JPS5834925A - Liquid phase epitaxial growth device - Google Patents

Liquid phase epitaxial growth device

Info

Publication number
JPS5834925A
JPS5834925A JP13367081A JP13367081A JPS5834925A JP S5834925 A JPS5834925 A JP S5834925A JP 13367081 A JP13367081 A JP 13367081A JP 13367081 A JP13367081 A JP 13367081A JP S5834925 A JPS5834925 A JP S5834925A
Authority
JP
Japan
Prior art keywords
substrate
liquid phase
liquid
vessel
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13367081A
Other languages
Japanese (ja)
Other versions
JPH0338736B2 (en
Inventor
Michiharu Ito
伊藤 道春
Mitsuo Yoshikawa
吉河 満男
Shigeki Hamashima
濱嶋 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13367081A priority Critical patent/JPS5834925A/en
Publication of JPS5834925A publication Critical patent/JPS5834925A/en
Publication of JPH0338736B2 publication Critical patent/JPH0338736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02411Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To facilitate the growth of a crystal layer by a simple structure wherein a closed vessel contains a substrate support whereon a substrate is placed and a liquid pit filled with crystal material to be grown on the substrate, and the vessel is set up in a heating furnace in the way that upper and lower sides can be reversed. CONSTITUTION:A quartz vessel 16 contains a carbon substrate support 12 which has a CdTe substrate 11 buried in it and which opposes to a carbon member 15 having a liquid 14 that accommodates liquid phase 13 of Hg1-xCdxTe where Hg is a solvent and CdTe is a solute. The vessel is evacuated and sealed at one end. Then the sealed carbon vessel 16 is inserted into a reaction tube 17 and heated by a heating furnace 18. Thus the quartz vesssel 16 is rotated so that the liquid phase 13 contacts the substrate 11 under a state in which the material in the liquid pit is kept molten. Finally, the temperature in the heating furnace is cooled to grow a crystal layer on the substrate.

Description

【発明の詳細な説明】 本発明は液相エピタキVヤμ成長装置、特に化合物半導
体のテ/L//I/化カド識つム水銀(Hg 1−xc
 dxTe)の液相エビタキVヤ〃成長装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase epitaxy VYμ growth apparatus, particularly for compound semiconductor T/L//I/Cd crystal mercury (Hg 1-xc).
This invention relates to an improvement of a liquid phase Evitaki Vya growth apparatus for dxTe).

化合物半導体のHJEl−xcdxTeは、そのエネル
ギーギャップが狭く、赤外線検知素子の材料とじて用い
られている。
HJEl-xcdxTe, a compound semiconductor, has a narrow energy gap and is used as a material for infrared sensing elements.

このようなHg1−xCdzTeの結晶の製造方法とし
ては、従来カーボンよりなる支持台に例えばテルル化カ
ドミウム(CdTe )よりなる基板を埋設し、該支持
台上をスライドして移動するスフイド部材に液だめを設
け、該液だめ中にテルル(Te )を溶媒、カドミウム
水銀(HgCd)を溶質とした液相を充填し、該スライ
ド部材をスライドさせて基板上に上記液相を接触させる
ことでCdTeの基板上にHg1−zcdzTeの結晶
層を形成するいわゆるスライディング法が用いられてい
た。
Conventionally, a method for manufacturing such Hg1-xCdzTe crystals involves embedding a substrate made of, for example, cadmium telluride (CdTe) in a support made of carbon, and placing a liquid reservoir in a sphoid member that slides on the support. A liquid phase containing tellurium (Te) as a solvent and cadmium mercury (HgCd) as a solute is filled in the liquid reservoir, and the liquid phase is brought into contact with the substrate by sliding the slide member. A so-called sliding method was used to form a crystal layer of Hg1-zcdzTe on a substrate.

