JPS6148586B2 - - Google Patents

Info

Publication number
JPS6148586B2
JPS6148586B2 JP13331581A JP13331581A JPS6148586B2 JP S6148586 B2 JPS6148586 B2 JP S6148586B2 JP 13331581 A JP13331581 A JP 13331581A JP 13331581 A JP13331581 A JP 13331581A JP S6148586 B2 JPS6148586 B2 JP S6148586B2
Authority
JP
Japan
Prior art keywords
powder
noble metal
base material
palladium
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13331581A
Other languages
Japanese (ja)
Other versions
JPS5837166A (en
Inventor
Shinroku Kawakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASUMI GIJUTSU KENKYUSHO KK
Original Assignee
KAWASUMI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASUMI GIJUTSU KENKYUSHO KK filed Critical KAWASUMI GIJUTSU KENKYUSHO KK
Priority to JP13331581A priority Critical patent/JPS5837166A/en
Publication of JPS5837166A publication Critical patent/JPS5837166A/en
Publication of JPS6148586B2 publication Critical patent/JPS6148586B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、貴金属被覆粉末の製造法に関する。
更に詳しくは、本発明は、貴金属から成る被覆層
による実質的に完全な被覆状態にある基体物質の
粒子からなる貴金属被覆粉末を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing noble metal coated powders.
More particularly, the present invention relates to a method of producing a noble metal coated powder consisting of particles of a substrate material that are substantially completely coated with a coating layer of noble metal.

銀、金、白金及びパラジウムなどの貴金属の工
業的な用途の一つに、それらの高い導電性を利用
する導電性ペースト(導電性塗料)などの導電性
材料への応用がある。これらの導電性材料は貴金
属単体の粉末及び溶剤からなる組成物であり、成
形後の焼成により高純度の貴金属からなる表面層
が形成されるように調製される。
One of the industrial uses of precious metals such as silver, gold, platinum, and palladium is their application to conductive materials such as conductive pastes (conductive paints) that take advantage of their high conductivity. These conductive materials are compositions consisting of a noble metal powder and a solvent, and are prepared so that a surface layer made of a highly pure noble metal is formed by firing after molding.

一方、貴金属は高価格のものであるため、導電
性材料の貴金属部分の一部を他の材料、例えばニ
ツケル、銅などの卑金属で置換する試みも行なわ
れている。しかし例えば銀粉と銅粉との混合系か
らなる導電性塗料を成形、焼成して得た焼成物の
表面層は銀と銅の固溶体及び酸化銅から形成され
るため、表面層の導電性は銀粉の単独系からなる
導電性塗料の焼成物に比較して大幅に低下し、実
用性を失なう結果となる。
On the other hand, since noble metals are expensive, attempts have been made to replace part of the noble metal portion of the conductive material with other materials, such as base metals such as nickel and copper. However, for example, the surface layer of a fired product obtained by molding and firing a conductive paint made of a mixed system of silver powder and copper powder is formed from a solid solution of silver and copper and copper oxide, so the conductivity of the surface layer is lower than that of the silver powder. Compared to a baked product of a conductive paint consisting of a single system, the conductive paint is significantly lowered, resulting in a loss of practicality.

これに対して、卑金属粉末を基体物質粉末とし
て用い、この基体物質粉末の各粒子に貴金属を被
覆した貴金属被覆粉末を、貴金属単体粉末の代り
に使用する試みも行なわれている。貴金属被覆粉
末は原理的には焼成により焼成物の表面に貴金属
のみからなる層を形成し、その導電性は貴金属単
体の粉末を使用して得た焼成物と同じレベルにあ
るはずであると考えられる。しかしながら金属被
覆粉末を製造するための一般的な方法である化学
メツキ法で貴金属被覆粉末を製造し、これを用い
たペーストを焼成して得た焼成物は、貴金属単体
粉末のペーストの焼成物に比べてはるかに低い導
電性を持つにすぎない。そして、上記の貴金属被
覆粉末を用いた焼成物の表面層を電子顕微鏡によ
り観察すると、その表面層は貴金属の連続相から
形成されておらず、部分的に基体物質(卑金属)
相が露出している。すなわち、この焼成物の表面
層は高純度の貴金属から形成されていないためそ
の導電性が、貴金属相のみの導電性に比べて大幅
に低下しているものと考えられる。
On the other hand, attempts have also been made to use a noble metal coated powder in which a base metal powder is used as the base material powder and each particle of the base material powder is coated with a noble metal instead of the noble metal powder. In principle, noble metal-coated powder forms a layer consisting only of precious metals on the surface of the fired product when fired, and we believe that its conductivity should be at the same level as the fired product obtained using pure noble metal powder. It will be done. However, the fired product obtained by manufacturing the noble metal coated powder using the chemical plating method, which is a common method for producing metal coated powder, and firing the paste using this powder is not the same as the fired product of the paste of the noble metal single powder. It has only a much lower conductivity than that of other materials. When the surface layer of a fired product using the above noble metal-coated powder is observed using an electron microscope, it is found that the surface layer is not formed from a continuous phase of noble metal, and is partially composed of the base material (base metal).
phase is exposed. That is, since the surface layer of this fired product is not formed from a high-purity noble metal, its conductivity is considered to be significantly lower than that of the noble metal phase alone.

