のナノカーボン材料が注目されている。これらのナノカーボン材料は従来の炭素材料であるグラファイトやダイヤモンドと異なる物性を有しているため、電極の電子放出源、伝導性膜、電池電極等への応用が期待されている。また、ナノカーボン材料は配線用途としても適していると考えられる。上記カーボンナノチューブ等のナノカーボンの製造(合成)方法としては、気相合成法やアーク放電法が知られている。   In recent years, nanocarbon materials such as so-called carbon nanotubes have attracted attention. Since these nanocarbon materials have physical properties different from those of conventional carbon materials such as graphite and diamond, they are expected to be applied to electrode electron emission sources, conductive films, battery electrodes, and the like. Nanocarbon materials are also considered suitable for wiring applications. As methods for producing (synthesizing) nanocarbons such as the above-mentioned carbon nanotubes, a gas phase synthesis method and an arc discharge method are known.

しかしながら、カーボンナノチューブを気相合成するには約550℃の温度が必要とされるため、製造コストがかかるという問題がある。このようなことから、常温常圧でカーボンナノチューブを合成する技術として、有機金属化合物と炭素供給源とを含む混合液に支持体を添加し、この混合液に超音波を照射する技術が開示されている(特許文献1参照)。   However, since a temperature of about 550 ° C. is required to synthesize carbon nanotubes in a gas phase, there is a problem that manufacturing costs are increased. For this reason, as a technique for synthesizing carbon nanotubes at room temperature and normal pressure, a technique is disclosed in which a support is added to a mixed liquid containing an organometallic compound and a carbon supply source, and ultrasonic waves are applied to the mixed liquid. (See Patent Document 1).

特開2006−143578号公報JP 2006-143578 A

ところが、特許文献1記載の技術の場合、比較的高価な試薬である有機金属化合物を用いるため、製造コストの低減が充分でないという問題がある。
又、高温でカーボンナノチューブを気相合成する場合、反応系全体に熱エネルギーを供給する必要があるので、製造装置や熱源に要するコストが大きい。
本発明は上記の課題を解決するためになされたものであり、製造が簡単で製造コストの低く室温合成が可能なナノカーボン材料の製造方法の提供を目的とする。
However, in the case of the technique described in Patent Document 1, since an organometallic compound that is a relatively expensive reagent is used, there is a problem that the manufacturing cost is not sufficiently reduced.
In addition, when carbon nanotubes are vapor-phase synthesized at high temperatures, it is necessary to supply thermal energy to the entire reaction system, so the cost required for the production apparatus and heat source is high.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a nanocarbon material that is easy to produce and can be synthesized at room temperature with low production cost.

本発明者らは種々検討した結果、アルカリ金属を浸漬した含ハロゲン系有機溶媒に超音波を照射することで、ナノカーボン材料を従来より低温(例えば常温)で製造できること、つまり微視的領域への超音波エネルギーの照射により、系の温度上昇を抑制してナノカーボンの室温合成を可能とすることを見出した。つまり、上記した目的を達成するために、本発明のナノカーボン材料の製造方法は、含ハロゲン系有機溶媒中にアルカリ金属浸漬すると共にナノカーボン材料を形成するための触媒を前記含ハロゲン系有機溶媒中に加え、前記含ハロゲン系有機溶媒に超音波を照射して前記触媒の表面にカーボンナノチューブ又はカーボンナノワイヤを形成させることを特徴とする。


As a result of various studies, the present inventors have found that nanocarbon materials can be produced at a lower temperature (for example, room temperature) than before by irradiating a halogen-containing organic solvent in which an alkali metal is immersed, that is, to a microscopic range. It was found that the irradiation of the ultrasonic energy of the above enables the room temperature synthesis of nanocarbon by suppressing the temperature rise of the system. That is, in order to achieve the above object, a manufacturing method of the nano-carbon material of the present invention, the catalyst for the formation of nano-carbon material with immersion of the alkali metal into the halogen-containing organic solvents containing halogenated organic In addition to the solvent, the halogen-containing organic solvent is irradiated with ultrasonic waves to form carbon nanotubes or carbon nanowires on the surface of the catalyst.


前記含ハロゲン系有機溶媒は脂肪族ハロゲン系有機溶媒及び/又は芳香族ハロゲン系有機溶媒であることが好ましい。
前記触媒はNi,Feの群から選ばれる少なくとも1種以上であることが好ましい。
The halogen-containing organic solvent is preferably an aliphatic halogen-based organic solvent and / or an aromatic halogen-based organic solvent.
The catalyst is preferably at least one selected from the group of Ni and Fe.

