JP2505912B2 - Production method of vapor grown carbon fiber - Google Patents

Production method of vapor grown carbon fiber

Info

Publication number
JP2505912B2
JP2505912B2 JP2169835A JP16983590A JP2505912B2 JP 2505912 B2 JP2505912 B2 JP 2505912B2 JP 2169835 A JP2169835 A JP 2169835A JP 16983590 A JP16983590 A JP 16983590A JP 2505912 B2 JP2505912 B2 JP 2505912B2
Authority
JP
Japan
Prior art keywords
carbon fiber
activator
carrier gas
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2169835A
Other languages
Japanese (ja)
Other versions
JPH0465526A (en
Inventor
欽也 堀部
富夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2169835A priority Critical patent/JP2505912B2/en
Publication of JPH0465526A publication Critical patent/JPH0465526A/en
Application granted granted Critical
Publication of JP2505912B2 publication Critical patent/JP2505912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相法炭素繊維とくに複合材料等に任意の割
合で配合することのできる羽毛状の炭素繊維を効率よく
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method for efficiently producing a feather-like carbon fiber which can be blended with a vapor grown carbon fiber, in particular, in a composite material or the like at an arbitrary ratio.

〔従来の技術〕[Conventional technology]

従来、炭素質繊維を製造する方法としては、炭素含有
化合物を紡糸したのち熱分解する方法が知られており、
たとえばピッチの溶融紡糸を利用したり、合成繊維を炭
化して炭素質フィラメントを製造する方法がある。しか
し、このような方法で得られる繊維は比較的に太くて長
いから、複雑な形状に成形して用いられる合成樹脂組成
物に対する補強材として用いるには、短く切断する必要
があり、また径が太すぎるという欠点もあった。
Conventionally, as a method for producing a carbonaceous fiber, a method in which a carbon-containing compound is spun and then pyrolyzed is known,
For example, there is a method of producing a carbonaceous filament by utilizing pitch melt spinning or carbonizing a synthetic fiber. However, the fibers obtained by such a method are relatively thick and long, and therefore, to be used as a reinforcing material for a synthetic resin composition which is molded into a complicated shape, it is necessary to cut it into short pieces, and the diameter is also small. It also had the drawback of being too thick.

これに対して、ガス状の炭化水素を高温で熱分解して
炭素質ウィスカを製造する方法、例えば超微粒金属の分
解触媒を用いる方法やケイ素質の分解触媒を用いる方法
が知られている。かかるウィスカ状の炭素質繊維のう
ち、触媒としてのケイ素を含有する物質と活性化剤とし
てイオウを含有する物質との存在下に、非酸化性雰囲気
下で炭化水素化合物を高温熱分解して得た炭素質繊維
は、直径が0.1〜1μmでアスペクト比(長さ/直径
比)が100以上、特に1000以上という特殊な形態を持
ち、合成樹脂等に配合した複合材料を得るには好適なも
のであることが知られている(特開昭56-118913、特開
昭62-162699など)。
On the other hand, there is known a method of pyrolyzing a gaseous hydrocarbon at a high temperature to produce a carbonaceous whisker, for example, a method of using an ultrafine metal decomposition catalyst or a method of using a siliconaceous decomposition catalyst. Of such whisker-like carbonaceous fibers, obtained by pyrolyzing a hydrocarbon compound at a high temperature in a non-oxidizing atmosphere in the presence of a substance containing silicon as a catalyst and a substance containing sulfur as an activator. The carbonaceous fiber has a special form with a diameter of 0.1 to 1 μm and an aspect ratio (length / diameter ratio) of 100 or more, particularly 1000 or more, and is suitable for obtaining a composite material mixed with a synthetic resin or the like. Are known (Japanese Patent Application Laid-Open No. 56-118913, Japanese Patent Application Laid-Open No. 62-162699, etc.).

