JPS6122029B2 - - Google Patents

Info

Publication number
JPS6122029B2
JPS6122029B2 JP55116482A JP11648280A JPS6122029B2 JP S6122029 B2 JPS6122029 B2 JP S6122029B2 JP 55116482 A JP55116482 A JP 55116482A JP 11648280 A JP11648280 A JP 11648280A JP S6122029 B2 JPS6122029 B2 JP S6122029B2
Authority
JP
Japan
Prior art keywords
noble metal
powder
silver
hydrogen peroxide
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55116482A
Other languages
Japanese (ja)
Other versions
JPS5741301A (en
Inventor
Shinroku Kawakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASUMI GIJUTSU KENKYUSHO KK
Original Assignee
KAWASUMI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASUMI GIJUTSU KENKYUSHO KK filed Critical KAWASUMI GIJUTSU KENKYUSHO KK
Priority to JP55116482A priority Critical patent/JPS5741301A/en
Priority to US06/251,746 priority patent/US4450188A/en
Priority to EP81303778A priority patent/EP0046657B1/en
Priority to DE8181303778T priority patent/DE3164569D1/en
Publication of JPS5741301A publication Critical patent/JPS5741301A/en
Publication of JPS6122029B2 publication Critical patent/JPS6122029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Description

【発明の詳細な説明】 本発明は、貴金属が被覆された粉末の製造方法
に関するものである。更に詳しくは、本発明は、
貴金属から成る被覆層が基体物質を実用上ほぼ完
全に被覆している粉末を製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing noble metal coated powder. More specifically, the present invention includes:
The present invention relates to a method for producing a powder in which a coating layer consisting of a noble metal practically completely covers a substrate material.

金属等の無機物質から成る基体物質の粉末を他
の金属で被覆して得た粉末は各種の組み合せで多
くの用途に使用され又は利用が試みられている。
例えば、導電性ペースト(導電性塗料)、電気接
点等に用いられる金属である金もしくは銀を被覆
層として他の金属等の基体粉末に被覆した系の使
用が試みられている。この系の例としては、金と
タングステン、銀とタングステン、金と炭化チタ
ン、銀と炭化チタン、銅と炭化チタン、金とグラ
フアイト、銀とグラフアイト、銅とグラフアイ
ト、銀と銅、銀と銅・ビスマス複合系等を挙げる
ことができる。また、他の系の例としては、二硫
化モリブデンを基体物質として、この粉末に金も
しくは銀、銅を被覆して得た粉末を固体潤滑材、
高速軸受等の用途に使用する系、銅を基体物質と
して、この粉末に錫もしくはニツケルを被覆して
得た粉末を軸受等に使用する系を挙げることがで
きる。
BACKGROUND ART Powders obtained by coating powders of base materials made of inorganic substances such as metals with other metals have been used or attempted to be used in many applications in various combinations.
For example, attempts have been made to use a system in which a base powder of another metal or the like is coated with gold or silver, which is a metal used for conductive paste (conductive paint), electrical contacts, etc., as a coating layer. Examples of this system are gold and tungsten, silver and tungsten, gold and titanium carbide, silver and titanium carbide, copper and titanium carbide, gold and graphite, silver and graphite, copper and graphite, silver and copper, silver and copper/bismuth composite systems. In addition, as an example of another system, powder obtained by coating molybdenum disulfide with gold, silver, or copper as a base material can be used as a solid lubricant.
Examples include systems used for applications such as high-speed bearings, and systems in which copper is used as a base material and powder obtained by coating this powder with tin or nickel is used for bearings and the like.

このように金属被覆粉末の利用例は各種ある
が、特に被覆層として金、銀、白金等の貴金属を
利用した系は、貴金属の有効利用の面から近年注
目を受けている。例えば特公昭第46−40593号特
許公報に開示されているように、従来は導電材料
として銀を用いている導電性塗料を、銀の代りに
銅−銀複合粉末を用いる利用例、同様に特公昭第
49−21874号特許公報に開示された銅・ビスマス
−銀被覆複合粉末を用いた導電性塗料も考えられ
ている。
As described above, there are various examples of the use of metal-coated powders, but in particular, systems using noble metals such as gold, silver, and platinum as coating layers have received attention in recent years from the standpoint of effective use of noble metals. For example, as disclosed in Japanese Patent Publication No. 46-40593, a conductive paint that conventionally used silver as a conductive material has been replaced with a copper-silver composite powder instead of silver. Koshodai
A conductive paint using a copper-bismuth-silver coated composite powder disclosed in Patent Publication No. 49-21874 is also being considered.

さて、基体物質に、金属から成る被覆層を形成
する方法としては、電気メツキ法、蒸着によるメ
ツキ法、化学メツキ法等が考えられており、特に
化学メツキ法は比較的簡単な装置で工業的規模の
実施が可能であることから、このような化学的方
法の利用は望ましいものである。
Now, as methods for forming a coating layer made of metal on a substrate material, there are electroplating methods, plating methods by vapor deposition, chemical plating methods, etc. The chemical plating method in particular uses relatively simple equipment and is not suitable for industrial use. The use of such chemical methods is desirable because of their scale of implementation.