本発明のナノカーボン材料の製造方法によれば、製造が簡単で、かつ従来より低温(例えば室温)でナノカーボン材料を製造することができ、製造コストを低減することができる。又、本発明によれば、熱的に不安定な基材の表面にナノカーボン材料を合成することもできる。   According to the method for producing a nanocarbon material of the present invention, the production is simple, and the nanocarbon material can be produced at a lower temperature (for example, room temperature) than before, and the production cost can be reduced. Further, according to the present invention, a nanocarbon material can be synthesized on the surface of a thermally unstable substrate.

以下、本発明に係るナノカーボン材料の製造方法の実施の形態について説明する。
本発明に係るナノカーボン材料の製造方法は、含ハロゲン系有機溶媒中にアルカリ金属及び/又はアルカリ土類金属を浸漬すると共にナノカーボン材料を形成するための触媒を加え、溶媒に超音波を照射して行う。
Hereinafter, embodiments of the method for producing a nanocarbon material according to the present invention will be described.
The method for producing a nanocarbon material according to the present invention includes immersing an alkali metal and / or alkaline earth metal in a halogen-containing organic solvent, adding a catalyst for forming the nanocarbon material, and irradiating the solvent with ultrasonic waves. And do it.

図1は、本発明の製造方法を実施するための装置の一例を示す。この図において、容器2に含ハロゲン系有機溶媒4を満たし、溶媒4中にアルカリ金属6の塊を浸漬する。そして、ナノカーボン材料を形成するための触媒であるNiを担持した基板8を、溶媒4中にあってアルカリ金属6の近傍に配置する。この状態で、アルカリ金属6と基板8の付近の溶媒4中に超音波発振器本体10から延びるホーン(又はチップ)10Aの先端が配置され、ここから超音波が発振される。   FIG. 1 shows an example of an apparatus for carrying out the manufacturing method of the present invention. In this figure, the container 2 is filled with a halogen-containing organic solvent 4, and a lump of alkali metal 6 is immersed in the solvent 4. Then, a substrate 8 supporting Ni as a catalyst for forming the nanocarbon material is placed in the solvent 4 and in the vicinity of the alkali metal 6. In this state, the tip of a horn (or chip) 10A extending from the ultrasonic oscillator main body 10 is placed in the solvent 4 near the alkali metal 6 and the substrate 8, and ultrasonic waves are oscillated therefrom.

詳細は不明であるが、超音波のエネルギにより溶媒分子が分解して炭素原子が生じ、この炭素原子が基板8に担持された触媒(Ni)表面にナノカーボン材料として析出すると考えられる。一方、溶媒分子が分解して生じるハロゲン原子はアルカリ金属と反応して塩となると考えられる。
溶媒分子が分解して炭素原子が生じる機構としては以下が考えられる。例えば含ハロゲン系有機溶媒として四塩化炭素(CCl4)を用い、アルカリ金属としてNaを用いた場合、CCl4に超音波を照射することにより、CCl4溶媒中に微細な泡が生じる。この泡が破裂(キャビテーション)する際にエネルギーを放出するが、Naが共存しない場合は、このエネルギーによってCCl4の結合の一部が一時的に切断されても、再結合してしまう。一方、Naが共存する場合、NaとClとの結合のし易さから、放出エネルギーを吸収したCCl4分子の近傍に金属NaがCCl4分子からClを引き抜き、結果的にC原子が供給される。このようにして生じたC原子が、ニッケル(Ni)や鉄(Fe)などの触媒金属表面に堆積することにより、ナノカーボンが成長すると考えられる。又、キャビテーションによる超音波からのエネルギーが触媒金属表面にも照射され、ナノカーボン成長に重要な役割を果たすことも考えられる。
Although details are unknown, it is considered that solvent molecules are decomposed by ultrasonic energy to generate carbon atoms, and these carbon atoms are deposited on the surface of the catalyst (Ni) supported on the substrate 8 as a nanocarbon material. On the other hand, it is considered that a halogen atom generated by decomposition of solvent molecules reacts with an alkali metal to form a salt.
The following is considered as a mechanism in which a solvent molecule is decomposed to generate a carbon atom. For example, when carbon tetrachloride (CCl 4 ) is used as the halogen-containing organic solvent and Na is used as the alkali metal, fine bubbles are generated in the CCl 4 solvent by irradiating the CCl 4 with ultrasonic waves. When this bubble bursts (cavitation), energy is released, but when Na does not coexist, even if a part of the bond of CCl 4 is temporarily broken by this energy, recombination occurs. On the other hand, if the Na coexist, from binding ease of Na and Cl, the metal Na is pull the Cl from CCl 4 molecules are consequently supplied C atoms in the vicinity of CCl 4 molecules absorb energy released The It is considered that nanocarbon grows by the C atoms generated in this manner being deposited on the surface of a catalytic metal such as nickel (Ni) or iron (Fe). In addition, it is considered that energy from ultrasonic waves generated by cavitation is also applied to the catalytic metal surface and plays an important role in nanocarbon growth.

この反応条件は、超音波のエネルギーやアルカリ金属、触媒の量等に応じて変化するが、通常、5〜10分程度の超音波照射で生じ、溶媒の温度も照射前からあまり上昇しない。従って、常温常圧で反応を行うことができる。   The reaction conditions vary depending on the ultrasonic energy, the amount of alkali metal, the amount of catalyst, etc., but are usually generated by ultrasonic irradiation for about 5 to 10 minutes, and the temperature of the solvent does not increase so much from before irradiation. Therefore, the reaction can be performed at room temperature and normal pressure.

本発明により製造されるナノカーボン材料とは、通常、1nm程度〜数100nmのサイズの構造体からなるカーボン材料をいい、例えばカーボンナノチューブ(直径が1nm〜数10nmの管状繊維状物が例示される)、カーボンナノワイヤー(直径が数100nmの中実の繊維状物が例示される)、カーボンオニオン(直径が数nm〜数100nmでタマネギ状に黒鉛層が数10〜数100層積層した球状微粒子が例示される)、カーボンナノワイヤーの放射状集合体(カーボンナノワイヤーが多数放射状に束ねられ、花のように拡がったもの)が挙げられる。特に、本発明は、カーボンナノチューブやカーボンナノワイヤー等、細長く繊維状の材料の製造に適している。   The nanocarbon material produced according to the present invention usually refers to a carbon material composed of a structure having a size of about 1 nm to several hundred nm, such as a carbon nanotube (a tubular fibrous material having a diameter of 1 nm to several tens of nm). ), Carbon nanowires (examples are solid fibrous materials having a diameter of several hundreds of nanometers), carbon onions (spherical fine particles having a diameter of several nanometers to several hundreds of nanometers and onion-like graphite layers laminated with several ten to several hundreds of layers. ), And a radial aggregate of carbon nanowires (a large number of carbon nanowires are radially bundled and spread like a flower). In particular, the present invention is suitable for producing elongated and fibrous materials such as carbon nanotubes and carbon nanowires.

含ハロゲン系有機溶媒としては特に制限されないが、例えば脂肪族ハロゲン系有機溶媒や芳香族ハロゲン系有機溶媒を用いることができ、異なる種類の含ハロゲン系有機溶媒を混合して使用してもよい。なお、以下のアルカリ金属やアルカリ土類金属は水と激しく反応するが、これを防止するため含ハロゲン系有機溶媒は脱水して用いることが好ましい。
脂肪族ハロゲン系有機溶媒としては、例えばクロロホルム、塩化メチル、ジクロロメタン、四塩化炭素、四臭化炭素、臭化メチル、ヨウ化メチルを挙げることができる。
芳香族ハロゲン系有機溶媒としては、例えばクロロベンゼン、塩化ベンジルを挙げることができる。
Although it does not restrict | limit especially as a halogen-containing organic solvent, For example, an aliphatic halogen-type organic solvent and an aromatic halogen-type organic solvent can be used, You may mix and use a different kind of halogen-containing organic solvent. In addition, although the following alkali metals and alkaline earth metals react violently with water, in order to prevent this, it is preferable to dehydrate and use the halogen-containing organic solvent.
Examples of the aliphatic halogen-based organic solvent include chloroform, methyl chloride, dichloromethane, carbon tetrachloride, carbon tetrabromide, methyl bromide, and methyl iodide.
Examples of the aromatic halogen organic solvent include chlorobenzene and benzyl chloride.

アルカリ金属としては特に制限されないが、例えばNa、Li、K等の金属の固体を挙げることができる。これらのうち、入手や取扱いの容易さからNaが好ましい。
アルカリ土類金属としては特に制限されないが、例えばCa,Ba等の金属の固体を挙げることができる。これらのうち、入手や取扱いの容易さからCaが好ましい。
Although it does not restrict | limit especially as an alkali metal, For example, metal solids, such as Na, Li, and K, can be mentioned. Among these, Na is preferable from the viewpoint of availability and handling.
Although it does not restrict | limit especially as an alkaline-earth metal, For example, metal solids, such as Ca and Ba, can be mentioned. Of these, Ca is preferable because of availability and handling.