しかしこのようなウィスカ状の炭素質繊維を製造する
にあたっては、管状の反応器中で高温に加熱したケイ素
質のセラミックス基板の上に硫化水素などのイオウ含有
物質と原料炭化水素とを水素などのキャリヤガスと共に
通ずる方法を用いており、工業的に利用できる量の炭素
繊維を製造するには生産性が低く、効率の悪いものであ
った。
However, in producing such a whisker-like carbonaceous fiber, a sulfur-containing substance such as hydrogen sulfide and a raw material hydrocarbon are mixed with hydrogen and the like on a silicon-based ceramic substrate heated to a high temperature in a tubular reactor. Since the method of communicating with a carrier gas is used, the productivity is low and the efficiency is low in order to produce an industrially usable amount of carbon fiber.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような事情の下で、本発明は細くてアスペクト比
が大きいウィスカ状の炭素繊維を連続的にしかも効率よ
く製造できる方法を提供することを目的としたものであ
る。
Under such circumstances, the present invention has an object to provide a method for continuously and efficiently producing thin whisker-like carbon fibers having a large aspect ratio.

〔課題を解決するための手段〕[Means for solving the problem]

このような本発明の目的は、ガス状の炭化水素化合物
を非酸化性雰囲気中でイオウまたはイオウを含む化合物
からなる活性化剤の存在下にケイ素またはケイ素を含む
化合物からなる触媒と接触させて炭素繊維を製造するに
当り、高温に維持した縦型反応炉中に設けた通気性篩板
を通じて下方から水素を導入することにより該篩板の上
の微粉末触媒を浮遊流動させるとともに、該反応炉の下
部にガス状の炭化水素化合物とガス状の活性化剤と非酸
化性キャリアガスとを供給し、ガスに伴われて反応帯域
から分離する炭素繊維を該反応炉の上部から回収するこ
とを特徴とする気相法炭素繊維の製造法によって達成す
ることができる。
Such an object of the present invention is to contact a gaseous hydrocarbon compound with a catalyst composed of silicon or a compound containing silicon in the presence of an activator composed of sulfur or a compound containing sulfur in a non-oxidizing atmosphere. In producing carbon fiber, hydrogen is introduced from below through a gas permeable sieve plate provided in a vertical reactor maintained at a high temperature to float and flow the fine powder catalyst on the sieve plate and to carry out the reaction. Supplying a gaseous hydrocarbon compound, a gaseous activator and a non-oxidizing carrier gas to the lower part of the furnace, and recovering from the upper part of the reaction furnace carbon fibers separated from the reaction zone by the gas. Can be achieved by a method for producing a vapor grown carbon fiber.

本発明における触媒として用いられるケイ素を含有す
る物質としては、単体ケイ素、二酸化ケイ素、二硫化ケ
イ素、炭化ケイ素、その他各種の金属ケイ酸塩などが利
用できるが、これらの中から選択された物質を微粉末形
態として利用する。
As the substance containing silicon used as the catalyst in the present invention, simple substance silicon, silicon dioxide, silicon disulfide, silicon carbide, various other metal silicates, etc. can be used. Used as a fine powder form.

また活性化剤であるイオウを含有する物質としては、
単体イオウ、硫化水素、二硫化炭素、メルカプタンやチ
オエーテル等の有機チオ化合物などの物質で、室温また
は高温で気体となり得るものが用いうる。
Further, as a substance containing sulfur as an activator,
Substances such as elemental sulfur, hydrogen sulfide, carbon disulfide, and organic thio compounds such as mercaptans and thioethers, which can be gas at room temperature or high temperature, can be used.

本発明において炭素繊維の原料となる炭化水素化合物
としては、メタン、エタン、エチレン等のような飽和あ
るいは不飽和の脂肪族炭化水素、ベンゼン、キシレン、
ナフタレン等の芳香族炭化水素、または脂環式炭化水素
などの炭化水素のみならず、分子内に酸素、窒素など他
の原子を含むものも用いることができ、単一物質であっ
てもよいが、これらの混合物であってもよい。
In the present invention, as the hydrocarbon compound as a raw material of carbon fiber, methane, ethane, saturated or unsaturated aliphatic hydrocarbons such as ethylene, benzene, xylene,
Not only aromatic hydrocarbons such as naphthalene or hydrocarbons such as alicyclic hydrocarbons, but also those containing other atoms such as oxygen and nitrogen in the molecule can be used, and they may be a single substance. , Or a mixture thereof.