本発明者は、貴金属被覆粉末を使用したにもか
かわらずペースト焼成物の表面層に基体物質相が
露出する原因を検討した結果、従来の化学メツキ
法を利用して基体物質粉末に貴金属を被覆した場
合には、例えば銅やニツケルなどの基体物質の粉
末の一部がメツキ液に溶解し、これが被覆層の形
成時に貴金属被覆層に混入するときの汚染現象を
見出した。従つて、従来の化学メツキ法により得
られる貴金属被覆粉末の被覆層は基体物質により
汚染されているため、この粉末を用いたペースト
の焼成物の表面層にもその汚染物質が無視し得な
い量で混入し、導電性低下の原因になるとの結論
に達した。また更に従来の化学メツキ法では充分
な均質性、強度そして層厚を持つ貴金属被覆層を
形成させることが非常に難しく、この点もペース
ト焼成物の表面層の基体物質相が露出する原因と
なることを見出した。
As a result of investigating the cause of the base material phase being exposed on the surface layer of the fired paste product despite the use of noble metal coated powder, the inventors discovered that the base material powder was coated with noble metal using the conventional chemical plating method. In this case, for example, a part of the powder of the base material such as copper or nickel was dissolved in the plating solution, and a contamination phenomenon was found when this mixed into the noble metal coating layer during the formation of the coating layer. Therefore, since the coating layer of the noble metal-coated powder obtained by the conventional chemical plating method is contaminated with the base substance, the surface layer of the fired paste using this powder also contains a non-negligible amount of the contaminant. The conclusion was reached that this could lead to a decrease in conductivity. Furthermore, it is extremely difficult to form a precious metal coating layer with sufficient homogeneity, strength, and thickness using the conventional chemical plating method, which also causes the base material phase of the surface layer of the paste fired product to be exposed. I discovered that.

本発明は、上述のような従来の化学メツキ法を
用いた貴金属被覆粉末の製造法に付随する各種の
欠点を持たない新規な貴金属被覆粉末の製造法を
提供するものである。
The present invention provides a novel method for producing noble metal coated powder that does not have the various drawbacks associated with the method for producing noble metal coated powder using the conventional chemical plating method as described above.

本発明は、貴金属化合物、非金属性のアンモニ
ウム塩及びアンモニア水を含むPH5−10のゲル状
水性溶液に基体物質粉末が均一に分散されている
分散液に還元剤を撹拌下に加えることを特徴とす
る貴金属被覆粉末の製造法である。
The present invention is characterized in that a reducing agent is added under stirring to a dispersion liquid in which a base material powder is uniformly dispersed in a gel-like aqueous solution of pH 5-10 containing a noble metal compound, a nonmetallic ammonium salt, and aqueous ammonia. This is a method for producing noble metal coated powder.

本発明の製造法により得られた貴金属被覆粉末
の貴金属被覆層は実質的に全く基体物質に汚染さ
れることなく、かつ均質性、強度そして層厚が
各々について優れたものとなる。また従来の化学
メツキ法では平均粒径1ミクロン以下の粒子から
なる粉末については均一な金属被覆粉末が得られ
にくかつたが、本発明の方法によればそのような
微粒子状粉末の均一な被覆が容易に達成できる。
従つて、この貴金属被覆粉末を使用した導電性ペ
ーストは成形、焼成した後に高純度の貴金属から
なる表面層を有する焼成物を形成し、この焼成物
は、貴金属単体を用いた導電性ペーストの焼成に
より得られる焼成物を同等の導電性を示す。この
ため導電性ペーストにおける貴金属の使用量を性
能を損じることなく低減することが可能になる。
The noble metal coated layer of the noble metal coated powder obtained by the production method of the present invention is substantially free from contamination with the base material and has excellent homogeneity, strength and layer thickness. In addition, with the conventional chemical plating method, it was difficult to obtain a uniform metal-coated powder for powder consisting of particles with an average particle size of 1 micron or less, but the method of the present invention makes it difficult to obtain a uniform metal-coated powder of such fine-grained powder. Coating is easily achieved.
Therefore, after the conductive paste using this precious metal-coated powder is molded and fired, it forms a fired product having a surface layer made of a high-purity noble metal, and this fired product is similar to the firing of a conductive paste using a pure noble metal. The fired product obtained by this method shows equivalent conductivity. Therefore, it is possible to reduce the amount of noble metal used in the conductive paste without impairing performance.