ナノカーボン材料を形成するための触媒は、触媒単体から成っていてもよく、触媒を基材に担持させてもよい。含ハロゲン系有機溶媒分子中の炭素が炭素源となって触媒表面に析出・成長してナノカーボン材料が合成される。
触媒単体としては、板状、粒状等の形態とすることができる。触媒を基材に担持させる場合、基材の形態を板状、粒状等とすることができる。
上記触媒としては、例えばNi、Feの他、カーボンナノチューブを気相合成法で製造する際に通常使用されている公知の金属触媒を挙げることができる。
上記基材としては、金属触媒を担持可能で含ハロゲン系有機溶媒に不溶であれば何でもよいが、例えばSi、石英、金属(Ni、Fe、Ge等)を挙げることができる。
The catalyst for forming the nanocarbon material may be composed of a single catalyst or may be supported on a substrate. The carbon in the halogen-containing organic solvent molecule becomes a carbon source and precipitates and grows on the catalyst surface to synthesize a nanocarbon material.
As a catalyst simple substance, it can be set as forms, such as plate shape and a granular form. When the catalyst is supported on the base material, the shape of the base material can be plate-like or granular.
As said catalyst, the well-known metal catalyst normally used when manufacturing a carbon nanotube by a gaseous-phase synthesis method other than Ni and Fe can be mentioned, for example.
The substrate may be anything as long as it can support a metal catalyst and is insoluble in a halogen-containing organic solvent. Examples thereof include Si, quartz, and metals (Ni, Fe, Ge, etc.).

触媒は、前記含ハロゲン系有機溶媒中に加えればよいが、上記したアルカリ金属(及び/又はアルカリ土類金属)の近傍に触媒を配置すると、溶媒分子がアルカリ金属によって解離して生じた炭素原子がすぐに触媒上に析出するので好ましい。なお、触媒(又は触媒担持した基材)が粒状である場合、溶媒を攪拌する等により触媒を溶媒中に均一に分散させれば、アルカリ金属に接近するようになる。   The catalyst may be added to the halogen-containing organic solvent. However, when the catalyst is disposed in the vicinity of the alkali metal (and / or alkaline earth metal), the carbon atoms generated by the dissociation of the solvent molecules by the alkali metal. Is preferred because it immediately deposits on the catalyst. When the catalyst (or the catalyst-supported base material) is granular, the catalyst comes close to the alkali metal if the catalyst is uniformly dispersed in the solvent, for example, by stirring the solvent.

超音波のエネルギーは特に制限されないが、例えば100W程度、パルス間隔1〜数秒程度とすることができる。又、超音波発振器10の構造は特に制限されず、上記したホーン型の他、容器の底や側壁に振動板を有するバット型を用いても良い。
又、ホーン型の超音波発振器を用いる場合は、上記したアルカリ金属(及び/又はアルカリ土類金属)と触媒との近傍の溶媒4中にホーン先端を配置すると、反応領域に近い場所に超音波を生じさせることができるので好ましい。バット型の超音波発振器を用いる場合は、溶媒全体に超音波が付加される。
The energy of the ultrasonic wave is not particularly limited, but can be, for example, about 100 W and a pulse interval of about 1 to several seconds. The structure of the ultrasonic oscillator 10 is not particularly limited, and a bat type having a diaphragm on the bottom or side wall of the container may be used in addition to the horn type described above.
When a horn type ultrasonic oscillator is used, if the tip of the horn is placed in the solvent 4 in the vicinity of the alkali metal (and / or alkaline earth metal) and the catalyst, the ultrasonic wave is placed near the reaction region. Is preferable. When a bat-type ultrasonic oscillator is used, ultrasonic waves are added to the entire solvent.