本発明において使用されるキャリヤガスは、原料の炭
化水素化合物や活性化剤の濃度を所定範囲に調節しつつ
これらを触媒上に送入し、かつ反応室内の雰囲気を非酸
化性状態に維持し反応の速度を制御するためのもので、
たとえば水素などの還元性ガスやアルゴン、窒素などの
不活性ガスなどを用いることができる。
The carrier gas used in the present invention adjusts the concentration of the raw material hydrocarbon compound and the activator within a predetermined range while feeding them onto the catalyst, and maintains the atmosphere in the reaction chamber in a non-oxidizing state. To control the rate of reaction,
For example, a reducing gas such as hydrogen or an inert gas such as argon or nitrogen can be used.

本発明において用いられる反応炉は、例えば第1図に
示すような縦型のものであり、下方から反応帯域にまで
達するように設けられたキャリヤガス導入管1の末端に
通気性の篩板2が取り付けられ、筒状体3によって囲ま
れている。また反応炉の下端部には原料の炭化水素化合
物及び活性化剤が導入できるように構成してある。反応
炉の上端には生成した炭素繊維を捕集する装置(図示し
ない)が設けられ、これを通って反応ガスが排出される
ようになっている。なお4は原料導入管、5は活性化剤
導入管である。
The reaction furnace used in the present invention is, for example, a vertical type as shown in FIG. 1, and has a gas permeable sieve plate 2 at the end of a carrier gas introduction pipe 1 provided so as to reach the reaction zone from below. Is attached and surrounded by the tubular body 3. The lower end of the reaction furnace is configured so that the raw material hydrocarbon compound and the activator can be introduced. A device (not shown) for collecting the generated carbon fibers is provided at the upper end of the reaction furnace, and the reaction gas is discharged through the device. Reference numeral 4 is a raw material introduction pipe, and 5 is an activator introduction pipe.

このような反応装置を用いて炭素繊維を製造するに
は、篩板2の上に触媒微粉末6を載せ、ついでキャリヤ
ガスを供給して反応炉内を置換し、触媒微粉末をキャリ
ヤガスによって流動させながらヒータ7によって反応炉
を加熱し、所定の反応温度例えば1200〜1400℃に達した
のちに原料である炭化水素と活性化剤とを好ましくはキ
ャリヤガスとともに反応炉の下部に供給し、炉内を上昇
させる。この際、活性化剤と炭化水素化合物とキャリヤ
ガスとの混合気体を送入するようにしてもよい。炭化水
素と活性化剤とはキャリヤガスによって浮遊流動してい
る触媒微粉末6と接触し、触媒を活性点とする炭素繊維
の成長が開始される。こうして次第に成長した炭素繊維
7は篩板2の上に止まれなくなって、ついには反応ガス
とともに反応帯域から運び出され、捕集装置によって捕
捉回収される。
In order to produce carbon fibers using such a reaction apparatus, the catalyst fine powder 6 is placed on the sieve plate 2, then a carrier gas is supplied to replace the inside of the reaction furnace, and the catalyst fine powder is replaced with the carrier gas. While flowing, the reaction furnace is heated by the heater 7, and after reaching a predetermined reaction temperature, for example, 1200 to 1400 ° C., the raw material hydrocarbon and activator are supplied to the lower part of the reaction furnace, preferably together with a carrier gas, Raise the furnace. At this time, a mixed gas of the activator, the hydrocarbon compound and the carrier gas may be fed. The hydrocarbon and the activator come into contact with the catalyst fine powder 6 floating and flowing by the carrier gas, and the growth of the carbon fiber having the catalyst as an active point is started. The thus gradually grown carbon fibers 7 cannot be stopped on the sieve plate 2, and are finally carried out of the reaction zone together with the reaction gas and are captured and collected by the collector.