次に本発明を詳しく説明する。 Next, the present invention will be explained in detail.

本発明で用いる貴金属の例としては、銀、金、
白金及びパラジウムなどを挙げることができる
が、これらに限定されるものではなく、他の白金
族金属も本発明の被覆層形成材料として使用する
ことができる。また貴金属は一種のみの単独使用
に限られず、二種以上を組み合わせて使用しても
よい。貴金属化合物はその水性溶液(水溶液、鉱
酸溶液、アルカリ性水溶液等)が調製可能なもの
であれば特に制限はない。例えば、銀の化合物と
して、硝酸銀、塩化銀、あるいは銀の錯化合物;
金の化合物として、塩化第一金、塩化第二金、シ
アン化第一金、シアン化第二金;あるいは金の錯
化合物;白金の化合物として、塩化白金酸アンモ
ニウム、塩化白金酸、白金の塩化物、白金の錯化
合物;そしてパラジウムの化合物として、パラジ
ウムのシアン化物、パラジウムのハロゲン塩、パ
ラジウムの錯化合物などを挙げることができる。
あるいは貴金属単体を鉱酸に溶解した溶液も利用
することができる。
Examples of precious metals used in the present invention include silver, gold,
Examples include, but are not limited to, platinum and palladium, and other platinum group metals can also be used as the coating layer forming material of the present invention. Moreover, the noble metals are not limited to the use of only one type, but may be used in combination of two or more types. The noble metal compound is not particularly limited as long as its aqueous solution (aqueous solution, mineral acid solution, alkaline aqueous solution, etc.) can be prepared. For example, as a silver compound, silver nitrate, silver chloride, or a silver complex compound;
Examples of gold compounds include ferrous chloride, ferric chloride, ferrous cyanide, and ferric cyanide; or complex compounds of gold; platinum compounds include ammonium chloroplatinate, chloroplatinic acid, and platinum chloride. Examples of palladium compounds include palladium cyanide, palladium halide salts, and palladium complex compounds.
Alternatively, a solution in which a noble metal alone is dissolved in a mineral acid can also be used.

非金属性のアンモニウム塩の例としては、塩化
アンモニウム、酢酸アンモニウム、硫酸アンモニ
ウム、硝酸アンモニウム、リン酸アンモニウムな
どを挙げることができるが、塩化アンモニウムが
特に好ましい。
Examples of non-metallic ammonium salts include ammonium chloride, ammonium acetate, ammonium sulfate, ammonium nitrate, and ammonium phosphate, with ammonium chloride being particularly preferred.