反応系の温度、圧力等は特に制限されないが、装置を簡易にして製造コストを低減するため、常温常圧であることが好ましい。又、含ハロゲン系有機溶媒の蒸気圧が低い場合、密閉容器内で反応を行うことが好ましい。   The temperature, pressure, etc. of the reaction system are not particularly limited, but normal temperature and normal pressure are preferred in order to simplify the apparatus and reduce production costs. In addition, when the vapor pressure of the halogen-containing organic solvent is low, the reaction is preferably carried out in a sealed container.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

図1に示した装置を用いた。まず、容器2に四塩化炭素(純度99.8%、和光純薬工業株式会社)からなる溶媒4を約50mL入れ、その中に金属Na(純度98.0%、和光純薬工業株式会社)の塊6を投入した。
一方、触媒としてNi薄膜(マグネトロンスパッタ法(Arガス中、ガス流量2 sccm、ガス圧2 mTorr、放電パワー100W)により、室温のSi基板に成膜)を20nm程度表面に成膜した結晶性Si基板8を溶媒4に浸漬し、塊6の近傍に配置した(基板8のNi薄膜側が塊6に面するようにした)。この状態で、超音波発振器(大岳製作所製)のホーン10Aの先端を塊6と基板8の近傍に配置し、溶媒4中に超音波を照射した。超音波エネルギは100W、パルスは1秒、照射時間10分とした。又、反応条件は常温(約25℃)、大気圧とした。
The apparatus shown in FIG. 1 was used. First, about 50 mL of a solvent 4 made of carbon tetrachloride (purity 99.8%, Wako Pure Chemical Industries, Ltd.) is placed in a container 2, and a mass 6 of metal Na (purity 98.0%, Wako Pure Chemical Industries, Ltd.) is placed therein. I put it in.
On the other hand, crystalline Si with a Ni thin film (deposited on a Si substrate at room temperature by magnetron sputtering (in Ar gas, gas flow rate 2 sccm, gas pressure 2 mTorr, discharge power 100 W)) on the surface of about 20 nm as a catalyst. The substrate 8 was immersed in the solvent 4 and arranged in the vicinity of the lump 6 (the Ni thin film side of the substrate 8 faced the lump 6). In this state, the tip of the horn 10 </ b> A of an ultrasonic oscillator (manufactured by Otake Manufacturing Co., Ltd.) was placed in the vicinity of the mass 6 and the substrate 8, and ultrasonic waves were irradiated into the solvent 4. The ultrasonic energy was 100 W, the pulse was 1 second, and the irradiation time was 10 minutes. The reaction conditions were room temperature (about 25 ° C.) and atmospheric pressure.

図2〜図4は超音波照射後のNi薄膜表面のSEM(走査型電子顕微鏡)像を示す。図2〜図4につれて画像の倍率が高くなっている。各図に示すようにNi薄膜表面に、先端が鋭く尖ったカーボンナノワイヤーが成長したのが確認された。
図5は、図2〜図4に示されるカーボン堆積部分を剥ぎ取り、TEM用のグリッドに付着させて撮影した透過型電子顕微鏡(TEM)像を示す。図5のTEM像によれば、カーボン堆積物中に何層にも入れ子状になった層からなる多層カーボンナノチューブが存在していたことがわかる。図5の符号Wはカーボンナノチューブの幅を示し、これより、カーボンナノチューブの直径が10〜20nm程度であることがわかる。
又、図4の白抜き矢印に示したように、カーボンナノワイヤーよりさらに小径の糸状の物質が生成されたことがわかった。この糸状の物質のサイズは図5のWに類似するので、糸状の物質がカーボンナノチューブである可能性がある。
2 to 4 show SEM (scanning electron microscope) images of the Ni thin film surface after ultrasonic irradiation. The magnification of the image is increased as shown in FIGS. As shown in each figure, it was confirmed that carbon nanowires with sharp tips were grown on the surface of the Ni thin film.
FIG. 5 shows a transmission electron microscope (TEM) image taken by peeling off the carbon deposit portion shown in FIGS. 2 to 4 and attaching it to a TEM grid. According to the TEM image of FIG. 5, it can be seen that multi-walled carbon nanotubes composed of layers nested in the carbon deposit existed. The symbol W in FIG. 5 indicates the width of the carbon nanotube. From this, it can be seen that the diameter of the carbon nanotube is about 10 to 20 nm.
Further, as indicated by the white arrow in FIG. 4, it was found that a thread-like substance having a smaller diameter than that of the carbon nanowire was generated. Since the size of this filamentous material is similar to W in FIG. 5, the filamentous material may be a carbon nanotube.