〔作用〕[Action]

かかる本発明の方法によれば、長時間の連続運転によ
り、結晶性が優れた極めて均一な品質の炭素繊維が効率
よく得られる。
According to such a method of the present invention, carbon fibers having excellent crystallinity and extremely uniform quality can be efficiently obtained by continuous operation for a long time.

〔実施例〕〔Example〕

第1図のような内径150mm、長さ1.2mのアルミナセラ
ミックス製の縦型反応炉内に、焼結アルミナセラミック
ス篩板2を先端部に取り付けた黒鉛製のキャリヤガス導
入管1を設け、更に篩板2を囲むように黒鉛製の筒状体
3を設けた。径20mmの篩板2の上には触媒6として径0.
1〜2μmの炭化ケイ素の微粉末3.0gを載せ、反応炉内
をキャリヤガス導入管1、原料導入管4及び活性化剤導
入管5から導入した水素で置換し、次いで6容量%の硫
化水素を含む水素を活性化剤導入管5から少しずつ流通
させながらヒータ7に通電し、1時間かけて1300℃迄昇
温させた。この後、12容量%の硫化水素を含む水素と20
容量%のベンゼン蒸気を含む水素とをそれぞれ活性化剤
導入管5と原料導入管4とから反応炉内に送入しながら
1300℃で反応させた。反応炉中の平均ガス流速は40cm/
分であった。
As shown in Fig. 1, a vertical carrier furnace made of alumina ceramics having an inner diameter of 150 mm and a length of 1.2 m was provided with a carrier gas introduction pipe 1 made of graphite with a sintered alumina ceramic sieve plate 2 attached to the tip, A cylindrical body 3 made of graphite was provided so as to surround the sieve plate 2. As a catalyst 6, a diameter of 0.
3.0 g of fine powder of silicon carbide of 1 to 2 μm was placed, and the inside of the reaction furnace was replaced with hydrogen introduced from the carrier gas introduction pipe 1, the raw material introduction pipe 4 and the activator introduction pipe 5, and then 6% by volume of hydrogen sulfide. The heater 7 was energized while gradually flowing hydrogen containing hydrogen from the activator introduction pipe 5, and the temperature was raised to 1300 ° C. over 1 hour. After this, 20% hydrogen containing 12% by volume hydrogen sulfide was added.
While introducing hydrogen containing volatilized benzene vapor into the reaction furnace through the activator introduction pipe 5 and the raw material introduction pipe 4, respectively.
The reaction was carried out at 1300 ° C. Average gas flow rate in the reactor is 40 cm /
It was a minute.

反応は約30分後には定常状態となり、1分間あたり1g
の割合で、直径が0.1〜1μmで長さ10〜100μmの炭素
繊維が得られた。
The reaction reaches a steady state after about 30 minutes and 1g per minute
The carbon fiber having a diameter of 0.1 to 1 μm and a length of 10 to 100 μm was obtained at a ratio of.

