JPS6357703A - Production of fine metallic powder - Google Patents

Production of fine metallic powder

Info

Publication number
JPS6357703A
JPS6357703A JP20133086A JP20133086A JPS6357703A JP S6357703 A JPS6357703 A JP S6357703A JP 20133086 A JP20133086 A JP 20133086A JP 20133086 A JP20133086 A JP 20133086A JP S6357703 A JPS6357703 A JP S6357703A
Authority
JP
Japan
Prior art keywords
metal salt
water
metal powder
reducing agent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20133086A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP20133086A priority Critical patent/JPS6357703A/en
Publication of JPS6357703A publication Critical patent/JPS6357703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain fine metallic powder having <=1mum average grain size and uniform shape by adding and mixing an aq. reducing agent soln. gradually to and with a metal salt soln. prepd. by dissolving the metal salt in water or/and org. solvent soluble in water, and applying oscillation to said soln. to reduce the metal salt. CONSTITUTION:The metal salt such as chloride, sulfate or nitrate of Cu, Ag, Sb, etc., is dissolved in the water or/and the org. solvent soluble in the water (e.g.; methanol). The aq. reducing agent soln. of hydrazine, formalin, etc., prepd. to the concn. at which metals are not deposited is gradually added to and mixed with said metal salt soln. The molar ratio of the reducing agent to the metal in the metal salt soln. is preferably in a 1X10<-5>-10 range. The oscillation generated preferably by ultrasonic waves is then applied to the soln. mixture composed of the metal salt and the reducing agent to reduce the metal salt by which the metal is deposited in the form of the fine powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式法を適用した金属微粉末の製造法に関し、
さらに詳しくは、粉末粒径が1μ調以下の均一な金属微
粉末を容易かつ安価に製造する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing fine metal powder using a wet method.
More specifically, the present invention relates to a method for easily and inexpensively producing uniform fine metal powder having a powder particle size of 1 μm or less.

(従来の技術) 近年、金属微粉末は粉末冶金分野で用いられるのみなら
ず、例えば導電性ペースト、導電性塗料、帯電防止材料
、電磁波シールド材料などの電子材料分野においてもそ
の需要が高まっている。
(Prior art) In recent years, fine metal powders are not only used in the field of powder metallurgy, but also have increased demand in the field of electronic materials, such as conductive pastes, conductive paints, antistatic materials, and electromagnetic shielding materials. .

このような電子材料として使用される金属微粉末は、従
来の粉末冶金用のものに比べて粉末粒径がより小さなも
のが求められており、その製造法としては、(1)ボー
ルミルをはじめとする機械的粉砕法、炙2)溶融金属を
水、ガス、遠心力を用いて飛散させる噴霧法、(3)真
空あるいは不活性ガス中で加熱気化した金属をa集させ
るガス中蒸発法、(4)活性水素中でアークもしくはプ
ラズマなどにより金属粉を粉塵として得る水素活性プラ
ズマ法、(5)電解法および化学的還元法などがあげら
れる。
Fine metal powder used as such electronic materials is required to have a smaller powder particle size than that used in conventional powder metallurgy, and manufacturing methods include (1) ball milling and other methods. 2) Spraying method, in which molten metal is dispersed using water, gas, or centrifugal force; (3) Evaporation method in gas, in which metal heated and vaporized in a vacuum or inert gas is collected. 4) Hydrogen activated plasma method in which metal powder is obtained as dust by arc or plasma in active hydrogen; (5) Electrolytic method and chemical reduction method.

(問題点を解決するための問題点) 上記(1)および(2)の方法は従来より粉末冶金分野
において広く利用されているものであるが、得られる金
属粉末の平均粒径は10μm以上と大きく、また粒度分
布幅も広く、形状も均一でないため電子材料用には全く
適さない。一方、(3)および(4)の方法によると、
粒径がLpm以下の金属微粉末が容易に得られるという
利点がある。しかし、これらの方法は温1度、圧力など
の条件の制(TDが煩雑であったり、装置が複雑・大型
化して!!l!造コストコストするなどの不都合がある
。さらに(5)の方法は、比較的小規模な設備で金属粉
末を安価に製造し得るという利点はあるものの、得られ
た粉末の粒度分布は0.1〜200μIと極めて広く、
機械的粉砕工程やふるい分けなどが必要とされていた。
(Problems for solving problems) The methods (1) and (2) above have been widely used in the field of powder metallurgy, but the average particle size of the obtained metal powder is 10 μm or more. It is large, has a wide particle size distribution, and is not uniform in shape, so it is completely unsuitable for electronic materials. On the other hand, according to methods (3) and (4),
There is an advantage that fine metal powder having a particle size of Lpm or less can be easily obtained. However, these methods have disadvantages such as restrictions on conditions such as temperature and pressure (TD is complicated, the equipment is complicated and large, and manufacturing costs are increased.In addition, (5) Although this method has the advantage of being able to manufacture metal powder at low cost using relatively small-scale equipment, the particle size distribution of the obtained powder is extremely wide, ranging from 0.1 to 200 μI;
Mechanical crushing processes and sieving were required.

