JPWO2006028188A1 - ステージ装置及び露光装置 - Google Patents

ステージ装置及び露光装置 Download PDF

Info

Publication number
JPWO2006028188A1
JPWO2006028188A1 JP2006535826A JP2006535826A JPWO2006028188A1 JP WO2006028188 A1 JPWO2006028188 A1 JP WO2006028188A1 JP 2006535826 A JP2006535826 A JP 2006535826A JP 2006535826 A JP2006535826 A JP 2006535826A JP WO2006028188 A1 JPWO2006028188 A1 JP WO2006028188A1
Authority
JP
Japan
Prior art keywords
stage
air
reference plane
wafer stage
stage wst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006535826A
Other languages
English (en)
Inventor
茂 萩原
茂 萩原
直彦 岩田
直彦 岩田
雅弥 岩崎
雅弥 岩崎
唯 星野
唯 星野
千津子 本山
千津子 本山
加藤 祐造
祐造 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2006028188A1 publication Critical patent/JPWO2006028188A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

高スループットを達成しながらもステージの位置を高精度に計測することができるステージ装置、及び当該ステージ装置を備える露光装置を提供する。ステージ装置は、レーザ干渉計からウェハステージ(WST)上に設けられた移動鏡(26X,26Y)に照射されるレーザ光の光路に対して+Z方向から−Z方向の温調エア(ダウンフロー)を供給する空調装置(28X,28Y)と、レーザ光の光路より下方の空間に−Y方向から+Y方向の温調エア(下層サイドフロー)を供給する空調装置(29)とを備える。更に、照射光学系(33a)及び受光光学系(33b)からなるオートフォーカスセンサの光路に対して温調エアを供給する空調装置(34)を備える。

