JPH0621377B2 - Production method of vapor grown carbon fiber - Google Patents

Production method of vapor grown carbon fiber

Info

Publication number
JPH0621377B2
JPH0621377B2 JP60211106A JP21110685A JPH0621377B2 JP H0621377 B2 JPH0621377 B2 JP H0621377B2 JP 60211106 A JP60211106 A JP 60211106A JP 21110685 A JP21110685 A JP 21110685A JP H0621377 B2 JPH0621377 B2 JP H0621377B2
Authority
JP
Japan
Prior art keywords
carbon fiber
transition metal
organic
zone
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60211106A
Other languages
Japanese (ja)
Other versions
JPS6278217A (en
Inventor
靖門 小松
信吾 森本
浩一郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60211106A priority Critical patent/JPH0621377B2/en
Publication of JPS6278217A publication Critical patent/JPS6278217A/en
Publication of JPH0621377B2 publication Critical patent/JPH0621377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は有機化合物の熱分解による炭素繊維、特に極く
微細な炭素繊維を効率よく製造する方法に関する。この
炭素繊維にはホイスカーないしホイスカー状のものを含
む。
Description: FIELD OF THE INVENTION The present invention relates to a method for efficiently producing carbon fibers, particularly ultrafine carbon fibers, by pyrolyzing an organic compound. This carbon fiber includes whiskers or whiskers.

従来の技術 有機化合物の熱分解によって得られるいわゆる気相法炭
素繊維はFe,Ni等の微粒子を媒介として成長すると云わ
れている。従来の製法には熱分解帯域に置かれた基板
上に微粒子を散布しておき、そこから繊維を成長させる
方法(特公昭58−22571)、微粒子を浮遊させ、浮
遊中に繊維を生成させる方法がある(特開昭58-180615,
特開昭60−54998)。
Conventional technology So-called vapor grown carbon fibers obtained by thermal decomposition of organic compounds are said to grow using fine particles such as Fe and Ni as a medium. In the conventional manufacturing method, fine particles are sprinkled on a substrate placed in a pyrolysis zone, and fibers are grown from the fine particles (Japanese Patent Publication No. Sho 58-22571), and fine particles are suspended, and fibers are generated during the suspension. There is (JP-A-58-180615,
JP-A-60-54998).

発明が解決しようとする問題点 基板に微粒子を散布しておく方法では成長時間を十分に
とればかなり長い繊維とすることもできるが、平面的に
しか微粒子は利用できず、生産性は低い。また繊維の取
出し等も厄介である。微粒子を浮遊させる方法は成長時
間が限られるため長い繊維を得ることはできないが、空
間全体が利用できること及び連続的に繊維を集めること
ができるので、工業的には有利である。
Problems to be Solved by the Invention In the method of spraying fine particles on a substrate, it is possible to form a considerably long fiber if the growth time is sufficiently long, but the fine particles can be used only in a plane and the productivity is low. Also, taking out fibers is troublesome. The method of suspending fine particles cannot obtain long fibers because the growth time is limited, but it is industrially advantageous because the entire space can be utilized and fibers can be continuously collected.

従来の浮遊方式は予じめ用意した微粒子を有機化合物の
熱分解帯域に散布する方法及びFe,Ni等の金属を含んだ
有機化合物を熱分解し、そこから生成するFe,Ni等の微
粒子を利用する方法がある。この微粒子は300Å以下
程度のものが用いられるが、このように細かくなると粒
子は凝集し易く、数珠状に連なったものが多く、散布浮
遊方式は効率がよくない。
The conventional flotation method is a method of spraying fine particles prepared in advance to the thermal decomposition zone of an organic compound and a method of thermally decomposing an organic compound containing a metal such as Fe or Ni and generating fine particles of Fe, Ni or the like generated therefrom. There is a method to use. These fine particles have a particle size of about 300 Å or less, but when such fine particles are used, the particles easily aggregate, and many particles are arranged in a beaded shape, and the spraying and floating method is not efficient.

Fe,Ni等を含んだ有機化合物(有機遷移金属化合物)を
用いる従来の方法はこの化合物を炭素繊維生成帯域に導
いて熱分解し、またその際通常水素等がキャリアガスと
して使用されている。分解される有機遷移金属化合物は
それ単独又はこれにベンゼン等の金属を含まない有機化
合物を加えて炭素繊維の原料としている。しかし前者の
場合高価な有機遷移金属化合物を多量に用いなければな
らないので不利である。また有機遷移金属化合物単独で
は炭素の量に対し、金属の量が多過ぎ、金属粒子の凝集
が進み過ぎて炭素繊維の生成に適する大きさ以上になる
ためか繊維の収量が上らない。後者の場合従来のように
有機遷移金属化合物とそれ以外の有機化合物を混合して
同時に炭素繊維生成帯域で熱分解させると炭素繊維の生
成量が十分でない。気相法炭素繊維においてはFe等の微
粒子の活性,大きさ等が重要な役割をなしていると考え
られ、それらが従来の方法では十分に適合していないこ
とが考えられる。
In the conventional method using an organic compound (organic transition metal compound) containing Fe, Ni, etc., this compound is introduced into the carbon fiber production zone for thermal decomposition, and hydrogen or the like is usually used as a carrier gas. The organic transition metal compound to be decomposed is used alone or by adding an organic compound containing no metal such as benzene to the raw material of the carbon fiber. However, the former case is disadvantageous because a large amount of expensive organic transition metal compound must be used. Further, the organic transition metal compound alone does not increase the fiber yield, because the amount of the metal is too large relative to the amount of the carbon, and the aggregation of the metal particles proceeds too much to make the size larger than the size suitable for carbon fiber production. In the latter case, when the organic transition metal compound and the other organic compound are mixed and pyrolyzed in the carbon fiber production zone at the same time as in the conventional case, the amount of carbon fiber produced is not sufficient. In the vapor grown carbon fiber, the activity and size of fine particles such as Fe are considered to play an important role, and it is considered that they are not sufficiently adapted by the conventional method.

本発明の目的はFe等を含む高価な有機化合物の量を少な
くしてできるだけ炭素繊維の収量を上げることにある。
An object of the present invention is to reduce the amount of expensive organic compounds containing Fe and the like and increase the yield of carbon fiber as much as possible.

問題点を解決するための手段 本発明は有機遷移金属化合物の熱分解帯域と炭素繊維生
成帯域を分け、熱分解帯域で分解したガスを繊維生成帯
域に導き、同時にその帯域に有機遷移金属化合物以外の
金属を含まない有機化合物を送入し、その熱分解を行な
い、炭素繊維を生成させる方法である。
Means for Solving the Problems The present invention separates the pyrolysis zone of an organic transition metal compound and the carbon fiber production zone, and guides the gas decomposed in the pyrolysis zone to the fiber production zone, and at the same time, except for the organic transition metal compound in that zone. In this method, a metal fiber-free organic compound is fed and its thermal decomposition is performed to generate carbon fiber.

有機遷移金属化合物としてはフェロセン(C5H10)2Fe,ニ
ッケルセン((C5H10)2Ni),アルキル金属例えば(C4H9)
4Ti,COを含む〔C5H5Fe(CO)22などが挙げられる。
Organic transition metal compounds include ferrocene (C 5 H 10 ) 2 Fe, nickelcene ((C 5 H 10 ) 2 Ni), alkyl metals such as (C 4 H 9 ).
Examples include [C 5 H 5 Fe (CO) 2 ] 2 containing 4 Ti and CO.

有機遷移金属化合物は500〜1000℃で熱分解す
る。分解後金属はいくつか集合して粒子を形成すると考
えられるが、この粒子の大きさ等が繊維の生成に影響す
る。そしてその大きさ等は分解の際の温度に関係してい
ると考えられる。実験によればこの温度範囲で分解した
場合が最も繊維の収量が多い。ここで分解した有機遷移
金属化合物から低分子の炭化水素及び水素、炭素も生ず
ると考えられるが、温度が低いこと及び有機遷移金属化
合物の量も少ないので炭素繊維は殆んど生じない。
The organic transition metal compound thermally decomposes at 500 to 1000 ° C. After decomposition, some of the metals are considered to be aggregated to form particles, and the size of the particles affects the formation of fibers. It is considered that the size and the like are related to the temperature at the time of decomposition. Experiments show that the highest fiber yield occurs when decomposed in this temperature range. It is considered that the decomposed organic transition metal compound also produces low-molecular hydrocarbons, hydrogen, and carbon, but carbon fibers are scarcely produced because the temperature is low and the amount of the organic transition metal compound is small.