本発明は上記問題点を解決するためになされたもので、
湿式法、即ち化学的還元法により平均粒径1μm以下で
、均一な形状を有し、しかも−次粒子の状態を保持する
金属微粉末を容易且つ安価に製造する方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems,
The purpose of the present invention is to provide a method for easily and inexpensively producing fine metal powder having an average particle size of 1 μm or less, a uniform shape, and maintaining the state of secondary particles by a wet method, that is, a chemical reduction method. do.

(問題点を解決するための手段および作用)上記目的を
達成するために本発明によれば、金属塩を水または/お
よび水に可溶の有機溶媒中に溶解し、この金属塩溶液中
に、そのままでは金属を析出せしめない濃度の還元剤水
溶液を徐々に添加混合し、得られた混合溶液に振動を与
えて金属塩を還元し、微少な一次粒子として析出させる
構成としたものである。
(Means and effects for solving the problems) In order to achieve the above object, according to the present invention, a metal salt is dissolved in water and/or an organic solvent soluble in water, and in this metal salt solution, The structure is such that an aqueous reducing agent solution with a concentration that does not precipitate metal is gradually added and mixed, and the resulting mixed solution is vibrated to reduce the metal salt and precipitate it as fine primary particles.

本発明の製造法において、まず、出発物資として使用す
る金属塩としては、とくに限定されるものではないが、
例えば、銅(Cu) 、恨(Ag) 、金(Au) 、
ルテニウム(Ru) 、オスミウム(O3)、ロジウム
(Rh)、イリジウム(Ir)、パラジウム(Pd)、
白金(Pt)、セレン(Ss)、テルル(Te)、ポロ
ニウム(Pa)、アンチモン(Sb)、ビスマス(Bi
)の塩化物、硫酸塩、硝酸塩などを好適なものとしてあ
げることができ、このうち1種もしくは、2種以上を使
用することができる。
In the production method of the present invention, metal salts used as starting materials are not particularly limited, but include:
For example, copper (Cu), grudge (Ag), gold (Au),
Ruthenium (Ru), osmium (O3), rhodium (Rh), iridium (Ir), palladium (Pd),
Platinum (Pt), selenium (Ss), tellurium (Te), polonium (Pa), antimony (Sb), bismuth (Bi
) are preferable, such as chlorides, sulfates, and nitrates, and one or more of these can be used.

本発明の製造法においては、まず、上記した金属塩を水
または/および水に可溶の有機溶媒中に溶解させる。こ
の水に可溶の有機溶媒としては、例えば、メタノール、
エタノール、プロパツールなどの一価アルコール、エチ
レングリコール、グリセロールなどの多価アルコール、
ジエチルアミン、ピリジンなどのアミン類、エチルエー
テルなどのエーテル類、アセトン、メチルエチルケトン
などのケトン類などをあげることができ、このうち1種
または2種以上を混合して使用する。なお、金属塩が水
または水と水に可溶の有機溶媒との混合溶媒に溶解しに
くい場合は、加温するか、または酸もしくはアルカリを
加えて溶解させてもよい。
In the production method of the present invention, first, the metal salt described above is dissolved in water and/or an organic solvent soluble in water. Examples of the water-soluble organic solvent include methanol,
Monohydric alcohols such as ethanol and propatool; polyhydric alcohols such as ethylene glycol and glycerol;
Examples include amines such as diethylamine and pyridine, ethers such as ethyl ether, and ketones such as acetone and methyl ethyl ketone, among which one type or a mixture of two or more types may be used. If the metal salt is difficult to dissolve in water or a mixed solvent of water and a water-soluble organic solvent, it may be dissolved by heating or by adding an acid or alkali.