触媒として、上記したNi被覆Si基板の代わりにFe薄膜(マグネトロンスパッタ法(Arガス中、ガス流量2 sccm、ガス圧2 mTorr、放電パワー100W)により、室温の石英基板に成膜)を20nm程度表面に形成した石英基板8を用いたこと以外は実施例1とまったく同様にして溶媒4中に超音波を照射した。   As a catalyst, an Fe thin film (deposited on a quartz substrate at room temperature by magnetron sputtering (in Ar gas, gas flow rate 2 sccm, gas pressure 2 mTorr, discharge power 100 W)) instead of the Ni-coated Si substrate is about 20 nm. The solvent 4 was irradiated with ultrasonic waves in exactly the same manner as in Example 1 except that the quartz substrate 8 formed on the surface was used.

図6〜図10は超音波照射後のFe薄膜表面のSEM像を示す。図6〜図10につれて画像の倍率が高くなっている。各図に示すようにFe薄膜表面に、先端が鋭く尖ったカーボンナノワイヤーが成長したのが確認された。
各図のスケールを参照すると、カーボンナノワイヤーの直径が80nm程度であると考えられる。
6 to 10 show SEM images of the Fe thin film surface after ultrasonic irradiation. The magnification of the image is increased as shown in FIGS. As shown in each figure, it was confirmed that carbon nanowires having sharp tips were grown on the Fe thin film surface.
Referring to the scales in each figure, it is considered that the diameter of the carbon nanowire is about 80 nm.

アルカリ金属だけでなく、アルカリ土類金属も本発明に有効であることを示すための簡易な試験を行った。
まず、図1の装置に上記四塩化炭素(溶媒)4を約50mL入れ、その中にニッケル微粒子(粒径3-7μm、株式会社ニラコ)を投入し、攪拌して液中に分散させた。この液に金属Ca(純度99.5%、粒径1-3 mm、株式会社ニラコ)の塊6を投入し、上記超音波発振器のホーン10Aの先端を塊6の近傍に配置し、溶媒4中に超音波を約10分間照射した。実験終了後、ニッケル微粒子を回収した。
図11は、ニッケル微粒子表面のSEM像を示す。この図において、微粒子表面に堆積物が存在することが確認された。この堆積物をエネルギー分散型 X 線分光(EDS)で分析したところ、炭素原子が検出された。
A simple test was conducted to show that not only alkali metals but also alkaline earth metals are effective in the present invention.
First, about 50 mL of the above carbon tetrachloride (solvent) 4 was put into the apparatus of FIG. 1, and nickel fine particles (particle size: 3-7 μm, Nilaco Co., Ltd.) were put therein and stirred to disperse in the liquid. A lump 6 of metallic Ca (purity 99.5%, particle size 1 to 3 mm, Nilaco Co., Ltd.) is put into this liquid, and the tip of the horn 10A of the ultrasonic oscillator is placed in the vicinity of the lump 6 in the solvent 4 Ultrasonic waves were irradiated for about 10 minutes. After the experiment, nickel fine particles were collected.
FIG. 11 shows an SEM image of the surface of the nickel fine particles. In this figure, it was confirmed that deposits exist on the surface of the fine particles. When this deposit was analyzed by energy dispersive X-ray spectroscopy (EDS), carbon atoms were detected.

なお、図12は金属Caの代わりに上記金属Naを投入し、ニッケル微粒子(純度99.9%、粒径300Mesh、フルウチ化学株式会社)を用いた場合のニッケル微粒子表面のSEM像を示す。金属Naを投入した場合もニッケル微粒子表面に堆積物が存在し、この堆積物をEDSで分析したところ、炭素原子が検出された。
一方、図13は、上記金属Naを投入し、超音波照射を行わずに1時間液中に浸漬した場合のニッケル微粒子表面のSEM像を示す。この場合、ニッケル微粒子表面に堆積物は見られず、EDS分析において炭素原子は検出されなかった。
以上より、金属Caを用いた場合もニッケル微粒子表面に炭素が堆積するので、反応条件(基板や触媒の種類等)を調整することにより、金属Naを用いたのと同様にナノカ−ボン材料を製造できることが期待される。
FIG. 12 shows an SEM image of the surface of the nickel fine particles when the metal Na is used instead of the metal Ca and nickel fine particles (purity 99.9%, particle size 300 mesh, Furuuchi Chemical Co., Ltd.) are used. Even when metal Na was added, deposits were present on the surface of the nickel fine particles, and when this deposit was analyzed by EDS, carbon atoms were detected.
On the other hand, FIG. 13 shows an SEM image of the surface of the nickel fine particles when the metal Na is introduced and immersed in the liquid for 1 hour without ultrasonic irradiation. In this case, no deposit was observed on the surface of the nickel fine particles, and no carbon atoms were detected in the EDS analysis.
As described above, carbon is deposited on the surface of the nickel fine particles even when metal Ca is used. Therefore, by adjusting the reaction conditions (substrate, type of catalyst, etc.), the nanocarbon material can be obtained in the same manner as when using metal Na. It is expected that it can be manufactured.