分解したガスはH2等のキャリアガスによって炭素繊維
生成帯域に導かれる。そして炭素繊維生成帯域でベンゼ
ン等の有機化合物と混合される。このベンゼン等の送入
の際キャリアガスを混合してもよい。ベンゼン等の使用
は高価な有機遷移金属化合物の使用量を少なくできる効
果がある。この有機化合物としては、メタン、エタン、
エチレン、ベンゼン、トルエン、ナフタリン、シクロヘ
キサン等の炭化水素、これらの混合物、例えば揮発油、
さらに炭化水素のみでなく分子中にS,O,N,Cl等を含むも
のも使用できる。
The decomposed gas is guided to the carbon fiber production zone by a carrier gas such as H 2 . Then, it is mixed with an organic compound such as benzene in the carbon fiber production zone. A carrier gas may be mixed when the benzene or the like is fed. The use of benzene or the like is effective in reducing the amount of expensive organic transition metal compound used. The organic compounds include methane, ethane,
Hydrocarbons such as ethylene, benzene, toluene, naphthalene, cyclohexane, and mixtures thereof, such as volatile oil,
Furthermore, not only hydrocarbons but also those containing S, O, N, Cl, etc. in the molecule can be used.

キャリアガスとしてはアルゴン、ヘリウム等の希ガス、
水素、窒素等が用いられるが水素ガスが繊維の収量を増
す上で最も好ましい。
As a carrier gas, a rare gas such as argon or helium,
Hydrogen, nitrogen and the like are used, but hydrogen gas is most preferable in order to increase the fiber yield.

有機遷移金属化合物とそれ以外の有機化合物の使用割合
はモル数にして前者をA、後者をBとするとA/Bが0.
001〜0.05の範囲が好ましい。
When the ratio of the organic transition metal compound and the other organic compound used is mols, and the former is A and the latter is B, A / B is 0.
The range of 001 to 0.05 is preferable.

炭素繊維の生成帯域の温度は一般に気相法炭素繊維で用
いられている1000〜1300℃が適する。
The temperature of the production zone of carbon fibers is preferably 1000 to 1300 ° C. which is generally used for vapor grown carbon fibers.

炭素繊維生成帯域では金属微粒子は浮遊し、そこから繊
維が生成、成長していくものと考えられる。一例として
成長の速さは100μm/秒前後である。従ってガスの
流速が10cm/秒程度、浮遊時間にして3〜5秒程度で
300〜500μmの長さの繊維を得ることができる。
その太さは0.05〜0.1μm程度であるから、アス
ペクト比で5000〜6000のものが得られる。この
繊維はガスと共に浮遊状態で回収できるので連続的に炉
外に取出すことができ、工程上有利である。
It is considered that the fine metal particles float in the carbon fiber production zone, and fibers are produced and grown from there. As an example, the growth rate is around 100 μm / sec. Therefore, a fiber having a length of 300 to 500 μm can be obtained with a gas flow rate of about 10 cm / sec and a floating time of about 3 to 5 sec.
Since the thickness is about 0.05 to 0.1 μm, an aspect ratio of 5000 to 6000 can be obtained. Since this fiber can be collected in a floating state together with gas, it can be continuously taken out of the furnace, which is advantageous in the process.

尚、滞留時間、ガス組成及び温度条件を変えることによ
って、任意の太さ、長さの繊維を生成することが可能で
ある。
By changing the residence time, gas composition and temperature conditions, it is possible to produce fibers of arbitrary thickness and length.

本発明において有機遷移金属化合物を予じめ熱分解して
炭素繊維生成帯域に導き、そこで前記以外の金属を含ま
ない有機化合物と混合することにより、何故に繊維の収
率が向上するかは定かでないが、金属の微粒子は前もっ
て形成されているので、微粒子が炭素繊維生成帯域に存
在する時間が長く、かつほぼ一定になるので均一形状の
繊維ができる。また収量的には炭素繊維生成炉入口付近
のC濃度の高い所にタイミングよく微粒子が沢山存在す
るので高収率が得られるものと考えられる。
In the present invention, it is not clear why the organic transition metal compound is preliminarily pyrolyzed and led to the carbon fiber production zone, where it is mixed with an organic compound containing no metal other than the above to improve the fiber yield. However, since the metal fine particles are formed in advance, the fine particles stay in the carbon fiber production zone for a long time and become almost constant, so that a uniform fiber shape is formed. In terms of yield, it is considered that a high yield can be obtained because a large number of fine particles are present at a high C concentration near the inlet of the carbon fiber production furnace.

実施例 第1図のような装置を用いて炭素繊維を製造した。図に
おいて1は炭素繊維生成炉、2は有機遷移金属化合物の
熱分解炉(直径20mm,長さ300mm)である。11,2
1は夫々ヒーターで炉内を所定の温度に加熱するもので
ある。フェロセンはキャリヤーガスのH2ガスとともに
送入口23より送入した。ベンゼンは炭素繊維生成炉の
1端12よりH2ガスと混合して導入した。
Example Carbon fiber was manufactured using the apparatus as shown in FIG. In the figure, 1 is a carbon fiber production furnace, and 2 is a pyrolysis furnace (diameter 20 mm, length 300 mm) for organic transition metal compounds. 11,2
Reference numeral 1 is a heater for heating the inside of the furnace to a predetermined temperature. Ferrocene was introduced from the inlet 23 together with H 2 gas as a carrier gas. Benzene was introduced by mixing with H 2 gas from one end 12 of the carbon fiber production furnace.

生成した炭素繊維33は生成炉の左端13より捕集器3
に導きフィルター31により捕集した。ガスは排出口3
2より排出した。
The produced carbon fiber 33 is collected from the left end 13 of the production furnace to the collector 3
And collected by the filter 31. Gas outlet 3
Emitted from 2.

運転条件及び結果は以下の通り (1)熱分解炉 温 度 800〜900℃ フェロセンの送入量 0.03g/分 H2ガス送入量 100cc/分 (2)炭素繊維生成炉 温 度 1150〜1170℃ ベンゼン送入量(気化) 0.5g/分 H2ガス送入量 500cc/分 (フェロセン/ベンゼンのモル比 0.03) (3)結果 炭素繊維収得量 21g/Hr(収率75%) 炭素繊維の形状 太さ0.1μm,長さ1〜2mm (顕微鏡観察) (*収率はベンゼン中の炭素に対するもの) 比較のため、上記と同じ条件で、但しベンゼンを炭素繊
維生成炉に直接送入した結果は収率約60%であった。
The operating conditions and results are as follows: (1) Pyrolysis furnace temperature 800-900 ° C Ferrocene feed rate 0.03 g / min H 2 gas feed rate 100 cc / min (2) Carbon fiber production furnace temperature 1150- 1170 ° C Benzene feed rate (vaporization) 0.5 g / min H 2 gas feed rate 500 cc / min (ferrocene / benzene molar ratio 0.03) (3) Results Carbon fiber yield 21 g / hr (yield * 75 %) Shape of carbon fiber Thickness 0.1 μm, length 1-2 mm (Microscopic observation) (* Yield is based on carbon in benzene) For comparison, under the same conditions as above, but using benzene in a carbon fiber production furnace. The result of direct delivery was a yield of about 60%.