酸としては、金属塩が塩化物の場合は塩酸、硫酸塩の場
合は硫酸、硝酸塩の場合は硝酸をそれぞれ2N程度の濃
度で、また、アルカリとしてはアンモニア水を使用する
ことができる。
As the acid, hydrochloric acid can be used if the metal salt is a chloride, sulfuric acid can be used if the metal salt is a sulfate, and nitric acid can be used if the metal salt is a nitrate, each at a concentration of about 2N, and aqueous ammonia can be used as the alkali.

次いで、この金属塩溶液に還元剤水溶液を徐々に添加混
合する。使用する還元剤としては、とくに限定されるも
のではないが、例えば、ヒドラジン、水素化ホウ素ナト
リウム、ジメチルアミンボラン、ホルマリン、ギ酸、次
亜リン酸ナトリウム、過酸化水素などが好ましく、この
うち1種もしくは2種以上を用いることができる。そし
て、この還元剤水溶液の濃度はそのままでは、すなわち
、前記金属塩溶液に単に加えただけでは、金属を析出せ
しめないような濃度にする必要があり、好ましくは金属
を析出せしめない最大の濃度(飽和状態)を選択する。
Next, an aqueous reducing agent solution is gradually added to and mixed with the metal salt solution. The reducing agent to be used is not particularly limited, but preferably includes hydrazine, sodium borohydride, dimethylamine borane, formalin, formic acid, sodium hypophosphite, hydrogen peroxide, etc. Alternatively, two or more types can be used. The concentration of this reducing agent aqueous solution needs to be such that the metal will not be precipitated as it is, that is, if it is simply added to the metal salt solution, preferably the maximum concentration that does not cause the metal to be precipitated ( saturation).

この加えただけで金属を析出セしない濃度は還元剤の種
類によって、あるいは還元剤と金属の組合せによって異
なるので一概に決められないが、例えば、金属塩溶液中
の金属に対する還元剤のモル比がlXl0−’〜10の
範囲にあることが好ましい。
The concentration at which the metal does not precipitate even when the metal is added cannot be determined unconditionally because it varies depending on the type of reducing agent or the combination of reducing agent and metal, but for example, the molar ratio of the reducing agent to the metal in the metal salt solution is It is preferably in the range of lXl0-' to 10.

しかるのち、この金属塩・還元剤混合溶液に振動を与え
ることにより反応系を刺激し、金属塩と還元剤との反応
を促進させることにより金属塩を還元して金属を微小粉
末として析出させる。このとき、混合溶液に振動を与え
る手段としては、超音波による振動、機械的手段による
振動などがあげられるが、とくに超音波によるものは効
果的である。この混合溶液に微少振動を与えても還元反
応が進行しにくい場合は、上述した如き、酸もしくはア
ルカリを、言わば還元反応触媒として添加してもよいし
、溶媒の沸点以下に加熱してもよい。
Thereafter, the reaction system is stimulated by applying vibration to this metal salt/reducing agent mixed solution to promote the reaction between the metal salt and the reducing agent, thereby reducing the metal salt and depositing the metal as a fine powder. At this time, means for imparting vibration to the mixed solution include vibrations by ultrasonic waves, vibrations by mechanical means, etc., and vibrations by ultrasonic waves are particularly effective. If the reduction reaction does not proceed easily even when slight vibrations are applied to this mixed solution, an acid or alkali as described above may be added as a catalyst for the reduction reaction, or the solution may be heated to a temperature below the boiling point of the solvent. .

なお、析出した金属微粉末は、ただちに溶媒中に分散さ
れ、−次粒子の状態で保持され、二次凝集や薄膜化が生
ずることが有効に防止される。
The precipitated fine metal powder is immediately dispersed in the solvent and maintained in the state of secondary particles, thereby effectively preventing secondary aggregation and thinning.

こうして得られた金属微粉末は、混合溶液の振動を停止
後ただちにろ過することにより回収することが好ましい
、なお、金属塩を水のみに溶解したものを用いた場合は
、金属微粉末析出後に溶液の振動を停止するとただちに
二次凝集が起きるので、分散剤として例えばエタノール
などを加えて再び超音波などにかけ微粉末を分散させて
からろ過することが好ましい。
It is preferable to recover the metal fine powder obtained in this way by filtering it immediately after stopping the vibration of the mixed solution.In addition, if a metal salt dissolved only in water is used, the metal fine powder is precipitated and then dissolved. Since secondary aggregation occurs immediately when the vibration is stopped, it is preferable to add a dispersant such as ethanol and apply ultrasonic waves again to disperse the fine powder before filtering.

(実施例) 1立■工 硝酸銀(A g Not) 170 gを水1jlに溶
解させIMのAgN0.水溶液を調製した。この水溶液
に5xlO−”Mのヒドラジン水溶液11を徐々に添加
したところ、溶液には全く変化は見られなかった。つい
で、この混合溶液を超音波により振動させると無色の溶
液が30秒後に灰色に変化し、30分後に反応が終了し
、微粉末が析出した。超音波による振動を停止し、分散
剤としてエタノールをl!加えて再度超音波により微粉
末を分散させて、ただちに、ろ過した。得られた微粉末
を水:エタノール(1: 1)混合溶液で洗浄後、アセ
トンで水分を除去して風乾した。
(Example) IM AgN0. An aqueous solution was prepared. When hydrazine aqueous solution 11 of 5xlO-''M was gradually added to this aqueous solution, no change was observed in the solution.Next, when this mixed solution was vibrated by ultrasonic waves, the colorless solution turned gray after 30 seconds. After 30 minutes, the reaction was completed and a fine powder was precipitated.The ultrasonic vibration was stopped, 1 liter of ethanol was added as a dispersant, the fine powder was dispersed again by ultrasonic waves, and immediately filtered. The obtained fine powder was washed with a water:ethanol (1:1) mixed solution, water was removed with acetone, and air-dried.

このようにして得られた微粉末は、X線回折パターンか
らAg結晶であることが確かめられ、また、走査電子w
4微鏡で観察したところ、粒径範囲が0.1〜0.3 
μmと非常にせまく、はぼ球形の極めて均一な粉末であ
ることが、確認された。尚、純度は99.8%、比表面
積は6゜55sz/gであった。
The fine powder thus obtained was confirmed to be Ag crystal from the X-ray diffraction pattern, and the scanning electron w
4 When observed with a microscope, the particle size range was 0.1 to 0.3.
It was confirmed that the powder was extremely narrow, micrometer-sized, and very spherical and extremely uniform. The purity was 99.8% and the specific surface area was 6.55 sz/g.

失施N2 AgNOs 85 gを水500talに溶解し、これ
にエタノール500I11を加えた。こめ溶液に5 x
 10−”Mのヒドラジン水溶液500ta Itを添
加したところ変化は生じなかった。ついで、この混合溶
液を超音波により振動させると無色の溶液が数分後に灰
色に変化し、1時間後には反応が終了して微粉末が析出
した。振動を停止し、1晩放置しても得られた粉末の分
散状態は良好であった。しかるのち、上記実施例1と同
様にろ過を行いAg微粉末を得た。この微粉末の特性は
実施例1と同様であった。
85 g of untreated N2 AgNOs was dissolved in 500 tal of water, and 500 I11 of ethanol was added thereto. 5 x in rice solution
When 500 ta It of a 10-"M hydrazine aqueous solution was added, no change occurred. Next, when this mixed solution was vibrated by ultrasonic waves, the colorless solution turned gray after a few minutes, and the reaction was completed after 1 hour. A fine powder was precipitated.The dispersion state of the obtained powder was good even when the vibration was stopped and the mixture was left overnight.Thereafter, filtration was carried out in the same manner as in Example 1 above to obtain a fine Ag powder. The characteristics of this fine powder were similar to those of Example 1.

叉皇勇主 CuCl* ・2To0170gをエチレングリコール
124gに加え、徐々に加熱しながら溶解すると緑色の
粘稠な液体が生成される。常温まで冷却した後、この溶
液にホルマリン(37χHCHO)81gを加えたとこ
ろ変化は見られなかった0次いで、この混合溶液を超音
波により振動させたところ1時間経過しても変化が無か
った。そこで、アンモニア水を加えPHを12に高める
と溶液は濃青色に変化し、ここで再度超音波により振動
させると赤褐色の沈澱物が析出した。ただちに母液から
沈澱物を分離し、水及びエタノールで洗浄後、真空乾燥
にて乾燥した。
Add 170g of 2To0 to 124g of ethylene glycol and dissolve while gradually heating to produce a green viscous liquid. After cooling to room temperature, 81 g of formalin (37χHCHO) was added to this solution, and no change was observed.Next, this mixed solution was vibrated by ultrasonic waves, and no change was observed even after 1 hour had passed. Then, when aqueous ammonia was added to raise the pH to 12, the solution turned dark blue, and when it was again vibrated by ultrasonic waves, a reddish brown precipitate was deposited. The precipitate was immediately separated from the mother liquor, washed with water and ethanol, and then dried in vacuum.