<比較例1>
上記したNi被覆Si基板の代わりに、Niを被覆しない結晶性Si基板を用いたこと以外は実施例1とまったく同様にして実験を行った。
図14は超音波照射後の基板表面のSEM像を示す。図に示すように、基板表面にほとんどカーボンナノ材料の存在が確認されなかった。
<Comparative Example 1>
The experiment was performed in the same manner as in Example 1 except that a crystalline Si substrate not coated with Ni was used instead of the Ni-coated Si substrate.
FIG. 14 shows an SEM image of the substrate surface after ultrasonic irradiation. As shown in the figure, almost no carbon nanomaterial was present on the substrate surface.

<比較例2>
上記したFe被覆石英基板の代わりに、Feを被覆しない石英基板を用いたこと以外は実施例1とまったく同様にして実験を行った。
図15は超音波照射後の基板表面のSEM像を示す。図に示すように、基板表面にほとんどカーボンナノ材料の存在が確認されなかった。
<Comparative Example 2>
The experiment was performed in the same manner as in Example 1 except that a quartz substrate not coated with Fe was used instead of the above-described Fe-coated quartz substrate.
FIG. 15 shows an SEM image of the substrate surface after ultrasonic irradiation. As shown in the figure, almost no carbon nanomaterial was present on the substrate surface.

本発明のナノカーボン材料の製造に用いて好適な装置の構成例を示す図である。It is a figure which shows the structural example of an apparatus suitable for manufacture of the nanocarbon material of this invention. 超音波照射後のNi薄膜表面のSEM像を示す図である。It is a figure which shows the SEM image of the Ni thin film surface after ultrasonic irradiation. 超音波照射後のNi薄膜表面のSEM像を示す別の図である。It is another figure which shows the SEM image of the Ni thin film surface after ultrasonic irradiation. 超音波照射後のNi薄膜表面のSEM像を示すさらに別の図である。It is another figure which shows the SEM image of the Ni thin film surface after ultrasonic irradiation. 超音波照射後のNi薄膜表面のTEM像を示す図である。It is a figure which shows the TEM image of the Ni thin film surface after ultrasonic irradiation. 超音波照射後のFe薄膜表面のSEM像を示す図である。It is a figure which shows the SEM image of the Fe thin film surface after ultrasonic irradiation. 超音波照射後のFe薄膜表面のSEM像を示す別の図である。It is another figure which shows the SEM image of the Fe thin film surface after ultrasonic irradiation. 超音波照射後のFe薄膜表面のSEM像を示すさらに別の図である。It is another figure which shows the SEM image of the Fe thin film surface after ultrasonic irradiation. 超音波照射後のFe薄膜表面のSEM像を示す他の図である。It is another figure which shows the SEM image of the Fe thin film surface after ultrasonic irradiation. 超音波照射後のFe薄膜表面のSEM像を示すさらに他の図である。It is another figure which shows the SEM image of the Fe thin film surface after ultrasonic irradiation. 超音波照射後のNi微粒子表面のSEM像を示す図である。It is a figure which shows the SEM image of the Ni fine particle surface after ultrasonic irradiation. 超音波照射後のNi微粒子表面のSEM像を示す別の図である。It is another figure which shows the SEM image of the Ni fine particle surface after ultrasonic irradiation. 超音波を照射しないNi微粒子表面のSEM像を示す図である。It is a figure which shows the SEM image of the Ni fine particle surface which does not irradiate an ultrasonic wave. 超音波照射後のNiを有しない表面のSEM像を示す図である。It is a figure which shows the SEM image of the surface which does not have Ni after ultrasonic irradiation. 超音波照射後のFeを有しない表面のSEM像を示す図である。It is a figure which shows the SEM image of the surface which does not have Fe after ultrasonic irradiation.

符号の説明Explanation of symbols

2 容器
4 溶媒
6 アルカリ金属(金属Na)
8 触媒(Ni被覆Si基板)
10 超音波発振器
2 container 4 solvent 6 alkali metal (metal Na)
8 Catalyst (Ni-coated Si substrate)
10 Ultrasonic oscillator

Claims (3)

含ハロゲン系有機溶媒中にアルカリ金属浸漬すると共にナノカーボン材料を形成するための触媒を前記含ハロゲン系有機溶媒中に加え、前記含ハロゲン系有機溶媒に超音波を照射して前記触媒の表面にカーボンナノチューブ又はカーボンナノワイヤを形成させることを特徴とするナノカーボン材料の製造方法。 Adding a catalyst to form a nano-carbon material with immersion of the alkali metal into the halogen-containing organic solvent in the halogen-containing organic solvent, the surface of the catalyst by irradiating ultrasonic waves to the halogen-containing organic solvents Forming a carbon nanotube or a carbon nanowire in a method for producing a nanocarbon material. 前記含ハロゲン系有機溶媒は脂肪族ハロゲン系有機溶媒及び/又は芳香族ハロゲン系有機溶媒であることを特徴とする請求項1記載のナノカーボン材料の製造方法。   The method for producing a nanocarbon material according to claim 1, wherein the halogen-containing organic solvent is an aliphatic halogen-based organic solvent and / or an aromatic halogen-based organic solvent. 前記触媒はNi,Feの群から選ばれる少なくとも1種以上であることを特徴とする請求項1又は2記載のナノカーボン材料の製造方法。   The method for producing a nanocarbon material according to claim 1 or 2, wherein the catalyst is at least one selected from the group consisting of Ni and Fe.
JP2007101327A 2007-04-09 2007-04-09 Method for producing nanocarbon material Expired - Fee Related JP5272136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101327A JP5272136B2 (en) 2007-04-09 2007-04-09 Method for producing nanocarbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101327A JP5272136B2 (en) 2007-04-09 2007-04-09 Method for producing nanocarbon material

Publications (2)

Publication Number Publication Date
JP2008254985A JP2008254985A (en) 2008-10-23
JP5272136B2 true JP5272136B2 (en) 2013-08-28

Family

ID=39978932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101327A Expired - Fee Related JP5272136B2 (en) 2007-04-09 2007-04-09 Method for producing nanocarbon material

Country Status (1)

Country Link
JP (1) JP5272136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552633B2 (en) * 2015-03-24 2019-07-31 国立大学法人九州大学 Halogenated carbon and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136334B2 (en) * 1997-07-23 2001-02-19 工業技術院長 Method for producing carbon nanotube
JP4674304B2 (en) * 2003-09-30 2011-04-20 国立大学法人愛媛大学 Method and apparatus for producing carbon nanotube
KR100657913B1 (en) * 2004-11-20 2006-12-14 삼성전자주식회사 method of synthesizing single-wall carbon nanotube at room temperature and atmosphere pressure
JP4899045B2 (en) * 2005-03-01 2012-03-21 国立大学法人東北大学 Nanocarbon material generation method, generation apparatus, and nanocarbon material

Also Published As

Publication number Publication date
JP2008254985A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
RU2437832C2 (en) Carbon nanotubes functionalised with fullerenes
JP5661677B2 (en) Method for the synthesis of carbon single-walled nanotubes by chemical vapor deposition
WO2000040509A1 (en) Amorphous nano-scale carbon tube and production method therefor
TW200410903A (en) Method of making nanotube-based material with enhanced electron field emission properties
JP2007182375A (en) Method for manufacturing nitrogen-doped single-walled carbon nanotube
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
Fan et al. Dynamic State and active structure of Ni–Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy
JP2006015342A (en) Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
JP2005335968A (en) Aegagropila-like carbon, and method and apparatus for producing the same
US8926934B2 (en) Laser-based method for growing an array of carbon nanotubes
JP2006520733A (en) Large-scale synthesis of double-walled carbon nanotubes by vapor deposition
JP5272136B2 (en) Method for producing nanocarbon material
JP5117675B2 (en) Carbon nanotube synthesis method
JP4696598B2 (en) carbon nanotube
Gergeroglu et al. Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure
Chen et al. Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol
JP2009173497A (en) Carbon nanotube synthetic method using paracrystalline catalyst
JP4936349B2 (en) Method for producing metal-encapsulated carbon nanocapsules
KR100490472B1 (en) Carbon nanotubes synthesis method using magnetic fluids
JP2003313018A (en) Method for producing carbon nanotube
Yan et al. Flash Solid–Solid Synthesis of Silicon Oxide Nanorods
JP4948939B2 (en) Carbon nanotube synthesis method, silicon substrate, electron source, and field emission display
JP2016088787A (en) Method for producing oriented carbon nanotube aggregates
JP2007223820A (en) Method of manufacturing carbon nano-structure, catalytic metal base material and catalytic reaction vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees