JP2900650B2 - Method for producing nickel fine powder - Google Patents

Method for producing nickel fine powder

Info

Publication number
JP2900650B2
JP2900650B2 JP3207872A JP20787291A JP2900650B2 JP 2900650 B2 JP2900650 B2 JP 2900650B2 JP 3207872 A JP3207872 A JP 3207872A JP 20787291 A JP20787291 A JP 20787291A JP 2900650 B2 JP2900650 B2 JP 2900650B2
Authority
JP
Japan
Prior art keywords
nickel
particle size
powder
hydrazine
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3207872A
Other languages
Japanese (ja)
Other versions
JPH0551610A (en
Inventor
寿 三木
喜代志 佐藤
実 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3207872A priority Critical patent/JP2900650B2/en
Publication of JPH0551610A publication Critical patent/JPH0551610A/en
Application granted granted Critical
Publication of JP2900650B2 publication Critical patent/JP2900650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル微粉末の製造方
法、特に、積層コンデンサの内部電極材料として有用な
ニッケルの微粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine nickel powder, and more particularly to a method for producing a fine nickel powder useful as an internal electrode material of a multilayer capacitor.

【0002】[0002]

【従来の技術】近年、セラミック積層コンデンサの小型
化且つ大容量化が急激に進み、その生産コストの低減化
を図るべく、内部電極材料として白金、パラジウム等の
貴金属に代わりニッケルなどの卑金属を用い、かつ、誘
電体材料として非還元性誘電体磁器を用いることが、例
えば、特公昭56−46641号公報にて提案されてい
る。他方、この種の内部電極材料として用いる金属ニッ
ケル粉末の製造方法としては、例えば、特開昭53−9
5165号公報にて塩化ニッケル、炭酸ニッケル及び酢
酸ニッケルのうちいずれか一種を含むニッケル含有溶液
にヒドラジン若しくはヒドラジン化合物を添加、混合し
て100℃以下の温度で加熱する方法が提案されてい
る。
2. Description of the Related Art In recent years, miniaturization and large-capacity ceramic multilayer capacitors have rapidly advanced, and in order to reduce the production cost, a base metal such as nickel is used instead of a noble metal such as platinum or palladium as an internal electrode material. The use of non-reducing dielectric porcelain as a dielectric material has been proposed, for example, in Japanese Patent Publication No. 56-46641. On the other hand, as a method for producing metallic nickel powder used as this kind of internal electrode material, for example, Japanese Patent Application Laid-Open No.
No. 5165 proposes a method in which hydrazine or a hydrazine compound is added to a nickel-containing solution containing any one of nickel chloride, nickel carbonate and nickel acetate, mixed and heated at a temperature of 100 ° C. or lower.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この方
法では、微細な粒径のニッケル粉末を得るためには、ニ
ッケル塩1モル当たりヒドラジン又はその化合物を約1
4モル以上と多量添加しなければならず、しかも、生成
したニッケル粉末は粒度分布幅が広くバインダに対する
分散性が悪いため、積層コンデンサの内部電極材料とし
て使用した場合、内部欠陥や電気特性の劣化を招くとい
う問題があった。
However, in this method, in order to obtain nickel powder having a fine particle size, about 1 mol of hydrazine or its compound per mol of nickel salt is required.
It must be added in a large amount of 4 mol or more, and since the generated nickel powder has a wide particle size distribution and poor dispersibility in a binder, when used as an internal electrode material of a multilayer capacitor, internal defects and deterioration of electric characteristics are caused. There was a problem of inviting.

【0004】従って、本発明は、分散性が良く、粒径が
小さく粒度分布幅の極めて狭い金属ニッケル微粉末を得
ることを目的とするものである。
Accordingly, an object of the present invention is to obtain a fine metal nickel powder having good dispersibility, a small particle size and a very narrow particle size distribution width.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するため、水溶性ニッケル(II)塩の水溶液に強アルカ
リを加えて水酸化ニッケル(II)を生成させ、該水酸化ニ
ッケル(II)を強アルカリ下にて還元剤で還元するように
したものである。
According to the present invention, in order to solve the above-mentioned problems, a strong alkali is added to an aqueous solution of a water-soluble nickel (II) salt to produce nickel (II) hydroxide. II) is reduced with a reducing agent under strong alkali.

【0006】前記水溶性ニッケル(II)としては、例え
ば、塩化ニッケル(NiCl2)、硫酸ニッケル(NiSO
4)、硝酸ニッケル(Ni(NO32)、酢酸ニッケルな
どが挙げられるが、これらに限定されるものではない。
また、強アルカリとしては、水酸化カリウム及び水酸化
ナトリウムのいずれかを使用すれば良い。還元剤として
は、ヒドラジン及びヒドラジン化合物のうちの一種が使
用されるが、ヒドラジン又はヒドラジン水化物が好適で
ある。この還元剤、例えば、ヒドラジン水化物の添加量
は、一般的には、理論量の2〜3倍で十分である。
The water-soluble nickel (II) includes, for example, nickel chloride (NiCl 2 ), nickel sulfate (NiSO 2 ).
4 ), nickel nitrate (Ni (NO 3 ) 2 ), nickel acetate and the like, but are not limited thereto.
Further, any of potassium hydroxide and sodium hydroxide may be used as the strong alkali. As the reducing agent, one of hydrazine and a hydrazine compound is used, and hydrazine or hydrazine hydrate is preferable. In general, the addition amount of this reducing agent, for example, hydrazine hydrate, is 2 to 3 times the theoretical amount.

【0007】前記還元は強アルカリ下で行われるが、p
H10以上が好ましく、また、温度55〜70℃、ニッ
ケルイオン濃度2.0mol/l以下の条件下で行うのが好
適である。更に、微細で粒度分布幅の狭い微粉末を得る
ためには、40分以内の還元を完了させるように温度及
びニッケルイオン濃度を調整するのが望ましい。
[0007] The reduction is carried out under a strong alkali.
H10 or more is preferable, and the heat treatment is preferably performed at a temperature of 55 to 70 ° C. and a nickel ion concentration of 2.0 mol / l or less. Furthermore, in order to obtain a fine powder having a narrow particle size distribution width, it is desirable to adjust the temperature and the nickel ion concentration so as to complete the reduction within 40 minutes.

【0008】[0008]

【作用】ニッケル源として塩化ニッケルを用い、還元剤
としてヒドラジン水化物を用いた場合について、下記反
応式を参照しながら説明すると、塩化ニッケルを水に溶
かして水溶液とし(反応式(1))、これに水酸化ナト
リウム溶液を加えて強アルカリ性にすると、水酸化ニッ
ケル(II)、Ni(OH)2、が沈澱する(反応式
(2))。これにヒドラジン水化物を加えると、ヒドラ
ジンが分解し(反応式(3))、その分解により生じた
アンモニアと水酸化ニッケル(II)とが反応してニッケ
ル錯塩を生成し(反応式(4))、これに更にヒドラジ
ン水化物を加えるとニッケル錯塩が還元され、ニッケル
が析出する(反応式(5))。
The case where nickel chloride is used as a nickel source and hydrazine hydrate is used as a reducing agent will be described with reference to the following reaction formula. Nickel chloride is dissolved in water to form an aqueous solution (reaction formula (1)). When sodium hydroxide solution is added to the mixture to make it strongly alkaline, nickel (II) hydroxide and Ni (OH) 2 precipitate (reaction formula (2)). When hydrazine hydrate is added thereto, hydrazine is decomposed (reaction formula (3)), and ammonia generated by the decomposition reacts with nickel (II) hydroxide to form a nickel complex salt (reaction formula (4)). ), When hydrazine hydrate is further added thereto, the nickel complex is reduced and nickel is precipitated (reaction formula (5)).

【0009】(1)NiCl2・6H2O→Ni2++2Cl-
+6H2O (2)Ni2++2OH-→Ni(OH)2↓ 強アルカリ下 (3)2N24・H2O→2NH3+N2+2e-+2H3
+ (4)Ni(OH)2+6NH3→[Ni(NH3)62++2O
- (5)[Ni(NH3)62++2e-→Ni↓+NH3
(1) NiClTwo・ 6HTwoO → Ni2++ 2Cl-
+ 6HTwoO (2) Ni2++ 2OH-→ Ni (OH)Two↓ Under strong alkali (3) 2NTwoHFour・ HTwoO → 2NHThree+ NTwo+ 2e-+ 2HThree
O+  (4) Ni (OH)Two+ 6NHThree→ [Ni (NHThree)6]2++ 2O
H-  (5) [Ni (NHThree)6]2++ 2e-→ Ni ↓ + NHThree

【0010】前記還元反応により生成されるニッケル粉
末の一次粒子の粒径及びその粒度分布は、一般に、その
反応速度、従って、還元剤(ここではヒドラジン水化
物)の投入開始時から反応系中のニッケルイオンが全て
ニッケルに還元されるまでの時間に依存するが、還元が
40分以内で完了するようにニッケルイオン濃度及び反
応温度を調節すれば、1次粒子の平均粒径0.3μm、
粒度範囲0.17〜5.27μmと粒度分布幅が極めて狭
くサブミクロンオーダーの球形のニッケル微粉末が得ら
れる。通常、ニッケルイオン濃度2.0mol以下、反応温
度55〜70℃の条件下で還元を行うのが好適である。
[0010] The particle size and the particle size distribution of the primary particles of nickel powder produced by the above-mentioned reduction reaction are generally determined by the reaction rate, and therefore, from the start of charging of the reducing agent (here, hydrazine hydrate) into the reaction system. Although it depends on the time until all the nickel ions are reduced to nickel, if the nickel ion concentration and the reaction temperature are adjusted so that the reduction is completed within 40 minutes, the average particle size of the primary particles is 0.3 μm,
A very fine particle size distribution range of 0.17 to 5.27 μm and a submicron-order spherical fine nickel powder can be obtained. Usually, it is preferable to carry out the reduction under the conditions of a nickel ion concentration of 2.0 mol or less and a reaction temperature of 55 to 70 ° C.

【0011】以下、実施例について説明する。Hereinafter, embodiments will be described.

【0012】[0012]

【実施例】純水1000mlを55〜70℃範囲内の一定
温度に加熱、維持し、これに表1に示す量のNiCl2
6H2Oを完全に溶解させる。この水溶液に3.17mol
/Ni2+となるようにNaOH溶液を加えてpHを13
〜14に調整し、さらに分散剤として1%カルボキシメ
チルセルロース溶液を全量の1/100加えた後、撹拌
機を130rpmの速度で回転させて撹拌しながら、N
2+イオンチェッカーでニッケルイオンが検出されなく
なるまで30℃に維持したヒドラジン水化物を加えニッ
ケルを析出させる。ヒドラジン水化物の添加量は12.
7mol/Ni2+である。次いで、反応液を室温まで冷却し
た後、純水を静かに加え、洗浄液のpHが7.0〜8.
0になるまで生成したニッケル粉末を洗浄する。次い
で、ニッケル粉末を濾別したのち、90℃で乾燥して金
属ニッケル粉末を得る。
EXAMPLE 1000 ml of pure water was heated and maintained at a constant temperature in the range of 55 to 70 ° C., and the amount of NiCl 2.
Completely dissolve 6H 2 O. 3.17 mol in this aqueous solution
/ Ni 2+ to adjust the pH to 13 by adding a NaOH solution.
After adjusting 1 to 14 and further adding 1/100 of a 1% carboxymethylcellulose solution as a dispersing agent, the stirring was performed while rotating the stirrer at a speed of 130 rpm.
Hydrazine hydrate maintained at 30 ° C. is added until nickel ions are no longer detected by the i 2+ ion checker to precipitate nickel. The amount of hydrazine hydrate added was 12.
7 mol / Ni2 + . Next, after cooling the reaction solution to room temperature, pure water was gently added, and the pH of the washing solution was 7.0 to 8.0.
The generated nickel powder is washed until it becomes zero. Next, the nickel powder is filtered off and dried at 90 ° C. to obtain a metal nickel powder.

【0013】得られた金属ニッケル粉末は球形であり、
その一次粒子径(平均粒径)および粒度分布を求めたと
ころ、表1に示す結果が得られた。なお、一次粒子の平
均粒径は2次電子像写真から求めた。表1中、還元時間
はヒドラジン水化物の投入を開始した時点からニッケル
イオンが検出されなくなるまでの時間である。
The obtained metallic nickel powder is spherical,
When the primary particle size (average particle size) and the particle size distribution were determined, the results shown in Table 1 were obtained. The average particle size of the primary particles was determined from a secondary electron image photograph. In Table 1, the reduction time is the time from the start of the introduction of hydrazine hydrate until the detection of nickel ions is stopped.

【0014】[0014]

【表1】 番号 Ni2+濃度 温度 粒度分布 1次粒子径 還元時間 (mol/l) (℃) D10 D50 D90 (μm) (分) 1 0.10 70 0.58 1.53 3.50 0.3 10 2* 0.42 40 0.73 2.20 14.27 0.7 120 3* 〃 50 0.73 1.98 5.63 0.7 70 4 〃 60 0.56 1.38 3.32 0.3 30 5* 0.70 40 0.76 2.13 8.97 0.7 60 6 〃 50 0.55 1.38 3.88 0.3 40 7 〃 60 0.57 1.44 3.30 0.3 35 8 0.80 〃 0.58 1.44 3.30 0.3 35 9 0.90 〃 0.57 1.41 2.93 0.3 30 10 1.0 〃 0.54 1.33 2.71 0.3 25
[Table 1] No. Ni 2+ concentration Temperature particle size distribution Primary particle size Reduction time (mol / l) (° C) D10 D50 D90 (μm) (min) 1 0.10 70 0.58 1.53 3.50 0.3 10 2 * 0.42 40 0.73 2.20 14.27 0.7 120 3 * 〃 50 0.73 1.98 5.63 0.7 70 4 〃 60 0.56 1.38 3.32 0.3 305 * 0.70 40 0.76 2.13 8.97 0.7 606 〃 50 0.55 1.38 3.88 0.3 407 〃 60 0.57 1.44 3.30 0.3 35 8 0.80 〃 0.58 1.44 3.30 0.3 35 9 0.90 〃 0.57 1.41 2.93 0.3 30 10 1.0 〃 0.54 1.33 2.71 0.3 25

【0015】表1から明らかなように、Ni2+濃度が一
定でも反応温度を高くすることによって還元時間を短縮
でき、逆に反応温度が一定の場合、Ni2+濃度を高める
ことにより還元時間を短縮できる。また、還元時間が4
0分以内であれば、平均粒径が小さく粒度分布幅の狭い
ニッケル粉末が得られるが(試料番号1、4、6〜1
0)、還元時間が40分より長くなると1次粒子の平均
粒径が約0.7μmとなり、粒度分布の広い粉末となる
(試料番号2、3、5)。
As is clear from Table 1, the reduction time can be shortened by increasing the reaction temperature even when the Ni 2+ concentration is constant. Conversely, when the reaction temperature is constant, the reduction time is increased by increasing the Ni 2+ concentration. Can be shortened. In addition, the return time is 4
Within 0 minutes, a nickel powder having a small average particle size and a narrow particle size distribution width can be obtained (sample numbers 1, 4, 6 to 1).
0), when the reduction time is longer than 40 minutes, the average particle size of the primary particles becomes about 0.7 μm, and the powder has a wide particle size distribution (sample numbers 2, 3, and 5).

【0016】次に、各ニッケル粉末をエチルセルロース
系樹脂とテルピネオールを用いて導電ペーストを調製
し、10μm厚のセラミックシート上に印刷して、1.
3μm厚の塗布膜を形成し試料を得た。各塗布膜の表面
荒さを求めるため、その表面に針を置き、この針を移動
させたときの針の上下移動幅を測定したところ、その平
均値は試料番号1、4、6〜10のニッケル粉末を用い
た塗布膜ではそれぞれ1.6μmであり、試料番号2、
3、5のニッケル粉末を用いたものではそれぞれ2.8
μmであった。
Next, a conductive paste was prepared from each nickel powder using an ethylcellulose resin and terpineol, and printed on a 10 μm-thick ceramic sheet.
A coating film having a thickness of 3 μm was formed to obtain a sample. In order to determine the surface roughness of each coating film, a needle was placed on the surface, and the vertical movement width of the needle when the needle was moved was measured. The average value was nickel of sample numbers 1, 4, 6 to 10. In the case of a coating film using powder, the thickness was 1.6 μm.
In the case of using the nickel powders of Nos. 3 and 5, it is 2.8 each.
μm.

【0017】また、前記各試料をガラス板の上に置き、
下から光をあてて電子顕微鏡で光の透過写真をとったと
ころ、試料番号1、4、6〜10のニッケル粉末を用い
たものでは、光の漏れの無い良質な印刷膜が得られた
が、試料番号2、3、5のニッケル粉末を用いたもので
は光の透過が観察され、塗布膜にピンホールが認められ
た。
Further, each of the samples is placed on a glass plate,
A light transmission photograph was taken with an electron microscope by irradiating light from below. As a result, in the case of using the nickel powders of Sample Nos. 1, 4, and 6 to 10, a high quality printed film without light leakage was obtained. In samples using the nickel powders of Sample Nos. 2, 3, and 5, light transmission was observed, and pinholes were observed in the coating film.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、ニッケ
ル錯塩を強アルカリ下で還元し、液相反応によりニッケ
ル粉末を製造するようにしたので、分散性が良く、粒径
が小さく粒度分布幅の極めて狭いニッケル微粉末を得る
ことができ、特性の劣化がなく、低価格で小型大容量の
セラミック積層コンデンサを製造することができる。
As described above, according to the present invention, a nickel complex salt is reduced under a strong alkali to produce a nickel powder by a liquid phase reaction, so that the dispersibility is good, the particle size is small, and the particle size distribution is small. A very narrow nickel fine powder can be obtained, and a low-cost, small-capacity, large-capacity ceramic multilayer capacitor can be manufactured without deterioration in characteristics.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−130412(JP,A) 特公 昭41−4567(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B22F 9/20 B22F 9/24 C22B 23/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-130412 (JP, A) JP-B-41-4567 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 9/20 B22F 9/24 C22B 23/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水溶性ニッケル(II)塩の水溶液に強アル
カリを加えて水酸化ニッケル(II)を生成させ、該水酸化
ニッケル(II)をニッケルイオン濃度2.0mol/l以下、
温度55〜70℃、pH10〜14の条件下で還元剤を
用いて還元することを特徴とするニッケル微粉末の製造
方法。
1. A strong alkali is added to an aqueous solution of a water-soluble nickel (II) salt to produce nickel (II) hydroxide, and the nickel (II) hydroxide has a nickel ion concentration of 2.0 mol / l or less.
A method for producing fine nickel powder, comprising reducing with a reducing agent at a temperature of 55 to 70 ° C and a pH of 10 to 14.
【請求項2】 前記還元剤がヒドラジン又はヒドラジン
水化物である請求項1に記載の方法。
2. The method according to claim 1, wherein the reducing agent is hydrazine or hydrazine hydrate.
JP3207872A 1991-08-20 1991-08-20 Method for producing nickel fine powder Expired - Lifetime JP2900650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3207872A JP2900650B2 (en) 1991-08-20 1991-08-20 Method for producing nickel fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3207872A JP2900650B2 (en) 1991-08-20 1991-08-20 Method for producing nickel fine powder

Publications (2)

Publication Number Publication Date
JPH0551610A JPH0551610A (en) 1993-03-02
JP2900650B2 true JP2900650B2 (en) 1999-06-02

Family

ID=16546949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3207872A Expired - Lifetime JP2900650B2 (en) 1991-08-20 1991-08-20 Method for producing nickel fine powder

Country Status (1)

Country Link
JP (1) JP2900650B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
JP2945644B2 (en) * 1997-12-12 1999-09-06 三井金属鉱業株式会社 Nickel fine powder and method for producing the same
TW467780B (en) * 1999-11-10 2001-12-11 Mitsui Mining & Smelting Co Nickel powder, a production thereof and conductive paste
WO2001036131A1 (en) * 1999-11-12 2001-05-25 Mitsui Mining And Smelting Co., Ltd. Nickel powder and conductive paste
KR100399716B1 (en) * 2001-06-07 2003-09-29 한국과학기술연구원 The Manufacturing Method Of Fine Powder Of Nickel
JP4540364B2 (en) * 2004-03-01 2010-09-08 東邦チタニウム株式会社 Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
CN1299863C (en) * 2005-03-31 2007-02-14 上海交通大学 Method for preparing hollow or clad nickel alloy spherical powder
CN100402205C (en) * 2006-08-07 2008-07-16 黄德欢 Process for preparing nano-nickel powder
JP5063624B2 (en) * 2009-02-12 2012-10-31 株式会社ノリタケカンパニーリミテド Method for producing nickel fine particles
CN103464781A (en) * 2013-09-06 2013-12-25 浙江大学 Method of producing nickel microspheres
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline
JP6857321B2 (en) * 2016-10-27 2021-04-14 住友金属鉱山株式会社 Nickel powder manufacturing method

Also Published As

Publication number Publication date
JPH0551610A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
KR101945166B1 (en) Copper powder for conductive paste and method for manufacturing same
JP4025839B2 (en) Silver powder and method for producing silver powder
JP2900650B2 (en) Method for producing nickel fine powder
JP2010018880A (en) Copper powder for conductive paste, and method for producing the same
KR20180047529A (en) Silver powder and manufacturing method of the same
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP2007131950A (en) Silver powder
JP4012960B2 (en) Silver powder manufacturing method
JP2000129318A (en) Silver powder and its production
JPH02294414A (en) Production of fine copper powder
US11697863B2 (en) Spherical silver powder and method for producing same
JP4100244B2 (en) Nickel powder and method for producing the same
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JPH07278619A (en) Production of nickel powder
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JPH01139710A (en) Manufacture of fine granular alloy powder
JP2017166048A (en) Copper powder and manufacturing method therefor, and conductive paste
KR100709822B1 (en) Method for Surface treatment of Ni particle with Acid solution
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP2007224422A (en) Silver powder and paste using the same
TWI544977B (en) Copper powder for conductive paste and method for producing same
JPH07207307A (en) Production of nickel powder
JP2018135564A (en) Tin-coated copper powder, method for manufacturing the same, and conductive paste

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13