得られた微粉末は非常に活性なためArに封入して保存
する必要がある。この微粉末をX線回折パターンにより
Cu結晶であることが確かめられ、走査電子顕微鏡で観
察したところ、粒径範囲が0.1〜0.4 μmでほぼ
球形の粉末であることが確認された。
The obtained fine powder is very active and must be stored in Ar. The X-ray diffraction pattern of this fine powder confirmed that it was a Cu crystal, and when it was observed with a scanning electron microscope, it was confirmed that it was a nearly spherical powder with a particle size range of 0.1 to 0.4 μm. .

(発明の効果) 以上説明したように、本発明の製造法によれば、金属塩
を水または/および水に可溶の有機溶媒中に熔解し、こ
の金属塩溶液中に、そのままでは金属を析出せしめない
1度の還元剤水溶液を徐々に添加混合し、得られた混合
溶液に振動を与えて金属塩を還元し、金属微粉末を析出
させることとしたので、得られた金属微粉末は、粒径1
μ請以下の極めて均一なものとなり、さらに、−次粒子
として良好な分散状態で得られ、2次凝集や薄膜化が発
生することがない。それに加えて、設備なども節単であ
るため安価で量産が可能であるなどの利点を有する。
(Effects of the Invention) As explained above, according to the production method of the present invention, a metal salt is dissolved in water and/or an organic solvent soluble in water, and the metal is dissolved in the metal salt solution as it is. We decided to gradually add and mix a one-time reducing agent aqueous solution that does not cause precipitation, and give vibration to the obtained mixed solution to reduce the metal salt and precipitate the metal fine powder. , particle size 1
The particles are extremely uniform with a diameter of less than μm, and furthermore, they are obtained as secondary particles in a good dispersed state, and no secondary agglomeration or thinning occurs. In addition, it has the advantage that it can be mass-produced at low cost because the equipment is simple.

Claims (7)

【特許請求の範囲】[Claims] (1)金属塩を水または/および水に可溶の有機溶媒中
に溶解し、この金属塩溶液中に、そのままでは金属を析
出せしめない濃度の還元剤水溶液を徐々に添加混合し、
得られた混合溶液に振動を与えて金属塩を還元し、金属
微粉末を析出させることを特徴とする金属微粉末の製造
法。
(1) A metal salt is dissolved in water or/and an organic solvent soluble in water, and an aqueous reducing agent solution with a concentration that does not precipitate the metal is gradually added and mixed into the metal salt solution,
A method for producing fine metal powder, which comprises applying vibration to the obtained mixed solution to reduce the metal salt and precipitate fine metal powder.
(2)前記金属塩が、銅、銀、金、ルテニウム、オスミ
ウム、ロジウム、イリジウム、パラジウム、白金、セレ
ン、テルル、ポロニウム、アンチモン、ビスマスの塩化
物、硫酸塩、硝酸塩よりなる群から選ばれた少なくとも
1種であることを特徴とする特許請求の範囲第1項記載
の金属微粉末の製造法。
(2) The metal salt is selected from the group consisting of chlorides, sulfates, and nitrates of copper, silver, gold, ruthenium, osmium, rhodium, iridium, palladium, platinum, selenium, tellurium, polonium, antimony, and bismuth. The method for producing a fine metal powder according to claim 1, characterized in that at least one type of metal powder is used.
(3)前記還元剤が、ヒドラジン、水素化ホウ素ナトリ
ウム、ジメチルアミンボラン、ホルマリン、ギ酸、次亜
リン酸ナトリウム、過酸化水素よりなる群から選ばれた
少なくとも1種であることを特徴とする特許請求の範囲
第1項記載の金属微粉末の製造法。
(3) A patent characterized in that the reducing agent is at least one selected from the group consisting of hydrazine, sodium borohydride, dimethylamine borane, formalin, formic acid, sodium hypophosphite, and hydrogen peroxide. A method for producing fine metal powder according to claim 1.
(4)超音波により前記混合溶液に振動を与えることを
特徴とする特許請求の範囲第1項記載の金属微粉末の製
造法。
(4) The method for producing fine metal powder according to claim 1, characterized in that vibration is applied to the mixed solution by ultrasonic waves.
(5)前記混合溶液の加振時に、該混合溶液に酸または
アルカリを添加することを特徴とする特許請求の範囲第
1項記載の金属微粉末の製造法。
(5) The method for producing fine metal powder according to claim 1, characterized in that an acid or an alkali is added to the mixed solution when the mixed solution is vibrated.
(6)前記水または/および有機溶媒を加温して、前記
金属塩を溶解させることを特徴とする特許請求の範囲第
1項記載の金属微粉末の製造法。
(6) The method for producing fine metal powder according to claim 1, characterized in that the water and/or the organic solvent is heated to dissolve the metal salt.
(7)前記水または/および有機溶媒に酸またはアルカ
リを添加して前記金属塩を溶解させることを特徴とする
特許請求の範囲第1項記載の金属微粉末の製造法。
(7) The method for producing fine metal powder according to claim 1, characterized in that an acid or alkali is added to the water and/or an organic solvent to dissolve the metal salt.
JP20133086A 1986-08-29 1986-08-29 Production of fine metallic powder Pending JPS6357703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20133086A JPS6357703A (en) 1986-08-29 1986-08-29 Production of fine metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20133086A JPS6357703A (en) 1986-08-29 1986-08-29 Production of fine metallic powder

Publications (1)

Publication Number Publication Date
JPS6357703A true JPS6357703A (en) 1988-03-12

Family

ID=16439224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20133086A Pending JPS6357703A (en) 1986-08-29 1986-08-29 Production of fine metallic powder

Country Status (1)

Country Link
JP (1) JPS6357703A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287707A (en) * 1990-04-04 1991-12-18 Murata Mfg Co Ltd Production of copper powder
US6620219B1 (en) 1998-09-11 2003-09-16 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, and conductive paste
JP2005036316A (en) * 2003-06-23 2005-02-10 Mitsubishi Materials Corp Metal particulate and production method therefor
CN109732102A (en) * 2019-03-18 2019-05-10 湘潭市泽宇新材料科技有限公司 A kind of monodisperse high conductivity silver powder and preparation method thereof suitable for high and low temperature silver paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287707A (en) * 1990-04-04 1991-12-18 Murata Mfg Co Ltd Production of copper powder
US6620219B1 (en) 1998-09-11 2003-09-16 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, and conductive paste
JP2005036316A (en) * 2003-06-23 2005-02-10 Mitsubishi Materials Corp Metal particulate and production method therefor
JP4640570B2 (en) * 2003-06-23 2011-03-02 三菱マテリアル株式会社 Metal fine particles and production method thereof
CN109732102A (en) * 2019-03-18 2019-05-10 湘潭市泽宇新材料科技有限公司 A kind of monodisperse high conductivity silver powder and preparation method thereof suitable for high and low temperature silver paste

Similar Documents

Publication Publication Date Title
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP6168837B2 (en) Copper fine particles and method for producing the same
JPH10317022A (en) Production of metallic particulate powder
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP4277803B2 (en) Method for producing metal fine powder
JP4679716B2 (en) Method for producing metal colloid solution
JP2011511885A (en) Method for producing noble metal nanoparticle dispersion and method for isolating such nanoparticles from said dispersion
JP2006336060A (en) Nickel particle powder and production method therefor
JP2013543061A (en) Reactor for silver powder production and continuous production method
JP5525301B2 (en) Method for producing metal fine particles / metal oxide fine particles, metal fine particles / metal oxide fine particles, metal-containing paste, and metal film / metal oxide film
JPH0578716A (en) Production of fine powder
JP7361464B2 (en) AgPd core-shell particles and their use
JP6453735B2 (en) Method for producing noble metal powder
JP2011144441A (en) Silver-coated nickel powder and method for producing the same
JPS6357703A (en) Production of fine metallic powder
JPH0830204B2 (en) Method for producing fine metal powder
KR100631025B1 (en) Method of manufacturing silver powder by chemical reduction
JPH04323310A (en) Production of fine metal powder
JP5912663B2 (en) Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder
JP2006322051A (en) Metal powder, and method for producing the same
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure
JP2006210197A (en) Metal coating film and its formation method
JP2006322052A (en) Method for producing metal powder