Description

本発明は、移動可能に構成されたステージを備えるステージ装置、及び当該ステージ装置を備える露光装置に関する。
本願は、2004年9月10日に出願された特願2004−263882号に基づき優先権を主張し、その内容をここに援用する。
半導体素子、液晶表示素子、撮像素子、薄膜磁気ヘッド、その他の微細なデバイスの製造においては、マスク又はレチクル(以下、これらを総称する場合にはマスクという)に形成されたパターンをウェハ又はガラスプレート等(以下、これらを総称する場合には、基板という)に転写する露光装置が用いられる。一般に、デバイスは基板上に複数層のパターンを重ねて形成して製造されるため、投影光学系PLを介して基板上に投影されるマスクのパターンの像と基板上に既に形成されているパターンとを精密に重ね合わせる必要がある。
このため、マスクを保持するマスクステージ及び基板を保持する基板ステージには、各々のステージの位置を検出するレーザ干渉計が設けられている。レーザ干渉計は、レーザ光等の高コヒーレントな測定光を基板ステージ又はマスクステージに設けられた移動鏡に照射するとともに高コヒーレントな参照光を位置が固定された固定鏡に照射し、移動鏡で反射された測定光と固定鏡で反射された参照光とを干渉させて得られる干渉光を検出して基板ステージ又はマスクステージの位置を検出するものであり、例えば0.1〜1nm程度の高分解能を有する。
レーザ干渉計は、環境温度の変動又は空気の揺らぎがあると、測定光の光路長又は参照光の光路長が変化するため検出精度が悪化する。かかる検出精度の悪化を防止して高い検出精度を維持するために、測定光及び参照光の光路全体を均一温度に維持するとともに、均一流速に維持する空調装置が用いられる。例えば、以下の特許文献1には、測定光の光路の上方向から光路の下方向へ向けて温度が調整された気体を供給する空調装置が開示されている。
また、露光装置は、投影光学系の像面に基板表面を合わせ込むために、基板を保持する基板ステージ上面の上下方向における位置及び基板ステージ上面の傾斜(基板ステージの姿勢)を検出するオートフォーカスセンサ(AFセンサ)を備えている。このAFセンサも、基板ステージ上面に対して斜め方向から基板ステージ上の少なくとも1点に検出ビームを照射し、その反射光を検出して基板ステージの上下方向における位置及び傾斜を検出するセンサである。こため、AFセンサも環境温度の変動又は空気の揺らぎがあると検出精度が悪化してしまう。
以下の特許文献2には、直交する2方向(X方向及びY方向)に沿って設定された測定光の光路の各々に対して斜め方向(X方向及びY方向に対して45°をなす方向から)から温度が調整された空気を測定光の光路と基板ステージ上(AFセンサからの検出ビームの光路)とに供給する空調装置が開示されている。更に、以下の特許文献3には、直交する2方向(X方向及びY方向)に沿って設定された測定光の光路及び基板ステージを含む空間全体に亘って温度が調整された気体を一方向(例えばX方向)から供給する空調装置が開示されている。
特開平1−18002号公報 特開平9−22121号公報 特開平9−82626号公報
ところで、近年においては、スループット(単位時間に露光処理することができる基板の枚数)の向上が要求されており、この要求に応えるべくステージの最高速度が引き上げられている。また、基板に転写するパターンの微細化に伴って従来よりも高い重ね合わせ精度が要求されているため、レーザ干渉計及びAFセンサの検出精度を更に高める必要がある。
しかしながら、ステージの最高速度を引き上げるとステージを駆動する駆動用モータの発熱量が増大して測定光等の光路において空気揺らぎが生じ、その結果としてレーザ干渉計の検出精度が低下するという問題が生じてきた。また、ステージの最高速度が引き上げられると、ステージの移動によるステージ周囲の空気の攪拌量が増大して測定光等の光路に混入する空気の量が増えてしまう。この空気は空調装置から供給される空気との温度差があるため、測定光等の光路において空気揺らぎが生じ、その結果としてレーザ干渉計の検出精度が低下するという問題が生じてきた。
前述した特許文献1に開示された空調装置は、ステージ周辺に設けられた熱源による空気揺らぎの影響を測定光等の光路において排除するには優れていた。しかしながら、上述した原因で測定光等の光路において空気揺らぎが生じ、また要求される検出精度が向上したため、空気の供給量を増大しても必要とされる検出精度を維持することができなくなってきた、これは、AFセンサについて同様である。
本発明は上記事情に鑑みてなされたものであり、高スループットを達成しながらもステージの位置を高精度に計測することができるステージ装置、及び当該ステージ装置を備える露光装置を提供することを目的とする。
本発明は、実施の形態に示す各図に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
上記課題を解決するために、本発明の第1の観点によるステージ装置は、基準平面(BP)上の移動範囲内を移動可能に構成されたステージ(25、WST)と、当該ステージに前記基準平面と平行な光ビームを照射して前記ステージの位置を計測する干渉計(27、27X、27Y)とを備えるステージ装置において、前記光ビームの光路に対して、前記基準平面と直交する方向に沿って所定の温度に調整された気体を供給する第1空調機構(28X、28Y)と、前記光ビームの光路と前記基準平面との間の空間に、前記所定平面に沿って所定の温度に調整された気体を供給する第2空調機構(29)とを備えることを特徴としている。
この発明によると、干渉計から射出される光ビームの光路に対して第1空調装置から基準平面と直交する方向に沿って所定の温度に調整された気体が供給されるとともに、第2空調装置から光ビームの光路と基準平面との間の空間に所定平面に沿って所定の温度に調整された気体が供給される。
上記課題を解決するために、本発明の第2の観点によるステージ装置は、基準平面(BP)上の移動範囲内を移動可能に構成されたステージ(25、WST)と、当該ステージに前記基準平面と平行な光ビームを照射して前記ステージの位置を計測する干渉計(27、27X、27Y)と、前記移動範囲外に配置され当該干渉計の計測結果に基づいて前記ステージを駆動する駆動装置(38a、38b)とを備えるステージ装置において、前記駆動装置が配置される空間を、少なくとも前記ステージが配置される空間から遮蔽する遮蔽部材(39a、39b、42a、42b、43a、43b、45a〜48a、45b〜48b)を備えることを特徴としている。
この発明によると、遮蔽部材によって、駆動装置が配置される空間がステージが配置される空間から遮蔽される。
上記課題を解決するために、本発明の第3の観点によるステージ装置は、基板(W)を保持する保持面を有し基準平面上を移動するステージ(25、WST)を備えるステージ装置において、前記保持面上の空間に所定の温度に調整された気体を供給する供給機構(34)と、前記供給機構と対向して設けられ、前記保持面上の気体を吸引する吸気機構(35)とを備えることを特徴としている。
この発明によると、供給機構からステージの保持面上に供給された所定の温度に調整された気体は、吸気機構により吸引される。
本発明の露光装置は、マスク(R)を保持するマスクステージ(RST)と、基板(W)を保持する基板ステージ(WST)とを備え、前記マスクに形成されたパターンを前記基板上に転写する露光装置(EX)において、前記マスクステージ及び前記基板ステージの少なくとも一方として上記の何れかに記載のステージ装置を備えることを特徴としている。
上記課題を解決するために、本発明の第2の観点による露光装置は、露光光を照射して基板(W)にパターンを形成する露光装置(EX)において、定盤(23)に形成された基準平面(BP)上を、前記基板を保持して移動可能なステージ(WST)と、前記基準平面と平行な光ビームを第1方向(Y軸方向)に沿って前記ステージに対して照射して前記ステージの前記第1方向における位置を計測する第1干渉計(27Y)と、前記基準平面と平行な光ビームを第1方向と直交する第2方向(X軸方向)に沿って前記ステージに対して照射して前記ステージの前記第2方向における位置を計測する第2干渉計(27X)と、前記光ビームのそれぞれの光路に対して、前記基準平面と直交する方向に沿って所定の温度に調整された気体を供給する第1空調機構(28Y、28X)と、前記光ビームの光路と前記基準平面との間の空間に、前記基準平面に沿って前記第1方向と平行に所定の温度に調整された気体を供給する第2空調機構(29)とを備えることを特徴としている。
本発明によれば、干渉計から射出される光ビームの光路に対して基準平面と直交する方向に沿って所定の温度に調整された気体が供給されるとともに、第2空調装置から光ビームの光路と基準平面との間の空間に所定平面に沿って所定の温度に調整された気体が供給されるため、光ビームの光路と基準平面との間の空間の空気の淀みを排することができ、ステージが高速移動してステージの移動方向における両端部において圧力差が生じた場合であっても温調されていない空気が光ビームの光路に混入するのを防止又は低減することができるため干渉計の検出精度の悪化を招くことはない。その結果として、ステージの位置を高精度に計測することができる。
また、本発明によれば、遮蔽部材によって駆動装置が配置される空間とステージが配置される空間とが遮蔽されるため、ステージの最高速度が高く設定されて駆動装置から発せられる熱量が増大しても、駆動装置から発せられる熱により熱せられた空気がステージが配置される空間に混入するのを防止することができる。これにより、ステージの位置を高精度に計測することができる。
また、本発明によれば、供給機構からステージの保持面上に供給された所定の温度に調整された気体を吸気機構により吸引しているため、ステージを移動させたときにステージ上に巻き上げられた温調されていない空気を直ちに吸気することができる。これにより、例えばステージの上方に設けられ、ステージの姿勢(保持面の傾斜)を検出するセンサの検出精度の悪化を防止することができる。
更に、本発明によれば、マスク及び基板の位置及び姿勢を高精度に検出することができるため、露光精度(重ね合わせ精度等)を向上させることができる。この結果として、所期の機能を有するデバイスを高い歩留まりで、且つ項スループットで効率よく製造することができる。
本発明の一実施形態による露光装置の全体構成を模式的に示す側面図である。 ウェハステージの概略構成を示す斜視図である。 ウェハステージの速度向上に伴って生ずるレーザ干渉計の検出精度悪化を説明するための図である。 ウェハステージの速度向上に伴って生ずるレーザ干渉計の検出精度悪化を説明するための図である。 ダウンフローと下層サイドフローとを併用して得られる効果を説明するための図である。 ダウンフローと下層サイドフローとを併用して得られる効果を説明するための図である。 空調装置からウェハステージ上に供給される空調エアを説明するための図である。 吸気装置の配置例を示す図である。 吸気装置の配置例を示す図である。 ウェハステージの概略構成を示す正面図である。 遮蔽部材の変形例を模式的に示す図である。 遮蔽部材の変形例を模式的に示す図である。 遮蔽部材の変形例を模式的に示す図である。 遮蔽部材の変形例を模式的に示す図である。
符号の説明
25 試料台(ステージ) 27,27X レーザ干渉計(干渉計) 28X,28Y空調装置(第1空調機構) 29 空調装置(第2空調機構) 34 空調装置(供給機構、第3空調機構) 35 吸気装置(吸気機構) 38a,38bリニアモータ(駆動装置) 39a,39b遮蔽箱(遮蔽部材、包囲部材) 41a,41b吸気装置(排気機構) 42a,42b遮蔽シート(遮蔽部材) 43a,43b遮蔽板(遮蔽部材) 44a,44b吸気装置(排気機構) 45a,45b遮蔽板(遮蔽部材) 46a,46b遮蔽シート(遮蔽部材) 47a,47b遮蔽シート(遮蔽部材) 48a,48b遮蔽板(遮蔽部材) BP 基準平面 EX 露光装置 R レチクル(マスク) RST レチクルステージ(マスクステージ) W ウェハ(基板) WST ウェハステージ(ステージ、基板ステージ)
以下、図面を参照して本発明の一実施形態によるステージ装置及び露光装置について詳細に説明する。図1は、本発明の一実施形態による露光装置の全体構成を模式的に示す側面図である。図1に示す露光装置EXは、投影光学系PLに対してマスクとしてのレチクルRと基板としてのウェハWとを相対的に移動させつつ、レチクルRに形成されたパターンを投影光学系PLを介してウェハW上のショット領域に逐次転写するステップ・アンド・スキャン方式の走査露光型の露光装置である。
尚、以下の説明においては、必要であれば図中にXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。図1中に示すXYZ直交座標系は、XY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定されている。また、本実施形態ではレチクルR及びウェハWを同期移動させる方向(走査方向)をY方向に設定している。
図1に示す通り、露光装置EXは、光源LS、照明光学系ILS、マスクステージとしてのレチクルステージRST、投影光学系PL、及び基板ステージとしてのウェハステージWSTを含んで構成されている。また、露光装置EXは、本体フレームF10と基礎フレームF20とを備えており、上記のレチクルステージRST及び投影光学系PLは本体フレームF10に保持され、本体フレームF10及びウェハステージWSTは基礎フレームF20に保持されている。
光源LSは、例えばArFエキシマレーザ光源(波長193nm)である。尚、光源LSとしては、ArFエキシマレーザ光源以外に、KrFエキシマレーザ(波長248nm)、Fエキシマレーザ(波長157nm)、Krレーザ(波長146nm)、g線(波長436nm)、i線(波長365nm)を射出する超高圧水銀ランプ、YAGレーザの高周波発生装置、若しくは半導体レーザの高周波発生装置を用いることができる。
照明光学系ILSは、光源LSから射出されたレーザ光の断面形状を整形するとともに、その照度を均一化した照明光でレチクルRを照明する。この照明光学系ILSはハウジング11を備えており、この内部には所定の位置関係で配置されたオプティカルインテグレータとしてのフライアイレンズ、開口視野絞り、レチクルブラインド、リレーレンズ系、光路折り曲げ用ミラー、コンデンサレンズ系等からなる光学部品を備える。この照明光学系ILSは、本体フレームF10を構成する第2架台f12の上面に固定された上下方向に伸びる照明系支持部材12によって支持される。
また、露光装置EX本体の側部(−X方向側)には、露光装置EX本体と分離されて、振動の伝達がないように設置された光源LSと照明光学系分離部13とが配置されている。照明光学系分離部13は、光源LSから射出されたレーザ光を照明光学系ILSに導くものである。これにより、光源LSから射出されたレーザ光は、照明光学系分離部13を介して照明光学系ILSに入射されて、その断面形状が整形されるとともに照度分布がほぼ均一にされて照明光としてレチクル上に照射される。
レチクルステージRSTは、本体フレームF10を構成する第2架台f12の上面に不図示の非接触ベアリング(例えば、気体静圧軸受け)を介して浮上支持される。このレチクルステージRSTは、レチクルRを保持するレチクル微動ステージと、レチクル微動ステージと一体に走査方向であるY方向に所定ストロークで移動するレチクル粗動ステージと、これらのステージを駆動するリニアモータと含んで構成される。レチクル微動ステージには、矩形開口が形成されており、開口周辺部に設けられたレチクル吸着機構によりレチクルが真空吸着等により保持される。また、第2架台f12上の端部には、レーザ干渉計(不図示)が設けられており、レチクル微動ステージのX方向の位置、Y方向の位置、及びZ軸周りの回転角が高精度に検出されている。このレーザ干渉系の計測結果に基づいて微動ステージの位置、姿勢、及び速度が制御される。
また、レチクルステージRSTに対してレチクルアライメント系14が設けられている。レチクルアライメント系14は、レチクルステージRST上のレチクルRに形成されている位置計測用マーク(レチクルマーク)を観察するアライメント光学系と撮像装置とをベース部材上に配置して構成されている。このベース部材は、非走査方向であるX方向に沿ってレチクルステージRSTを跨ぐようにレチクルステージRSTの上方に設けられて第2架台f12上に支持される。
レチクルアライメント系14に設けられるベース部材には、照明光学系ILSから射出された照明光を透過させる矩形開口が形成されており、この開口を介して照明光学系ILSから射出された照明光がレチクルRに照射される。尚、このベース部材は、レチクルステージRSTが備えるリニアモータへの電磁気的影響を考慮して、非磁性材料、例えばオーステナイト系ステンレスで構成されている。
投影光学系PLは、レチクルRに形成されたパターンの像を所定の投影倍率β(βは、例えば1/5)でウェハW上に縮小投影する。この投影光学系PLは、例えば物体面側(レチクル側)と像面側(ウェハ側)の両方がテレセントリックである。レチクルRに照明光学系ILSからの照明光(パルス光)が照射されると、レチクルR上に形成されたパターン領域のうちの照明光によって照明された部分からの結像光束が投影光学系PLに入射し、そのパターンの部分倒立像が照明光の各パルス照射の度に投影光学系PLの像面側の視野中央にX方向に細長いスリット状又は矩形状(多角形)に制限されて結像される。これにより、投影された回路パターンの部分倒立像は、投影光学系PLの結像面に配置されたウェハW上の複数のショット領域のうちの1つのショット領域表面のレジスト層に縮小転写される。
投影光学系PLの外周には、投影光学系PLを支持するためにフランジ15が設けられている。このフランジ15は、投影光学系PLの設計上の制約から、投影光学系PLの重心よりも下方に配置される。また、微細パターンの要求により、投影光学系PLの像面側の開口数NAは、例えば、0.9以上に増大しつつあり、それに伴い、投影光学系PLの外径、重量が大型化している。この投影光学系PLは、本体フレームF10を構成する第1架台f11に設けられた穴部16に挿入されて、フランジ15を介して支持される。
投影光学系PLを支持する第1架台f11上にレチクルステージRST等を支持する第2架台f12が接続されて本体フレームF10が構成されている。この本体フレームF10は、防振ユニット17a,17b,17c(図1においては、防振動ユニット17cの図示を省略している)を介して基礎フレームF20上に支持されている。ここで、防振ユニット17a〜17cは、基礎フレームF20をなす上部フレームf22の上の三箇所の端部に配置され、内圧が調整可能なエアマウントとボイスコイルモータとが基礎フレームF20の上部フレームf22上に並列に配置された構成になっている。これらの防振ユニットによって、基礎フレームF20を介して本体フレームF10に伝わる微振動がマイクロGレベルで絶縁されるようになっている。
基礎フレームF20は、下部フレームf21と上部フレームf22とから構成される。
下部フレームf21は、ウェハステージWSTを戴置する床部18と、床部18の上面から上方向に所定の長さで伸びる支柱19とから構成される。床部18と支柱19とは、締結手段等で連結される構造ではなく、一体に形成される。上部フレームf22は、支柱19と同数の支柱20と、その支柱20同士をそれらの上部において連結する梁部21とを備える。支柱20と梁部21とは、締結手段等で連結される構造ではなく、一体に形成される。以上の支柱19と支柱20とが、ボルト等により締結される。これにより、基礎フレームF20は、所謂ラーメン構造となり剛性を向上させることができる。以上の構成の基礎フレームF20は、クリーンルーム等の床面FL上に足部22を介して略水平に載置される。
ウェハステージWSTは、基礎フレームF20の内部であって、下部フレームf21上にウェハ定盤23を介して載置される。ウェハ定盤23にはXY平面に沿った基準平面BPが形成されている。ウェハステージWSTはこの基準平面BP上に載置され、基準平面BPに沿って所定の移動範囲内を2次元移動することができる。このウェハ定盤23は、防振ユニット24a,24b,24c(図1においては防振ユニット24cの図示を省略している)を介してほぼ水平に支持されている。ここで、防振ユニット24a〜24cは、例えばウェハ定盤23の三箇所の端部に配置され、内圧が調整可能なエアマウントとボイスコイルモータとが基礎フレームF20をなす下部フレームf21上に並列に配置された構成になっている。これらの防振ユニットによって、基礎フレームF20を介してウェハ定盤23に伝わる微振動がマイクロGレベルで絶縁されるようになっている。
また、ウェハステージWSTの上部には、ウェハステージWSTと一体的に設けられウェハWを吸着保持する試料台25が設けられている。この試料台25は、ウェハのレベリング及びフォーカシングを行うためにウェハWをZ軸方向、θx方向(X軸回りの回転方向)、及びθy方向(Y軸回りの回転方向)の3自由度方向に微小駆動する。また、ウェハステージWSTには、例えばリニアモータ等の駆動装置(図1では図示省略)が設けられており、このリニアモータによってウェハステージWSTがY方向に連続移動するとともに、X方向及びY方向にステップ移動する。更に、ウェハステージWSTには、ステージの駆動時に発生する反力をキャンセルするため、ウェハステージWSTの移動方向とは反対方向に移動するカウンタマス(図示省略)が配設されている。
ウェハステージWSTに設けられる試料台25の上部の一端には移動鏡26が取り付けられており、上述した投影光学系PLには不図示の固定鏡が取り付けられている。レーザ干渉計27は、移動鏡26及び不図示の固定鏡にレーザ光を照射してウェハステージWSTのX方向の位置、Y方向の位置、及びZ軸周りの回転角を高精度に検出する。このレーザ干渉系は、偏光方向が互いに直交する2つの直線偏光のレーザ光を2つに分岐し、一方のレーザ光を移動鏡26に照射するとともに、他方のレーザ光を不図示の固定鏡に照射すし、移動鏡26及び固定鏡の各々で反射されたレーザ光を干渉させて得られる干渉光を検出してウェハステージWSTの位置情報を得る。
尚、図1では図示を簡略化しているが、移動鏡26はX軸に対して垂直な鏡面を有する移動鏡26X及びY軸に対して垂直な鏡面を有する移動鏡26Yから構成されている(図2参照)。また、レーザ干渉計27は、Y軸に沿って移動鏡26にレーザビームを照射する2個のY軸用のレーザ干渉計及びX軸に沿って移動鏡26にレーザビームを照射する2個のX軸用のレーザ干渉計より構成され、Y軸用の1個のレーザ干渉計及びX軸用の1個のレーザ干渉計によりウェハステージWSTのX座標及びY座標が計測される。また、他のX軸又はY軸用のレーザ干渉計によりウェハステージWSTのX軸周りの回転が計測される。更に、これらのレーザ干渉計によりウェハステージWSTのX軸周りの回転及びY軸周りの回転が計測される。尚、図1に示すレーザ干渉計は、Y軸に対して垂直な鏡面を有する移動鏡26Yにレーザ光を照射するレーザ干渉計27Yである。
また、レーザ干渉計27から射出されるレーザ光の光路の上方(+Z方向)には、第1空調機構としての空調装置28X,28Yが配置されている。この空調装置28X,28Yは、レーザ干渉計27から移動鏡26及び不図示の固定鏡に照射されるレーザ光の光路に対して上方向(+Z方向)から下方向(−Z方向)へ向けて一定温度の温調エアを一定流速で供給するものである。尚、以下の説明においては、空調装置28X,28Yがレーザ光の光路に対して上方向(+Z方向)から下方向(−Z方向)へ向けて供給する温調エアをダウンフローという。このダウンフローは、例えば設定温度に対して±0.005℃以内に温調されている。
また、ウェハステージWSTの−Y方向には、第2空調機構としての空調装置29が設けられている。この空調装置29は、レーザ干渉計27から移動鏡26に照射されるレーザ光の光路とウェハ定盤23との間の空間に−Y方向から+Y方向に向けて一定温度の温調エアを一定流速で供給する。尚、以下の説明においては、空調装置29がレーザ光の光路とウェハ定盤23との間の空間に−Y方向から+Y方向に向けて供給する温調エアを下層サイドフローという。空調装置29から供給される下層サイドフローは、例えば設定温度に対して±1/100℃以内に温調されている。
尚、図1においては図示を省略しているが、本実施形態の露光装置は、投影光学系PLの側方にオフ・アクシス方式のウェハ・アライメントセンサを備えている。このウェハ・アライメントセンサは、FIA(Field Image Alignment)方式のアライメントセンサであって、例えばハロゲンランプから射出される広帯域波長の光束を検知ビームとしてウェハW上に照射し、ウェハWから得られる反射光をCCD(Charge Coupled Device)等の撮像素子で撮像し、得られた画像信号を画像処理することでウェハWに形成された位置計測用マーク(アライメントマーク)のX方向及びY方向における位置情報を計測するものである。
また、投影光学系PLの側面には、ウェハWのZ軸方向の位置及びX軸及びY軸周りの回転を検出する斜入射方式のオートフォーカスセンサ(AFセンサ)が設置されている。このAFセンサは、ウェハW上においてレチクルRの像が投影される露光領域内の予め設定された複数の計測点にスリット像を投影する照射光学系33a(図2参照)と、それらスリット像からの反射光を受光してそれらスリット像を再結像し、これら再結像されたスリット像の横ずれ量に対応する複数のフォーカス信号を生成する受光光学系33bとから構成される。各検出点におけるスリット像の横ずれ量により、ウェハWのZ軸方向の位置及びX軸及びY軸周りの回転が検出される。
また、露光装置EXの+Y方向には、レチクルローダ30、ウェハローダ31、制御系(不図示)等が配置されている。レチクルローダ30及びウェハローダ31等の+Y方向にウェハWに対してフォトレジストを塗布するコータと露光処理EXにより露光処理を終えたウェハWの現像処理を行うディベロッパからなるコータディベロッパが配置される場合がある。
次に、空調装置28X,28Y,29について詳細に説明する。図2は、ウェハステージWSTの概略構成を示す斜視図である。尚、図2においては、図1に示す部材と同一の部材について同一の符号を付してある。図2に示す通り、ウェハ定盤23は防振ユニット24a,24b,24cを介してほぼ水平に支持されており、このウェハ定盤23上には、その上面(基準平面BP)の所定の移動範囲内を移動するウェハステージWSTが設けられている。このウェハステージWST内にはリニアモータが設けられており、ウェハステージWSTはリニアモータの駆動によってXガイドバー32に沿ってX方向に移動する。
図2に示す通り、空調装置28XはウェハステージWST上の試料台25に設けられた移動鏡26Xに照射されるレーザ光の光路の上方に配置されており、空調装置28Yは移動鏡26Yに照射されるレーザ光の光路の上方に配置されている。空調装置28Xは、レーザ干渉計27から移動鏡26X及び不図示の固定鏡に照射されるレーザ光の光路に対して、例えば設定温度に対して±0.005℃以内に温調したダウンフローを一定流速で供給する。また、空調装置28Yは、レーザ干渉計27から移動鏡26Y及び不図示の固定鏡に照射されるレーザ光の光路に対して、例えば設定温度に対して±0.005℃以内に温調したダウンフローを一定流速で供給する。
空調装置29は、X方向の長さがほぼウェハステージWSTのX方向の移動可能範囲の長さに設定されており、これにより空調装置29からの下層サイドフローは、レーザ干渉計27から移動鏡26X,26Yに照射されるレーザ光の光路とウェハ定盤23との間の空間においてウェハステージWSTのX方向の幅よりも広い幅で供給される。この空調装置29は、この空間にほぼ平行に+Y方向へ下層サイドフローを供給する。空調装置28X,28Y及び空調装置29はダクトDを介して供給される空気を個別に温調してダウンフロー及び下層サイドフローをそれぞれ生成する。
上記の空調装置28Xによって、レーザ干渉計27から移動鏡26X及び不図示の固定鏡に照射されるレーザ光の光路に対しては、光路に対してほぼ直交する方向からダウンフローが供給される。また、上記の空調装置28Yによって、レーザ干渉計27から移動鏡26X及び不図示の固定鏡に照射されるレーザ光の光路に対しては、光路に対してほぼ直交する方向からダウンフローが供給される。また、上記の空調装置29によって、レーザ光の光路とウェハ定盤23の基準平面BPとの間の空間に、基準平面BPに沿って(本実施形態ではY方向に沿って)下層サイドフローが供給される。
ここで、空調装置28X,28Yはレーザ干渉計27から移動鏡26X,26Y及び不図示の固定鏡に照射されるレーザ光の光路に対してダウンフローを供給することで、ウェハステージWSTの周囲に設けられた熱源(例えば、リニアモータ)から発せられる熱による空気揺らぎによる検出精度の低下を防止するために設けられている。しかしながら、ウェハステージWSTの最高速度が引き上げられると、検出精度の悪化が引き起こされる場合が生ずる。
図3A及び3Bは、ウェハステージWSTの速度向上に伴って生ずるレーザ干渉計の検出精度悪化を説明するための図であって、図3AはウェハステージWSTの側面図であり、図3BはウェハステージWSTの平面図である。尚、図3A及び3Bにおいては、ウェハステージWST、レーザ干渉計27、及び空調装置28Yを模式的に図示している。図3Aに示す通り、ウェハステージWSTが+Y方向に移動したとすると、ウェハステージWSTの進行方向側(ウェハステージWSTの+Y側)に陽圧が生じ、逆にウェハステージWSTの−Y側に負圧が生ずる。尚、図3Aにおいては、負圧が生ずる領域A1に斜線を付して図示している。この領域A1はウェハステージWSTの最高速度が高くなるにつれY方向に延びることになる。
ウェハステージWSTのY方向における両端側で圧力差が生ずると、図3Bに示す通り、陽圧が生じたウェハステージWSTの+Y側の空気が、負圧が生じたウェハステージWSTの−Y側に混入してしまう。尚、図3B中に斜線を付して示した領域A2は、ダウンフローが供給される領域を模式的に示す領域である。ここで、ウェハステージWSTの+Y側には空調装置が設けられていないため、ウェハステージWSTの+Y側の空気は温調されていない空気である。このため、ウェハステージWSTの+Y側の温調されていない空気がウェハステージWSTの−Y側の空調装置28Yによって温調された空気と混じり合って温度差による空気揺らぎが生じ、その結果としてレーザ干渉計28Yの検出精度が悪化する。
また、ウェハステージWSTが−Y方向に移動したとすると、上記とは逆の現象が生じてウェハステージWSTの−Y側に陽圧が生じ、ウェハステージWSTの+Y側に負圧が生ずる。ウェハステージWSTの−Y側には空調装置28Yが設けられているため、ウェハステージWSTの−Y側の空気は下方向(−Z方向)に押さえつけられてウェハステージWSTの側部を介してウェハステージWSTの+Y側の負圧が生じた領域に流入することになる。
しかしながら、ウェハステージWSTの−Y方向への移動速度がダウンフローの流速に近いと、ウェハステージWSTの−Y側に混入した温調されていない空気の一部はウェハステージWSTの−Y側の端部に押さえつけられて残留してしまう。つまり、レーザ干渉計27から移動鏡26Yに照射されるレーザ光の光路の大部分は空調装置28Yから供給されるダウンフローが供給されるものの、移動鏡26Yの付近に温調されていない空気が残留し、これによりレーザ干渉計27の検出精度が悪化する。また、上記の通り、ウェハステージWSTが+Y方向に移動する場合に、ウェハステージWSTの最高速度が高くなるにつれて負圧が生ずる領域A1がY方向に延びるため、ウェハステージWSTが−Y方向に移動する場合もウェハステージWSTの−Y側の端部に残留する温調されていない空気の量も多くなる。
本実施形態の露光装置EXは、空調装置28X,28Yと空調装置29とを併設することにより、レーザ干渉計27から移動鏡26X,26Yに対して照射されるレーザ光及び不図示の固定鏡に照射される光路に対してダウンフローを供給し、レーザ光の光路よりも下の空間に下層サイドフローを供給することで以上の問題点を解消している。なお、ここで、レーザー光路よりも下の空間に気体を供給することとしたのは、ダウンフローが行われているレーザー光の光路にサイドフローで更に気体を供給すると光路中の気流を乱してしまい、却って干渉計の計測精度を悪化させてしまうおそれがあるからである。図4A及び4Bは、ダウンフローと下層サイドフローとを併用して得られる効果を説明するための図であって、図4AはウェハステージWSTの側面図であり、図4BはウェハステージWSTの平面図である。尚、図4A及び4Bにおいては、ウェハステージWST、レーザ干渉計27、及び空調装置28Yを模式的に図示している。尚、図4B中に斜線を付して示した領域A2は、ダウンフローが供給される領域を模式的に示す領域である。
図4A及び4Bに示す通り、空調装置29からの下層サイドフローは、レーザ干渉計27から移動鏡26Yに照射されるレーザ光の光路の下方の空間であって、ウェハステージWSTのX方向におけるウェハステージWSTのX方向の幅よりも広い幅で供給される。このため、ウェハステージWST周辺の淀んだ空気は+Y方向に吹き飛ばされる。これにより、ウェハステージWSTが+Y方向へ移動した場合に、ウェハステージWSTの+Y側に陽圧が生じて−Y側に負圧が生じたとしても、ウェハステージWSTの側部を介して−Y側に回り込む空気は下層サイドフローにより吹き飛ばされ、代わりに空調装置29からの温調された空気がウェハステージWSTの−Y側に供給される。これにより、ウェハステージWSTの−Y側の端部において、下側から上側に向かう空気を温調された空気とすることができるためレーザ干渉計27の検出精度が悪化するのを防止することができる。
また、ウェハステージWSTが−Y方向へ移動した場合には、ウェハステージWSTの−Y側に陽圧が生じて+Y側に負圧が生ずるが、ウェハステージWSTの−Y側の空気は空調装置28Yからのダウンフローと空調装置29からの下層サイドフローによりウェハステージWSTのX方向における側面に向かって流れていくため、万が一温調されていない空気がウェハステージWSTの−Y側に混入していたとしても、この空気を排除することができる。これにより、レーザ干渉計27の検出精度の悪化を防止することができる。
図2に戻り、AFセンサをなす照射光学系33aは露光領域に設定された検出領域から+X方向及び+Y方向の各々に対して45°をなす方向に配置され、受光光学系33bはその検出領域から−X方向及び−Y方向の各々の方向に対して45°をなす方向に配置される。また、露光領域に設定された検出領域から+X方向及び−Y方向の各々に対して45°をなす方向には第3空調機構としての空調装置34が配置されている。この空調装置34は、斜め上方からウェハステージWST上(試料台25上)に向けて一定温度の温調エアを一定流速で供給するものである。これにより、AFセンサからウェハW上の検出領域中に射出されるスリット像の光路に温調エアが供給される。この空調装置34から供給される温調エアは、例えば設定温度に対して±0.005℃以内に温調されている。この空調装置34はダクトDを介して供給される空気を温調して温調エアを生成する。
ここで、空調装置34を設けるのは次の理由による。ウェハステージWSTの+Y方向への移動、及び−Y方向への移動が交互に変わると、ウェハステージWSTの+Y方向又は−Y方向の負圧側に集まった空気がウェハステージWSTの上面に巻き上がる。上述の通り、レーザ光と基準平面BPとの間の空間には空調装置29から下層サイドフローが供給されているが、供給された空気は基準平面BP上を流れる間に温度が僅かに変化しているため、この温度変化した空気がウェハステージWSTの上面に巻き上がるとAFセンサの光路に空気揺らぎが生じ、検出精度を悪化させてしまう。以上の理由により、本実施形態の露光装置は、空調装置34を設けている。尚、ウェハステージWSTの移動により基準平面BP上の空気の巻き上がりが生じた場合であっても、レーザ干渉計27の光路には空調装置28X,28Yからダウンフローが供給されており、空気揺らぎの発生は抑えられている。
図5は、空調装置34からウェハステージWST上に供給される空調エアを説明するための図である。図5に示す通り、空調装置34は、平面視でAFセンサから射出されるスリット像の光路に対して交差する直線上に配置されており、ウェハW上に設定された検出領域のほぼ中心(図5においては、検出点Dとして表している)を中心としてウェハステージWST上で広がるように温調エアを供給している。このように温調エアを供給するのは、ウェハステージWST上に巻き上がった空気を極力検出領域から排除するためである。
つまり、ウェハステージWSTを+X方向に移動させた場合には移動鏡26Xを越えて基準平面BP上にあった空気がウェハステージWST上に巻き上げられ、ウェハステージWSTを−Y方向に移動させた場合には移動鏡26Yを越えて基準平面BP上にあった空気がウェハステージWST上に巻き上げられる。仮に、空調装置34からの温調エアが検出領域に向かう流れのみであれば、移動鏡26X,26Yを越えた空気はこの温調エアの流れに巻き込まれて検出領域に向かい、その結果として検出領域の内部又はその近傍において温度差による空気揺らぎが生じてしまう。
図5に示す通り、空調装置34からの温調エアがウェハステージWST上において広がるように供給すれば、この温調エアの流れに乗せて移動鏡26X,26Yを越えた温調されてない空気をウェハステージWST外に吹き飛ばすことができるため、AFセンサの検出精度の悪化を防止することができる。尚、ウェハステージWSTを−X方向に移動させた場合には、ウェハステージWSTの−X方向における端部からのウェハステージWST上に巻き上げられた空気を、空調装置34からの温調エアの流れによって−X方向に吹き飛ばすことができる。同様に、ウェハステージWSTを+X方向に移動させた場合には、ウェハステージWSTの+Y方向における端部からのウェハステージWST上に巻き上げられた空気を、空調装置34からの温調エアの流れによって+Y方向に吹き飛ばすことができる。
尚、装置構成上の理由により空調装置34をウェハステージWST上から遠い位置に配置せざるを得ない場合、ウェハステージWSTの位置によっては温調エアがAFセンサの検出領域に十分供給されない虞がある。この場合には、空調装置34からの温調エアを吸引する吸気装置35を設けることが望ましい。図6A及び6Bは、吸気装置35の配置例を示す図である。この吸気装置35は、空調装置34に対向して設けられており、検出領域から−X方向及び+Y方向の各々の方向に対して45°をなす方向に配置され、図6Aに示す通り投影光学系PLの側方であってウェハステージWSTの上方に設けられ、又は図6Bに示す通り、ウェハステージWST上(試料台25上)に取り付けられる。
吸気装置35を設けることで、空調装置34から供給された温調エアをウェハステージWSTの上面と投影光学系PLとの間を介して吸気装置35に向かわせる流れを作ることができる。また、この流れを作ることにより、ウェハステージWSTの上面と投影光学系PLとの間を通過する温調エアの流速を一定以上に保つことができるため、例えばウェハWに塗布されたレジストの揮発による投影光学系PLの汚染(投影光学系PLの先端部に設けられる光学素子の汚染)を防止することができる。また、この吸気装置35を設けると、ウェハステージWSTを移動させたときにウェハステージWST上に巻き上げられた空気を直ちに吸気することができる。また、図6Bに示す通り、吸気装置35をウェハステージWST上(試料台25上)に設けた場合には、ウェハステージWSTの位置に応じて吸気方向を変更するのが望ましい。この場合、吸気装置35の吸気口に整流羽根を設け、レーザ干渉計27によって計測されたウェハステージWSTの位置に応じて、整流羽根を空調装置34の方向に向ければよい。
以上の通り、本実施形態の露光装置EXには、レーザ干渉計27から射出されるレーザ光の光路に対してダウンフローを供給する空調装置28X,28Yと、同光路よりも下方の空間に対して下層サイドフローを供給する空調装置29と、ウェハステージWST上に温調エアを供給する空調装置34とを備えている。これらの空調装置の組み合わせによって、レーザ干渉計27及びAFセンサの検出精度を維持している。ここで、レーザ干渉計27及びAFセンサの検出精度を維持するためには、各空調装置から供給される温調エアの風速の関係を規定する必要がある。
具体的には、空調装置28X,28Yからの温調エアの風速をV、空調装置29からの温調エアの風速をV、空調装置34からの温調エアの風速をVとすると、以下の(1)式の関係が成立するように各温調装置から供給される風速を設定する。
≧V≧V ……(1)
つまり、空調装置28X,28Yからの温調エアの風速Vは空調装置34からの温調エアの風速Vと同等以上であり、空調装置34からの温調エアの風速Vは、空調装置29からの温調エアの風速Vと同等以上となるように設定する。かかる設定を行うことで、レーザ干渉計27とAFセンサとの両者の検出精度を維持することができる。
図7は、ウェハステージWSTの概略構成を示す正面図である。尚、図7においては、図1〜図6Bに示した部材と同一の部材には同一の符号を付している。図7に示す通り、ウェハステージWSTには、X方向に延びるXガイドバー32が設けられている。ウェハステージWST内部に設けられる不図示のリニアモータを駆動することで、Xガイドバー32に沿ってウェハステージWSTを移動させることができる。
このXガイドバー32の+X方向における端部には電機子ユニットを含んで構成される可動子36aが取り付けられており、−Y方向における端部には電機子ユニットを含んで構成される可動子36bが取り付けられている。また、可動子36aに対応して磁石ユニットを含んで構成される固定子37aが設けられており、可動子36bに対応して磁石ユニットを含んで構成される固定子37bが設けられている。尚、ここでは、可動子36a,36bが電機子ユニットを備え、固定子37a,37bが磁石ユニットを備える構成を例に挙げて説明するが、可動子36a,36bが磁石ユニットを備え、固定子37a,37bが電機子ユニットを備える構成であってもよい。
可動子36a,36bに設けられる電機子ユニットは、例えば複数のコイルをY方向に所定間隔をもって配列して構成され、固定子37a,37bに設けられる磁石ユニットは、可動子36a,36bに設けられるコイルの配列間隔に応じた間隔で複数の磁石をY方向に配列して構成される。固定子37a,37bは少なくともウェハステージWSTの移動可能範囲のY方向の長さ以上の長さを有している。尚、磁石ユニットが備える磁石はY方向に沿って交互に磁極が変化するように配列され、これによりY方向に交番磁界が形成される。従って、固定子37a,37bの位置に応じて可動子36a,36bに設けられるコイルに供給する電流を制御することにより、連続的に推力を発生させることができる。
以上の可動子36aと固定子37aとによって駆動装置としてのリニアモータ38aが構成されており、可動子36bと固定子37bとによって駆動装置としてのリニアモータ38bが構成されている。これらのリニアモータ38a,38bの駆動量を同一にするとウェハステージWSTをY方向に沿って平行移動させることができ、駆動量を異ならせるとウェハステージWSTをZ軸の周りに微小回転させることができる。リニアモータ38a,38bはウェハステージWSTのX方向における両端、即ちウェハステージWSTの可動範囲の外側に設けられている。ここで、ウェハステージWSTのX方向における両端にリニアモータ38a,38bを設けるのは、ウェハステージWSTを移動させる場合には、ウェハステージWSTとXガイドバー32とを共に移動させる必要があるため大きな推力が必要になるからであり、また走査方向がY方向に設定されているからである。
本実施形態の露光装置は、以上の構成のリニアモータ38a,38bの各々を包囲する包囲部材又は遮蔽部材としてのとしての遮蔽箱39a,39bを備えている。この遮蔽箱39a,39bは、ウェハステージWSTが配置される空間からリニアモータ38a,38bが配置される空間を遮蔽(隔離)するものである。ウェハステージWSTの最高速度は、スループットを向上させるために高く設定されており、このためリニアモータ38a,38bからの発熱量が多くなる。この遮蔽箱39a,39bは、リニアモータ38a,38bから発せられる熱によってウェハステージWSTが配置される空間において空気揺らぎが生ずるのを防止するために設けられる。
遮蔽箱39a,39bは、断熱性を有するセラミックス又は真空断熱パネルであって、露光装置を収容する不図示のチャンバ内を汚染する化学汚染物質を殆ど発生しない材質(ケミカルクリーンの材質)により形成されている。この遮蔽箱39a,39bは、リニアモータ38a,38bの各々に沿ってY方向に延びる矩形形状であり、各々のウェハステージWSTに対向する面には可動子36a,36bをY方向に移動可能にするために、Y方向に延びる切り欠き部40a,40bが形成されている。
また、本実施形態の露光装置は、ウェハステージWSTと第1架台f11との間に温調天板49を備えている。温調天板49は、内部に流体の流路が形成された板状の金属(例えば、アルミニウム等の熱伝導率の高い材料)で構成され、内部の流路には一定温度に温調された温調流体が流れている。これによって温調天板49の温度は一定に保たれ、第1架台f11の温度が変化した場合でもウェハステージWSTが配置される空間の温度を一定に保つことができる。つまり、温調天板49もまた、ウェハステージWSTが配置される空間において空気揺らぎが生ずるのを防止するために設けられている。尚、温調天板49は、空調装置28X,28Yが設けられる部分及び投影光学系PLからの露光光が通過する部分は切り欠かれている。
尚、ウェハステージWSTが配置される空間からリニアモータ38a,38bが配置される空間を遮蔽するためには遮蔽箱39a,39bを設けるだけでよいが、スループット向上の要求からウェハステージWSTの最高速度が高く設定されており、リニアモータ38a,38bの発熱量が増大する。このため、遮蔽箱39a,39bの各々に対し、遮蔽箱39a,39b内部の空気を外部に排気する吸気装置41a,41bを設けることが望ましい。尚、図7においては、リニアモータ38a,38bの上方に吸気装置41a,41bを備える場合を例に挙げて図示しているが、遮蔽箱39a,39bの内部であれば任意の位置に配置することができる。また、遮蔽箱39a,39bの内部には吸気装置41a,41bに接続される吸気口のみを設け、遮蔽箱39a,39bの外部に吸気装置41a,41bを設けた構成としても良い。
また、遮蔽箱39a,39bの上方には、遮蔽部材としての遮蔽シート42a,42bがそれぞれ設けられている。この遮蔽シート42a,42bは、ウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを更に遮蔽(隔離)するものである。上述した遮蔽箱39a,39bによって、ウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とは遮蔽されることになるが、例えば遮蔽箱39a,39bの上面から熱が放出される場合、又はリニアモータ38a,38b以外の熱源からの熱が発せられる場合を考慮して遮蔽シート42a,42bが設けられている。