上述の導電性塗料における銀の使用は、銀の持
つ高度な導電性の利用を基礎とするものであるた
め、導電性塗料により形成される導電面は実質的
に全て銀からなる層で覆われている必要がある。
即ち、銀と他の金属とからなる複合粉末の被覆層
は実質的に全て銀から構成されていなければなら
ず、仮に基体金属が被覆層に入り込み、その被覆
層の表面の一部を占めるようになつた場合、その
ような導電層は機能が大幅に低下し、実用上不適
当である。このように被覆層を形成する金属の固
有の性能を利用した系で、かつ、その金属の有効
利用を図り、使用量を低減させる目的で該金属を
被覆層とした複合粉末を使用する場合、その被覆
層の純度は高度なものが特に要求される。
The use of silver in the above-mentioned conductive paint is based on the utilization of silver's highly conductive properties, so the conductive surface formed by the conductive paint is virtually entirely covered with a layer of silver. need to be.
In other words, the coating layer of a composite powder consisting of silver and other metals must be composed essentially entirely of silver, and even if the base metal penetrates into the coating layer and occupies a part of the surface of the coating layer, If this occurs, the functionality of such a conductive layer will be significantly reduced and it will be unsuitable for practical use. In this way, when using a composite powder with a coating layer of the metal in a system that utilizes the unique performance of the metal that forms the coating layer, and in order to effectively utilize the metal and reduce the amount used, The coating layer is particularly required to have a high degree of purity.

しかしながら、被覆層を形成させるための一般
的な方法である化学メツキ法、例えば、硝酸系で
硝酸銀及びアンモニア水、カセイカリ、砂糖を用
いてその系に分散させた銅粉末上に銀鏡反応を起
させて、銀被覆を形成させる方法では、その被覆
層に、銅粉末からメツキ液中に溶出した銅イオン
が金属銅もしくはその酸化物の形で混入し、被覆
層が汚染される傾向がある。このような銀被覆層
への銅もしくは銅酸化物の混入は、前述したよう
に、特に電気接点、導電性塗料等の用途では実用
上問題となり、特にそのような被覆層への不純物
の混入が一定の割合を超えれば実用に供すること
はできなくなる。
However, the chemical plating method, which is a common method for forming a coating layer, for example, involves causing a silver mirror reaction on copper powder dispersed in a nitric acid system using silver nitrate, aqueous ammonia, caustic potash, and sugar. However, in the method of forming a silver coating, copper ions eluted from the copper powder into the plating solution tend to mix into the coating layer in the form of metallic copper or its oxide, resulting in contamination of the coating layer. As mentioned above, the contamination of such copper or copper oxides into the silver coating layer is a practical problem, especially in applications such as electrical contacts and conductive paints. If it exceeds a certain percentage, it cannot be put to practical use.

本発明者は、化学メツキ法における銅が、銅を
容易に溶解する硝酸に銅イオンとして溶解し、こ
れが銀被覆層に混入するとの銅混入機構を防ぐこ
とのできる系から成る被覆法を研究した結果、銅
等の基体物質の溶解が無視できる程度である系に
基体物質の粉末を分散させ、この系において貴金
属を還元させ、基体物質粉末の表面に貴金属を被
覆させる方法を見出した。即ち本発明は、(1)貴金
属イオン、そして(2)過飽和量の貴金属キレート化
合物とを含む水系ゲル化液(液);それらの貴
金属イオン及び貴金属キレート化合物の双方を還
元して貴金属単体とするに充分な量の過酸化水
素;基体物質粉末を均一に分散した状態で含有す
る水系分散液液);そしてアルカリ化剤、を混
合することにより水系ゲル化液のゲル状態を解消
させ、この時に同時に過酸化水素のアルカリ溶液
中における還元作用により貴金属イオン及び貴金
属キレート化合物を還元して粉末状基体物質の表
面上に貴金属単体を析出、積層させて、基体物質
粉末に貴金属を被覆した粒子を製造する方法であ
る。
The present inventor has researched a coating method consisting of a system that can prevent the copper contamination mechanism in which copper in the chemical plating method is dissolved as copper ions in nitric acid, which easily dissolves copper, and mixed into the silver coating layer. As a result, we discovered a method of dispersing base material powder in a system in which dissolution of the base material such as copper is negligible, reducing the noble metal in this system, and coating the surface of the base material powder with the noble metal. That is, the present invention provides an aqueous gelling solution (liquid) containing (1) noble metal ions and (2) a supersaturated amount of a noble metal chelate compound; both the noble metal ions and the noble metal chelate compound are reduced to a simple noble metal. The gel state of the aqueous gelling liquid is dissolved by mixing a sufficient amount of hydrogen peroxide; an aqueous dispersion containing the base material powder in a uniformly dispersed state; and an alkalizing agent. At the same time, noble metal ions and noble metal chelate compounds are reduced by the reduction action in an alkaline solution of hydrogen peroxide to precipitate and layer the noble metal on the surface of the powdered base material, producing particles in which the base material powder is coated with the noble metal. This is the way to do it.

本発明の貴金属イオンと貴金属キレート化合物
とを含むゲル化液(液)は、例えば次の方法に
より調製する。
A gelling solution (liquid) containing a noble metal ion and a noble metal chelate compound of the present invention is prepared, for example, by the following method.

硝酸銀等の水溶性貴金属塩の比較的濃厚な水溶
液(例えば5−50重量%)、及びEDTA(エチレ
ンジアミンテトラ酢酸)等のキレート化剤のアル
カリ金属塩の水溶液(例えば2重量%以上)を
別々に調製し、この二つの水溶液を撹拌下に混合
する。この混合液において、キレート化剤は水溶
性貴金属塩の量に対して化学量論量よりもかなり
少ない量(好ましくは化学量論量の半分もしくは
それ以下)含有させるのが望ましい。双方の量が
ほぼ化学量論量に近い比率にある場合、もしくは
キレート化剤が水溶性貴金属塩に対しての化学量
論量よりも相対的に多い量含有されている場合に
は、最終生成物の貴金属被覆層にそれらのキレー
ト化剤が混入することもあり好ましくない。更
に、キレート化剤は、該キレート化剤と水溶性貴
金属塩との接触により形成するキレート化合物が
当該水系溶液に、そのキレート化合物の溶解度を
越える量含まれるような量加えられている必要が
ある。即ち、液中には、(1)溶解している貴金属
イオン、(2)溶解している貴金属キレート化合物、
そして(3)溶解していない貴金属キレート化合物が
含まれており、この構成により液はゲル状態を
形成する。従つて液は、上記の(1)を含む水溶液
(a液)と、(2)と(3)とを含む水系ゲル化液(
b液)とを別々に調製し、これらを混合すること
により調製しても良く、或はa液もしくはb
液の一方と他の液(例えば、過酸化水素等)を混
合した後に、他方の液(b液もしくはa液)
を加えるような混合方法の実施も可能である。
A relatively concentrated aqueous solution (e.g. 5-50% by weight) of a water-soluble noble metal salt such as silver nitrate and an aqueous solution (e.g. 2% or more by weight) of an alkali metal salt of a chelating agent such as EDTA (ethylenediaminetetraacetic acid) are separately prepared. The two aqueous solutions are mixed under stirring. In this mixed solution, it is desirable that the chelating agent be contained in an amount considerably less than the stoichiometric amount (preferably half or less of the stoichiometric amount) relative to the amount of the water-soluble noble metal salt. When the amounts of both are in a nearly stoichiometric ratio, or when the chelating agent is present in an amount relatively greater than the stoichiometric amount relative to the water-soluble noble metal salt, the final product These chelating agents may be mixed into the precious metal coating layer of the product, which is not preferable. Furthermore, the chelating agent must be added in an amount such that the chelate compound formed by contact between the chelating agent and the water-soluble noble metal salt is contained in the aqueous solution in an amount exceeding the solubility of the chelate compound. . That is, the liquid contains (1) dissolved noble metal ions, (2) dissolved noble metal chelate compounds,
and (3) it contains an undissolved noble metal chelate compound, and this structure causes the liquid to form a gel state. Therefore, the liquid is an aqueous solution (liquid a) containing the above (1) and an aqueous gelling liquid (liquid) containing (2) and (3).
Solution b) may be prepared separately and mixed together, or solution a or b) may be prepared separately.
After mixing one of the liquids with the other liquid (for example, hydrogen peroxide, etc.), add the other liquid (liquid B or liquid A).
It is also possible to implement a mixing method such as adding .

本発明の対象とする貴金属の例としては、銀、
金、白金及びパラジウムを挙げることができる。
勿論、他の貴金属に本発明を利用することも可能
である。前記のような方法で貴金属のキレート化
合物を調製する場合には、貴金属の水溶性の塩類
が用いられる。そのような水溶性の塩としては、
例えば硝酸塩、塩酸塩、シアン化物を挙げること
ができる。
Examples of noble metals targeted by the present invention include silver,
Mention may be made of gold, platinum and palladium.
Of course, the present invention can also be applied to other noble metals. When preparing a noble metal chelate compound by the method described above, water-soluble salts of the noble metal are used. Such water-soluble salts include
Examples include nitrates, hydrochlorides, and cyanides.

キレート化剤は、貴金属イオンと水溶性のキレ
ート化合物を形成するものが用いられ、その例と
しては、エチレンジアミンテトラ酢酸(EDTA)
等のポリアミノカルボン酸類、クエン酸等のオキ
シカルボン酸類、縮合リン酸塩等を挙げることが
できる。
The chelating agent used is one that forms a water-soluble chelate compound with noble metal ions, such as ethylenediaminetetraacetic acid (EDTA).
Examples include polyaminocarboxylic acids such as, oxycarboxylic acids such as citric acid, condensed phosphates, and the like.

本発明において還元剤として利用される過酸化
水素は、液に含まれている貴金属イオンと貴金
属キレート化合物の双方を還元して貴金属単体と
するに充分な量用いられる。過酸化水素はアルカ
リ性において激しく分解し還元作用を示す。本発
明の実施に際しては、貴金属イオンと貴金属キレ
ート化合物の双方を実質的に完全に還元するため
に、過酸化水素は過剰量用いるのが好ましい。通
常は、市販の形態である30%水溶液の形の過酸化
水素が用いられる。
Hydrogen peroxide used as a reducing agent in the present invention is used in an amount sufficient to reduce both the noble metal ion and the noble metal chelate compound contained in the liquid to the noble metal element. Hydrogen peroxide decomposes violently in alkaline conditions and exhibits a reducing effect. In practicing the present invention, hydrogen peroxide is preferably used in excess in order to substantially completely reduce both the noble metal ion and the noble metal chelate compound. Usually, hydrogen peroxide in the form of a 30% aqueous solution, which is commercially available, is used.

基体物質粉末を均一に分散した状態で含む水系
分散液(液)は、基体物質の粉末を水に対し
て、例えば、1:1000〜1:10(重量比)程度の
量で加え、撹拌することにより得られる。
To prepare an aqueous dispersion (liquid) containing the base material powder in a uniformly dispersed state, add the base material powder to water in an amount of, for example, 1:1000 to 1:10 (weight ratio) and stir. It can be obtained by

本発明で用いる基体物質の例としては、銅、ニ
ツケル、コバルト、鉄等の遷移金属もしくはそれ
らの合金、酸化ジルコニウム、二酸化チタン、け
い素酸化物、アルミニウム酸化物等の無機酸化
物、チタン酸バリウム等の水難溶性塩類、工業用
もしくは一般用のガラスを挙げることができる
が、これらの物質に限定されるものではない。実
用上、好ましい基体物質はニツケル及び酸化ジル
コニウム、二酸化チタン等の無機酸化物である。
基体物質の粉末は通常は直径が30μ以下程度のも
のが用いられるが、好ましい粉末は直径10μ以下
のものであり、粒度は特に均一である必要はな
い。
Examples of the base material used in the present invention include transition metals such as copper, nickel, cobalt, and iron, or alloys thereof, inorganic oxides such as zirconium oxide, titanium dioxide, silicon oxide, and aluminum oxide, and barium titanate. Examples include poorly water-soluble salts such as, industrial or general glass, but are not limited to these substances. In practice, preferred substrate materials are nickel and inorganic oxides such as zirconium oxide and titanium dioxide.
The base substance powder usually has a diameter of about 30 μm or less, but preferably has a diameter of 10 μm or less, and the particle size does not need to be particularly uniform.

本発明で用いるアルカリ化剤は、例えば、水酸
化ナトリウム、水酸化カリウム等のアルカリ金属
水酸化物を挙げることができるが、これらのもの
に限定されるものではない。過酸化水素の分解を
促すことのできるアルカリ化剤である限り、他の
系も用いることができる。これらは一般には水溶
液の形で用いられる。
Examples of the alkalizing agent used in the present invention include, but are not limited to, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. Other systems can also be used as long as they are alkalizing agents that can promote the decomposition of hydrogen peroxide. These are generally used in the form of aqueous solutions.

本発明において液、過酸化水素、液、そし
てアルカリ化剤は同時に、又は適当な順序で加え
ることにより混合しても良いが、本発明の目的と
する純度の高い貴金属被覆層を基体物質表面上に
形成するためには、次に示す混合方法を採用する
ことが好ましい。
In the present invention, the liquid, hydrogen peroxide, liquid, and alkalizing agent may be mixed together by adding them at the same time or in an appropriate order. In order to form this, it is preferable to adopt the following mixing method.

A法:液に過酸化水素を添加、次いで液を
加え、最後にアルカリ化剤(水溶液)を加える。
この最後のアルカリ化剤の添加により、ゲル状態
は速やかに(又は瞬時に)解消し、同時に貴金属
が基体物質表面上に析出する。この方法は、例え
ば二酸化チタン(TiO2)のようにアルカリ性水溶
液に若干溶解性を持つ基体物質を利用する場合に
好適な方法である。
Method A: Add hydrogen peroxide to the liquid, then add the liquid, and finally add the alkalizing agent (aqueous solution).
By this last addition of the alkalizing agent, the gel state is quickly (or instantaneously) dissolved, and at the same time the noble metal is deposited on the surface of the substrate material. This method is suitable when using a base material that has some solubility in an alkaline aqueous solution, such as titanium dioxide (TiO 2 ).

B法:液に過酸化水素を加え、別に液にア
ルカリ化剤の一部(例えば、添加予定のアルカリ
化剤の約半分の量)を加える。前者(液と過酸
化水素の混合液)に後者(液とアルカリ化剤の
混合液)を加える。この添加により過酸化水素が
分解を始め基体物質上に貴金属が一部析出する。
この混合液に更にアルカリ化剤(水溶液)を加え
ることによりゲル状態は速やかに解消し、反応は
完了する。なお、B法の変法として、最初の段階
で液にアルカリ化剤を全て加え、これを、液
と過酸化水素の混合液に加えることにより瞬時に
貴金属による基体物質の被覆を完了させる方法
も、簡易な方法として利用できる。
Method B: Add hydrogen peroxide to the liquid, and separately add a portion of the alkalizing agent (for example, about half the amount of the alkalizing agent to be added) to the liquid. Add the latter (mixture of liquid and alkalizing agent) to the former (mixture of liquid and hydrogen peroxide). Due to this addition, hydrogen peroxide begins to decompose and a portion of the noble metal is precipitated on the substrate material.
By further adding an alkalizing agent (aqueous solution) to this mixed solution, the gel state is quickly eliminated and the reaction is completed. As a modification of method B, there is also a method in which all the alkalizing agent is added to the solution in the first step, and this is added to the mixture of the solution and hydrogen peroxide to instantly complete the coating of the substrate material with the noble metal. , can be used as a simple method.

B法及びB法の変法は、例えば、ニツケル金
属、酸化ジルコニウムのような、アルカリ性水溶
液に殆んど溶解性を持たない基体物質を利用する
場合に好適な方法である。
Method B and modified methods of Method B are suitable methods when using a base material that has almost no solubility in an alkaline aqueous solution, such as nickel metal or zirconium oxide.

本発明では前述のように、基体物質が溶媒に殆
んど溶解しない反応系を利用するために、通常の
化学メツキ等に見られる基体物質粉末の溶媒への
溶解を介しての基体物質の被覆層への混入のよう
な基体物質の被覆層への混入が極度に低減するた
め、純度の高い被覆層を有する被覆粉末を得るこ
とができる。このため被覆金属が貴金属である場
合に特に有効であり、またそれらの被覆粉末は電
気接点もしくは導電性ペーストのように、高純度
の被覆層を有する被覆粉末を要求する技術分野に
おいて特に有用である。
As described above, in the present invention, in order to utilize a reaction system in which the base material hardly dissolves in a solvent, the base material is coated by dissolving the base material powder in a solvent, which is the same as in ordinary chemical plating. Since the contamination of the base material into the coating layer is extremely reduced, it is possible to obtain a coated powder having a highly pure coating layer. This makes them particularly useful when the coating metal is a noble metal, and these coating powders are particularly useful in technical fields that require coating powders with highly pure coating layers, such as electrical contacts or conductive pastes. .

なお、本発明により得ることのできる被覆粉末
を構成する基体物質と貴金属との比は特に限定さ
れないが、実用上有用であるのは基体物質と貴金
属が重量比で1:9から4:6の間にある場合で
ある。
Note that the ratio of the base material to the noble metal constituting the coated powder that can be obtained by the present invention is not particularly limited, but it is practically useful to have a weight ratio of the base material to the noble metal of 1:9 to 4:6. This is a case in between.

本発明を以下に実施例により更に詳しく説明す
るが、これらの実施例は本発明を制限するもので
はない。
The present invention will be explained in more detail with reference to Examples below, but these Examples are not intended to limit the present invention.

実施例 1 二酸化チタン−銀系被覆粉末の製造 硝酸銀1gを50mlの水に溶解した水溶液と、エ
チレンジアミンテトラ酢酸(EDTA)の二ナトリ
ウム塩15gを200mlの水に溶解した水溶液とを撹
拌下に混合するとゲル化液が得られる。このゲル
状態の粘度を低下させるために更に50mlの水を加
える。このゲル化液に過酸化水素水溶液(30%水
溶液)100mlを加える。この段階では、ゲル状態
に顕著な変化は見られない。別に二酸化チタン粉
末(平均粒径:2μ)1gを水150mlに加えて均
一に分散させた分散液を調製し、この分散液をゲ
ル化液(過酸化水素が加えられているもの)に加
え、充分に撹拌する。この段階でも、ゲル状態に
特に大きな変化は見られず、反応の発生は観察さ
れない。こうして得られたゲル化液を激しく撹拌
しながら、これに、水酸化ナトリウム水溶液
(NaOH5g/25ml水)100mlを加えるとゲル状態
は瞬間的に解消し、二酸化チタン粉末表面上に銀
が析出する。この系に更に150mlの過酸化水素水
溶液(30%水溶液)を加えて反応を完結させる。
Example 1 Production of titanium dioxide-silver based coated powder When an aqueous solution of 1 g of silver nitrate dissolved in 50 ml of water and an aqueous solution of 15 g of disodium salt of ethylenediaminetetraacetic acid (EDTA) dissolved in 200 ml of water are mixed with stirring. A gelled solution is obtained. Add another 50 ml of water to reduce the viscosity of this gel state. Add 100 ml of hydrogen peroxide aqueous solution (30% aqueous solution) to this gelled solution. At this stage, no significant change in the gel state is observed. Separately, prepare a dispersion by adding 1 g of titanium dioxide powder (average particle size: 2 μ) to 150 ml of water, and add this dispersion to a gelling solution (to which hydrogen peroxide has been added). Stir thoroughly. Even at this stage, no particularly large change in the gel state was observed, and no reaction was observed. When 100 ml of an aqueous sodium hydroxide solution (5 g of NaOH/25 ml of water) is added to the gelled solution thus obtained while stirring vigorously, the gel state is instantly dissolved and silver is precipitated on the surface of the titanium dioxide powder. Add another 150 ml of hydrogen peroxide aqueous solution (30% aqueous solution) to this system to complete the reaction.

得られた銀被覆粉末はろ過、水洗次いで乾燥を
行なうことにより取り出す。乾燥後は薄い灰色を
示し、収量は6.8g(理論収量7.0g)である。
The obtained silver-coated powder is taken out by filtering, washing with water, and drying. After drying, the color is light gray, and the yield is 6.8 g (theoretical yield: 7.0 g).

実施例 2 ニツケル−銀系被覆粉末の製造 硝酸銀10gを50mlの水に溶解した水溶液と、
EDTAの2Naの塩15gを300mlの水に溶解した水
溶液とを撹拌下に混合するとゲル化液が得られ
る。このゲル化液に150mlの水を加え、粘度を調
整する。このゲル化液に過酸化水素水溶液(30%
水溶液)150mlを加える。この段階では、ゲル状
態に顕著な変化は見られない。別に金属ニツケル
粉末(平均粒径:3μ)1.5gを50mlの水酸化ナ
トリウム水溶液(NaOH5g/25ml水、以下同
じ)に加えて均一に分散させた分散液を調整し、
この分散液をゲル化液(過酸化水素加えられてい
るもの)に加え、充分に撹拌する。この段階で過
酸化水素は穏やかに分解を始め、基体物質(金属
ニツケル)粉末表面上に銀が一部析出するが、ゲ
ル状態に大きな変化は見られない。更に撹拌下に
水酸化ナトリウム水溶液50mlを加えると、瞬間的
にゲル状態は解消し、金属ニツケル粉末表面上に
銀が完全に析出し、反応が完結する。次に、実施
例1と同様な操作により灰色の銀被覆粉末を取り
出す。収量7.4g(理論収量7.5g) 実施例 3 酸化ジルコニウム−銀系被覆粉末の製造 本実施例では、酸化ジルコニウム(ZrO2)の銀
による被覆をより完壁にするために、ZrO2の前
処理を次のように行なつた。
Example 2 Production of nickel-silver based coated powder An aqueous solution of 10 g of silver nitrate dissolved in 50 ml of water,
A gelled solution is obtained by mixing an aqueous solution of 15 g of 2Na salt of EDTA dissolved in 300 ml of water with stirring. Add 150ml of water to this gelled solution to adjust the viscosity. Add hydrogen peroxide solution (30%) to this gelling solution.
Add 150ml of aqueous solution). At this stage, no significant change in the gel state is observed. Separately, 1.5 g of nickel metal powder (average particle size: 3 μ) was added to 50 ml of aqueous sodium hydroxide solution (5 g of NaOH/25 ml of water, the same applies hereinafter) to prepare a uniform dispersion.
Add this dispersion to the gelling solution (to which hydrogen peroxide has been added) and stir thoroughly. At this stage, hydrogen peroxide begins to decompose gently, and some silver is precipitated on the surface of the base material (nickel metal) powder, but no major change is observed in the gel state. Further, when 50 ml of an aqueous sodium hydroxide solution is added while stirring, the gel state is instantly dissolved, silver is completely precipitated on the surface of the nickel metal powder, and the reaction is completed. Next, a gray silver-coated powder is taken out by the same operation as in Example 1. Yield 7.4g (theoretical yield 7.5g) Example 3 Production of zirconium oxide-silver coated powder In this example, in order to make the coating of zirconium oxide (ZrO 2 ) with silver more complete, ZrO 2 was pretreated. was done as follows.

ZrO2粉末(平均粒径:1.5μ)10g、硝酸銀1
g、水200ml、そして分散剤(アニオン系界面活
性剤と非イオン系界面活性剤の混合物)1mlを混
合、撹拌し、次いでヒドラジン・一水和物水溶液
(80%)5mlを加えて、充分に撹拌を行ない、銀
イオンを還元し、ZrO2粉末表面上に析出させ
る。得られた粉末をろ過、水洗した後乾燥して、
更に空気中で450℃、30分間の焼成を行ない、実
質的に理論量の銀付着ZrO2粉末(銀6g/100g
ZrO2)を得る。
ZrO 2 powder (average particle size: 1.5μ) 10g, silver nitrate 1
g, 200 ml of water, and 1 ml of dispersant (mixture of anionic surfactant and nonionic surfactant) were mixed and stirred, then 5 ml of hydrazine monohydrate aqueous solution (80%) was added, and the mixture was thoroughly mixed. Stirring is performed to reduce silver ions and deposit them on the ZrO 2 powder surface. The obtained powder is filtered, washed with water, and then dried.
Further, firing was performed in air at 450°C for 30 minutes to obtain a substantially theoretical amount of silver-adhered ZrO 2 powder (6g silver/100g
ZrO 2 ) is obtained.

上記の銀付着ZrO2粉末1gを100mlの水酸化ナ
トリウム水溶液(NaOH5g/25ml水)に加え
て、均一に分散させた分散液を調製する。別に、
硝酸銀10gを50mlの水に溶解した水溶液と、
EDTAの2Na塩15gを200mlの水に溶解した水溶
液とを撹拌下に混合した後、更に50mlろの水を加
えてゲル化液を得る。このゲル化液に過酸化水素
水溶液(30%水溶液)100mlを加え、次いで前記
のZrO2粉末の分散液を撹拌下に加える。ゲル状
態は瞬間的に解消し、酸化ジルコニウム粉末が銀
により被覆された灰色の粉末が得られる。これを
実施例1と同様にして取り出す。収量7.4g(理
論収量7.5g) 実施例 4 銅−金被覆粉末の製造 HAuCl4 11gを75mlの水に溶解した水溶液と、
EDTAの2Na塩25gを300mlの水に溶解した水溶
液とを撹拌下に混合するとゲル化液が得られる。
このゲル化液に更に水を加え、ゲル化液の体積を
400mlに調整する。このゲル化液に過酸化水素水
溶液(30%水溶液)150mlを加える。この段階で
は、ゲル状態に顕著な変化は見られない。市販の
銅粉末(平均粒径:5μ)をヒドラジン水溶液に
1時間浸漬、撹拌して表面の酸化膜を除く前処理
を行ない、水洗して得た銅粉末2gを140mlの水
酸化ナトリウム水溶液(NaOH5g/25ml水)に
加えて均一に分散させた分散液を調整し、この分
散液をゲル化液(過酸化水素が加えられているも
の)に撹拌下に加える。ゲル状態は瞬間的に解消
し、金属銅粉末表面上に金が完全に析出し、反応
が完結する。これを実施例1と同様にして茶褐色
の粉末を取り出す。収量8.2g(理論収量8.37
g) 金:銅の重量比76:24 実施例 5 導電性ペーストへの応用例 実施例1で得られた二酸化チタン−銀系 被覆粉末 10g ホウケイ酸鉛ガラスフリツト 0.2g エチルセルロース 1g エチルセロソルブ 2.5g テルピネール 2.5g 上記組成から成る混合物を三本ロール型混練装
置を用いて良く混練してペーストを得る。
Add 1 g of the above silver-attached ZrO 2 powder to 100 ml of an aqueous sodium hydroxide solution (5 g of NaOH/25 ml of water) to prepare a uniform dispersion. Separately,
An aqueous solution of 10g of silver nitrate dissolved in 50ml of water,
An aqueous solution of 15 g of 2Na salt of EDTA dissolved in 200 ml of water is mixed with stirring, and then 50 ml of water is added to obtain a gelled solution. 100 ml of an aqueous hydrogen peroxide solution (30% aqueous solution) is added to this gelled solution, and then the above dispersion of ZrO 2 powder is added under stirring. The gel state disappears instantaneously, and a gray powder in which zirconium oxide powder is coated with silver is obtained. This is taken out in the same manner as in Example 1. Yield: 7.4 g (theoretical yield: 7.5 g) Example 4 Production of copper-gold coated powder An aqueous solution of 11 g of HAuCl 4 dissolved in 75 ml of water,
A gelled solution is obtained by mixing with an aqueous solution of 25 g of 2Na salt of EDTA dissolved in 300 ml of water while stirring.
Add more water to this gelled solution to increase the volume of the gelled solution.
Adjust to 400ml. Add 150 ml of hydrogen peroxide aqueous solution (30% aqueous solution) to this gelled solution. At this stage, no significant change in the gel state is observed. Commercially available copper powder (average particle size: 5 μ) was immersed in a hydrazine aqueous solution for 1 hour, stirred to perform pretreatment to remove the oxide film on the surface, and washed with water. 2 g of the copper powder obtained was mixed with 140 ml of a sodium hydroxide aqueous solution (NaOH 5 g). /25ml water) to prepare a uniform dispersion, and add this dispersion to the gelling solution (to which hydrogen peroxide has been added) while stirring. The gel state disappears instantaneously, gold is completely deposited on the surface of the metallic copper powder, and the reaction is completed. This is carried out in the same manner as in Example 1, and a brown powder is taken out. Yield 8.2g (theoretical yield 8.37
g) Gold: copper weight ratio 76:24 Example 5 Application to conductive paste Titanium dioxide-silver based coating powder obtained in Example 1 10 g Lead borosilicate glass frit 0.2 g Ethyl cellulose 1 g Ethyl cellosolve 2.5 g Terpinel 2.5 g. A paste is obtained by thoroughly kneading the mixture having the above composition using a three-roll kneading device.

