JP2005276932A - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2005276932A
JP2005276932A JP2004085084A JP2004085084A JP2005276932A JP 2005276932 A JP2005276932 A JP 2005276932A JP 2004085084 A JP2004085084 A JP 2004085084A JP 2004085084 A JP2004085084 A JP 2004085084A JP 2005276932 A JP2005276932 A JP 2005276932A
Authority
JP
Japan
Prior art keywords
mirror
reticle
illumination
exposure apparatus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004085084A
Other languages
English (en)
Inventor
Hitoshi Nishikawa
仁 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004085084A priority Critical patent/JP2005276932A/ja
Publication of JP2005276932A publication Critical patent/JP2005276932A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】投影光学系の光学性能を低下させることが無く、長期間に渡り、高精度な露光を行う。
【解決手段】照明光ELを反射型マスクRに対して所定の入射角で入射させる特定ミラーMcが投影ユニットPUを保持するボディ26とは物理的に分離した照明系保持架台56で保持されている。このため、照明光の照射に起因する特定ミラーの発熱(温度上昇)が生じても、その熱が投影ユニット内の投影光学系を構成する光学部材に熱伝導によって伝播するのが抑制される。これにより、光学部材の熱変形に起因する投影光学系の光学性能(結像特性を含む)の低下を効果的に抑制することが可能になる。
【選択図】図2

Description

本発明は、露光装置及びデバイス製造方法に係り、更に詳しくは半導体素子等を製造するためのリソグラフィ工程で用いられる露光装置及び該露光装置を用いるデバイス製造方法に関する。
従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下「レチクル」と総称する)に形成されたパターンを、投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、適宜ウエハともいう)上に転写する露光装置が用いられている。近年この種の装置として、スループットを重視する観点から、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆる「ステッパ」)や、このステッパを改良したステップ・アンド・スキャン方式の走査型露光装置などの逐次移動型の投影露光装置が主として用いられている。
これらの露光装置では露光用の照明光(露光ビーム)として超高圧水銀ランプからの紫外域の輝線、例えばi線(波長365nm)や、KrFエキシマレーザ光(波長248nm)などが使用されていた。近年ではより高い解像度(解像力)を得るために、ArFエキシマレーザ光(波長193nm)を露光ビームとする露光装置も実用化されている。これらの露光装置の投影光学系としては屈折系、又は反射屈折系が主として用いられていた。
しかし、最近では、これらの露光装置に対し、更に一層高い解像度を実現するために、波長が100nm以下の極端紫外光(EUV(Extreme Ultraviolet)光)を発生するSOR(Synchrotron Orbital Radiation)リング又はレーザプラズマ光源等を露光光源として使用するEUV露光装置(EUVL)の開発が進められている。
EUV露光装置では、EUV光を好適に透過する光学材料が現時点では存在しないことから、照明光学系及び投影光学系は、反射型の光学部材(反射光学素子)のみから成るオール反射の光学系が採用され、レチクルもまた反射型レチクルが用いられる。また、EUV光は、殆どの物質で吸収されるため、EUV光の光路空間は所定の高真空状態に設定する必要があり、通常EUV露光装置の本体は、真空チャンバ内に設置される。
しかるに、EUV露光装置のように、オール反射の照明光学系を用いて、反射型レチクルに露光ビームを入射させ、そのレチクルからの反射光をオール反射の投影光学系に入射させ、ウエハ上に投射する場合、投影光学系の物体面側(レチクル側)は非テレセントリックとなるので、投影光学系の光軸方向に関するレチクルの位置誤差が、ウエハ上に形成されるレチクルパターンの像の横ずれの要因となる。投影光学系の光軸方向に関するレチクルの位置誤差が同一の値である場合、露光ビームの入射角が小さいほど上記の横ずれ量は小さくなる。EUV露光装置が対象とする最小線幅が70nm程度以下の高集積度のデバイスの製造に際しては、許容されるトータルオーバーレイ誤差が非常に小さいので、必要な解像度を得られる開口数(N.A.)を確保した上で、露光ビームの入射角は小さく設定される。例えば露光ビームの波長が13nmである場合には、レチクルに対する露光ビームの入射角は、約50〔mrad〕に設定される(例えば、下記特許文献1参照)。このため、露光装置の大型化防止の観点から、照明光学系と投影光学系とを近接配置し、前記照明光学系からレチクルに対して直接に(すなわち露光エネルギの低下につながる不要な反射光学素子を介さずに)露光ビームを入射させる場合には、そのレチクルに対して露光ビームを入射させる照明光学系の一部のミラー(以下「特定ミラー」と呼ぶ)はレチクルのほぼ直下に設置されることとなる。しかるに、通常、レチクルの直下には投影光学系が配置されるため、特定ミラーを、投影光学系の内部や投影光学系の最近傍に設置することが必要になる。
特定ミラーを、投影光学系内部又は最近傍の位置に設置する場合、特定ミラーに対し露光ビームが照射され、その特定ミラーが熱を吸収することに起因する温度上昇により、周囲の部材に悪影響を与えるおそれがある。特に、特定ミラーを投影光学系内部に配置する場合には、その特定ミラーからの熱が主として熱伝導によって鏡筒を介して投影光学系内の他の光学部材に伝播され、投影光学系内の他の光学部材に熱変形が生じ、結果的に投影光学系の結像特性を低下させるおそれがある。特定ミラーを投影光学系の最近傍の位置に設置し、投影光学系の鏡筒の一部に形成された切り欠き部を介してレチクルに露光ビームを照射する場合にも、特定ミラーからの鏡筒を介した熱の伝播により他の光学部材に熱変形が生じ得る。
しかしながら、これまでは、前述したように、露光装置の投影光学系としては屈折系、又は反射屈折系が主として用いられていたため、上記の特定ミラーのように、照明光学系内の光学素子を、投影光学系の内部や投影光学系の最近傍に設置する構成については殆ど考慮されたことがないのが、実情である。
また、上述の説明からも分かるように、特定ミラーは、その反射面の位置・角度調整ができた方が望ましいが、その特定ミラーの調整機構を投影光学系の鏡筒に設けると、その調整機構の駆動力又はその反力が、鏡筒を介して投影光学系内の他の光学素子に伝達し、他の光学素子の振動要因と成りかねない。
米国特許第6,406,820号明細書
本発明は、上述した事情の下でなされたもので、第1の観点からすると、反射型マスク(R)を介した照明光(EL)で感光物体(W)を露光し、前記反射型マスクに形成されたパターンを前記感光物体上に転写する露光装置であって、照明光を前記反射型マスクに対して所定の入射角で入射させる特定ミラー(Mc)を含む照明光学系と;前記反射型マスクから射出された前記照明光を感光物体上に投射する投影光学系を有する投影ユニット(PU)と;前記投影ユニットを保持するボディ(26)と;前記照明光学系を構成する前記特定ミラーを含む複数の光学部材を保持し、前記ボディとは物理的に分離した照明系保持架台(56)と;を備える露光装置である。