遮蔽シート42a,42bは、例えばテフロン(登録商標)等のフッ素系のシート又はフッ素系のゴムであって、断熱性を有するとともにケミカルクリーンの材質により形成されている。この遮蔽シート42a,42bは、更に可撓性(柔軟性)を有していることが好ましい。ウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを遮蔽するためだけであれば、剛性の高い断熱材によりウェハステージWSTを取り囲んでしまえばよいが、かかる構成にするとウェハステージWST等のメンテナンス性が悪化する。図7に示す通り、遮蔽箱39a,39bによってリニアモータ38a,38bを覆い、遮蔽箱39a,39bの上方に可撓性を有する遮蔽シート42a,42bを配置した構成とすることにより、ウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間との遮蔽が実現できるとともに、メンテナンス性の悪化を防止することができる。
遮蔽シート42a,42bは、基礎フレームF20をなす上部フレームf22に取り付けられており、上部フレームf22から遮蔽箱39a,39bの上面まで垂れ下げられている。以上の遮蔽箱39a,39b及び遮蔽シート42a,42bによって、図7に示す通り、レーザ干渉計27XはウェハステージWSTが配置される空間に配置されることになって、リニアモータ38a,38bが配置される空間から遮蔽される。レーザ干渉計27Y及びAFセンサについても同様に、リニアモータ38a,38bが配置される空間から遮蔽される。これにより、ウェハステージWSTが配置される空間に設けられるレーザ干渉計27(図7においては、移動鏡26Xにレーザ光を照射する干渉計27Xを図示している)、ウェハステージWSTの上方に設けられるAFセンサの検出精度を維持することができる。
尚、図7においては、リニアモータ38a,38bをそれぞれ遮蔽する遮蔽箱39a,39bを設け、この遮蔽箱39a,39bの上方に遮蔽シート42a,42bを設けた構成を図示しているが、図3A及び3Bに示す構成以外の遮蔽部材を用いてウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを遮蔽することもできる。図8Aから8Dは、遮蔽部材の変形例を模式的に示す図である。
図7においては、切り欠き部40a,40bを除いてリニアモータ38a,38bを包囲する遮蔽箱39a,39bを設けていたが、図8Aに示す通り、リニアモータ38a,38bの上方のみを覆うL字形状の遮蔽板43a,43bを設け、この遮蔽板43a,43bとリニアモータ38a,38bとの間に吸気装置44a,44bを設けた構成としても良い。遮蔽板43a,43bは遮蔽箱39a,39bと同様に、断熱性を有するセラミックス又は真空断熱パネルであって、ケミカルクリーンの材質により形成されている。かかる構成であれば、リニアモータ38a,38bから発せられた熱により暖められた空気は、遮蔽板43a,43bの内部に溜まって外部に排気される。
また、図8Aに示したL字形状の遮蔽板43a,43bに代えて、図8Bに示す平板状の遮蔽板45a,45bと、遮蔽板45a,45bの一端に取り付けられた遮蔽シート46a,46bとから構成される遮蔽部材を設けても良い。平板状の遮蔽板45a,45bは、それぞれリニアモータ38a,38bの上方にXY平面とほぼ平行になるよう配置され、この遮蔽板45a,45bのウェハステージWST側に向かう端部に遮蔽シート46a,46bが取り付けられる。ここで、遮蔽シート46a,46bは、遮蔽シート42a,42bと同一の材質で形成することが望ましい。
更に、図8Cに示す通り、図1及び図7に示した基礎フレームF20をなす上部フレームf22に遮蔽シート47a,47bを取り付け、この遮蔽シート47a,47bをXガイドバー32の上方の近傍位置まで垂れ下げるようにしても良い。この遮蔽シート47a,47bは、遮蔽シート42a,42bと同一の材質で形成され、Y方向の長さがリニアモータ38a,38bのY方向の長さよりも長く設定されており、ウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを遮蔽する。かかる構成とすることで、遮蔽部材のコストを低減することができる。尚、リニアモータ38a,38bが配置される空間に吸気装置44a,44bを設けることが望ましい。
また、図8Dに示す通り、図8Cに示す遮蔽シート42a,42bに代えて遮蔽板48a,48bを設けても良い。この遮蔽板48a,48bも基礎フレームF20をなす上部フレームf22に取り付けられており、Xガイドバー32の上方の近傍位置まで方まで垂れ下げられている。遮蔽板48a,48bは、遮蔽箱39a,39bと同様の材質で形成されている。かかる構成によっても図8Cに示した構成と同様にウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを遮蔽することができる。但し、図8Bに示す構成とすると、+X側又は−Y側からウェハステージWSTのメンテナンスをする場合には、遮蔽板48a,48bを取り外す作業を行う必要がある。尚、図8Dに示す構成の場合にも、リニアモータ38a,38bが配置される空間に吸気装置44a,44bを設けることが望ましい。
以上の構成の露光装置EXを用いてレチクルRに形成されたパターンをウェハW上に転写するには、まず、図1に示すレチクルアライメント系14を用いてレチクルRの精確な位置情報を計測するとともに、不図示のアライメントセンサを用いてウェハWの精確な位置情報を計測する。次に、これらの計測結果とレーザ干渉計27(レーザ干渉計27X,27Y)の検出結果とに基づいてレチクルRとウェハWの相対的な位置を調整する。次いで、レチクルステージRSTを駆動してレチクルRを露光開始位置に配置するとともに、ウェハステージWSTを駆動してウェハW上の最初に露光すべきショット領域を露光開始位置にそれぞれ配置する。
以上の処理が終了すると、レチクルRとウェハWとの移動を開始させ、レチクルステージRST及びウェハステージWSTの移動速度がそれぞれ所定速度に達した後でスリット状の照明光をレチクルRに照射する。その後は、レーザ干渉計27(レーザ干渉計27X,27Y)の検出結果をモニタしつつ、レチクルRとウェハWとを同期移動させてレチクルRのパターンを逐次ウェハW上に転写する。尚、パターンの転写を行っている間は、AFセンサの計測結果に基づいてウェハステージWSTの姿勢(X軸及びY軸周りの回転)が制御される。1つのショット領域に対する露光処理が終了すると、ウェハステージWSTをステップ移動させて次に露光すべき領域を露光開始位置に配置し、以下同様に露光処理を行う。
本実施形態の露光装置によれば、ウェハステージWSTを高速に移動させることができるため、高いスループットを実現することができる。ウェハステージWSTが高速になると、温調されてない空気がレーザ干渉計27(レーザ干渉計27X,27Y)から射出されるレーザ光の光路、又はAFセンサから射出されるスリット像の光路に混入する虞があるが、本実施形態ではレーザ干渉計27から射出される光路に対してダウンフローを供給する空調装置28X,28Yを設けるとともに、下層サイドフローを供給する空調装置29を設けているため、温調されていない空気がレーザ光の光路に混入するのを防止又は低減することができるため、レーザ干渉計27の検出精度の低下を招くことはない。また、ウェハステージWST上に温調エアを供給する空調装置34を備えているため、AFセンサの検出精度の低下を招くことはない。
更に、ウェハステージWSTが高速になると、リニアモータ38a,38b等から発せられる熱量が増大し、この熱により暖められた空気がレーザ干渉計27から射出されるレーザ光の光路、又はAFセンサから射出されるスリット像の光路に混入する虞がある。しかしながら、本実施形態ではリニアモータ38a,38bを包囲する遮蔽箱39a,39b及び遮蔽シート42a,42bを設けてウェハステージWSTが配置される空間とリニアモータ38a,38bが配置される空間とを遮蔽しているため、レーザ干渉計27及びAFセンサの検出精度の低下を招くことはない。
以上から、レチクルRの位置、並びにウェハの位置及び姿勢を高精度に検出することができるため、露光精度(パターンの重ね合わせ精度等)を向上させることができる。この結果として、所期の機能を有するデバイスを高い歩留まりで効率よく製造することができる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に制限される訳ではなく、本発明の範囲内で自由に変更することができる。例えば、上記実施形態では、ダウンフローを供給する空調装置28X、28Y、下層サイドフローを供給する空調装置29に加えて、ウェハステージWST上に温調エアを供給する空調装置35と、リニアモータ38a、38bを隔離する遮蔽箱39a、39bと、温調天板49と、遮蔽シート42a、42bとをすべて設けている。しかしながら、必ずしもこれらすべての要素を有しなければならないわけではなく、いずれかの要素を適宜選択し、空調装置28X、28Y、29と組み合わせて用いてもかまわない。もちろん、それぞれの要素を単独で用いることもできる。また、上記実施形態では、レーザ干渉計としてウェハステージWSTの二次元平面内の位置を計測するX軸用レーザ干渉計27X、Y軸用レーザ干渉計27Yを備えた露光装置に本発明を適用した例を説明したが、基準平面に垂直な方向(Z軸方向)におけるウェハステージWSTの位置を計測するZ軸用レーザ干渉計を備えた露光装置に対しても本発明を適用することができる。また、上記実施形態では本発明のステージ装置を露光装置のウェハステージWSTに適用した場合を例に挙げて説明したが、露光装置が備えるレチクルステージRSTにも適用することができる。また、露光装置のみならず載置物を載置した状態でX方向及びY方向の少なくとも一方に移動可能に構成されたステージを備えるステージ一般に適用することができる。
また、上記実施形態ではステップ・アンド・スキャン方式の露光装置を例に挙げて説明したが、本発明はステップ・アンド・リピート方式の露光装置にも適用可能である。また、本発明の露光装置は、半導体素子の製造に用いられる露光装置だけではなく、液晶表示素子(LCD)等を含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッドの製造に用いられてデバイスパターンをセラミックウェハ上へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置等にも適用することができる。
更には、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウェハなどに回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、又は水晶などが用いられる。また、プロキシミティ方式のX線露光装置、又は電子線露光装置などでは透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウェハなどが用いられる。なお、このような露光装置は、国際公開99/34255号、国際公開99/50712号、国際公開99/66370号、特開平11−194479号、特開2000−12453号、特開2000−29202号等に開示されている。
また、国際公開第99/49504号公報に開示されているような液浸法を用いる露光装置にも本発明を適用することができる。ここで、本発明は、投影光学系PLとウェハWとの間を局所的に液体で満たす液浸露光装置、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する液浸露光装置の何れの露光装置にも適用可能である。
尚、上記実施形態の露光装置を用いて半導体デバイスを製造する場合には、この半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいてレチクルを製造するステップ、シリコン材料からウェハWを形成するステップ、上述した実施形態の露光装置によりレチクルRのパターンをウェハWに露光するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。

