JPH06240463A - Method for electroless-plating fine metal powder with silver - Google Patents

Method for electroless-plating fine metal powder with silver

Info

Publication number
JPH06240463A
JPH06240463A JP5031744A JP3174493A JPH06240463A JP H06240463 A JPH06240463 A JP H06240463A JP 5031744 A JP5031744 A JP 5031744A JP 3174493 A JP3174493 A JP 3174493A JP H06240463 A JPH06240463 A JP H06240463A
Authority
JP
Japan
Prior art keywords
silver
electroless
plating
liter
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5031744A
Other languages
Japanese (ja)
Inventor
Naoya Kobayashi
直也 小林
Kazuchika Endo
一央 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP5031744A priority Critical patent/JPH06240463A/en
Publication of JPH06240463A publication Critical patent/JPH06240463A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To coat the surface of fine metal powder as stock with silver by using a poisonless electroless silver plating soln. ensuring a high rate of deposition of plating and having satisfactory aging stability CONSTITUTION:A silver plating film having high adhesion to the surface of fine metal powder as stock and having constant resistance is obtd. by using an electroless silver plating soln. contg. 0.001-0.2mol/l silver complex salt having >=8 stability constant (logbeta1), other than a cyano-silver complex salt and formed by allowing a silver halide to react with a silver complexing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅や銅合金等の金属微
粉末に銀鍍金するための無電解銀鍍金方法に関するもの
で、特に毒性が低く、かつ長時間安定な無電解鍍金液を
用いる際の無電解銀鍍金方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless silver plating method for silver-plating a fine metal powder such as copper or a copper alloy, and particularly to a non-electrolytic plating solution having low toxicity and stable for a long time. The present invention relates to an electroless silver plating method when used.

【0002】[0002]

【従来の技術】近年、電子工業などでは、導電ペース
ト、あるいは電磁波シールド用の導電塗料への添加物
(導電フィラー)として銀の微粉末が多量に使用されて
いる。銀は貴金属であり、高価であるにも関わらず、こ
のように工業用に使用されるのは、その優れた電気伝導
性と耐環境性による。すなわち、ニッケルや鉄などは安
価であるが電気伝導性に劣り、銅は通常は電気伝導性に
優れるが、表面が酸化されるとやはり電気伝導性が悪く
なる。これに対して、銀は金属中で最も抵抗値が低く、
しかも表面が酸化されても電気伝導性は悪化しない。
2. Description of the Related Art Recently, in the electronic industry and the like, a large amount of fine silver powder is used as an additive (conductive filler) to a conductive paste or a conductive paint for electromagnetic wave shielding. Despite being a precious metal and expensive, silver is used industrially in this way due to its excellent electrical conductivity and environmental resistance. That is, nickel, iron and the like are inexpensive but have poor electric conductivity, and copper is usually excellent in electric conductivity, but when the surface is oxidized, the electric conductivity also deteriorates. On the other hand, silver has the lowest resistance value among metals,
Moreover, the electrical conductivity does not deteriorate even if the surface is oxidized.

【0003】そこで、この銀の優れた電気的特性を生か
しつつ、コストダウンを図ることのできる方法として、
従来、銅、ニッケル、鉄などの安価な金属の微粉末の表
面に薄く銀を鍍金する方法が提案されている。これは、
銀鍍金微粉末を導電塗料のフィラーとして添加した場
合、電流は主としてフィラーの表面を流れるので、表面
が銀で被覆されていれば、十分な電気伝導性及び耐環境
性が確保できると考えられる点を利用したものである。
Therefore, as a method for achieving cost reduction while making the most of the excellent electrical characteristics of silver,
Heretofore, there has been proposed a method of thinly plating silver on the surface of fine powder of an inexpensive metal such as copper, nickel or iron. this is,
When silver-plated fine powder is added as a filler for conductive paint, the current mainly flows on the surface of the filler, so if the surface is coated with silver, it is considered that sufficient electrical conductivity and environmental resistance can be secured. Is used.

【0004】銅微粉末などの表面に銀を均一に鍍金する
方法としては、無電解鍍金方法が最適と考えられる。こ
こで無電解鍍金方法とは、電気エネルギーを供給せずに
行う化学鍍金の一種であり、被鍍金体を金属塩水溶液を
主成分とする鍍金液中に浸漬し、被鍍金体の表面に金属
イオンを析出させる方法である。このような銅微粉末な
どへの銀の無電解鍍金方法としては、従来例えば、硝酸
銀のアンモニア溶液をチオ硫酸ナトリウムやホルマリン
等の可溶性還元剤を用いて析出させる方法が知られてい
る。
The electroless plating method is considered to be the most suitable method for uniformly plating silver on the surface of fine copper powder or the like. Here, the electroless plating method is a type of chemical plating that is performed without supplying electric energy, and the substrate to be plated is immersed in a plating solution containing an aqueous solution of a metal salt as a main component, and the surface of the substrate to be plated is metalized. This is a method of depositing ions. As a method for electroless plating of silver on such fine copper powder, for example, a method of depositing an ammonia solution of silver nitrate by using a soluble reducing agent such as sodium thiosulfate or formalin is known.

【0005】そこで、安全衛生的及び環境管理的考慮か
ら毒性のない銀錯化剤の使用が望まれる。しかもこの毒
性のない銀錯化剤を用いた無電解鍍金液で鍍金析出速度
が速く、この鍍金液の経時安定性の良いものを開発する
ことは、用途を切り開くことであり、技術的発展に寄与
するものである。
Therefore, it is desired to use a non-toxic silver complexing agent from the viewpoint of safety and hygiene and environmental management. Moreover, the electroless plating solution using this non-toxic silver complexing agent has a high plating deposition rate, and the development of a plating solution with good stability over time is to open up applications and lead to technological development. It contributes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
アンモニア溶液を使用する方法では、このアンモニアの
強烈な臭気のため取扱いが極めて困難である。しかも還
元剤を用いるため銀の析出が銅の表面のみでなく、容器
の内面や鍍金液中にも生じ、鍍金効率が極めて悪く、生
産性が低いなどの問題点がある。
However, the conventional method using an ammonia solution is extremely difficult to handle due to the strong odor of this ammonia. Moreover, since a reducing agent is used, silver is deposited not only on the surface of copper but also on the inner surface of the container and in the plating solution, resulting in extremely poor plating efficiency and low productivity.

【0007】一方、無電解銀鍍金液としては、AgCN
+NaCN溶液が知られているが、 この液は、NaC
Nの強力な毒性のために、アンモニア溶液以上に取扱い
が面 倒である。
On the other hand, as the electroless silver plating solution, AgCN is used.
+ NaCN solution is known, but this solution is
Due to the strong toxicity of N, it is more difficult to handle than ammonia solution.

【0008】また、上記のような既存の無電解銀鍍金液
では溶解する銀イオンの濃度が極めて低いため、金属粉
末のような表面積の異常に大きな物質に鍍金する場合に
は大量の溶液を必要とし、この点からも生産性が極めて
悪い。
Further, since the concentration of dissolved silver ions is extremely low in the existing electroless silver plating solution as described above, a large amount of solution is required when plating a substance having an abnormally large surface area such as metal powder. From this point as well, the productivity is extremely poor.

【0009】以上のことから、鍍金析出速度が速く、経
時安定性の良い無電解銀鍍金液組成を開発することと、
安全面及び環境面で毒性のない無電解銀鍍金液を開発す
ることが強く望まれている。
From the above, the development of an electroless silver plating solution composition having a high plating deposition rate and good stability over time, and
It is strongly desired to develop an electroless silver plating solution that is nontoxic in terms of safety and environment.

【0010】本発明は、毒性がなく経時安定性の良い無
電解銀鍍金液組成及びこの鍍金液を使用することによ
り、鍍金析出速度が1.5(μm/時間)と速く、密着性の
良い銀鍍金被膜を得ることができる無電解銀鍍金方法を
提供することを目的としている。
According to the present invention, the composition of the electroless silver plating solution having no toxicity and good stability over time and the use of this plating solution have a high plating deposition rate of 1.5 (μm / hour) and good adhesion. It is an object of the present invention to provide an electroless silver plating method capable of obtaining a silver plating film.

【0011】[0011]

【課題を解決するための手段】本発明における無電解銀
鍍金方法は、銀シアン錯塩以外の銀錯塩で安定度定数
(log βi)が8以上の銀錯化剤溶液を無電解銀鍍金
液として用いることを特徴とする金属微粉末の無電解銀
鍍金方法である。
The electroless silver plating method according to the present invention comprises a silver complexing agent solution having a stability constant (log β i ) of 8 or more with a silver complex salt other than a silver cyanide complex salt, and an electroless silver plating solution. It is a method for electroless silver plating of fine metal powders.

【0012】無電解銀鍍金液の組成としては、特に銀錯
塩の配合量が、0.001〜0.2モル/リットル、銀錯化剤の
配合量が、0.001〜4.0モル/リットルが良く、さらに安
定剤として亜硫酸塩の配合量が、0.01〜4.0モル/リット
ルを加えても良い。さらに、 pH調整剤としてリン酸
三水素塩を3.0モル/リットル以下の量で加えても良い。還
元剤は、ジメチルアミンボラン、または、ヒドラジン及
びその誘導体が好まし く、0.001〜0.4モル/リットル
を加えると良い。
As for the composition of the electroless silver plating solution, the amount of silver complex salt is 0.001-0.2 mol / liter, and the amount of silver complexing agent is 0.001-4.0 mol / liter. L is good, and as a stabilizer, a compounding amount of sulfite of 0.01 to 4.0 mol / l may be added. Further, trihydrogen phosphate as a pH adjuster may be added in an amount of 3.0 mol / liter or less. Return
The base material is preferably dimethylamine borane or hydrazine and its derivatives, and 0.001 to 0.4 mol / liter may be added.

【0013】文献(Pearlsteinら、Plating、58、[10]、10
14(1971))によれば、無電解銀鍍金液の銀錯塩として
は、人体に毒性のある銀シアン錯イオンを用いている。
従って、本発明においては、人体に無害で、鍍金析出速
度が速く、かつ経時安定性の良い銀鍍金液を提供するべ
く、各種銀錯化剤を鋭意検討した結果、その銀錯体の安
定度定数(log βi)が8以上の銀錯化剤が有効であ
ることが判明した。銀錯塩は、ハロゲン化銀と銀錯化剤
との反応により形成されるが、ハロゲン化銀としては、
臭化銀よりも塩化銀の方が好ましい。錯化剤としては、
チオ硫酸塩、チオシアン酸塩、亜硫酸塩、チオ尿素、ヨ
ウ化カリ、チオサリチル酸塩、チオシアヌル酸塩などが
あげられる。表1には、代表的な銀錯体の安定度定数を
示す。
Reference (Pearlstein et al., Plating, 58, [10], 10
14 (1971)), a silver cyanide complex ion that is toxic to the human body is used as the silver complex salt of the electroless silver plating solution.
Therefore, in the present invention, in order to provide a silver plating solution that is harmless to the human body, has a high plating deposition rate, and has good stability over time, as a result of extensive studies on various silver complexing agents, the stability constant of the silver complex was determined. It has been found that a silver complexing agent having a (log β i ) of 8 or more is effective. The silver complex salt is formed by the reaction of silver halide and a silver complexing agent.
Silver chloride is preferred over silver bromide. As a complexing agent,
Examples thereof include thiosulfate, thiocyanate, sulfite, thiourea, potassium iodide, thiosalicylate and thiocyanurate. Table 1 shows stability constants of typical silver complexes.

【0014】銀錯化剤の銀錯体の安定度定数が、8以上
である理由は、2つ挙げられる。第1は、本発明では銀
錯体の原料として塩化銀を用いていることである。実際
に本発明の無電解鍍金液を作る場合、硝酸銀を原料とし
て直接銀錯化剤で銀錯体を作製すると、黒褐色コロイド
(酸化銀など)を生じ、金属銀を析出させることができ
ない。しかし、硝酸銀も塩化物と反応させて塩化銀に変
えると沈澱物も生ずることなく金属銀を析出させること
ができた。従って、塩化銀の溶解度積(9.75)を考慮
すれば、銀錯体の安定度定数が9.75に近い錯化剤が
塩化銀を溶解させるための条件であることが分かる。種
々の銀錯化剤に関して、塩化銀の溶解性及び本発明の無
電解鍍金液としての銀錯体の経時安定性を検討した結
果、錯化剤の安定度定数が、8以上のものが有効である
ことを見い出した。
There are two reasons why the stability constant of the silver complex of the silver complexing agent is 8 or more. First, in the present invention, silver chloride is used as a raw material for the silver complex. When actually producing the electroless plating solution of the present invention, if silver nitrate is used as a raw material to directly form a silver complex with a silver complexing agent, a blackish brown colloid (silver oxide, etc.) is produced and metallic silver cannot be deposited. However, when silver nitrate was also reacted with chloride and converted to silver chloride, metallic silver could be deposited without producing a precipitate. Therefore, considering the solubility product of silver chloride (9.75), it is understood that the complexing agent having a stability constant of the silver complex close to 9.75 is a condition for dissolving silver chloride. With respect to various silver complexing agents, the solubility of silver chloride and the temporal stability of the silver complex as the electroless plating solution of the present invention were examined. As a result, it is effective that the stability constant of the complexing agent is 8 or more. I found something.

【0015】第2の理由としては、電極反応を考慮し
て、以下のように説明される。電極反応にネルンストの
The second reason is explained as follows in consideration of the electrode reaction. Nernst equation for electrode reaction

【数1】を用いれば、表1の銀錯体の安定度定数から表
2の電極反応の標準電極電位が得られ、反応の進退が予
想できる。
By using [Equation 1], the standard electrode potential of the electrode reaction of Table 2 can be obtained from the stability constant of the silver complex of Table 1, and the progress of the reaction can be expected.

【0016】[0016]

【数1】E゜=(RT/|Z|F)ln(βi) (ここで E゜は標準電極電位、Rは気体定数、Tは絶
対温度、Zはイオン価、Fはファラデー定数を表す。)
## EQU1 ## E ° = (RT / | Z | F) ln (β i ) (where E ° is the standard electrode potential, R is the gas constant, T is the absolute temperature, Z is the ionic valency, and F is the Faraday constant. Represents.)

【0017】安定度定数が8以下の錯化剤(アンモニ
ア、エタノールアミン)での電極反応は、標準電極電位
0.33ホ゛ルトより大きいため、反応が速やかに進みすぎ
良質 の金属銀鍍金物を得られなかった。しかしなが
ら、安定度定数が、8及び8.7 の銀・チオシアン二
錯体及び銀・亜硫酸二錯体では、銀鍍金液としても経時
安 定性があり、析出速度も速く、良質な銀鍍金物を得
ることができた。また、安 定度定数8以上の銀・チオ
硫酸二及び三錯体でも経時安定性のある銀鍍金液が 得
られ、良質の銀鍍金被膜を作製できた。以上電極反応に
おける標準電極電位 が0.33ホ゛ルトより小さいものは
(つまり錯化剤の安定度定数が8以上のものは)、 良
好な無電解銀鍍金液を与えることを予言できる。
Since the electrode reaction with a complexing agent (ammonia, ethanolamine) having a stability constant of 8 or less is larger than the standard electrode potential of 0.33 bolt, the reaction proceeds too rapidly to obtain a high-quality metallic silver-plated product. I couldn't do it. However, the stability constants of 8 and 8.7 for silver-thiocyanate dicomplex and silver-sulfurous acid dicomplex have stability over time as a silver plating solution, and the precipitation rate is fast, and a high-quality silver-plated product can be obtained. I was able to. Further, a silver-plating solution with stability over time was obtained even with a silver-thiosulfate di- and tri-complex having a stability constant of 8 or more, and a high-quality silver-plating coating could be prepared. As described above, it can be predicted that when the standard electrode potential in the electrode reaction is smaller than 0.33 bolt (that is, when the stability constant of the complexing agent is 8 or more), a good electroless silver plating solution is provided.

【0018】[0018]

【実施例】以下に、本発明の実施例、並びに比較例を示
して、本発明を更に詳細に説明するが、本発明はこれら
の例によってなんら限定されるものではない。
EXAMPLES The present invention will be described in more detail below by showing Examples of the present invention and Comparative Examples, but the present invention is not limited to these Examples.

【0019】実施例1 銅粉末を原料微粉末とし、これをアルカリ水溶液による
脱脂処理及び希硫酸による酸化被膜除去処理後、これを
以下に示す組成の無電解銀鍍金液に1時間浸漬し、鍍金
液のpH、液温を調整し、400rpmで攪拌すること
により銀被覆銅粉を得た。
Example 1 Copper powder was used as a raw material fine powder, and after degreasing treatment with an alkaline aqueous solution and oxide film removal treatment with dilute sulfuric acid, this was immersed in an electroless silver plating solution having the composition shown below for 1 hour, and plating was performed. The pH and liquid temperature of the liquid were adjusted, and the silver-coated copper powder was obtained by stirring at 400 rpm.

【0020】 (無電解銀鍍金液組成)pH8 液温60℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル チオ硫酸ナトリウム 0.05 モル/リットル 亜硫酸ナトリウム 0.5 モル/リットル ジメチルアミンボラン 0.03 モル/リットル(Electroless silver plating liquid composition) pH 8 Liquid temperature 60 ° C. Water 1.0 liter Silver chloride 0.025 mol / liter Sodium thiosulfate 0.05 mol / liter Sodium sulfite 0.5 mol / liter Dimethylamine borane 0 0.03 mol / l

【0021】以上のように作製した銀被覆銅粉を、以下
に示す方法で評価した。 1.容器壁への銀の付着状況を目視により調査したとこ
ろ、器壁や溶液中に銀の析出物は認められなかった。ま
た、鍍金性状を走査型電子顕微鏡(SEM)によって観
察したところ、個々の粉末上に均一に鍍金されているこ
とを確認した。 2.また、この銀被覆銅粉を洗浄水のpHが7になるま
で洗浄した後、50℃で真空乾燥した。銀被覆銅粉30
gと以下の組成のポリメタクリル酸メチル溶液75g
を、ホモジナイザーを使用して塗料を製造し、ABS板
に50μmの膜厚に塗布し、乾燥後、得られた塗膜の表
面抵抗を測定した。
The silver-coated copper powder produced as described above was evaluated by the following method. 1. When the adhesion state of silver to the container wall was visually inspected, no silver deposit was found on the vessel wall or in the solution. Further, when the plating properties were observed by a scanning electron microscope (SEM), it was confirmed that each powder was uniformly plated. 2. Further, this silver-coated copper powder was washed until the pH of the washing water reached 7, and then vacuum dried at 50 ° C. Silver coated copper powder 30
g and 75 g of polymethylmethacrylate solution having the following composition
Was prepared using a homogenizer, coated on an ABS plate to a film thickness of 50 μm, dried, and the surface resistance of the obtained coating film was measured.

【0022】ポリメタクリル酸メチル溶液組成ポリメタ
クリル酸メチル 10wt% トルエン 40wt% メチルエチルケトン 20wt% 酢酸ブチル 30wt% 得られた塗膜の表面抵抗は50μmの厚さで0.11Ω
/□であり、良好な導電 性を示した。
Polymethylmethacrylate solution composition Polymethylmethacrylate 10 wt% Toluene 40 wt% Methyl ethyl ketone 20 wt% Butyl acetate 30 wt% The surface resistance of the obtained coating film is 0.11Ω at a thickness of 50 μm.
/ □, indicating good conductivity.

【0023】実施例2 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液のpH、液温を調整し、400rp
mで攪拌することにより銀被覆銅粉を得た。
Example 2 In the same manner as in Example 1, the copper powder subjected to the degreasing process and the oxide film removal process was added to an electroless silver plating solution having the composition shown below.
Dip for 400 hours, adjust pH and temperature of plating solution, 400 rp
A silver-coated copper powder was obtained by stirring at m.

【0024】 (無電解銀鍍金液組成)pH8 液温60℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル 亜硫酸ナトリウム 1.0 モル/リットル ジメチルアミンボラン 0.04 モル/リットル(Electroless silver plating solution composition) pH 8 solution temperature 60 ° C. water 1.0 liter silver chloride 0.025 mol / liter sodium sulfite 1.0 mol / liter dimethylamine borane 0.04 mol / liter

【0025】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかった。また、個々の粉末上に均一に鍍金されて
いることも確認した。また、実施例1と同様にして塗料
化し、塗膜の表面抵抗を測定したところ、50μmの厚
さで0.13Ω/□と良好な導電性を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver precipitate was found on the container wall or in the solution. It was also confirmed that each powder was uniformly plated. Further, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it showed a good conductivity of 0.13 Ω / □ at a thickness of 50 μm.

【0026】実施例3 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液のpH、液温を調整し、400rp
mで攪拌することにより銀被覆銅粉を得た。
Example 3 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
Dip for 400 hours, adjust pH and temperature of plating solution, 400 rp
A silver-coated copper powder was obtained by stirring at m.

【0027】 (無電解銀鍍金液組成)pH8 液温60℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル チオシアン酸カリウム 1.0 モル/リットル リン酸三ナトリウム 0.5 モル/リットル ジメチルアミンボラン 0.03 モル/リットル(Electroless silver plating liquid composition) pH 8 Liquid temperature 60 ° C. Water 1.0 liter Silver chloride 0.025 mol / liter Potassium thiocyanate 1.0 mol / liter Trisodium phosphate 0.5 mol / liter Dimethylamine Borane 0.03 mol / l

【0028】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかった。また、個々の粉末上に均一に鍍金されて
いることも確認した。また、実施例1と同様にして塗料
化し、塗膜の表面抵抗を測定したところ、50μmの厚
さで0.14Ω/□と良好な導電性を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver deposit was found on the container wall or in the solution. It was also confirmed that each powder was uniformly plated. Further, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it showed a good conductivity of 0.14 Ω / □ at a thickness of 50 μm.

【0029】実施例4 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液のpH、液温を調整し、400rp
mで攪拌することにより銀被覆銅粉を得た。
Example 4 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
Dip for 400 hours, adjust pH and temperature of plating solution, 400 rp
A silver-coated copper powder was obtained by stirring at m.

【0030】 (無電解銀鍍金液組成)pH8 液温60℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル チオシアン酸カリウム 0.5 モル/リットル 亜硫酸ナトリウム 0.5 モル/リットル ヒドラジン 0.03 モル/リットル(Electroless silver plating liquid composition) pH 8 Liquid temperature 60 ° C. Water 1.0 liter Silver chloride 0.025 mol / liter Potassium thiocyanate 0.5 mol / liter Sodium sulfite 0.5 mol / liter Hydrazine 0.03 Mol / liter

【0031】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかった。また、個々の粉末上に均一に鍍金されて
いることも確認した。また、実施例1と同様にして塗料
化し、塗膜の表面抵抗を測定したところ、50μmの厚
さで0.14Ω/□と良好な導電性を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver precipitate was found on the container wall or in the solution. It was also confirmed that each powder was uniformly plated. Further, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it showed a good conductivity of 0.14 Ω / □ at a thickness of 50 μm.

【0032】実施例5 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液のpH、液温を調整し、400rp
mで攪拌することにより銀被覆銅粉を得た。
Example 5 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
Dip for 400 hours, adjust pH and temperature of plating solution, 400 rp
A silver-coated copper powder was obtained by stirring at m.

【0033】 (無電解銀鍍金液組成)pH12以上 液温50℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル オルトチオサリチル酸 0.5 モル/リットル 亜硫酸ナトリウム 1.0 モル/リットル ヒドラジン 0.03 モル/リットル(Electroless silver plating liquid composition) pH 12 or more Liquid temperature 50 ° C. Water 1.0 liter Silver chloride 0.025 mol / liter Orthothiosalicylic acid 0.5 mol / liter Sodium sulfite 1.0 mol / liter Hydrazine 0.0. 03 mol / l

【0034】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかった。また、個々の粉末上に均一に鍍金されて
いることも確認した。また、実施例1と同様にして塗料
化し、塗膜の表面抵抗を測定したところ、50μmの厚
さで0.17Ω/□と良好な導電性を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver precipitate was found on the container wall or in the solution. It was also confirmed that each powder was uniformly plated. Further, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it showed a good conductivity of 0.17 Ω / □ at a thickness of 50 μm.

【0035】実施例6 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液のpH、液温を調整し、400rp
mで攪拌することにより銀被覆銅粉を得た。
Example 6 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
Dip for 400 hours, adjust pH and temperature of plating solution, 400 rp
A silver-coated copper powder was obtained by stirring at m.

【0036】 (無電解銀鍍金液組成)pH8 液温60℃ 水 1.0 リットル 塩化銀 0.025 モル/リットル チオ尿素 0.05 モル/リットル 亜硫酸ナトリウム 0.5 モル/リットル ヒドラジン 0.03 モル/リットル(Electroless silver plating liquid composition) pH 8 Liquid temperature 60 ° C. Water 1.0 liter Silver chloride 0.025 mol / liter Thiourea 0.05 mol / liter Sodium sulfite 0.5 mol / liter Hydrazine 0.03 mol /liter

【0037】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかった。また、個々の粉末上に均一に鍍金されて
いることも確認した。また、実施例1と同様にして塗料
化し、塗膜の表面抵抗を測定したところ、50μmの厚
さで0.15Ω/□と良好な導電性を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver precipitate was found on the container wall or in the solution. It was also confirmed that each powder was uniformly plated. Further, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it showed a good conductivity of 0.15 Ω / □ at a thickness of 50 μm.

【0038】比較例1 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液の液温を調整し、400rpmで攪
拌することにより銀被覆銅粉を得た。
Comparative Example 1 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
The silver-coated copper powder was obtained by immersing for a period of time, adjusting the temperature of the plating solution, and stirring at 400 rpm.

【0039】(無電解銀鍍金液組成)常温 水 1.0 リットル 硝酸銀 0.05 モル/リットル アンモニア 5.0 モル/リットル チオ硫酸ナトリウム 0.5 モル/リットル(Electroless silver plating solution composition) Room temperature water 1.0 liter Silver nitrate 0.05 mol / liter Ammonia 5.0 mol / liter Sodium thiosulfate 0.5 mol / liter

【0040】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液中に銀の析出物は認め
られなかったが、SEM観察では、個々の粉末上に均一
に鍍金されていないことを確認した。また、実施例1と
同様にして塗料化し、塗膜の表面抵抗を測定したとこ
ろ、50μmの厚さで0.35Ω/□と実施例1 〜6
と比較して高い値を示した。
When the obtained silver-coated copper powder was evaluated in the same manner as in Example 1, no silver precipitate was found on the container wall or in the solution, but by SEM observation, it was evenly distributed on each powder. I confirmed that it was not plated. In addition, when it was made into a paint in the same manner as in Example 1 and the surface resistance of the coating film was measured, it was 0.35 Ω / □ at a thickness of 50 μm, and Examples 1 to 6
It showed a high value compared with.

【0041】比較例2 実施例1と同様にして、脱脂処理及び酸化被膜除去処理
を施した銅粉を、以下に示す組成の無電解銀鍍金液に1
時間浸漬し、鍍金液の液温を調整し、400rpmで攪
拌することにより銀被覆銅粉を得た。
Comparative Example 2 In the same manner as in Example 1, the copper powder subjected to the degreasing treatment and the oxide film removal treatment was added to an electroless silver plating solution having the composition shown below.
The silver-coated copper powder was obtained by immersing for a period of time, adjusting the temperature of the plating solution, and stirring at 400 rpm.

【0042】(無電解銀鍍金液組成)常温 水 1.0 リットル 硝酸銀 0.05 モル/リットル アンモニア 5.0 モル/リットル ホルマリン 200 ミリリットル(Electroless silver plating liquid composition) Room temperature water 1.0 liter Silver nitrate 0.05 mol / liter Ammonia 5.0 mol / liter Formalin 200 ml

【0043】得られた銀被覆銅粉を実施例1と同様にし
て評価したところ、容器壁や溶液 中に銀の析出物が認
められ、さらに、SEM観察では、個々の粉末上に均一
に 鍍金されていないことを確認した。また、実施例1
と同様にして塗料化し、塗 膜の表面抵抗を測定したと
ころ、50μmの厚さで0.37Ω/□と実施例1〜
6と比較して高い値を示した。
The obtained silver-coated copper powder was evaluated in the same manner as in Example 1. As a result, silver deposits were found on the container wall and in the solution, and further, by SEM observation, the individual powder was plated uniformly. Confirmed that it has not been done. In addition, Example 1
When the surface resistance of the coating film was measured in the same manner as in Example 1 and found to be 0.37 Ω / □ at a thickness of 50 μm,
The value was higher than that of No. 6.

【0044】[0044]

【表1】 [Table 1]

【0045】o-TSA、EAは、それぞれオルトチオ
サリチル酸、エタノールアミンを表す。
O-TSA and EA represent orthothiosalicylic acid and ethanolamine, respectively.

【0046】[0046]

【表2】 [Table 2]

【0047】o-TSA、EAは、それぞれオルトチオ
サリチル酸、エタノールアミンを表す。
O-TSA and EA represent orthothiosalicylic acid and ethanolamine, respectively.

【0048】[0048]

【発明の効果】以上のように、本発明によりかかる金属
微粉末の無電解銀鍍金方法によれば、鍍金効率が向上
し、良好な性状の銀鍍金粉末が大量に生産できる効果が
あり、その工業的価値は極めて大きい。
As described above, according to the electroless silver plating method for fine metal powders according to the present invention, the plating efficiency is improved and the silver plating powder having good properties can be produced in a large amount. The industrial value is extremely high.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 素材金属微粉末を銀で無電解鍍金する方
法であって、銀シアン錯塩以外の銀錯塩で安定度定数
(log βi)が8以上の銀錯化剤溶液を無電解銀鍍金
液として用いることを特徴とする金属微粉末の無電解銀
鍍金方法。
1. A method of electroless plating a raw metal fine powder with silver, wherein a silver complexing agent solution having a stability constant (log β i ) of 8 or more with a silver complex salt other than a silver cyan complex salt is electroless silver. A method for electroless silver plating of fine metal powder, which is used as a plating solution.
【請求項2】 請求項1記載において、銀錯塩がハロゲ
ン化銀と銀錯化剤との反応により形成されることを特徴
とする無電解銀鍍金方法。
2. The electroless silver plating method according to claim 1, wherein the silver complex salt is formed by a reaction between silver halide and a silver complexing agent.
【請求項3】 請求項1記載において、銀錯塩の配合量
が0.001〜0.2モル/リットル、錯化剤配合量が0.001
〜4.0モル/リットルであることを特徴とする無電解銀鍍金方
法。
3. The silver complex salt according to claim 1, wherein the amount of the silver complex salt is 0.001 to 0.2 mol / liter, and the amount of the complexing agent is 0.001.
A method for electroless silver plating, characterized in that the amount is up to 4.0 mol / liter.
【請求項4】 請求項3記載において、無電解銀鍍金液
に安定剤とpH調整剤と水とが添加されていることを特
徴とする無電解銀鍍金方法。
4. The electroless silver plating method according to claim 3, wherein a stabilizer, a pH adjuster and water are added to the electroless silver plating solution.
【請求項5】 請求項4記載において、安定剤が亜硫酸
塩であることを特徴とする無電解銀鍍金方法。
5. The electroless silver plating method according to claim 4, wherein the stabilizer is a sulfite.
【請求項6】 請求項4記載において、pH調整剤がリ
ン酸三水素塩からなることを特徴とする無電解銀鍍金方
法。
6. The electroless silver plating method according to claim 4, wherein the pH adjuster comprises trihydrogen phosphate.
【請求項7】 請求項5記載において、亜硫酸塩の配合
量が0.01〜4.0モル/リットルであることを特徴とする無
電解銀鍍金方法。
7. The electroless silver plating method according to claim 5, wherein the blending amount of the sulfite is 0.01 to 4.0 mol / liter.
【請求項8】 請求項6記載において、リン酸三水素塩
の配合量が3.0モル/リットル以下であることを特徴とする無
電解銀鍍金方法。
8. The electroless silver plating method according to claim 6, wherein the compounding amount of the trihydrogen phosphate salt is 3.0 mol / liter or less.
JP5031744A 1993-02-22 1993-02-22 Method for electroless-plating fine metal powder with silver Pending JPH06240463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031744A JPH06240463A (en) 1993-02-22 1993-02-22 Method for electroless-plating fine metal powder with silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031744A JPH06240463A (en) 1993-02-22 1993-02-22 Method for electroless-plating fine metal powder with silver

Publications (1)

Publication Number Publication Date
JPH06240463A true JPH06240463A (en) 1994-08-30

Family

ID=12339541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031744A Pending JPH06240463A (en) 1993-02-22 1993-02-22 Method for electroless-plating fine metal powder with silver

Country Status (1)

Country Link
JP (1) JPH06240463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050862A1 (en) * 2000-10-06 2002-04-25 Atotech Deutschland Gmbh Bath and method for electroless deposition of silver on metal surfaces
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2013133475A (en) * 2011-12-23 2013-07-08 Maitekku:Kk Method for producing metal complex quantum crystal
WO2023167302A1 (en) * 2022-03-04 2023-09-07 三井金属鉱業株式会社 Method for manufacturing phosphorus-containing-silver-coated copper particles, and phosphorus-containing-silver-coated copper particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050862A1 (en) * 2000-10-06 2002-04-25 Atotech Deutschland Gmbh Bath and method for electroless deposition of silver on metal surfaces
DE10050862C2 (en) * 2000-10-06 2002-08-01 Atotech Deutschland Gmbh Bath and method for electroless deposition of silver on metal surfaces
US6869637B2 (en) 2000-10-06 2005-03-22 Atotech Deutschland Gmbh Bath and method of electroless plating of silver on metal surfaces
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JPWO2008059789A1 (en) * 2006-11-17 2010-03-04 日鉱金属株式会社 Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP2013133475A (en) * 2011-12-23 2013-07-08 Maitekku:Kk Method for producing metal complex quantum crystal
WO2023167302A1 (en) * 2022-03-04 2023-09-07 三井金属鉱業株式会社 Method for manufacturing phosphorus-containing-silver-coated copper particles, and phosphorus-containing-silver-coated copper particles

Similar Documents

Publication Publication Date Title
Barker Electroless deposition of metals
US3214292A (en) Gold plating
JP2004502871A (en) Electroless silver plating
EP1322798A1 (en) Bath and method of electroless plating of silver on metal surfaces
US5364459A (en) Electroless plating solution
JPS5925965A (en) Non-electrolytic copper deposition having rapid plating speed
TW200416299A (en) Electroless gold plating solution
RU2398049C2 (en) Improved stabilisation and working characteristics of auto-catalyst procedures of coating application by method of chemical reduction
JPH04325688A (en) Electroless plating bath
US5206055A (en) Method for enhancing the uniform electroless deposition of gold onto a palladium substrate
US3274022A (en) Palladium deposition
EP0073236B1 (en) Palladium and palladium alloys electroplating procedure
JPH06240463A (en) Method for electroless-plating fine metal powder with silver
EP3134562B1 (en) Process for the preparation of iron boron alloy coatings and plating bath therefor
JP4230813B2 (en) Gold plating solution
JPH0730458B2 (en) Blackening treatment method for zinc or zinc-based plating material
JPH05287542A (en) Electroless silver plating method
JPH05287543A (en) Electroless silver plating method
JP2899541B2 (en) Nickel chrome alloy plating solution with electroless electrolysis
JP3689861B2 (en) Electroless copper plating method and plating powder
JPH0617258A (en) Gold plating liquid and gold plating method
JPH05222568A (en) Plating solution composition
TWI772134B (en) Electroless Gold(I) Plating Bath and Electroless Gold(I) Plating Dope
JP3389959B2 (en) Manufacturing method of metal coated powder
JPH07166392A (en) Gold plating solution and gold plating method