しかし前記Teよりなる溶媒はスライド部材および支持
台よりなる液相エピタキシャル成長装置を形成するカー
ボン材に対してなじみやすく容易に分離され難いため、
たとえば基板上にHg s −xCdzTeの結晶層を
形成してから、スライド部材を移動させて基板上に残留
している液相を除去しようとしても該液相がスフイド部
材あるいは支持台に付着しやすいのでスライドする際に
支持台、スライド部材に付着している液相が基板に再び
付着し、基板上から液相をぬぐい去ることは困難であっ
た。
However, since the solvent made of Te is compatible with the carbon material forming the liquid phase epitaxial growth apparatus made of the slide member and the support base, it is difficult to separate it easily.
For example, even if a crystal layer of Hg s -xCdzTe is formed on a substrate and the sliding member is moved to remove the liquid phase remaining on the substrate, the liquid phase tends to adhere to the sphide member or the support base. Therefore, when sliding, the liquid phase adhering to the support stand and the slide member adheres to the substrate again, making it difficult to wipe off the liquid phase from the substrate.

そこで水銀(Hg)を溶媒として、該HgにCdTeを
溶質として溶解させてQ 1−xCdxTeの液相を形
成してから、0dTeの基板上にHg1−xCdxTe
の結晶層を液相エビタキVヤル成長方法によシ形成する
方法がとられている。
Therefore, we used mercury (Hg) as a solvent and dissolved CdTe in the Hg as a solute to form a liquid phase of Q1-xCdxTe.
A method has been adopted in which a crystalline layer is formed by a liquid phase epitaxial growth method.

ところで前述したHg 1−ccdxT61のHgは易
蒸発性であり、このような易蒸発性の1(gを含む■1
−xO(1xTeの材料の液相を用いて基板上にエピタ
キシャル成長させる場合には、従来第1図のような装置
を用いていた。
By the way, Hg in Hg 1-ccdxT61 mentioned above is easily evaporable, and such easily evaporable 1 (including 1
In the case of epitaxially growing a -xO(1xTe material on a substrate using a liquid phase), an apparatus as shown in FIG. 1 has conventionally been used.

第1図は従来の液相エビタキシャ/L/成憂装置の概略
図で、例えばカーボンまたは石英よりなる密閉容器1中
にHg1−x’:”1xTeの液相2を充填し、Cl1
Teの基板8を設置した基板支持棒4を下方に移動させ
て該基板を液相中に浸漬させたのち前記密閉容器1を加
熱する加熱炉(図示せず)の温度を下降させて液相の温
度を冷却させてCdTe基板上にHgt−1OLlzT
eの結晶を析出させてから基板支持棒を上方に移動させ
て基板上にHg1−xodxTeの結晶層を形成させる
いわゆるディッピング法を用いた装置である。
FIG. 1 is a schematic diagram of a conventional liquid-phase Ebitaxia/L/Seiyu device, in which a closed container 1 made of carbon or quartz is filled with a liquid phase 2 of Hg1-x':"1xTe, and Cl1
After moving the substrate support rod 4 on which the Te substrate 8 is placed downward and immersing the substrate in the liquid phase, the temperature of a heating furnace (not shown) that heats the sealed container 1 is lowered and the temperature is reduced to the liquid phase. Hgt-1OLlzT was deposited on the CdTe substrate by cooling the temperature of
This apparatus uses a so-called dipping method in which a crystal layer of Hg1-xodxTe is formed on the substrate by depositing crystals of e and then moving the substrate support rod upward.

しかし上記した装置では前記Hgが易蒸発性で蒸気圧が
高いため、前記f(gの蒸気圧に耐えるように装置を設
計しなければならず、装置が高価なものとなる欠点があ
る。
However, in the above-mentioned apparatus, since the Hg is easily evaporated and has a high vapor pressure, the apparatus must be designed to withstand the vapor pressure of f(g), which has the drawback of making the apparatus expensive.

また前記した力〜ボンよりなる支持台とスライド部材よ
りなる液相エビタキシャ/L’成長装置を用いて、液だ
めにHgを溶媒とし、CdTeを溶質として形成した液
相を充填し、該液相をCdTeの基板に接触させて該エ
ビタキシャμ成長装置を加熱する加熱炉の温度を低下さ
せて基板にHg1−xcdx’reの結晶層を形成する
いわゆるスライディング法によってHgI−zcdzT
eの結晶層を形成することも試みた。しかしこの方法で
あるとエビタキンヤp成長装置を挿入する水素ガス雰囲
気の又応管が開管状頗になってお9易蒸発性のHgが蒸
発して反応管より外部に逃散し均一な組成のHg1−x
CdxTeの結晶層が形成されない不都合を生じる。
In addition, using the liquid phase epitaxia/L' growth apparatus consisting of a support stand made of a force bomb and a slide member, a liquid reservoir is filled with a liquid phase formed by using Hg as a solvent and CdTe as a solute, and the liquid phase is HgI-zcdzT is grown by a so-called sliding method in which a crystal layer of Hg1-xcdx're is formed on the substrate by lowering the temperature of a heating furnace that heats the epitaxia μ growth apparatus by contacting with a CdTe substrate.
We also attempted to form a crystal layer of e. However, with this method, the reaction tube with hydrogen gas atmosphere into which the Evita Kinya p growth apparatus is inserted becomes an open tube, and Hg, which is easily evaporated, evaporates and escapes from the reaction tube to the outside, resulting in a uniform composition of Hg1. -x
This results in the inconvenience that a CdxTe crystal layer is not formed.

本発明は上述した欠点を除去し、簡単な構造でしかも易
蒸発性のI(gが蒸発しないような構造の液相エピタキ
シャル成長装置の提供を目的とするものである。
The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a liquid phase epitaxial growth apparatus having a simple structure and a structure in which easily evaporable I(g) does not evaporate.

かかる目的を達成するための液相エピタキシャル成長装
置は、基板を埋設する基板支持台と、該基板上に成長さ
せるべき結晶の液相を収容せる液だめを保持する部材と
を対向配置して密閉容器内に封入した構成を有し、前記
基板支持台には基板を設置するとともに1前記液だめに
は基板上に成長させるべき結晶の材料を充填した状態で
、前記基板支持台と液だめを保持する部材との上下関係
を反転できるよう加熱炉中に回転可能に設置したことを
特徴とするものである。
A liquid phase epitaxial growth apparatus for achieving this purpose consists of a closed container in which a substrate support table in which a substrate is buried and a member holding a liquid reservoir in which a liquid phase of a crystal to be grown on the substrate is placed facing each other. A substrate is placed on the substrate support, and the liquid reservoir is filled with a crystal material to be grown on the substrate, and the substrate support and the liquid reservoir are held. It is characterized in that it is rotatably installed in the heating furnace so that the vertical relationship with the members to be heated can be reversed.

以下図面を用いて本発明の一実施例につき詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の液相エビタキシャ/l/成長装置の一
実施例の断面図で図示するようにC(ITe基板11を
埋設するカーボン製の基板支持台【2と該基板支持台1
2に対向して該基板上に形成すべき1(gを溶媒としC
dTeを溶質としてHg1−2cdxTeの材料の液相
18を収容する液だめ14を保持するカーボン製の部材
16が石英製の容器16中に収容されている。該容器内
部は真空に排気されて一端が封止されている。そして基
板11と液だめ14とは対向配置されているものとする
FIG. 2 is a cross-sectional view of an embodiment of the liquid phase epitaxia/l/growth apparatus of the present invention, as shown in FIG.
1 to be formed on the substrate opposite to 2 (G is the solvent and C
A carbon member 16 holding a liquid reservoir 14 containing a liquid phase 18 of Hg1-2cdxTe with dTe as a solute is housed in a quartz container 16. The inside of the container is evacuated and one end is sealed. It is assumed that the substrate 11 and the liquid reservoir 14 are placed opposite each other.

このような基板支持台12にcd’reの基板11を、
また液だめにはHgを溶媒としCdTeを溶質とした’
Hg 1−XCCIXTeの材料を充填した状態で前記
基板支持台12と液だめを保持する部材15とを石英容
器内部に挿入し該石英容器の内部を排気して端部Aを封
止する。その後封止した石英容器16を反応管17中に
挿入し、該反応管17を加熱炉18にて加熱する。
The CD'RE board 11 is placed on such a board support stand 12.
In addition, in the liquid reservoir, Hg was used as a solvent and CdTe was used as a solute.
Filled with Hg 1-XCCIXTe material, the substrate support 12 and the member 15 holding the liquid reservoir are inserted into the quartz container, the inside of the quartz container is evacuated, and the end A is sealed. Thereafter, the sealed quartz container 16 is inserted into the reaction tube 17, and the reaction tube 17 is heated in the heating furnace 18.

このようにして液だめ14中のHg1−xCdxTeの
材料が溶融した状態で該一端を封止した石英容器16を
回転させて基板11上にHg 5−xCdxTe1の液
相を接触させてから加熱炉の温度を冷却させて過飽和状
頗となった1k 1−xCdxT”の液相の組成を結晶
層として基板上に成長させる。この回転時に基板支持台
と液だめ保持部材が離れないようにピン等を用いて支持
台と部材を固定する。その後所定時間経過して基板上に
所定の厚さ結晶層が成長した段階で再び一端を封止した
石英容−を回転させて基板上に載っているHgt−zC
dzTeの液相を取り除く。このように一端を封止した
石英容器を回転させるには、該石英容器に石英棒B等を
溶着等によシ取りつけて反応管17の外部の方向に引き
出しておけばよい、tたこの回転時に基板支持台と液だ
め保持部材が移動しないように石英容器16の内部に石
英製の枠19をもうけて該枠に液だめ保持部材を固定す
る。
With the Hg1-xCdxTe material in the liquid reservoir 14 in this molten state, the quartz container 16 with one end sealed is rotated to bring the liquid phase of Hg5-xCdxTe1 into contact with the substrate 11, and then the heating furnace is heated. The liquid phase composition of 1k 1-xCdxT", which has become supersaturated, is grown on the substrate as a crystal layer. During this rotation, pins etc. are used to prevent the substrate support and the liquid reservoir holding member from coming apart. After that, after a predetermined period of time has passed and a crystal layer of a predetermined thickness has grown on the substrate, the quartz container with one end sealed is rotated again and placed on the substrate. Hgt-zC
Remove the dzTe liquid phase. In order to rotate a quartz container with one end sealed in this way, it is sufficient to attach a quartz rod B or the like to the quartz container by welding or the like and pull it out toward the outside of the reaction tube 17. A frame 19 made of quartz is provided inside the quartz container 16, and the liquid reservoir holding member is fixed to the frame so that the substrate support stand and the liquid reservoir holding member do not move at any time.

以上述べたように本発明の液相エピタキシャル成長装置
を用いれば簡単な装置で易蒸発性のHgを含むHg1−
zcdzTlilの結晶層が容易に成長でき、赤外線検
知素子用の結晶が容易に得られる利点を生じる。また以
上の実施例の池に基板支持台および液iの保持部材は石
英を用いて形成してもよい・
As described above, if the liquid phase epitaxial growth apparatus of the present invention is used, Hg1- containing easily evaporable Hg can be grown with a simple apparatus.
A crystal layer of zcdzTlil can be easily grown, giving rise to the advantage that crystals for infrared sensing elements can be easily obtained. Furthermore, the substrate support stand and the liquid i holding member in the pond of the above embodiment may be formed using quartz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液相エビタキシャ〃成長装置の概略図で
、第2図は本発明の液相エビタキシャμ成長装置の一実
施例を示す断面図である。 図において、lは密閉容器、2はHg 1−XCdXT
eの液相、8はC!(iTeの基板、4は支持棒、11
は基板、12は基板支持台、18はHgl 4C(1x
Teの液相、14は液だめ、15は部材、16は容器、
17は反応管:18は加熱炉、19は石英枠、Aは端部
、Bは石英棒を示す。
FIG. 1 is a schematic diagram of a conventional liquid phase epitaxia growth apparatus, and FIG. 2 is a sectional view showing an embodiment of the liquid phase epitaxia μ growth apparatus of the present invention. In the figure, l is a closed container, 2 is Hg 1-XCdXT
Liquid phase of e, 8 is C! (iTe substrate, 4 is a support rod, 11
is the substrate, 12 is the substrate support, 18 is Hgl 4C (1x
A liquid phase of Te, 14 a liquid reservoir, 15 a member, 16 a container,
17 is a reaction tube, 18 is a heating furnace, 19 is a quartz frame, A is an end, and B is a quartz rod.

Claims (1)

【特許請求の範囲】[Claims] 基板を埋設する基板支持台と、該基板上に成長させるべ
き結晶の液相を収容せる液だめを保持する部材とを対向
配置して密閉容器内に封入した構成を有し、前記基板支
持台には基板を設置するとともに前記液だめには基板上
に成長させるべき結晶の材料を充填した状鮨で前記基板
支持台と液だめを保持する部材との上下関係を反転でき
るよう加熱炉中に回転可能に設置したことを特徴とする
液相エピタキシャル成長装置。
The substrate support has a structure in which a substrate support in which a substrate is buried and a member holding a liquid reservoir that accommodates a liquid phase of a crystal to be grown on the substrate are arranged facing each other and enclosed in a closed container, and the substrate support is A substrate is placed on the substrate, and the liquid reservoir is filled with a crystal material to be grown on the substrate. A liquid phase epitaxial growth apparatus characterized by being rotatably installed.
JP13367081A 1981-08-25 1981-08-25 Liquid phase epitaxial growth device Granted JPS5834925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13367081A JPS5834925A (en) 1981-08-25 1981-08-25 Liquid phase epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13367081A JPS5834925A (en) 1981-08-25 1981-08-25 Liquid phase epitaxial growth device

Publications (2)

Publication Number Publication Date
JPS5834925A true JPS5834925A (en) 1983-03-01
JPH0338736B2 JPH0338736B2 (en) 1991-06-11

Family

ID=15110157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13367081A Granted JPS5834925A (en) 1981-08-25 1981-08-25 Liquid phase epitaxial growth device

Country Status (1)

Country Link
JP (1) JPS5834925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194516A (en) * 1981-05-26 1982-11-30 Toyo Aluminium Kk Aluminum foil for electrolytic condenser
US6855408B2 (en) 2002-01-25 2005-02-15 Showa Denko K.K. Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
US11172720B2 (en) 2016-06-14 2021-11-16 Darryl Rodney FLACK Helmet with chin crush zone and integrated ventilation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144271A (en) * 1976-05-27 1977-12-01 Toshiba Corp Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144271A (en) * 1976-05-27 1977-12-01 Toshiba Corp Preparation of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194516A (en) * 1981-05-26 1982-11-30 Toyo Aluminium Kk Aluminum foil for electrolytic condenser
JPS6242370B2 (en) * 1981-05-26 1987-09-08 Toyo Aluminium Kk
US6855408B2 (en) 2002-01-25 2005-02-15 Showa Denko K.K. Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
US11172720B2 (en) 2016-06-14 2021-11-16 Darryl Rodney FLACK Helmet with chin crush zone and integrated ventilation

Also Published As

Publication number Publication date
JPH0338736B2 (en) 1991-06-11

Similar Documents

Publication Publication Date Title
US4642142A (en) Process for making mercury cadmium telluride
JPS5834925A (en) Liquid phase epitaxial growth device
US4567849A (en) Dipping liquid phase epitaxy for HgCdTe
US4474640A (en) In situ differential thermal analysis for HgCdTe LPE
JPH042689A (en) Method for hetero-epitaxial liquid phase growth
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JPS5934137Y2 (en) Liquid phase epitaxial growth equipment
JPS5918645A (en) Liquid phase epitaxial growth apparatus
JPH0516222Y2 (en)
JPS582036A (en) Manufacture of semiconductor device
JPH0527500Y2 (en)
JPH0322913Y2 (en)
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JP2548722B2 (en) Liquid phase crystal growth equipment
JPS63159290A (en) Liquid phase epitaxial growth and device therefor
JPS58131737A (en) Liquid phase epitaxial growing method
JPS60182140A (en) Liquid phase epitaxial crystal growth method and device thereof
JPH08217590A (en) Method for growing single crystal
JPS58212142A (en) Liquid phase epitaxially growth method
JPS6410091B2 (en)
JPH0585887A (en) Apparatus for growing crystal and method therefor
JPS5976432A (en) Liquid phase epitaxial growth apparatus
JPS58196027A (en) Liquid phase epitaxial growing device
JPH03259513A (en) Liquid epitaxial crystal growth method
JPH04324927A (en) Manufacture of compound semiconductor crystal