Claims (16)

  1. 定盤に形成された基準平面上を移動可能に構成されたステージと、当該ステージに前記基準平面と平行な光ビームを照射して前記ステージの位置を計測する干渉計とを備えるステージ装置において、
    前記光ビームの光路に対して、前記基準平面と直交する方向に沿って所定の温度に調整された気体を供給する第1空調機構と、
    前記光ビームの光路と前記基準平面との間の空間に、前記基準平面に沿って所定の温度に調整された気体を供給する第2空調機構と
    を備えることを特徴とするステージ装置。
  2. 前記第2空調機構は、前記光ビームの光路に交差する方向における前記ステージの幅よりも広い幅で前記気体を供給することを特徴とする請求項1記載のステージ装置。
  3. 前記基準平面上における前記ステージの移動範囲の外側に配置され、前記干渉計の計測結果に基づいて前記ステージを駆動する駆動装置を備え、
    前記駆動装置が配置される空間を、少なくとも前記ステージが配置される空間から遮蔽する遮蔽部材を備えることを特徴とする請求項1記載のステージ装置。
  4. 前記ステージは基板を保持する保持面を有し、前記保持面上の空間に所定の温度に調整された気体を供給する第3空調機構を備えることを特徴とする請求項1記載のステージ装置。
  5. 前記第1空調機構から供給される気体の風速は、前記第3空調機構から供給される気体の風速と同等以上であり、前記第3空調機構から供給される気体の風速は、前記第2空調機構から供給される気体の風速と同等以上であることを特徴とする請求項4記載のステージ装置。
  6. 基準平面上の移動範囲内を移動可能に構成されたステージと、当該ステージに前記基準平面と平行な光ビームを照射して前記ステージの位置を計測する干渉計と、前記移動範囲外に配置され当該干渉計の計測結果に基づいて前記ステージを駆動する駆動装置とを備えるステージ装置において、
    前記駆動装置が配置される空間を、少なくとも前記ステージが配置される空間から遮蔽する遮蔽部材を備えることを特徴とするステージ装置。
  7. 前記遮蔽部材は、断熱性と柔軟性とを有する薄板状の部材であることを特徴とする請求項6記載のステージ装置。
  8. 前記遮蔽部材で遮蔽された前記駆動装置が配置される空間の気体を排気する排気機構を備えることを特徴とする請求項6記載のステージ装置。
  9. 前記駆動装置を包囲する包囲部材を備え、
    前記排気機構は、前記駆動装置が配置された前記包囲部材の内部の空間の気体を排気することを特徴とする請求項8記載のステージ装置。
  10. 基板を保持する保持面を有し基準平面上を移動するステージを備えるステージ装置において、
    前記保持面上の空間に所定の温度に調整された気体を供給する供給機構と、
    前記供給機構と対向して設けられ、前記保持面上の気体を吸引する吸気機構と
    を備えることを特徴とするステージ装置。
  11. 前記吸気機構は、前記ステージに設けられることを特徴とする請求項10記載のステージ装置。
  12. マスクを保持するマスクステージと、基板を保持する基板ステージとを備え、前記マスクに形成されたパターンを前記基板上に転写する露光装置において、
    前記マスクステージ及び前記基板ステージの少なくとも一方として請求項1から請求項11の何れか一項に記載のステージ装置を備えることを特徴とする露光装置。
  13. 露光光を照射して基板にパターンを形成する露光装置において、
    定盤に形成された基準平面上を、前記基板を保持して移動可能なステージと、
    前記基準平面と平行な光ビームを第1方向に沿って前記ステージに対して照射して前記ステージの前記第1方向における位置を計測する第1干渉計と、
    前記基準平面と平行な光ビームを第1方向と直交する第2方向に沿って前記ステージに対して照射して前記ステージの前記第2方向における位置を計測する第2干渉計と、
    前記光ビームのそれぞれの光路に対して、前記基準平面と直交する方向に沿って所定の温度に調整された気体を供給する第1空調機構と、
    前記光ビームの光路と前記基準平面との間の空間に、前記基準平面に沿って前記第1方向と平行に所定の温度に調整された気体を供給する第2空調機構と
    を備えることを特徴とする露光装置。
  14. 前記第2空調機構は、前記第1方向と平行に気体を供給することを特徴とする請求項13記載の露光装置。
  15. 前記露光装置は前記基板の走査中に露光を行う走査型露光装置であり、
    前記第1方向は、前記走査の方向であることを特徴とする請求項14記載の露光装置。
  16. 前記第1空調機構は、前記第2空調機構よりも速い流速で気体を供給することを特徴とする請求項14記載の露光装置。
JP2006535826A 2004-09-10 2005-09-08 ステージ装置及び露光装置 Pending JPWO2006028188A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004263882 2004-09-10
JP2004263882 2004-09-10
PCT/JP2005/016552 WO2006028188A1 (ja) 2004-09-10 2005-09-08 ステージ装置及び露光装置