貴金属化合物、非金属性のアンモニウム塩及び
アンモニア水を含むPH5−10のゲル状水性溶液
は、例えば、次のようにして調製する。貴金属単
体又は貴金属化合物を、水、希酸、濃厚酸、混合
酸、アルカリ性水溶液など任意の水性溶媒(対象
の貴金属単体又は貴金属化合物を溶解する溶媒)
に一旦溶解し、この溶液と塩化アンモニウム
(NH4Cl)などのアンモニウム塩を混合し、この
混合液にアンモニア水を加えることにより混合液
のPHを5−10(好ましくは6−8)に調整する。
貴金属の溶液にアンモニウム塩を加えることによ
り、あるいは更にアンモニア水を加えて混合液の
PHを5−10に調整することにより該混合液をゲル
状とする。塩化アンモニウムなどのアンモニウム
塩の添加量は貴金属化合物の貴金属に対して当量
以上かつ当量の3倍以下の量であることが好まし
い。この範囲により少ない量でアンモニウム塩を
加えると基体物質の粉末を安定な状態でゲル状に
均一に分散させることが困難になり、一方、アン
モニウム塩の量が上記の範囲より多い場合にはゲ
ルの粘度が高くなり過ぎ、反応が不均一になりや
すく、また生成後の貴金属被覆粉末の被覆層にア
ンモニウム塩が混入しやすくなる。
A gel-like aqueous solution with a pH of 5-10 containing a noble metal compound, a nonmetallic ammonium salt, and aqueous ammonia is prepared, for example, as follows. A noble metal or noble metal compound can be dissolved in any aqueous solvent such as water, dilute acid, concentrated acid, mixed acid, or alkaline aqueous solution (a solvent that dissolves the target noble metal or noble metal compound).
This solution is mixed with an ammonium salt such as ammonium chloride (NH 4 Cl), and the pH of the mixture is adjusted to 5-10 (preferably 6-8) by adding aqueous ammonia to this mixture. do.
By adding ammonium salt to the precious metal solution, or by further adding aqueous ammonia to the mixture,
The mixture is made into a gel by adjusting the pH to 5-10. The amount of ammonium salt such as ammonium chloride added is preferably at least an equivalent amount and no more than three times the equivalent amount of the noble metal in the noble metal compound. If an ammonium salt is added in an amount smaller than this range, it will be difficult to uniformly disperse the powder of the base material into a stable gel-like state, whereas if the amount of ammonium salt is greater than the above range, the gel will form. The viscosity becomes too high, the reaction tends to be non-uniform, and ammonium salts tend to be mixed into the coating layer of the noble metal coated powder after production.

本発明で用いる基体物質は、上記のゲル状水性
溶液に実質的に溶解性を示さないものであれば特
に限定なく、その例としては、銅、ニツケル、コ
バルト、鉄等の周期律表第4周期の遷移金属、そ
の他の卑金属、被覆層を形成する貴金属を異なる
貴金属、これらの合金などのような金属系基体物
質、そして酸化ケイ素、酸化ジルコニウム、二酸
化チタン、アルミナ、チタン酸バリウムなどの酸
化物系セラミツクス及び炭化チタン、窒化チタ
ン、炭化タングステン、炭化ケイ素などの非酸化
物系セラミツクスなどのようなセラミツクスを挙
げることができる。
The base material used in the present invention is not particularly limited as long as it does not show substantial solubility in the above-mentioned gel-like aqueous solution. Examples include copper, nickel, cobalt, iron, etc. Periodic transition metals, other base metals, different noble metals forming the coating layer, metallic base materials such as alloys of these metals, and oxides such as silicon oxide, zirconium oxide, titanium dioxide, alumina, barium titanate, etc. Ceramics such as non-oxide ceramics such as titanium carbide, titanium nitride, tungsten carbide, and silicon carbide can be mentioned.

基体物質の粉末は通常は平均粒径が30ミクロン
以下程度のものが用いられるが、好ましい粉末は
平均粒径10ミクロン以下のものであり、粒度は特
に均一である必要はない。また前述のように平均
粒径が1ミクロン以下の粉末の均一な被覆も充分
可能である。
Powders of the base material are usually used having an average particle size of about 30 microns or less, but preferred powders have an average particle size of 10 microns or less, and the particle size does not need to be particularly uniform. Furthermore, as mentioned above, uniform coating of powder with an average particle size of 1 micron or less is also possible.

分散液に含有される基体物質粉末と貴金属化合
物の比率には特に制限はないが、生成する貴金属
被覆粉末の用途として導電性ペーストを想定した
場合には、基体物質と、貴金属化合物中の貴金属
との比率は1:9から7:3(重量比)の範囲に
あることが望ましい。更に望ましい範囲は、基体
物質:貴金属=2:8−6:4(重量比)であ
る。
There is no particular restriction on the ratio of the base substance powder and the noble metal compound contained in the dispersion liquid, but when the noble metal coated powder to be produced is assumed to be used as a conductive paste, the ratio between the base substance and the noble metal in the noble metal compound is The ratio is preferably in the range of 1:9 to 7:3 (weight ratio). A more desirable range is base material:noble metal=2:8-6:4 (weight ratio).

本発明の分散液は、前記のようにして調製した
貴金属化合物、非金属性のアンモニウム塩及びア
ンモニア水を含むPH5−10のゲル状水性溶液に基
体物質粉末を撹拌下に添加するなどの方法により
生成し、この方法により均一な分散液が得られ
る。撹拌は任意の方法、任意の時期により行なう
ことができ、撹拌器具、装置の種類を問わず使用
することができる。
The dispersion of the present invention can be prepared by a method such as adding a base material powder to a gel-like aqueous solution of pH 5-10 containing a noble metal compound, a nonmetallic ammonium salt, and ammonia water prepared as described above while stirring. This method results in a homogeneous dispersion. Stirring can be performed by any method and at any time, and any type of stirring tool or device can be used.

分散液への還元剤の添加は撹拌下に行なう。撹
拌の方法には特に制限はないが、ゲル状水性溶液
と基体物質粉末との分散液が撹拌対象であるた
め、強力な撹拌が可能な方法が望ましい。
The reducing agent is added to the dispersion while stirring. There are no particular restrictions on the stirring method, but since the dispersion of the gel-like aqueous solution and the base material powder is to be stirred, a method that allows strong stirring is desirable.

還元剤は、ゲル状水性溶液中の貴金属化合物を
還元して貴金属単体に変換し得るものであれば特
に制限はない。還元剤の例としては、水素化リチ
ウムアルミニウム、水素化ホウ素ナトリウムなど
が挙げられるが、これらの還元剤に限定されるも
のではない。還元剤はゲル状水性溶液中の貴金属
化合物を還元して貴金属単体とするのに充分な量
添加する。
The reducing agent is not particularly limited as long as it can reduce the noble metal compound in the gel-like aqueous solution and convert it into a noble metal element. Examples of reducing agents include lithium aluminum hydride, sodium borohydride, etc., but are not limited to these reducing agents. The reducing agent is added in an amount sufficient to reduce the noble metal compound in the gel-like aqueous solution to the noble metal element.

撹拌下のゲル状水性溶液と基体物質粉末との分
散液への還元剤の添加により該分散液のゲル状態
は解消し、同時に貴金属被覆粉末が生成する。
By adding a reducing agent to the stirred dispersion of the gelled aqueous solution and the base substance powder, the gel state of the dispersion is dissolved and at the same time a noble metal coated powder is produced.

生成した貴金属被覆粉末は次いでデカンテーシ
ヨン、取などにより取り出され、洗浄、乾燥さ
れて各種の用途に用いられる。
The produced noble metal coated powder is then taken out by decantation, removal, etc., washed, dried, and used for various purposes.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 パラジウム溶液(パラジウム金属25gを王水
350mlに溶解したもの)70mlに塩化アンモニウム
12g(パラジウムに対して1.2当量倍)を加えて
橙色ゲル状溶液を得た。この溶液にアンモニア水
(28%水溶液)45mlを加えることにより溶液はピ
ンク色ゲル状溶液となり、溶液のPHは約7となつ
た。この溶液にチタン酸バリウム(BaTiO3)の粉
末(平均粒径0.013ミクロン)5gを加え、充分
撹拌して均一な分散液を得た。この分散液を充分
撹拌しながら、水素化ホウ素ナトリウム水溶液
(NaBH40.75g/100mlH2O)を100ml加えたとこ
ろゲル状態は解消し、黒色の粉末が生成した。液
相をデカンテーシヨンにより除去し、同じくデカ
ンテーシヨン操作により水及び湯を用いて各10回
の洗浄を行なつた後、65℃で乾燥することにより
9.9gのパラジウム被覆チタン酸バリウム粉末を
得た。収率99%。被覆粉末中のチタン酸バリウ
ム/パラジウム重量比:50/50。
Example 1 Palladium solution (25g of palladium metal was added to aqua regia)
(dissolved in 350ml) ammonium chloride in 70ml
12 g (1.2 times the equivalent of palladium) was added to obtain an orange gel-like solution. By adding 45 ml of ammonia water (28% aqueous solution) to this solution, the solution became a pink gel-like solution, and the pH of the solution was approximately 7. 5 g of barium titanate (BaTiO 3 ) powder (average particle size 0.013 microns) was added to this solution and thoroughly stirred to obtain a uniform dispersion. While thoroughly stirring this dispersion, 100 ml of an aqueous sodium borohydride solution (NaBH 4 0.75 g/100 ml H 2 O) was added, and the gel state disappeared and a black powder was produced. The liquid phase was removed by decantation, washed 10 times each with water and hot water by the same decantation operation, and then dried at 65°C.
9.9 g of palladium coated barium titanate powder was obtained. Yield 99%. Barium titanate/palladium weight ratio in coating powder: 50/50.

上記で得られたパラジウム被覆チタン酸バリウ
ム粉末(Pd−BaTiO3粉末)を含むペーストを次
の配合により調製し、以下のように焼成してパラ
ジウム被覆の状態を試験した。
A paste containing the palladium-coated barium titanate powder (Pd-BaTiO 3 powder) obtained above was prepared according to the following formulation, fired as follows, and the state of the palladium coating was tested.

Pd−BaTiO3粉末 2.0g 銀単体粉末 8.0g ホウケイ酸鉛ガラスフリツト 0.2g エチルセルロース 1 g エチルセロソロブ 2.5g テルピネール 2.5g 上記組成から成る混合物を三本ロール型混練装
置を用いて良く混練してペーストを得る。
Pd-BaTiO 3 powder 2.0 g Single silver powder 8.0 g Borosilicate lead glass frit 0.2 g Ethyl cellulose 1 g Ethyl cellosolub 2.5 g Terpinel 2.5 g The mixture consisting of the above composition is thoroughly kneaded using a three-roll kneading device to obtain a paste.

得られたペーストをスクリーン印刷によりセラ
ミツク基板上に印刷して150℃で30分間乾燥した
後、焼成炉に入れ、この焼成炉の温度を1時間か
けて850℃とした。この850℃の温度を更に10分間
保つた後、得られた印刷板を冷却した。
The resulting paste was printed on a ceramic substrate by screen printing and dried at 150°C for 30 minutes, then placed in a firing furnace, and the temperature of the firing furnace was increased to 850°C over 1 hour. After maintaining this temperature of 850° C. for an additional 10 minutes, the obtained printing plate was cooled.

このように得られた金属面(電極)は通常の銀
−パラジウム電極と同様の焼成面の色を有してお
り、この焼成面を日本電子(株)製の走査型電子顕微
鏡(JSM−25S)を用いて反射電子像(組成像)
を観察したところ、その表面にチタン酸バリウム
相の存在は認められず、全面が銀及びパラジウム
で覆われていた。
The metal surface (electrode) obtained in this way has the same fired surface color as a normal silver-palladium electrode, and the fired surface was examined using a scanning electron microscope (JSM-25S manufactured by JEOL Ltd.). ) using a backscattered electron image (composition image)
When observed, no barium titanate phase was observed on the surface, and the entire surface was covered with silver and palladium.

この焼成面を250℃の半田浴に浸漬したとこ
ろ、金属面の全面に半田が付着した。この半田付
けされた試料の断面をX線マイクロアナライザー
((株)島津製作所製、EMX−SM)で分析したとこ
ろ、電極とセラミツク基板との密着性は良好で、
かつ電極表面と半田との「ぬれ」も良好であつ
た。これらの結果から、電極表面には実用上問題
となる量のチタン酸バリウム相の露出がないこ
と、即ち、パラジウムのチタン酸バリウム粉末へ
の被覆が実質的に完全であること、そしてパラジ
ウム被覆層がチタン酸バリウムで汚染されていな
いことが確認された。
When this fired surface was immersed in a solder bath at 250°C, solder adhered to the entire surface of the metal surface. When the cross section of this soldered sample was analyzed using an X-ray microanalyzer (EMX-SM, manufactured by Shimadzu Corporation), it was found that the adhesion between the electrode and the ceramic substrate was good.
Moreover, the "wetting" between the electrode surface and the solder was also good. These results show that there is no exposed barium titanate phase on the electrode surface in an amount that would pose a practical problem, that is, that palladium is substantially completely covered with barium titanate powder, and that the palladium coating layer was confirmed not to be contaminated with barium titanate.

実施例 2 実施例1と同様にしてパラジウム溶液(パラジ
ウム金属25gを王水350mlに溶解したもの)70
ml、塩化アンモニウム12g及びアンモニア水(28
%水溶液)45mlを用いてPH約7のゲル状溶液を調
製した。この溶液にニツケル粉末(平均粒径3ミ
クロン)5gを加え、充分撹拌して均一な分散液
を得た。この分散液を充分撹拌しながら、水素化
ホウ素ナトリウム水溶液(NaBH40.75g/100ml
H2O)を100ml加えたところゲル状態は解消し、
黒色の粉末が生成した。以下は実施例1と同様に
して黒色粉末を洗浄、乾燥することにより9.82g
のパラジウム被覆ニツケル粉末を得た。収率98.2
%。被覆粉末中のニツケル/パラジウム重量比
50/50。
Example 2 A palladium solution (25 g of palladium metal dissolved in 350 ml of aqua regia) was prepared in the same manner as in Example 1.
ml, ammonium chloride 12g and aqueous ammonia (28
% aqueous solution) to prepare a gel-like solution with a pH of about 7. 5 g of nickel powder (average particle size: 3 microns) was added to this solution and thoroughly stirred to obtain a uniform dispersion. While thoroughly stirring this dispersion, add a sodium borohydride aqueous solution (NaBH 4 0.75g/100ml).
When 100ml of H 2 O) was added, the gel state disappeared.
A black powder was formed. The following 9.82g was obtained by washing and drying the black powder in the same manner as in Example 1.
A palladium-coated nickel powder was obtained. Yield 98.2
%. Nickel/palladium weight ratio in coated powder
50/50.

実施例1の試験法においてパラジウム被覆チタ
ン酸バリウム粉末の代りに上記で得られたパラジ
ウム被覆ニツケル粉末を用いた以外は同一の試験
を行なつた結果、パラジウムのニツケル粉末への
被覆が実質的に完全であること、そしてパラジウ
ム被覆層がニツケルで汚染されていないことが確
認された。
The same test as in Example 1 was conducted except that the palladium-coated nickel powder obtained above was used instead of the palladium-coated barium titanate powder. As a result, it was found that the palladium coating on the nickel powder was substantially It was confirmed to be complete and that the palladium coating was not contaminated with nickel.

実施例 3 硝酸銀(AgNO3)7.87gを水150mlに溶解した
溶液に塩化アンモニウム3g(銀に対して1.2当
量倍)を加え、更にアンモニア水(28%水溶液)
25mlを加えることによりPH約7のゲル状溶液を得
た。この溶液にニツケル粉末(平均粒径3ミクロ
ン)5gを加え、充分撹拌して均一な溶液を得
た。この分散液を充分撹拌しながら水素化ホウ素
ナトリウム水溶液(NaBH40.2g/20mlH2O)を
20ml加えたところゲル状態は解消し灰色の粉末が
生成した。以下は実施例1と同様にしてこの粉末
を洗浄、乾燥することにより9.9gの銀被覆ニツ
ケル粉末を得た。収率99%。被覆粉末中のニツケ
ル/銀の重量比50/50。
Example 3 3 g of ammonium chloride (1.2 times the equivalent of silver) was added to a solution of 7.87 g of silver nitrate (AgNO 3 ) dissolved in 150 ml of water, and then aqueous ammonia (28% aqueous solution) was added.
By adding 25 ml, a gel-like solution with a pH of about 7 was obtained. 5 g of nickel powder (average particle size: 3 microns) was added to this solution and thoroughly stirred to obtain a uniform solution. While thoroughly stirring this dispersion, a sodium borohydride aqueous solution (NaBH 4 0.2g/20mlH 2 O) was added.
When 20ml was added, the gel state disappeared and a gray powder was produced. This powder was washed and dried in the same manner as in Example 1 to obtain 9.9 g of silver-coated nickel powder. Yield 99%. 50/50 weight ratio of nickel/silver in the coating powder.

実施例1の試験法においてパラジウム被覆チタ
ン酸バリウムの粉末及び銀単体粉末の代りに上記
で得られた銀被覆ニツケル粉末(10g)を用いた
以外は同一の試験を行なつた結果、銀のニツケル
粉末への被覆が実質的に完全であること、そして
銀被覆層がニツケルで汚染されていないことが確
認された。
The same test as in Example 1 was conducted except that the above-obtained silver-coated nickel powder (10 g) was used in place of the palladium-coated barium titanate powder and the simple silver powder. It was confirmed that the powder coating was substantially complete and that the silver coating layer was not contaminated with nickel.

Claims (1)