得られたペーストをスクリーン印刷によりセラ
ミツク基板上に印刷して150℃で30分間乾燥した
後、焼成炉に入れ、この焼成炉の温度を1時間か
けて800℃とした。この800℃の温度を更に10分間
保つた後、得られた印刷板を冷却した。
The resulting paste was printed on a ceramic substrate by screen printing and dried at 150°C for 30 minutes, then placed in a firing furnace, and the temperature of the firing furnace was increased to 800°C over 1 hour. After maintaining this temperature of 800° C. for an additional 10 minutes, the obtained printing plate was cooled.

このようにして得られた金属面(電極)は銀光
沢を有しており、この焼成面を日本電子(株)製の走
査型電子顕微鏡(JSM−25S)を用いて反射電子
像(組成像)を観察したところ、その表面に二酸
化チタンの存在は認められず、全面が銀で覆われ
ていた。
The metal surface (electrode) obtained in this way has a silver luster, and this fired surface was examined using a backscattered electron image (composition image) using a scanning electron microscope (JSM-25S) manufactured by JEOL Ltd. ), no titanium dioxide was observed on its surface, and the entire surface was covered with silver.

この焼成面を250℃の半田浴に浸漬したとこ
ろ、金属面の全面に半田が付着した。この半田付
けされた試料の断面をX線マイクロアナライザー
((株)島津製作所製、EMX−SM)で分析したとこ
ろ、電極とセラミツク基板との密着性は良好で、
かつ電極表面と半田との「ぬれ」も良好であつ
た。これらの結果から、電極表面には実用上問題
となる量の二酸化チタンの露出がないこと、即
ち、銀の二酸化チタン粉末への被覆が実用上完全
であることがわかる。
When this fired surface was immersed in a solder bath at 250°C, solder adhered to the entire surface of the metal surface. When the cross section of this soldered sample was analyzed using an X-ray microanalyzer (EMX-SM, manufactured by Shimadzu Corporation), it was found that the adhesion between the electrode and the ceramic substrate was good.
Moreover, the "wetting" between the electrode surface and the solder was also good. These results show that there is no exposed amount of titanium dioxide on the electrode surface that would pose a practical problem, that is, the coating of the titanium dioxide powder with silver is practically complete.

実施例 6 導電性ペーストへの応用例 実施例2で得られたニツケル−銀系被覆粉末10
gを二酸化チタン−銀系被覆粉末の代わりに用い
た以外は実施例5と全く同様にして印刷板を作
り、同様な観察を行なつた。観察結果は、実施例
5の結果と同じく良好であつた。
Example 6 Application example to conductive paste Nickel-silver based coated powder 10 obtained in Example 2
A printing plate was prepared in exactly the same manner as in Example 5, except that g was used in place of the titanium dioxide-silver based coating powder, and the same observations were made. The observation results were as good as the results of Example 5.

実施例 7 導電性ペーストへの応用例 実施例3で得られた酸化ジルコニウム−銀系被
覆粉末10gを二酸化チタン−銀系被覆粉末の代わ
りに用いた以外は実施例5と全く同様にして印刷
板を作り、同様な観察を行なつた。観察結果は、
実施例5の結果と同じく良好であつた。
Example 7 Example of application to conductive paste A printing plate was prepared in exactly the same manner as in Example 5, except that 10 g of the zirconium oxide-silver based coating powder obtained in Example 3 was used instead of the titanium dioxide-silver based coating powder. and made similar observations. The observation results are
The results were as good as in Example 5.

実施例 8 導電性ペーストへの応用例 実施例4で得られた銅−金系被覆粉末10gとホ
ウケイ酸鉛ガラスフリツト(0.4g)とを、実施
例5の二酸化チタン−銀系被覆粉末(10g)とホ
ウケイ酸鉛ガラスフリツト(0.2g)の代わりに
用いた他は、実施例5と全く同様にして導電性ペ
ーストを得て印刷板を作り、走査型電子顕微鏡に
より同様にして表面状態を観察したところ、その
表面に銅の存在は認められず、全面が金で覆われ
ていた。
Example 8 Example of application to conductive paste 10 g of the copper-gold based coating powder obtained in Example 4 and lead borosilicate glass frit (0.4 g) were mixed with the titanium dioxide-silver based coating powder (10 g) of Example 5. A printing plate was prepared using a conductive paste in exactly the same manner as in Example 5, except that lead borosilicate glass frit (0.2 g) was used instead, and the surface condition was observed using a scanning electron microscope in the same manner. , no copper was detected on its surface, and the entire surface was covered with gold.

この焼成面を450℃のホツトプレート上に置
き、この焼成面の上にシリコーン.チツプを載せ
たところ、このシリコーン.チツプは焼成面に良
好に接着した。
This fired surface was placed on a hot plate at 450℃, and silicone was placed on top of this fired surface. When I put the chip on it, this silicone. The chips adhered well to the firing surface.

これらの結果から、電極表面には実用上問題と
なる量の銅の露出がないこと、即ち、金の銅粉末
への被覆が実用上完全であることがわかる。
These results show that there is no exposed amount of copper on the electrode surface that would pose a practical problem, that is, the coverage of gold on the copper powder is practically complete.

Claims (1)

【特許請求の範囲】 1 貴金属イオンと過飽和量の貴金属キレート化
合物とを含む水系ゲル化液、それらの貴金属イオ
と貴金属キレート化合物の双方を還元して貴金属
単体とするに充分な量の過酸化水素、基体物質粉
末を均一に分散した状態で含む水系分散液、そし
てアルカリ化剤、を混合することにより水系ゲル
化液のゲル状態を解消させると同時に、粉末状基
体物質表面上に貴金属単体を析出、積層させるこ
とから成る貴金属が被覆された粉末の製造方法。 2 貴金属キレート化合物が、エチレンジアミン
テトラ酢酸塩と水溶性貴金属塩とから形成された
化合物であることを特徴とする特許請求の範囲第
1項記載の製造方法。 3 貴金属イオンと過飽和量の貴金属キレート化
合物とを含む水系ゲル化液に、先ず過酸化水素を
加え、次いで基体物質粉末の水系分散液、そして
最後にアルカリ化剤を添加することを特徴とする
特許請求の範囲第1項記載の粉末の製造方法。 4 貴金属イオンと過飽和量の貴金属キレート化
合物とを含む水系ゲル化液に過酸化水素を加えた
水系ゲル状混合物に、別に調製したアルカリ化剤
と基体物質とを含む水系分散液を加え、更に必要
に応じて、アルカリ化剤を追加添加することを特
徴とする特許請求の範囲第1項記載の粉末の製造
方法。
[Scope of Claims] 1. An aqueous gelling solution containing noble metal ions and a supersaturated amount of a noble metal chelate compound, and an amount of hydrogen peroxide sufficient to reduce both the noble metal ions and the noble metal chelate compound to a simple noble metal. By mixing an aqueous dispersion containing uniformly dispersed base material powder and an alkalizing agent, the gel state of the aqueous gelling solution is dissolved, and at the same time, noble metals are precipitated on the surface of the powdered base material. , a method for producing a noble metal coated powder comprising layering. 2. The manufacturing method according to claim 1, wherein the noble metal chelate compound is a compound formed from ethylenediaminetetraacetate and a water-soluble noble metal salt. 3. A patent characterized in that hydrogen peroxide is first added to an aqueous gelling solution containing noble metal ions and a supersaturated amount of a noble metal chelate compound, then an aqueous dispersion of a base substance powder, and finally an alkalizing agent. A method for producing a powder according to claim 1. 4 Add hydrogen peroxide to an aqueous gel mixture containing a noble metal ion and a supersaturated amount of a noble metal chelate compound, add an aqueous dispersion containing an alkalizing agent and a base substance prepared separately, and further add as required. The method for producing powder according to claim 1, characterized in that an alkalizing agent is additionally added depending on the amount of the powder.
JP55116482A 1980-04-18 1980-08-26 Production of powder coated with noble metal Granted JPS5741301A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55116482A JPS5741301A (en) 1980-08-26 1980-08-26 Production of powder coated with noble metal
US06/251,746 US4450188A (en) 1980-04-18 1981-04-07 Process for the preparation of precious metal-coated particles
EP81303778A EP0046657B1 (en) 1980-08-26 1981-08-19 Process for the preparation of precious-metal coated particles
DE8181303778T DE3164569D1 (en) 1980-08-26 1981-08-19 Process for the preparation of precious-metal coated particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55116482A JPS5741301A (en) 1980-08-26 1980-08-26 Production of powder coated with noble metal

Publications (2)

Publication Number Publication Date
JPS5741301A JPS5741301A (en) 1982-03-08
JPS6122029B2 true JPS6122029B2 (en) 1986-05-29

Family

ID=14688196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55116482A Granted JPS5741301A (en) 1980-04-18 1980-08-26 Production of powder coated with noble metal

Country Status (3)

Country Link
EP (1) EP0046657B1 (en)
JP (1) JPS5741301A (en)
DE (1) DE3164569D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272349B2 (en) * 2007-02-26 2013-08-28 東レ株式会社 Electron emission source paste and electron-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486928A (en) * 1965-10-21 1969-12-30 Int Nickel Co Bath and process for platinum and platinum alloys
FR1569258A (en) * 1967-06-20 1969-05-30
GB1558762A (en) * 1975-07-04 1980-01-09 Johnson Matthey Co Ltd Metal or alloy coated powders
CH633497A5 (en) * 1977-03-30 1982-12-15 Kernforschungsanlage Juelich METHOD FOR REDUCING REDUCABLE POLLUTANTS IN AQUEOUS SOLUTIONS.

Also Published As

Publication number Publication date
DE3164569D1 (en) 1984-08-09
EP0046657A1 (en) 1982-03-03
EP0046657B1 (en) 1984-07-04
JPS5741301A (en) 1982-03-08

Similar Documents

Publication Publication Date Title
US4450188A (en) Process for the preparation of precious metal-coated particles
US5945158A (en) Process for the production of silver coated particles
CA1336361C (en) Process for preparing metal particles
JPH0480303A (en) Manufacture of copper powder coated with silver
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
JPS6148586B2 (en)
JP2900650B2 (en) Method for producing nickel fine powder
CN1086628A (en) Multilayer ceramic capacitor
US4714645A (en) Electronic parts and process for the manufacture of the same
JP2001011502A (en) Copper powder, its manufacture, and electrical conductive paste using the same
EP0210436B1 (en) Process for metallizing ceramic materials
JPS6122028B2 (en)
JPS6122029B2 (en)
US6274241B1 (en) Substrates seeded with precious metal salts, process for producing the same and their use
KR20050116544A (en) Method of manufacturing silver powder by chemical reduction
KR100477383B1 (en) Preparation method of precious metal-coated metal powder
US20180264548A1 (en) Silver Coated Copper Flakes and Methods of Their Manufacture
KR20090051452A (en) Method for coating whisker powder with silver and siver-coated whisker powder thereby
KR20040043920A (en) Silver colloid and preparation method thereof
JPH06240463A (en) Method for electroless-plating fine metal powder with silver
JP2613282B2 (en) Method for producing silver-platinum composite fine powder
JP2550156B2 (en) Method for producing silver-palladium composite fine powder
JPS6357703A (en) Production of fine metallic powder
JPS6148585B2 (en)
KR820002152B1 (en) Manufacturing process of high density nickel alloy powder in high oxidizing enviroment