これによれば、特定ミラーが投影光学系を保持するボディとは物理的に分離した照明系保持架台で保持されていることから、特定ミラーが投影ユニット近傍(又は内部)に配置されているにも拘わらず、照明光の照射に起因する特定ミラーの発熱(温度上昇)が生じても、その熱が投影ユニット内の投影光学系を構成する光学部材に熱伝導によって伝播するのが抑制される。これにより、光学部材の熱変形に起因する投影光学系の光学性能(結像特性を含む)の低下を効果的に抑制して、長期間に渡り、その投影光学系を用いて、高精度な露光(感光物体へのパターンの転写)を実現することが可能となる。
この場合において、前記特定ミラーは前記投影ユニットを構成する鏡筒内に配置された場合、前記照明光は、前記鏡筒に形成された開口を介して前記特定ミラーに入射し、前記反射型マスクに向けて反射されることとすることができる。
また、リソグラフィ工程において、本発明の露光装置を用いて露光を行うことにより、長期間に渡り、精度良く反射型マスクのパターンを感光物体上に転写することができ、これにより、より高集積度のマイクロデバイスを歩留まり良く製造することができ、その生産性を向上させることができる。従って、本発明は第2の観点からすると、本発明の露光装置を用いるデバイス製造方法であるとも言える。
以下、本発明の一実施形態を図1〜図11に基づいて説明する。
図1には、一実施形態に係る露光装置10の全体構成が概略的に示されている。この図1では、露光装置10を構成する、後述する上側チャンバ42、下側チャンバ44及びミラーチャンバ40が、それぞれ一部破断して示されている。
この露光装置10では、反射型マスクとしてのレチクルRからの反射光束を、感光物体としてのウエハW上に垂直に投射する投影光学系を内部に有する投影ユニットPUが採用されているので、以下においては、この投影光学系からウエハWへの照明光の投射方向を投影光学系の光軸方向と呼ぶとともに、この光軸方向をZ軸方向、これに直交する面内で図1における紙面内左右方向をY軸方向、紙面に直交する方向をX軸方向として説明する。
この露光装置10は、レチクルRに形成された回路パターン(以下、「レチクルパターン」と略述する)の一部の像を投影ユニットPU内の投影光学系を介してウエハW上に投影しつつ、レチクルRとウエハWとを投影ユニットPUに対して1次元方向(Y軸方向)に相対走査することにより、レチクルパターンをウエハW上の複数のショット領域の各々にステップ・アンド・スキャン方式で転写するものである。
露光装置10は、レチクルRを照明光(EUV光)ELで照明する照明系10Aと、該照明系10Aの+Y側に近接して配置された露光装置本体部10Bとを備えている。
照明系10Aは、第1部分照明系12と、第2部分照明系15とを備えている。このうち、第1部分照明系12は、図1では、図示の便宜上から単なるブロックで示されているが、実際には、図3に模式的に示されるように、波長11nmの軟X線領域の照明光(EUV光)ELを射出するSOR(Synchrotron Orbital Radiation)リングから成る不図示の露光光源と、集光ミラー及びコリメータミラーなどを含んで構成されるミラー系114と、反射型のオプティカル・インテグレータ(ホモジナイザ)としての第1のフライアイミラー116A及び第2のフライアイミラー116Bとを備えている。照明光ELは、不図示の露光光源から不図示のビームラインを介してミラー系114を構成する集光ミラーに導かれている。
前記第1のフライアイミラー116Aは、例えば、図4(A)に示されるように、複数列(図4(A)では3列)の光学素子群118A〜118Cから構成され、光学素子群118A〜118Cのそれぞれは、円弧状の細長い反射面を有する反射光学素子(ミラーエレメント)120を複数備えている。前記第2のフライアイミラー116Bは、図4(B)に示されるように、複数群(図4(B)では3群)の光学素子群122A〜122Cから構成され、光学素子群122A〜122Cのそれぞれは、ほぼ正方形状の反射面を有する反射光学素子(ミラーエレメント)123を複数備えている。光学素子群122A〜122Cを構成する光学素子は全体として概略円形となるように配置されている。
これら第1のフライアイミラー116A、第2のフライアイミラー116Bでは、第1のフライアイミラー116Aの光学素子群118Aと第2のフライアイミラー116Bの光学素子群122A、光学素子群118Bと光学素子群122B、光学素子群118Cと光学素子群122Cとがそれぞれ対応しており、例えば、図4(C)に示されるように、光学素子群118Aの図4(A)の紙面上下方向に隣接する3つの光学素子で反射された光が、光学素子群122Aの図4(B)の紙面左右方向に隣接する3つの光学素子に入射するようになっている。
この場合、第1のフライアイミラー116Aの紙面上下方向の反射光学素子の配列数は、第2のフライアイミラー116Bの紙面上下方向の反射光学素子の配列数の3倍程度となっており、積分効果によって第2のフライアイミラー116Bの各反射光学素子上での照度は均一化される。
図1に戻り、前記第2部分照明系15は、第1部分照明系12から射出された照明光ELを順次反射して最終的に所定の入射角、例えば約50〔mrad〕でレチクルRのパターン面(図1における下面(−Z側の面))に入射させる複数枚のミラーを有するミラーユニット14と、該ミラーユニット14を収容するミラーチャンバ40とを備えている。
前記ミラーユニット14は、床面F上に設けられた複数本(ここでは3本又は4本)の支持部材52によりほぼ水平に支持された支持定盤50上に固定されている。この支持定盤50の上面側に、前述のミラーチャンバ40が設けられている。このミラーチャンバ40の−Y側の側壁には第1部分照明系12からの照明光ELを入射させるための第1開口49が形成され、ミラーチャンバ40の+Y側の側壁には照明光ELを射出するための第2開口48が形成されている。
ミラーチャンバ40は、該ミラーチャンバ40と支持定盤50とによって区画される空間等の高真空状態を維持できるように、気密性が高く構成されている。
前記ミラーユニット14は、その一部分が支持部材52の上方の所定の空間を覆うミラーチャンバ40の第2開口48からはみ出した状態とされている。このミラーユニット14は、図2及び図3に示されるように、3つのトロイダル非球面斜入射ミラーから成る反射ミラー(第1反射ミラーMa、第2反射ミラーMb、第3反射ミラーMc)と、該3つの反射ミラーを所定の位置関係で保持する保持台60とを備えている。これら反射ミラーMa〜Mcによりコンデンサ系が構成されている。なお、このミラーユニット14については後に更に詳述する。
本実施形態では、上述したミラー系114、第1のフライアイミラー116A、第2のフライアイミラー116B、及びミラーユニット14の第1〜第3の反射ミラーMa〜Mcによって、照明光学系が構成されている。
上述のようにして構成された照明光学系によると、前記露光光源から射出された照明光ELは、ミラー系114を構成する集光ミラーにより集光され、コリメータミラーの反射面によって反射及び偏向されてほぼ平行光束となって、第1のフライアイミラー116Aに入射する。第1のフライアイミラー116Aで反射された照明光ELは、第2のフライアイミラー116Bで反射されて照度分布が均一化された状態でミラーユニット14を構成する第1反射ミラーMaに入射する。その後、照明光ELは、コンデンサ系を構成する第1反射ミラーMa、第2反射ミラーMb、第3反射ミラーMcで順次反射、集光されて、レチクルRのパターン面(下面)を円弧スリット状の照明光となって照明する(実際には、照明光ELは、後述する投影ユニットPUの鏡筒の開口部を介して第3反射ミラーMc及びレチクルRに到達する(図2参照))。
これまでの説明から明らかなように、本実施形態では、第3反射ミラーMcによって特定ミラーが構成されている。また、床面F上に設けられた複数本の支持部材52、これらの支持部材によって水平に支持された支持定盤50、及び該支持定盤50上に固定され前記第1〜第3反射ミラーMa〜Mcを保持する保持台60によって、照明系保持架台56が構成されている。
前記露光装置本体部10Bは、図1及び図2に示されるように、レチクルRを保持するレチクルステージRST、前記レチクルRのパターン面で反射された照明光ELをウエハWの被露光面に投射する投影光学系を含む投影ユニットPU、ウエハWが載置されるウエハステージWST、投影ユニットPUを保持するボディとしての本体ボディ26、該ボディ26を構成する鏡筒定盤(メインフレーム)20上に設置され、レチクルステージRST及び投影ユニットPUの下端部近傍の一部を除く残りの部分を取り囲む上側チャンバ42、及び鏡筒定盤20の下面に吊り下げ支持され、ウエハステージWST等を収容する下側チャンバ44を備えている。
前記上側チャンバ42は、図1及び図2に示されるように、概略直方体状の形状を有し、その内部に投影ユニットPU、後述するアライメント検出系ALG、レチクルステージRST、レチクルステージベース32及び不図示の支持コラム等が収容されている。この上側チャンバ42の−Y側の側壁の一部(前記ミラーチャンバ40に形成された第2開口48に対向する部分)には、該第2開口48とほぼ同一の大きさ及び形状を有する開口47が形成されている。
上側チャンバ42とミラーチャンバ40との間には、前述の第2開口48及び開口47の周囲部分に、両チャンバ42、40を接続する伸縮自在のベローズ46が設けられている。このベローズ46により、上側チャンバ42の内部空間とミラーチャンバ40の内部空間とが、外部に対してほぼ気密状態で隔離されるとともに、両チャンバ42、40間における振動の伝達が抑制されている。
前記上側チャンバ42は、該上側チャンバ42と鏡筒定盤20とによって区画される空間等の高真空状態を維持できるように、気密性が高く構成されている。
前記レチクルステージRSTは、前述の支持コラム(不図示)によって水平に支持されたレチクルステージベース32上に配置され、レチクルステージ駆動部34(図1では図示せず、図11参照)を構成する例えば磁気浮上型2次元リニアアクチュエータが発生する磁気浮上力によって前記レチクルステージベース32上で浮上支持されている。レチクルステージRSTは、レチクルステージ駆動部34が発生する駆動力によってY軸方向に所定ストロークで駆動されるとともに、X軸方向及びθz方向(Z軸回りの回転方向)にも微小量駆動されるようになっている。また、このレチクルステージRSTは、レチクルステージ駆動部34が複数箇所で発生する磁気浮上力の調整によってZ軸方向及びXY面に対する傾斜方向(X軸回りの回転方向であるθx方向及びY軸回りの回転方向であるθy方向)にも微小量だけ駆動可能に構成されている。
レチクルステージRSTの下面側に不図示の静電チャック方式(又はメカチャック方式)のレチクルホルダが設けられ、該レチクルホルダによってレチクルRが保持されている。このレチクルRとしては、照明光ELが波長11nmのEUV光であることと対応して反射型レチクルが用いられている。このレチクルRは、そのパターン面が下面となる状態でレチクルホルダによって保持されている。このレチクルRは、シリコンウエハ、石英、低膨張ガラスなどの薄い板から成り、その−Z側の表面(パターン面)には、EUV光を反射する反射膜が形成されている。この反射膜は、モリブデンMoとベリリウムBeの膜が交互に約5.5nmの周期で、約50ペア積層された多層膜である。この多層膜は波長11nmのEUV光に対して約70%の反射率を有する。
レチクルRのパターン面に形成された多層膜の上には、吸収層として例えばニッケルNi又はアルミニウムAlが一面に塗布され、その吸収層にパターンニングが施されて回路パターンが形成されている。
レチクルRの吸収層が残っている部分に当たった照明光(EUV光)ELはその吸収層によって吸収され、吸収層の抜けた部分(吸収層が除去された部分)の反射膜に当たった照明光ELはその反射膜によって反射され、結果として回路パターンの情報を含んだ照明光ELがレチクルRのパターン面からの反射光として投影ユニットPUへ向かう。
レチクルステージRST(レチクルR)のステージ移動面内での位置(XY面内の位置)は、レチクルステージRSTに設けられた(又は形成された)反射面にレーザビームを投射するレチクルレーザ干渉計(以下、「レチクル干渉計」という)82Rによって、例えば0.5〜1nm程度の分解能で常時検出される。ここで、実際には、レチクル干渉計は、レチクルステージRSTのX軸方向位置(X位置)を計測するレチクルX干渉計とレチクルステージRSTのY軸方向位置(Y位置)を計測するレチクルY干渉計とが設けられているが、図1ではこれらが代表的にレチクル干渉計82Rとして示されている。そして、レチクルY干渉計とレチクルX干渉計の少なくとも一方、例えばレチクルY干渉計は、測長軸を2軸有する2軸干渉計であり、このレチクルY干渉計の計測値に基づきレチクルステージRST(レチクルR)のY位置に加え、θz方向(Z軸回りの回転方向)の回転量(ヨーイング量)も計測できるようになっている。
前記レチクルRのZ軸方向の位置及びXY面に対する傾斜(θx、θy方向の回転量)は、レチクルRのパターン面に対し斜め方向(投影光学系の光軸方向に対して所定角度傾斜した方向)から複数の結像光束を照射する送光系13aと、レチクルRのパターン面で反射された各結像光束の反射光束を個別に受光する複数の受光素子を有する受光系13bとから構成される斜入射方式の多点焦点位置検出系から成るレチクルフォーカスセンサ(13a,13b)によって計測(検出)されている。このレチクルフォーカスセンサ(13a,13b)と同様の構成の多点焦点位置検出系は、例えば特開平6−283403号公報(対応米国特許第5,448,332号)等に詳細に開示されている。
レチクル干渉計82R及びレチクルフォーカスセンサ(13a,13b)の計測値は、主制御装置120(図11参照)に供給され、該主制御装置120によってそれらレチクル干渉計82R及びレチクルフォーカスセンサ(13a,13b)の計測値に基づいてレチクルステージ駆動部34を介してレチクルステージRSTが駆動されることで、レチクルRの6次元方向の位置及び姿勢制御が行われるようになっている。
前記本体ボディ26は、図2に示されるように、床面F上に設けられた複数本(例えば3本又は4本)の支持部材22と、各支持部材22上部にそれぞれ各1つ設けられた複数の防振ユニット24と、該防振ユニット24を介して前記複数本の支持部材22によりほぼ水平に支持された前記鏡筒定盤20と、該鏡筒定盤20の下面に吊り下げ状態で固定された吊り下げコラム43と、鏡筒定盤20の上面に設けられ、前述したレチクルステージベース32を支持する不図示の支持コラムとを備えている。
前記各防振ユニット24は、支持部材22の上部に直列(又は並列)に配置された内圧が調整可能なエアマウントとボイスコイルモータとを含んで構成されている。各防振ユニット24のエアマウントによって、床面F及び支持部材22を介して鏡筒定盤20に伝わる床面Fからの微振動がマイクロGレベルで絶縁されるようになっている。
前記鏡筒定盤20は鋳物等から成り、その中央部に形成された平面視(上方から見て)円形の第1開口20aと該第1開口20aから+X方向に所定距離離れた位置に形成された第2開口(不図示)とを有している。
前記鏡筒定盤20の第1開口20aの内部に、前述の投影ユニットPUが上方から挿入され、鏡筒定盤20上に設けられた3つの防振ユニット(投影ユニットPUの裏側に位置する1つの防振ユニットは不図示)28によって、投影ユニットPUのフランジ部FLG1が下方から3点支持されている。各防振ユニット28としては、前述の防振ユニット24と同様の構成のものが用いられている。
前記投影ユニットPUは、図2に示されるように、鏡筒16と、該鏡筒16の内部に同図に示されるような所定の位置関係で上から下に順に配置された、第2ミラーM2、第4ミラーM4、第3ミラーM3及び第1ミラーM1の合計4つのミラー(反射光学素子)から成る投影光学系とを備えている。この投影光学系は、開口数(N.A.)が例えば0.1で、投影倍率が1/4倍に設定されている。
前記第1〜第4ミラーM1〜M4は、いずれも投影ユニットPU(投影光学系)の光軸、すなわち鏡筒16の中心軸に関して回転対称の反射面を有しており、特に第1ミラーM1及び第4ミラーM4の反射面は球面となっている。各反射面の凹凸誤差は設計値に対しRMS値(標準偏差)で0.2nmから0.3nm以下に抑えられている。また、第4ミラーM4には、図2に示されるように、開口が形成されている。
また、鏡筒16には、図2及び投影ユニットPU及びミラーユニット14を斜視図にて示す図5から分かるように、周壁の−Y側に開口59aが形成されており、該開口59aを介して、鏡筒16の内側に前述のミラーユニット14を構成する第3反射ミラーMcが挿入されている。更に、鏡筒16の上壁(天井壁)及び底壁には、図2に示されるように、照明光ELの通路となる開口59b,59cが形成されている。
このようにして構成された投影ユニットPUによると、図2に示されるように、前述のコンデンサ系を構成する第1反射ミラーMa、第2反射ミラーMbで順次反射された照明光ELが、ミラーチャンバ40の第2開口48、上側チャンバ42の開口47及び鏡筒16の開口59aを順次介して第3反射ミラーMcの反射面に到達し、その反射面で反射、集光された後、鏡筒16の開口59bを介してレチクルRのパターン面(下面)に所定の入射角、例えば50(mrad)で入射する。これにより、レチクルRのパターン面が円弧スリット状の照明光ELにより照明される。
そして、そのレチクルRのパターン面で反射されたレチクルパターンの情報を含む照明光ELは、開口59bを介して鏡筒16内に入射し、第1ミラーM1に到達する。この第1ミラーM1の反射面で反射された照明光ELは、第4ミラーM4の開口を介して第2ミラーM2の反射面に入射し、その反射面で反射され第4ミラーM4の開口を介して第3ミラーM3の反射面に入射する。その第3ミラーM3の反射面で反射された照明光ELは、第4ミラーM4の反射面で反射され、主光線の向きが鉛直下向きに偏向される。そして、この照明光ELは、ウエハW上に投射される。これによりレチクルパターンの縮小像がウエハW上に形成される。
前記鏡筒定盤20の前記第2開口の内部には、図1に示されるように、前記アライメント検出系ALGが上方から挿入され、外周部に設けられたフランジFLG2を介して鏡筒定盤20に固定されている。このアライメント検出系ALGとしては、ブロードバンド光をウエハW上のアライメントマーク(又は後述する空間像計測器FM)に照射し、その反射光を受光して画像処理によりマーク検出を行うFIA(Field Image Alignment )方式のアライメントセンサ、レーザ光をウエハW上の回折格子状のアライメントマークに2方向から照射し、発生した2つの回折光を干渉させ、その位相からアライメントマークの位置情報を検出するLIA(Laser Interferometric Alignment)方式のアライメントセンサ、レーザ光をウエハW上のアライメントマークに照射し、回折・散乱された光の強度を利用してマーク位置を計測するLSA(Laser Step Alignment)方式のアライメントセンサやAFM(原子間力顕微鏡)のような走査型プローブ顕微鏡等種々のものを用いることができる。
さらに、投影ユニットPUの鏡筒16には、不図示の保持部を介してウエハフォーカスセンサ(104a,104b)が一体的に取り付けられている。このウエハフォーカスセンサ(104a,104b)としては、投影光学系の光軸に対して所定角度傾斜した方向から被検面(ウエハWの表面)に複数の結像光束を照射する照射系104aと、各結像光束の被検面からの反射光を個別に受光する複数の受光素子を有する受光系104bとを備えた、前述のレチクルフォーカスセンサと同様の構成の多点焦点位置検出系が用いられている。このウエハフォーカスセンサ(104a,104b)によって、投影ユニットPUの鏡筒16を基準とするウエハW表面のZ軸方向の位置及び傾斜量が計測されている。
前記吊り下げコラム43は、図2に示されるように、鏡筒定盤20の下面にその一端がそれぞれ接続された複数本の支持部材45と、該複数本の支持部材45の他端がそれぞれ接続され、それらの支持部材45によって鏡筒定盤20の下方で水平になるように吊り下げ支持されたウエハステージベース30とを備えている。
前記ウエハステージWSTは、例えば磁気浮上型2次元リニアアクチュエータから成るウエハステージ駆動部62(図1及び図2では不図示、図11参照)によって上記ウエハステージベース30上に浮上支持されている。ウエハステージWSTは、前記ウエハステージ駆動部62によってX軸方向及びY軸方向に所定ストローク(ストロークは例えば300〜400mmである)で駆動されるとともに、θz方向(Z軸回りの回転方向)にも微小量駆動されるようになっている。また、このウエハステージWSTは、ウエハステージ駆動部62によってZ軸方向及びXY面に対する傾斜方向にも微小量だけ駆動可能に構成されている。
ウエハステージWSTの上面には、静電チャック方式の不図示のウエハホルダが載置され、該ウエハホルダによってウエハWが吸着保持されている。ウエハステージWSTの位置は、外部に配置されたウエハレーザ干渉計(以下、「ウエハ干渉計」という)82Wにより、例えば、0.5〜1nm程度の分解能で常時検出されている。なお、実際には、X軸方向に測長軸を有する干渉計及びY軸方向に測長軸を有する干渉計が設けられているが、図1ではこれらが代表的にウエハ干渉計82Wとして示されている。それらの干渉計は、測長軸を複数有する多軸干渉計で構成され、ウエハステージWSTのX、Y位置の他、回転(ヨーイング(Z軸回りの回転であるθz回転)、ピッチング(X軸回りの回転であるθx回転)、ローリング(Y軸回りの回転であるθy回転))も計測可能となっている。
ウエハ干渉計82W及びウエハフォーカスセンサ(104a、104b)の計測値は、主制御装置120(図11参照)に供給され、該主制御装置120によってウエハステージ駆動部62が制御され、ウエハステージWSTの6次元方向の位置及び姿勢制御が行われるようになっている。
ウエハステージWST上面の一端部には、レチクルRに形成されたパターンがウエハW面上に投影される位置と後述するアライメント検出系ALGとの相対位置関係の計測(いわゆるベースライン計測)等を行うための空間像計測器FMが設けられている。この空間像計測器FMは、従来のDUV露光装置の基準マーク板に相当するものである。
この空間像計測器FMの上面には、開口としてのスリットが形成されている。このスリットは、ウエハステージWSTの上面に固定された所定厚さの蛍光発生物質の表面に形成されたEUV光の反射層にパターンニングされたものである。そのスリットの底面側のウエハステージWSTの内部には、フォトマルチプライヤ等の光電変換素子が配置されている。この配置で、投影光学系を介して上方から空間像計測器FMに照明光ELが照射されると、スリットを透過した照明光ELが蛍光発生物質に到達し、この蛍光発生物質がEUV光に比べて波長の長い光を発する。この光を光電変換素子によって受光し、その光の強度に応じた検出信号に変換することによって、レチクルパターンのウエハステージWST上での投影位置を容易に求めることができる。なお、反射層に代えてEUV光の吸収層を設け、この吸収層にスリットを形成しても良い。
前記下側チャンバ44は、上面が開口した概略箱状の形状を有し、上述した吊り下げコラム43を下方から取り囲む状態で、鏡筒定盤20の下面に固定されている。この下側チャンバ44は、該下側チャンバ44と鏡筒定盤20とによって区画される閉空間の高真空状態を維持できるように構成されている。
本実施形態の露光装置10では、主制御装置120により、鏡筒定盤20の振動を検出する振動センサSR1(図1では不図示、図11参照)の出力に基づいて、鏡筒定盤20の振動が相殺されるように各防振ユニット24が制御されるとともに、例えば鏡筒定盤20と支持定盤50との間の間隔(ギャップ)を検出するギャップセンサSR2(図1では不図示、図11参照)の出力に基づいて、そのギャップが所望の値となるように各防振ユニット28が制御されるようになっている。このため、例えばウエハステージWSTの駆動時などに鏡筒定盤20に生じた振動が速やかに減衰されるとともに、異なる架台(ボディ26及び前述の照明系保持架台56)によってそれぞれ支持(保持)された、前述の第1〜第3反射ミラーMa〜Mcと、投影ユニットPU内の投影光学系との位置関係を常に所望の位置関係に維持することが可能になっている。
次に、図6〜図10に基づいて、前記ミラーユニット14の構成等について詳細に説明する。ここで、図6には、ミラーユニット14の斜視図が示されている。
この図6に示されるように、ミラーユニット14は、図1の支持定盤50上に固定された保持台60と、該保持台60に取り付けられた熱遮断機構としての遮熱機構92(図8参照)と、該遮熱機構92上に所定間隔で設けられた3つの温調機構90a,90b,90c(図9参照)と、温調機構90a,90b,90cそれぞれの上に固定された前述の3つの反射ミラー(第1、第2、第3反射ミラーMa、Mb、Mc)と、を備えている。
前記保持台60は、該保持台60を取り出して示す図7から分かるように、左右対称の右側壁部124a、左側壁部124bと、両側壁部124a,124bを連結する背面連結部126及び底部連結部128との4つの部分を有する、全体として一体成形された構成部材である。
前記右側壁部124aは、前方(−Y側)から後方(+Y側)に行くにつれて、XY面に対する傾斜角度が段階的に大きくなる、3つの斜面部(第1斜面部、第2斜面部、第3斜面部)が連続して形成されている。この右側壁部124aは、側面から見ると、2番目の斜面部までの部分が、概略台形状の形状を有している。左側壁部124bは、右側壁部124aと左右対称(YZ面に対して対称)の形状を有している。
また、右側壁部124a、左側壁部124b及び背面連結部126は、軽量化のため所々に開口が設けられている。
前記遮熱機構92は、保持台60と遮熱機構92のみを取り出して斜視図にて示す図8からわかるように、左右側壁部124a,124b間に配置されている。この遮熱機構92は、前述の第1斜面部、第2斜面部、及び第3斜面部にほぼ沿うように折り曲げられた板のような形状を有しており、底部連結部128の前端の一段高い部分で一端が係止され、背面連結部126の上端でその裏面の一部が支持された状態で、保持台60に取り付けられている。
前記第1の温調機構90aは、図6のミラーユニット14から反射ミラーMa〜Mcを取り除いた状態を示す図9からわかるように、遮熱機構92の最も前方側の最も傾斜角度が緩い斜面(便宜上「第1斜面」と呼ぶ)上に固定されている。前記第3の温調機構90cは、遮熱機構92の最も後方の最も傾斜角度が急な斜面(便宜上「第3斜面」とよぶ)上に固定されている。また、前記第2の温調機構90bは、遮熱機構92の上記第1斜面と第2斜面との間の2番目に傾斜角度が緩い斜面(便宜上「第2斜面」と呼ぶ)上に固定されている。なお、遮熱機構92及び第1〜第3の温調機構90a〜90cの具体的な構成については後に詳述する。
前記第1反射ミラーMaは、図6に示されるように、第1の温調機構90a上に配置され、ボイスコイルモータ86a〜86cを介して保持台60の右側壁部124a又は左側壁部124bに接続されている。ボイスコイルモータ86a、86bは、左側壁部124b側に設けられ、ボイスコイルモータ86cは、右側壁部124a側に設けられている。ボイスコイルモータ86a〜86cのそれぞれは、固定子が保持台60に固定され、可動子が第1反射ミラーMaに固定されている。前記ボイスコイルモータ86a〜86cのそれぞれは、例えば電機子コイルを含む電機子ユニットから成る固定子と、永久磁石を含む磁極ユニットから成る可動子とを備え、第1反射ミラーMaに対し、X軸方向の駆動力を作用させることにより、第1反射ミラーMaを第1の温調機構90aに接触した状態でX軸方向に微小駆動する。
前記第1反射ミラーMaは、前述した投影ユニットPU内の投影光学系を構成するミラーと同様に、シリコンウエハ、石英、低膨張ガラスなどの薄い板から成り、その表面には、照明光ELを反射する反射膜が形成されている。この反射膜は、モリブデンMoとベリリウムBeの膜が交互に約5.5nmの周期で、約50ペア積層された多層膜である。この多層膜は波長11nmのEUV光に対して約70%の反射率を有している。
前記第2反射ミラーMbは、第2の温調機構90b上に配置され、ボイスコイルモータ87a〜87cを介して保持台60の右側壁部124a又は左側壁部124bに接続されている。この第2反射ミラーMbは、ボイスコイルモータ87a〜87cによるX軸方向の駆動力により、第2の温調機構90bに接触した状態でX軸方向に微小駆動可能とされている。この第2反射ミラーMbは、上記第1反射ミラーMaと同様の素材から成り、その表面には、同様の反射膜が形成されている。
前記第3反射ミラーMcは、第3の温調機構90c上に配置され、ボイスコイルモータ88a〜88cを介して保持台60の右側壁部124a又は左側壁部124bに接続されている。この第3反射ミラーMcは、その固定子が保持台60に固定されたボイスコイルモータ88a〜88cによるX軸方向の駆動力により、第3の温調機構90cに接触した状態でX軸方向に微小駆動可能とされている。この第3反射ミラーMcは、上記第1反射ミラーMaと同様の素材から成り、その表面には、同様の反射膜が形成されている。
上記の説明から明らかなように、本実施形態では、ボイスコイルモータ86a〜86c、87a〜87c、88a〜88cによって、第1〜第3反射ミラーMa〜Mcと一体的に照明系保持架台56を構成する保持台60に保持される保持・調整機構が構成されている。
図10には、第1〜第3反射ミラー(Ma〜Mc)、第1〜第3の温調機構(90a〜90c)及び遮熱機構92を+X側から見た図が概略的に示されている。この図10から分かるように、第1〜第3の温調機構90a〜90cのそれぞれは、例えば、ペルチェ素子から構成されている。このペルチェ素子は、異種の金属の接触面を通じて電流が流れたときに、その電流の方向により熱が発生したり吸収されたりする現象であるペルチェ効果を利用した温度調節装置であり、ペルチェ素子に接続された電気配線を介して所定の電流が供給されることにより、第1〜第3反射ミラーMa〜Mcが冷却されるようになっている。このペルチェ素子への電流の供給は、例えば、ミラー裏面側に設けられた温度センサSR3(図10では不図示、図11参照)の出力に基づいて、主制御装置120により制御されている(図11参照)。なお、温度センサSR3に代えて、例えば主制御装置120がミラーの温度変化を予測し、その予測結果に応じてペルチェ素子への電流の供給を制御することとしても良い。
遮熱機構92は、一例として、本体部材73と、該本体部材73内部全体にわたって敷設された液体配管72とを有している。遮熱機構92では、液体配管72に対し、液体供給装置172(図11参照)から冷却液体が供給されることにより、温調機構(ペルチェ素子)90a〜90cと遮熱機構92との間で熱伝導による熱交換が行われる。これにより、温調機構(ペルチェ素子)90a〜90cの裏面側が冷却され、その温度上昇が抑制される。この場合、液体供給装置172の冷却液体の流量制御等は、図11の主制御装置120により行われる。
このようにして構成されるミラーユニット14では、第1〜第3反射ミラーMa〜Mcに照明光ELが入射することにより発熱した場合であっても、温調機構(ペルチェ素子)90a〜90cの冷却機能により、第1〜第3反射ミラーMa〜Mcを冷却することが可能であり、また、これによりペルチェ素子90a〜90cの裏面側が温度上昇しても、遮熱機構92の液体配管72内の液体がその熱を吸収して高温の液体となって外部に排出されるので、ミラーユニット14周囲への熱の伝達がほぼ遮断されるようになっている。
図11には、本実施形態に係る露光装置10の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御する主制御装置120を中心として構成されている。
次に、上述のように構成された本実施形態に係る露光装置10による露光動作について説明する。
まず、不図示のレチクル搬送系によりレチクルRが搬送され、ローディングポジションにあるレチクルステージRSTに吸着保持される。次に、主制御装置120により、ウエハステージWST、及びレチクルステージRSTの位置が制御され、レチクルR上に形成された不図示のレチクルアライメントマークのウエハW面上への投影像が空間像計測器FMを用いて検出され、レチクルアライメントマークのウエハW面上への投影位置が求められる。すなわち、レチクルアライメントが行われる。
次に、主制御装置120によって、空間像検出器FMがアライメント検出系ALGの直下へ位置するように、ウエハステージWSTが移動され、アライメント検出系ALGの検出信号及びその時のウエハ干渉計82Wの計測位置に基づいて、間接的にレチクルRのパターン像のウエハW面上への結像位置とアライメント検出系ALGの相対距離、すなわちベースライン距離が求められる。
かかる、ベースライン計測が終了すると、主制御装置120により、ウエハアライメント(例えばEGAなど)が行われ、ウエハW上の全てのショット領域の位置情報(例えばウエハ干渉計の測長軸で規定されるステージ座標系上の位置座標)が求められる。
そして、その後、主制御装置120の管理の下、上記のベースラインの計測結果とウエハアライメント結果とを用いて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)にウエハステージWSTを移動させる動作と、そのショット領域に対して走査露光方式でレチクルパターンを転写する動作とを、交互に繰り返す、ステップ・アンド・スキャン方式の露光が通常のスキャニング・ステッパ(スキャナ)と同様に行われる。
以上詳細に説明したように、本実施形態の露光装置10によると、照明光ELをレチクルRに対して所定の入射角で入射させる特定ミラーとしての第3反射ミラーMcを含む照明光学系の一部が、レチクルRから射出された照明光ELをウエハW上に投射する投影ユニットPU等が保持される本体ボディ26とは、物理的に分離された照明系保持架台56を構成する保持台60により保持されている。このため、第3反射ミラーMcが投影ユニットPUの鏡筒の内部に配置されているにも拘わらず、第3反射ミラーMcに照明光ELの照射に起因する発熱(温度上昇)が発生しても、その熱が投影ユニットPU内の投影光学系を構成する光学部材(ミラーM1〜M4)に熱伝導によって伝播するのが抑制される。これにより、ミラーM1〜M4の熱変形に起因する投影光学系の光学性能(結像特性を含む)の低下を効果的に抑制して、長期間に渡り、その投影光学系を用いて、高精度な露光(ウエハWへのレチクルパターンの転写)を実現することが可能となる。
また、本実施形態では、第1反射ミラーMa、第2反射ミラーMb,第3反射ミラーMcを駆動するボイスコイルモータ86a〜86c、87a〜87c、88a〜88cから成る保持・調整機構が設けられているので、レチクルRに入射する照明光ELの入射角度の調整が可能であり、結果的に露光精度(重ね合わせ精度)を維持することができる。また、保持・調整機構(ボイスコイルモータ86a〜86c、87a〜87c、88a〜88c)を備えるミラーユニット14は、投影ユニットPUを支持する本体ボディ26とは、物理的に分離された保持台60にて保持されているので、第1反射ミラーMa、第2反射ミラーMb,第3反射ミラーMcの駆動力の反力が投影ユニットPUへ伝達されることがなく、その投影ユニットの振動要因となることがない。同様に、床振動がミラーユニット14に伝達されても、その振動が、投影ユニットPUへ伝達されることはない。
また、本実施形態では、第1、第2、第3反射ミラーMa、Mb、Mcの裏面側に温調機構(ペルチェ素子)90a、90b、90cを備えていることから、第1、第2、第3反射ミラーMa、Mb、Mcに照明光ELが入射することによる第3反射ミラーMcの発熱の周辺部材への影響を極力抑制することができる。
更に、本実施形態では、温調機構(ペルチェ素子)90a、90b、90cの第1、第2、第3反射ミラーMa、Mb、Mcとは反対側に遮熱機構92が設けられているので、ペルチェ素子による第1、第2、第3反射ミラーMa、Mb、Mcの冷却に起因してペルチェ素子の裏面側に生じる熱が、周辺の部材に伝達するのを抑制することが可能である。
更に、本実施形態の露光装置10によると、極めて波長の短い照明光ELを露光光として用い、色収差のないオール反射の投影ユニットPUを介してレチクルRのパターンがウエハW上に転写されるので、レチクルR上の微細パターンをウエハW上の各ショット領域に高精度に転写することができる。具体的には、最小線幅70nm程度の微細パターンの高精度な転写が可能である。
なお、上記実施形態では、特定ミラーとしての第3反射ミラーMcを、投影ユニットPU内に配置する場合について説明したが、本発明がこれに限られるものではなく、レチクルRに対して所定角度でEUV光を入射させることができるのであれば、投影ユニットの外部に特定ミラーを配置することとしても良い。
なお、上記実施形態では、ミラーユニット14として3枚の反射ミラーを有する場合について説明したが、本発明がこれに限られるものではなく、光源から射出されたEUV光をレチクルRに導くことができれば、反射ミラーの数は何枚であっても良い。
また、上記実施形態では、ミラーユニットを構成する反射ミラーのそれぞれにボイスコイルモータ(駆動機構)、温調機構としてのペルチェ素子、及び熱遮断機構としての熱交換器を設けることとしたが、本発明がこれに限られるものではなく、反射ミラーの少なくとも1つに駆動機構、ペルチェ素子、及び熱交換機構のうちの少なくとも一つを設けることとしても良い。また、全ての反射ミラーに、駆動機構、ペルチェ素子及び熱交換機構の全てを設けないこととしても良い。
なお、上記実施形態では、ミラーチャンバ40と上側チャンバ42との間にベローズを設けることとしたが、本発明がこれに限られるものではなく、特定ミラーに発生する熱の、投影ユニットPU内のミラーへの伝達の抑制の観点からは、必ずしもベローズを設けなくても良い。
なお、上記実施形態では、本体ボディ26が防振ユニットを備える場合について説明したが、本発明がこれに限られるものではなく、例えば、照明系保持架台56側にも床面F及び支持部材52を介して支持定盤50に伝わる床面Fからの振動がマイクロGレベルで絶縁するための防振ユニットを設けても良い。この場合の防振ユニットとして、パッシブな防振ユニットを採用しても良いし、前述した防振ユニット24と同様の構成のアクティブな防振ユニットを採用しても良い。
また、上記実施形態では、ミラーユニット14は3枚の反射ミラーで構成されているが、本発明がこれに限られるものではなく、光源からミラーユニット14に入射した照明光が、所定の入射角でレチクルRに入射することができればよい。従って、ミラーの数などに関しては任意に設定することができる。
なお、上記実施形態では、露光光としてEUV光を用い、4枚のミラーのみから成るオール反射の投影光学系を用いる場合について説明したが、これは一例であって、本発明がこれに限定されないことは勿論である。すなわち、例えば、6枚のミラーのみから成る投影光学系を備えた露光装置は勿論、光源に波長100〜160nmのVUV光源、例えばAr2レーザ(波長126nm)を用い、4〜8枚のミラーを有する投影光学系などを用いることもできる。また、投影光学系としては、レンズのみから成る屈折系の投影光学系、レンズを一部に含む反射屈折系の投影光学系のいずれであっても良い。
なお、上記実施形態では、露光光として波長11nmのEUV光を用いる場合について説明したが、これに限らず、露光光として波長13nmのEUV光を用いても良い。この場合には、波長13nmのEUV光に対して約70%の反射率を確保するため、各ミラーの反射膜としてモリブデンMoとケイ素Siを交互に積層した多層膜を用いる必要がある。
また、上記実施形態では、露光光源としてSOR(Synchrotron Orbital Radiation)を用いるものとしたが、これに限らず、レーザ励起プラズマ光源、ベータトロン光源、ディスチャージド光源、X線レーザなどのいずれを用いても良い。
《デバイス製造方法》
次に上述した露光装置をリソグラフィ工程で使用するデバイスの製造方法の実施形態について説明する。
図12には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートが示されている。図12に示されるように、まず、ステップ201(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ202(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ203(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップ204(ウエハ処理ステップ)において、ステップ201〜ステップ203で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップ205(デバイス組立てステップ)において、ステップ204で処理されたウエハを用いてデバイス組立てを行う。このステップ205には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。
最後に、ステップ206(検査ステップ)において、ステップ205で作成されたデバイスの動作確認テスト、耐久テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。
図13には、半導体デバイスにおける、上記ステップ204の詳細なフロー例が示されている。図13において、ステップ211(酸化ステップ)においてはウエハの表面を酸化させる。ステップ212(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ213(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ214(イオン打ち込みステップ)においてはウエハにイオンを打ち込む。以上のステップ211〜ステップ214それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ215(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ216(露光ステップ)において、上で説明した露光装置10によってマスクの回路パターンをウエハに転写する。次に、ステップ217(現像ステップ)においては露光されたウエハを現像し、ステップ218(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ219(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法を用いれば、露光工程(ステップ216)において上記実施形態の露光装置が用いられるので、ウエハ上に形成されるパターンの転写像におけるパターン忠実度の劣化を無視できる程度に抑え、全体としての像のぼけを極力抑え、パターンを所望の線幅で転写することが可能となる。従って、チップ内のパターンの線幅均一性が良好な電子デバイスの製造が可能になり、結果的に集積度の高い電子デバイスの生産性(歩留まりを含む)を向上させることが可能になる。
本発明の露光装置は、反射型マスクを介した照明光で感光物体を露光し、前記反射型マスクに形成されたパターンを前記感光物体上に転写するのに適している。また、本発明のデバイス製造方法は、半導体素子等のデバイスを製造するのに適している。
本発明の一実施形態に係る露光装置の概略構成を示す図である。 図1の露光装置を示す縦断面図である。 照明系の構成を示す図である。 図4(A)は、図3の第1のフライアイミラー116Aを示す図であり、図4(B)は、図3の第2のフライアイミラー116Bを示す図であり、図4(C)は、両フライアイミラーの作用を説明するための図である。 図1の投影ユニットとミラーユニットとを示す斜視図である。 図5のミラーユニットを示す斜視図である。 図5のミラーユニットを構成する保持台を示す斜視図である。 図7の保持台に、遮熱機構が設けられた状態を示す斜視図である。 図6のミラーユニットから反射ミラーMa〜Mcをボイスコイルモータとともに取り外した状態を示す斜視図である。 ミラーユニットを構成する反射ミラーのX方向視概略図である。 一実施形態の制御系を示すブロック図である。 本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである。 図12のステップ204の詳細を示すフローチャートである。
符号の説明
10…露光装置、26…本体ボディ(ボディ)、56…照明系保持架台、86a〜88c…ボイスコイルモータ(保持・調整機構)、90a〜90c…温調機構、92…熱遮断機構)、EL…EUV光(照明光)、Mc…第3反射ミラー(特定ミラー)、PU…投影ユニット、R…レチクル(反射型マスク)、W…ウエハ(感光物体)。

Claims (8)

  1. 反射型マスクを介した照明光で感光物体を露光し、前記反射型マスクに形成されたパターンを前記感光物体上に転写する露光装置であって、
    照明光を前記反射型マスクに対して所定の入射角で入射させる特定ミラーを含む照明光学系と;
    前記反射型マスクから射出された前記照明光を感光物体上に投射する投影光学系を有する投影ユニットと;
    前記投影ユニットを保持するボディと;
    前記照明光学系を構成する前記特定ミラーを含む複数の光学部材を保持し、前記ボディとは物理的に分離した照明系保持架台と;を備える露光装置。
  2. 前記特定ミラーは前記投影ユニットを構成する鏡筒内に配置され、
    前記照明光は、前記鏡筒に形成された開口を介して前記特定ミラーに入射し、前記反射型マスクに向けて反射されることを特徴とする請求項1に記載の露光装置。
  3. 前記複数の光学部材と一体的に前記照明系保持架台に保持される保持・調整機構を更に備える請求項1又は2に記載の露光装置。
  4. 前記複数の光学部材と一体的に前記照明系保持架台に保持される温調機構を更に備える請求項1〜3のいずれか一項に記載の露光装置。
  5. 前記複数の光学部材と一体的に前記照明系保持架台に保持される熱遮断機構を更に備える請求項1〜4のいずれか一項に記載の露光装置。
  6. 前記照明光学系及び前記投影光学系が、ともに反射光学系であることを特徴とする請求項1〜5のいずれか一項に記載の露光装置。
  7. 前記照明光は、極端紫外光であることを特徴とする請求項1〜6のいずれか一項に記載の露光装置。
  8. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程で、請求項1〜7のいずれか一項に記載の露光装置を用いて感光物体を露光することを特徴とするデバイス製造方法。
JP2004085084A 2004-03-23 2004-03-23 露光装置及びデバイス製造方法 Withdrawn JP2005276932A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085084A JP2005276932A (ja) 2004-03-23 2004-03-23 露光装置及びデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085084A JP2005276932A (ja) 2004-03-23 2004-03-23 露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2005276932A true JP2005276932A (ja) 2005-10-06

Family

ID=35176294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085084A Withdrawn JP2005276932A (ja) 2004-03-23 2004-03-23 露光装置及びデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2005276932A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086557A1 (ja) * 2006-01-30 2007-08-02 Nikon Corporation 光学部材保持装置、光学部材の位置調整方法、及び露光装置
WO2008140027A1 (en) * 2007-04-27 2008-11-20 Nikon Corporation Movable body apparatus and exposure apparatus
JP2010080754A (ja) * 2008-09-26 2010-04-08 Nikon Corp 照明光学系及び露光装置
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
JP2012506135A (ja) * 2008-10-20 2012-03-08 カール・ツァイス・エスエムティー・ゲーエムベーハー 放射線ビームを案内するための光学モジュール
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015158694A (ja) * 2009-12-14 2015-09-03 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像光学系
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2007086557A1 (ja) * 2006-01-30 2007-08-02 Nikon Corporation 光学部材保持装置、光学部材の位置調整方法、及び露光装置
JPWO2007086557A1 (ja) * 2006-01-30 2009-06-25 株式会社ニコン 光学部材保持装置、光学部材の位置調整方法、及び露光装置
US8576375B2 (en) 2006-01-30 2013-11-05 Nikon Corporation Optical member-holding apparatus, method for adjusting position of optical member, and exposure apparatus
KR101470650B1 (ko) * 2006-01-30 2014-12-08 가부시키가이샤 니콘 광학 부재 보지 장치, 광학 부재의 위치 조정 방법 및 노광장치
WO2008140027A1 (en) * 2007-04-27 2008-11-20 Nikon Corporation Movable body apparatus and exposure apparatus
US8749753B2 (en) 2007-04-27 2014-06-10 Nikon Corporation Movable body apparatus, exposure apparatus and optical system unit, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010080754A (ja) * 2008-09-26 2010-04-08 Nikon Corp 照明光学系及び露光装置
US9116440B2 (en) 2008-10-20 2015-08-25 Carl Zeiss Smt Gmbh Optical module for guiding a radiation beam
KR101769157B1 (ko) 2008-10-20 2017-08-17 칼 짜이스 에스엠테 게엠베하 방사선 빔 안내를 위한 광학 모듈
JP2012506135A (ja) * 2008-10-20 2012-03-08 カール・ツァイス・エスエムティー・ゲーエムベーハー 放射線ビームを案内するための光学モジュール
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
DE102009054869B4 (de) 2009-04-09 2022-02-17 Carl Zeiss Smt Gmbh Spiegel zur Führung eines Strahlungsbündels, Vorrichtungen mit einem derartigen Spiegel sowie Verfahren zur Herstellung mikro- oder nanostrukturierter Bauelemente
US8717531B2 (en) 2009-04-09 2014-05-06 Carl Zeiss Smt Gmbh Mirror for guiding a radiation bundle
JP2015158694A (ja) * 2009-12-14 2015-09-03 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像光学系

Similar Documents

Publication Publication Date Title
JP5146507B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP5182557B2 (ja) パターン形成方法及びパターン形成装置、並びにデバイス製造方法
US9946171B2 (en) Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
KR101531801B1 (ko) 이동체 장치, 미동체 및 노광 장치
US7557529B2 (en) Stage unit and exposure apparatus
JP5348630B2 (ja) 露光装置及びデバイス製造方法
US20020080339A1 (en) Stage apparatus, vibration control method and exposure apparatus
JPWO2006006730A1 (ja) 平面モータ装置、ステージ装置、露光装置及びデバイスの製造方法
US6999162B1 (en) Stage device, exposure system, method of device manufacture, and device
JP2006332656A (ja) 2ステージ・リソグラフィ装置及びデバイス製造方法
WO2001027978A1 (fr) Substrat, dispositif a etage, procede d'attaque d'etage, systeme d'exposition et procede d'exposition
US6366342B2 (en) Drive apparatus, exposure apparatus, and method of using the same
JP2005276932A (ja) 露光装置及びデバイス製造方法
JP5348627B2 (ja) 移動体装置、露光装置及びデバイス製造方法
JP5455166B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2012531028A (ja) 露光装置及びデバイス製造方法
JPWO2006075575A1 (ja) ステージ装置及び露光装置
JPWO2004075268A1 (ja) 移動方法、露光方法及び露光装置、並びにデバイス製造方法
US20040145751A1 (en) Square wafer chuck with mirror
JP2006060152A (ja) 光学特性測定装置、ステージ装置及び露光装置
JP2012033922A (ja) 露光装置及びデバイス製造方法
JP2001345256A (ja) ステージ装置および露光装置
JP5151568B2 (ja) ステージ装置及び露光装置
JP2010268604A (ja) モータ装置及びステージ装置並びに露光装置
JP2010200452A (ja) モータ装置及びステージ装置並びに露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090625