【特許請求の範囲】 1 貴金属化合物、非金属性のアンモニウム塩及
びアンモニア水を含むPH5−10のゲル状水性溶液
に基体物質粉末が均一に分散されている分散液に
還元剤を撹拌下に加えることを特徴とする貴金属
被覆粉末の製造法。 2 非金属性のアンモニウム塩が塩化アンモニウ
ムであることを特徴とする特許請求の範囲第1項
記載の製造法。 3 非金属性のアンモニウム塩の含有量が貴金属
化合物の貴金属に対して当量以上かつ当量の3倍
以下の量であることを特徴とする特許請求の範囲
第1項記載の製造法。 4 基体物質粉末が周期律表第4周期の遷移金属
単体の粉末であることを特徴とする特許請求の範
囲第1項記載の製造法。 5 基体物質粉末が酸化物系もしくは非酸化物系
のセラミツクスの粉末であることを特徴とする特
許請求の範囲第1項記載の製造法。 6 基体物質粉末の平均粒径が1ミクロン以下で
あることを特徴とする特許請求の範囲第1項記載
の製造法。
[Claims] 1. A reducing agent is added under stirring to a dispersion in which a base material powder is uniformly dispersed in a gel-like aqueous solution with a pH of 5-10 containing a noble metal compound, a nonmetallic ammonium salt, and aqueous ammonia. A method for producing a noble metal coated powder characterized by the following. 2. The manufacturing method according to claim 1, wherein the nonmetallic ammonium salt is ammonium chloride. 3. The manufacturing method according to claim 1, characterized in that the content of the nonmetallic ammonium salt is at least an equivalent amount and at most three times the equivalent amount of the noble metal in the noble metal compound. 4. The manufacturing method according to claim 1, wherein the base material powder is a powder of an elementary transition metal in the fourth period of the periodic table. 5. The manufacturing method according to claim 1, wherein the base material powder is an oxide-based or non-oxide-based ceramic powder. 6. The manufacturing method according to claim 1, wherein the average particle size of the base material powder is 1 micron or less.
JP13331581A 1981-08-27 1981-08-27 Production of noble metal coated powder Granted JPS5837166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13331581A JPS5837166A (en) 1981-08-27 1981-08-27 Production of noble metal coated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13331581A JPS5837166A (en) 1981-08-27 1981-08-27 Production of noble metal coated powder

Publications (2)

Publication Number Publication Date
JPS5837166A JPS5837166A (en) 1983-03-04
JPS6148586B2 true JPS6148586B2 (en) 1986-10-24

Family

ID=15101801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13331581A Granted JPS5837166A (en) 1981-08-27 1981-08-27 Production of noble metal coated powder

Country Status (1)

Country Link
JP (1) JPS5837166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267690U (en) * 1988-11-09 1990-05-22

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123601A (en) * 1982-01-18 1983-07-22 ティーディーケイ株式会社 Manufacture of conductive metal powder
US4761934A (en) * 1987-02-27 1988-08-09 Lantech Parallel belted clamp
JPH0796681B2 (en) * 1988-02-04 1995-10-18 住友金属鉱山株式会社 Method for producing palladium-coated silver powder
US4944985A (en) * 1988-04-11 1990-07-31 Leach & Garner Method for electroless plating of ultrafine or colloidal particles and products produced thereby
JPH0759404B2 (en) * 1989-12-05 1995-06-28 株式会社ニッサンキコー Binding wrapping machine
JP5764294B2 (en) * 2010-01-18 2015-08-19 ナミックス株式会社 Silver-coated nickel powder and method for producing the same
CN106735181B (en) * 2016-12-14 2019-01-11 中国科学院深圳先进技术研究院 SiO2@Ag core-shell structure composite conducting particles and preparation method thereof
CN107199336A (en) * 2017-06-02 2017-09-26 吉林化工学院 One-step method prepares the silicon dioxide microsphere of Surface coating nano-Ag particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267690U (en) * 1988-11-09 1990-05-22

Also Published As

Publication number Publication date
JPS5837166A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
US4450188A (en) Process for the preparation of precious metal-coated particles
EP0363552A1 (en) Process for preparing metal particles
CN1988973A (en) Nickel coated copper powder and process for producing the same
JPS6148586B2 (en)
JP4078410B2 (en) Manufacturing method of silver diffusion copper powder
US4714645A (en) Electronic parts and process for the manufacture of the same
JP2900650B2 (en) Method for producing nickel fine powder
JP4834848B2 (en) Copper powder for low-temperature firing or copper powder for conductive paste
JP2005019028A (en) Metal colloid liquid, and conductive ink using it
JPS622404A (en) Thick film paste
JPS6122028B2 (en)
JPH0543921A (en) Production of nickel fine powder
US3620714A (en) Process of preparing noble metal alloy powders
JPH07320535A (en) New conductive paste composition
JPS622003B2 (en)
JP2000285733A (en) Manufacture of conductive powder and conductive paste and electronic component using them
JP2799916B2 (en) Conductive metal-coated ceramic powder
JPS6122029B2 (en)
US3708313A (en) Metalizing compositions
KR100477383B1 (en) Preparation method of precious metal-coated metal powder
US4439468A (en) Platinum coated silver powder
JP2808639B2 (en) Conductive particles for electrodes of ceramic electronic components
JPS61136978A (en) Electroconductive paste for thick film circuit
KR830001482B1 (en) Nickel Alloy Paste for Electric Conductor Formation
JPS6148585B2 (en)