発明の効果 本発明によれば高価な有機遷移金属化合物の量を少なく
して、しかも炭素繊維の収量を上げることができる。
EFFECTS OF THE INVENTION According to the present invention, the amount of expensive organic transition metal compound can be reduced and the yield of carbon fiber can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に用いられる装置の1例を示
す断面図である。 1……炭素繊維生成炉、2……熱分解炉、11,21…
…ヒーター、3……捕集器、31……網。
FIG. 1 is a sectional view showing an example of an apparatus used for carrying out the method of the present invention. 1 ... Carbon fiber production furnace, 2 ... Pyrolysis furnace 11,21 ...
... heater, 3 ... collector, 31 ... net.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−27700(JP,A) 特開 昭60−54998(JP,A) 特開 昭59−76922(JP,A) ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-60-27700 (JP, A) JP-A-60-54998 (JP, A) JP-A-59-76922 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機遷移金属化合物を500〜1000℃
で熱分解し、分解ガスを1000〜1300℃の帯域に
導き、同時に該帯域に前記以外の有機化合物のガスを送
入しながら該帯域で炭素繊維を生成させることを特徴と
する気相法炭素繊維の製造法。
1. An organic transition metal compound at 500 to 1000 ° C.
The vapor-phase carbon, which is characterized in that it is thermally decomposed in the zone, the decomposed gas is introduced into a zone of 1000 to 1300 ° C., and at the same time, a gas of an organic compound other than the above is introduced into the zone to generate carbon fibers in the zone. Fiber manufacturing method.
【請求項2】有機遷移金属化合物のモル数(A)とそれ以
外の有機化合物のモル数(B)との容積比A/Bが0.00
1〜0.05である特許請求の範囲第1項記載の気相法
炭素繊維の製造法。
2. A volume ratio A / B between the number of moles of organic transition metal compound (A) and the number of moles of other organic compound (B) is 0.00.
The method for producing a vapor grown carbon fiber according to claim 1, which is 1 to 0.05.
JP60211106A 1985-09-26 1985-09-26 Production method of vapor grown carbon fiber Expired - Lifetime JPH0621377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211106A JPH0621377B2 (en) 1985-09-26 1985-09-26 Production method of vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211106A JPH0621377B2 (en) 1985-09-26 1985-09-26 Production method of vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPS6278217A JPS6278217A (en) 1987-04-10
JPH0621377B2 true JPH0621377B2 (en) 1994-03-23

Family

ID=16600507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211106A Expired - Lifetime JPH0621377B2 (en) 1985-09-26 1985-09-26 Production method of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JPH0621377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524479B2 (en) 2001-06-28 2009-04-28 Showa Denko K.K. Method for producing vapor grown carbon fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662413B2 (en) * 1988-04-12 1997-10-15 昭和電工株式会社 Method for producing vapor grown carbon fiber
CA2364075A1 (en) 1992-05-22 1993-12-09 Hyperion Catalysis International, Inc. Improved methods and catalysts for the manufacture of carbon fibrils
US6150446A (en) * 1997-08-29 2000-11-21 Teijin Limited Destaticizing thermoplastic resin composition
EP1786958B1 (en) * 2004-07-23 2014-04-30 Showa Denko K.K. Production method of vapor-grown carbon fiber and apparatus therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027700A (en) * 1983-07-25 1985-02-12 Showa Denko Kk Preparation of carbon fiber by vapor-phase method
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
JPS61132630A (en) * 1984-11-30 1986-06-20 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPS60252721A (en) * 1984-05-30 1985-12-13 Asahi Chem Ind Co Ltd Production of carbon fiber
JPS61225329A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Production of carbonaceous short fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524479B2 (en) 2001-06-28 2009-04-28 Showa Denko K.K. Method for producing vapor grown carbon fiber

Also Published As

Publication number Publication date
JPS6278217A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JPH0424320B2 (en)
US4565684A (en) Regulation of pyrolysis methane concentration in the manufacture of graphite fibers
US6423288B2 (en) Fibrils
US7138100B2 (en) Process for making single-wall carbon nanotubes utilizing refractory particles
US5413773A (en) Method for forming carbon filters
JPH07150419A (en) Production of carbon fiber according to vapor process
JPS6054998A (en) Production of carbon fiber grown in vapor phase
JPS62242B2 (en)
KR20070104351A (en) Process for producing carbon nanotube
US20090275696A1 (en) Vapor Grown Carbon Fiber, and Production Method and Use Thereof
US5085690A (en) Preparation of iron whiskers
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JPH02167898A (en) Production of graphite whisker
JPS5822571B2 (en) Carbon fiber manufacturing method using vapor phase method
JPS61132600A (en) Whisker-shaped carbonaceous material
JPH062222A (en) Production of carbon fiber by gaseous phase growth
US20140199546A1 (en) Multi-branched n-doped carbon nanotubes and the process for making same
JPS58110493A (en) Production of graphite whisker
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
Motojima et al. Preparation and properties of coiled carbon fibers by the catalitic pyrolysis of acetylene
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS61194223A (en) Production of carbon fiber by gaseous phase method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term