Publications (1)

Publication Number Publication Date
JPWO2006028188A1 true JPWO2006028188A1 (ja) 2008-05-08

Family

ID=36036469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006535826A Pending JPWO2006028188A1 (ja) 2004-09-10 2005-09-08 ステージ装置及び露光装置

Country Status (5)

Country Link
US (1) US20080239257A1 (ja)
JP (1) JPWO2006028188A1 (ja)
KR (1) KR20070048722A (ja)
TW (1) TW200614346A (ja)
WO (1) WO2006028188A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120340A (ja) * 2015-12-28 2017-07-06 キヤノン株式会社 露光装置、および物品の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124179B1 (ko) 2003-04-09 2012-03-27 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI457712B (zh) 2003-10-28 2014-10-21 尼康股份有限公司 照明光學裝置、投影曝光裝置、曝光方法以及元件製造方法
TWI512335B (zh) 2003-11-20 2015-12-11 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
TWI360837B (en) 2004-02-06 2012-03-21 Nikon Corp Polarization changing device, optical illumination
EP1881521B1 (en) 2005-05-12 2014-07-23 Nikon Corporation Projection optical system, exposure apparatus and exposure method
CN100461365C (zh) * 2006-06-12 2009-02-11 上海微电子装备有限公司 高精度硅片台及其定位方法
US7420299B2 (en) * 2006-08-25 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US20100033694A1 (en) * 2008-08-01 2010-02-11 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP2010182834A (ja) * 2009-02-04 2010-08-19 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
CN102338991A (zh) * 2011-08-31 2012-02-01 合肥芯硕半导体有限公司 一种激光位移传感器控制的预对准方法
US10535495B2 (en) * 2018-04-10 2020-01-14 Bae Systems Information And Electronic Systems Integration Inc. Sample manipulation for nondestructive sample imaging
JP7278137B2 (ja) * 2019-04-18 2023-05-19 キヤノン株式会社 ステージ装置、リソグラフィ装置、および物品の製造方法
US11340179B2 (en) 2019-10-21 2022-05-24 Bae Systems Information And Electronic System Integration Inc. Nanofabricated structures for sub-beam resolution and spectral enhancement in tomographic imaging
TWI830502B (zh) * 2022-11-17 2024-01-21 家碩科技股份有限公司 自動量測光罩載具之流量的治具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124126A (ja) * 1992-10-09 1994-05-06 Canon Inc 位置決め装置
JPH1092735A (ja) * 1996-09-13 1998-04-10 Nikon Corp 露光装置
JP2001244196A (ja) * 2000-02-10 2001-09-07 Asm Lithography Bv 温度制御された熱シールドを有するリソグラフィ投影装置
JP2002190438A (ja) * 2000-12-21 2002-07-05 Nikon Corp 露光装置
WO2002101804A1 (fr) * 2001-06-11 2002-12-19 Nikon Corporation Dispositif d'exposition, procede de fabrication et element de passage de flux de stabilisation de temperature
JP2004063847A (ja) * 2002-07-30 2004-02-26 Nikon Corp 露光装置、露光方法、及びステージ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW588222B (en) * 2000-02-10 2004-05-21 Asml Netherlands Bv Cooling of voice coil motors in lithographic projection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124126A (ja) * 1992-10-09 1994-05-06 Canon Inc 位置決め装置
JPH1092735A (ja) * 1996-09-13 1998-04-10 Nikon Corp 露光装置
JP2001244196A (ja) * 2000-02-10 2001-09-07 Asm Lithography Bv 温度制御された熱シールドを有するリソグラフィ投影装置
JP2002190438A (ja) * 2000-12-21 2002-07-05 Nikon Corp 露光装置
WO2002101804A1 (fr) * 2001-06-11 2002-12-19 Nikon Corporation Dispositif d'exposition, procede de fabrication et element de passage de flux de stabilisation de temperature
JP2004063847A (ja) * 2002-07-30 2004-02-26 Nikon Corp 露光装置、露光方法、及びステージ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120340A (ja) * 2015-12-28 2017-07-06 キヤノン株式会社 露光装置、および物品の製造方法

Also Published As

Publication number Publication date
KR20070048722A (ko) 2007-05-09
TW200614346A (en) 2006-05-01
WO2006028188A1 (ja) 2006-03-16
US20080239257A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JPWO2006028188A1 (ja) ステージ装置及び露光装置
JP6443784B2 (ja) 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法
WO2001027978A1 (fr) Substrat, dispositif a etage, procede d'attaque d'etage, systeme d'exposition et procede d'exposition
US20060103832A1 (en) Wafer table for immersion lithography
US7433050B2 (en) Exposure apparatus and exposure method
EP1950793A1 (en) Exposure apparatus and exposure method
JPWO2011016254A1 (ja) 移動体装置、露光装置及び露光方法、並びにデバイス製造方法
CN108139685B (zh) 曝光装置、平面显示器的制造方法、组件制造方法、及曝光方法
JP2001148341A (ja) 露光装置
KR20020009483A (ko) 스테이지 장치 및 노광장치
JP2004014915A (ja) ステージ装置および露光装置
WO2003063212A1 (fr) Dispositif de platine et dispositif d'exposition
JP2005276932A (ja) 露光装置及びデバイス製造方法
CN108139676B (zh) 移动体装置、曝光装置、平面显示器的制造方法、及组件制造方法
JPWO2004075268A1 (ja) 移動方法、露光方法及び露光装置、並びにデバイス製造方法
JP6855008B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2002217082A (ja) ステージ装置及び露光装置
JP2014035349A (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2004180361A (ja) リニアモータ及びリニアモータ製造方法及びステージ装置並びに露光装置
WO2005074015A1 (ja) 板部材の支持方法、板部材支持装置、ステージ装置、露光装置、及びデバイスの製造方法
TW514983B (en) Stage device and exposure device
JP2010010593A (ja) 防振装置、ステージ装置及び露光装置
JP2005331009A (ja) 防振装置及び露光装置
JP2002134387A (ja) ステージ装置および露光装置
JP2003299339A (ja) リニアモータおよびステージ装置並びに露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706