〔発明の効果〕〔The invention's effect〕

本発明の気相法炭素繊維の製造法によれば、合成樹脂
やゴム等に配合してすぐれた補強材となる炭素繊維を、
高い効率で製造できる特長を有し、産業上大きな意義を
有するものである。
According to the method for producing a vapor grown carbon fiber of the present invention, a carbon fiber which is an excellent reinforcing material by being mixed with a synthetic resin or rubber,
It has a feature that it can be manufactured with high efficiency, and has great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の気相法炭素繊維の製造法を実施するた
めの装置の例の概念図である。 1……キャリヤガス導入管、2……篩板、3……筒状
体、4……原料導入管、5……活性化剤導入管、6……
触媒微粉末、7……ヒータ、8……炭素繊維。
FIG. 1 is a conceptual diagram of an example of an apparatus for carrying out the vapor grown carbon fiber production method of the present invention. 1 ... Carrier gas introduction pipe, 2 ... Sieve plate, 3 ... Cylindrical body, 4 ... Raw material introduction pipe, 5 ... Activator introduction pipe, 6 ...
Catalyst fine powder, 7 ... Heater, 8 ... Carbon fiber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガス状の炭化水素化合物を非酸化性雰囲気
中でイオウまたはイオウを含む化合物からなる活性化剤
の存在下にケイ素またはケイ素を含む化合物からなる触
媒と接触させて炭素繊維を製造するに当り、高温に維持
した縦型反応炉中に設けた縦型筒状体底部の通気性篩板
を通じて下方からキャリヤガスを導入することにより該
篩板の上の微粉末触媒を浮遊流動させるとともに、該反
応炉の下部にガス状の炭化水素化合物とガス状の活性化
剤と非酸化性キャリヤガスとを供給し、ガスに伴われて
反応帯域から分離する炭素繊維を該反応炉の上部から回
収することを特徴とする気相法炭素繊維の製造法。
1. A carbon fiber is produced by contacting a gaseous hydrocarbon compound with a catalyst composed of silicon or a compound containing silicon in the presence of an activator composed of sulfur or a compound containing sulfur in a non-oxidizing atmosphere. In doing so, a carrier gas is introduced from below through a permeable sieve plate at the bottom of the vertical cylindrical body provided in a vertical reactor maintained at a high temperature to float and flow the fine powder catalyst on the sieve plate. At the same time, a gaseous hydrocarbon compound, a gaseous activator, and a non-oxidizing carrier gas are supplied to the lower part of the reaction furnace, and carbon fibers separated from the reaction zone by the gas are separated from the upper part of the reaction furnace. A method for producing a vapor grown carbon fiber, which is characterized in that the carbon fiber is recovered from
JP2169835A 1990-06-29 1990-06-29 Production method of vapor grown carbon fiber Expired - Lifetime JP2505912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169835A JP2505912B2 (en) 1990-06-29 1990-06-29 Production method of vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169835A JP2505912B2 (en) 1990-06-29 1990-06-29 Production method of vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH0465526A JPH0465526A (en) 1992-03-02
JP2505912B2 true JP2505912B2 (en) 1996-06-12

Family

ID=15893805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169835A Expired - Lifetime JP2505912B2 (en) 1990-06-29 1990-06-29 Production method of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2505912B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181382B2 (en) * 2007-05-01 2013-04-10 国立大学法人三重大学 Method for producing fibrous carbon nanostructure and fibrous carbon nanostructure produced thereby
JP5616425B2 (en) * 2012-12-27 2014-10-29 国立大学法人三重大学 Method for producing fibrous carbon nanostructure and fibrous carbon nanostructure produced thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162699A (en) * 1986-01-10 1987-07-18 Yazaki Corp Production of carbonaceous whisker
JP2662413B2 (en) * 1988-04-12 1997-10-15 昭和電工株式会社 Method for producing vapor grown carbon fiber
JPH027979A (en) * 1988-06-27 1990-01-11 Matsushita Electric Works Ltd Tennis game score display apparatus

Also Published As

Publication number Publication date
JPH0465526A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
KR101753918B1 (en) Method for producing solid carbon by reducing carbon oxides
KR0137224B1 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JPS62242B2 (en)
JPS6249363B2 (en)
JP2505912B2 (en) Production method of vapor grown carbon fiber
Kato et al. Formation of vapor-grown carbon fibers on a substrate
JP2001080913A (en) Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube
JPH0246691B2 (en)
Kato et al. Effect of carbon source on formation of vapor-grown carbon fiber
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JPS62162699A (en) Production of carbonaceous whisker
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
KR100252792B1 (en) Process for preparing carbon fiber and its device therefor
JPH0411651B2 (en)
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JP2521982B2 (en) Method for producing vapor grown carbon fiber
JPH0310566B2 (en)
JPS6278217A (en) Vapor-phase production of carbon fiber
JP2586055B2 (en) Method for producing vapor grown carbon fiber
JPH0192421A (en) Production of carbon fiber with vapor growth
JPS644999B2 (en)
JPH0192423A (en) Production of carbon fiber with vapor growth
JPH01292118A (en) Continuous compound of vapor-phase carbon fiber
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition