JPS60182140A - Liquid phase epitaxial crystal growth method and device thereof - Google Patents

Liquid phase epitaxial crystal growth method and device thereof

Info

Publication number
JPS60182140A
JPS60182140A JP3673784A JP3673784A JPS60182140A JP S60182140 A JPS60182140 A JP S60182140A JP 3673784 A JP3673784 A JP 3673784A JP 3673784 A JP3673784 A JP 3673784A JP S60182140 A JPS60182140 A JP S60182140A
Authority
JP
Japan
Prior art keywords
substrate
melt
retaining plate
plate
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3673784A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Mitsuo Yoshikawa
吉河 満男
Hiroshi Takigawa
宏 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3673784A priority Critical patent/JPS60182140A/en
Publication of JPS60182140A publication Critical patent/JPS60182140A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the condensation of melt vapor on a substrate as well as to obtain a flat grown plane surface by a method wherein a material having the specific heat larger than the substrate and a substrate retaining plate is tightly fixed to the back side of the substrate to be epitaxially grown. CONSTITUTION:A retaining plate 2 is attached in a rotary quartz tube 1, and the raw crystal of prescribed component ratio is placed therein. Said retaining plate 2 consists of a quartz plate, and a sapphire plate 11 placed in a recess located on one side of the retaining plate and a single crystal substrate 3 is placed in another recess located on the opposite side of the retaining plate. Then, the retaining plate 2 and the raw crystal are heated up in the state wherein they are separated from each other, and a melt 5 is obtained. Subsequently, the retaining plate 2 is vertically erected, the melt 5 and the source substrate 4 are brought to come in contact with each other, and the melt 5 is saturated. Then, the retaining plate is horizontally positioned, the substrate 3 and the melt 5 are contacted, and an epitaxial growth is performed. Lastly, the retaining plate 2 and the melt 5 are separated and cooled. As the specific heat of the sapphire plate is large, the temperature of the substrate 3 is lowered later than the other part, and the melt vapor is not condensed on the substrate 3.

Description

【発明の詳細な説明】 (a)0発明の技術分野 本発明は化合物半導体結晶等の液相エピタキシャル結晶
成長(L P E)方法および装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method and apparatus for liquid phase epitaxial growth (LPE) of compound semiconductor crystals and the like.

(b)、技術の背景 水銀を含む化合物半導体結晶、例えば水銀・カドミウム
・テルル(HgCdTe)結晶ば赤外検知素子に用いら
れ、カドミウム・テルル(CdTe)単結晶基板上に該
結晶の液相エピタキシャル結晶層を成長し、ここに光導
電型の素子を形成している。
(b), Background of the technology Compound semiconductor crystals containing mercury, such as mercury-cadmium-tellurium (HgCdTe) crystals, are used in infrared sensing elements, and liquid-phase epitaxial growth of the crystals is performed on a cadmium-tellurium (CdTe) single crystal substrate. A crystal layer is grown to form a photoconductive type element.

水銀・カドミウム・テルルは蒸気圧が高いため、そのエ
ピタキシャル成長は通常円筒状石英管(アンプル)中で
行い、この石英管を傾斜することにより、カドミウム・
テルル単結晶基板を所定の成分比を有する水銀、カドミ
ウムおよびテルルよりなる溶液(メルト)に接触させて
基板上にエピタキシャル成長を行うティッピング(7i
pping )式%式% (C)、従来技術と問題点 第1図はティッピング式LPE装置の説明図である。
Because mercury, cadmium, and tellurium have high vapor pressures, their epitaxial growth is usually performed in a cylindrical quartz tube (ampule), and by tilting the quartz tube, cadmium and tellurium
Tipping (7i
(C), Prior Art and Problems FIG. 1 is an explanatory diagram of a tipping type LPE device.

図において1は石英管(アンプル)、2は基板保持板、
3は基板、4はソース・ウェハ(溶質源結晶)、5はメ
ルト、6は炉芯管、7は例えばカーボンよりなるヒート
シンクブロック、8はヒータ、9は石英管1を回転する
ためのステッピング・モータ等による回転装置、10は
回転装置による回転を石英管1に伝えるための石英ガラ
スよりなる回転軸である。
In the figure, 1 is a quartz tube (ampule), 2 is a substrate holding plate,
3 is a substrate, 4 is a source wafer (solute source crystal), 5 is a melt, 6 is a furnace core tube, 7 is a heat sink block made of, for example, carbon, 8 is a heater, and 9 is a stepping device for rotating the quartz tube 1. A rotating device such as a motor, 10 is a rotating shaft made of quartz glass for transmitting rotation by the rotating device to the quartz tube 1.

この装置でエピタキシャル成長は、炉芯管6に窒素ガス
を導入しながら、回転装置9により基板3とメルト5を
所望の位置に設定して行う。
In this apparatus, epitaxial growth is performed by setting the substrate 3 and the melt 5 at desired positions using a rotating device 9 while introducing nitrogen gas into the furnace core tube 6.

第2図は、第1図石英管部分の、’l−A断面矢視図で
ある。同図を用いて以下ティッピング式エピタキシャル
成長方法について説明する。
FIG. 2 is a cross-sectional view of the quartz tube portion shown in FIG. The tipping epitaxial growth method will be explained below using the same figure.

第2図ta+において、基板3とソース・ウェハ4を保
持板20両側にそれぞれ保持して保持板を水平に保ち、
保持板と離れてその下側に結晶成分として水銀、カドミ
ウムおよびテルルを所定の比率で混合後溶融して所定の
形に成形した固形の原料結晶を置き、所定温度で所定時
間ヒータで加熱して溶融しメルト5を得る。
In FIG. 2 ta+, the substrate 3 and the source wafer 4 are held on both sides of the holding plate 20, and the holding plate is kept horizontally,
Separate from the holding plate and below it, a solid raw material crystal made by mixing mercury, cadmium, and tellurium as crystal components in a predetermined ratio and then melting it and forming it into a predetermined shape is placed, and heated with a heater at a predetermined temperature for a predetermined time. Melt to obtain Melt 5.

第2図(b)において、第1図(alの状態より石英管
1を右に回して保持板2が下側より略垂直に立つように
して、メルト5を水銀・カドミウム・テルルあるいはカ
ドミウム・テルル結晶よりなるソース・ウェハ4に接触
させ、所定温度で所定時間保持し、メルト5を飽和させ
る。
In FIG. 2(b), turn the quartz tube 1 clockwise from the state shown in FIG. The melt 5 is brought into contact with a source wafer 4 made of tellurium crystal and held at a predetermined temperature for a predetermined time to saturate the melt 5.

第2図(C)において、第2図(blの状態より石英管
1を左に回して保持板2を水平にし、基板3を飽和状態
のメルト5に接触させて基板3上にエピタキシャル成長
を行う。所定温度で所定時間保持し所定冷却速度で所定
時間冷却して所期の組成と厚さのエピタキシャル結晶層
を得る。
In FIG. 2 (C), the quartz tube 1 is turned to the left from the state shown in FIG. A predetermined temperature is maintained for a predetermined time, and cooling is performed at a predetermined cooling rate for a predetermined time to obtain an epitaxial crystal layer having a predetermined composition and thickness.

エピタキシャル成長後、第2図(alの状態に戻して炉
中冷却を行う。
After epitaxial growth, it is returned to the state shown in FIG. 2 (al) and cooled in the furnace.

上記従来方法においては、冷却は炉中で石英管全体を冷
却するため、石英管内の余剰空間中のメルト蒸気が凝結
して、きれいに成長したエビクキシャル層表面に付着し
、直径2〜3μm位の***をつくり、その密度は10’
 cm−2程度にもおよぶ。
In the above conventional method, since the entire quartz tube is cooled in a furnace, the melt vapor in the excess space inside the quartz tube condenses and adheres to the surface of the evixial layer that has grown neatly, forming small holes with a diameter of about 2 to 3 μm. and its density is 10'
It reaches about cm-2.

このような結晶欠陥を防止する方法が要望されている。There is a need for a method to prevent such crystal defects.

(d)9発明の目的 本発明の目的は従来技術の有する上記の欠点を除去し、
基板上におけるメルト蒸気の凝結を防ぎ、***のない、
平坦な表面を有するエピタキシャル成長層の得られる液
相エピタキシャル結晶成長方法および装置を提供するこ
とにある。
(d)9 Object of the invention The object of the invention is to eliminate the above-mentioned drawbacks of the prior art,
Prevents condensation of melt vapor on the substrate and has no small holes.
It is an object of the present invention to provide a method and apparatus for liquid phase epitaxial crystal growth, which allows an epitaxial growth layer having a flat surface to be obtained.

(e)8発明の構成 上記の目的は本発明によれば、基板上に液相エピタキシ
ャル法にて結晶成長するに際し、該基板の裏面に、該基
板および該基板を保持する保持板より比熱の大きい材料
を密着して成長することを特徴とする液相エピタキシャ
ル結晶成長方法および基板裏面に密着するように、該基
板および該基板を保持する保持板より比熱の大きい材料
を設けたことを特徴とする液相エピタキシャル結晶成長
装置により達成される。
(e) 8 Structure of the Invention According to the present invention, when a crystal is grown on a substrate by liquid phase epitaxial method, a specific heat is generated on the back surface of the substrate by the substrate and the holding plate that holds the substrate. A liquid phase epitaxial crystal growth method characterized by growing a large material in close contact with each other, and a material having a higher specific heat than the substrate and a holding plate for holding the substrate is provided in close contact with the back surface of the substrate. This is achieved using a liquid phase epitaxial crystal growth apparatus.

本発明は冷却時に常に基板を他の部分より高い温度に保
つことにより、基板上におけるメルト蒸気の凝結を防ぎ
、平坦な表面を得ようとするものであり、そのため比熱
の大きい材料を基板に密着させて目的を達する。
The present invention aims to prevent the condensation of melt vapor on the substrate and obtain a flat surface by always keeping the substrate at a higher temperature than other parts during cooling. Therefore, a material with a large specific heat is tightly attached to the substrate. and achieve the goal.

(f)1発明の実施例 第3図(a)、 (b)は本発明に係る基板結晶保持板
の斜視図と断面図を示す。以下の図において第1図およ
び第2図と同一番号は同一対象を表し、11はサファイ
ア板を示す。
(f) 1 Embodiment of the Invention FIGS. 3(a) and 3(b) show a perspective view and a sectional view of a substrate crystal holding plate according to the present invention. In the following figures, the same numbers as in FIGS. 1 and 2 represent the same objects, and 11 indicates a sapphire plate.

図において、基板保持板2として厚さ4mmの石英板を
用い、片側のくぼみに順次、厚さ1.5mmのサファイ
ア板11、厚さ0.8mmのカドミウム・テルル単結晶
基板3を装着する。反対側のくぼみにはソース・ウェハ
4として基板と同じ厚さ0.8 mmの水銀・カドミウ
ム・テルル結晶板もしくはカドミウム・テルル結晶板を
装着する。
In the figure, a quartz plate with a thickness of 4 mm is used as the substrate holding plate 2, and a sapphire plate 11 with a thickness of 1.5 mm and a cadmium tellurium single crystal substrate 3 with a thickness of 0.8 mm are sequentially mounted in the recess on one side. In the recess on the opposite side, a mercury-cadmium-tellurium crystal plate or a cadmium-tellurium crystal plate having the same thickness as the substrate, 0.8 mm, is mounted as a source wafer 4.

つぎに上記の基板保持板を用いて、第4図によりエピタ
キシャル結晶成長の実施例を説明する。
Next, an example of epitaxial crystal growth will be described with reference to FIG. 4 using the above substrate holding plate.

第4図(a)において、保持板2を水平に保ち、保持板
と離れてその下側に原料結晶として (IIg+−zc
d、 ) +−yTey (y=0.8. z=0.1
)を置き、500゛Cで60分ヒータにより加熱してメ
ルト5を得る。
In FIG. 4(a), the holding plate 2 is held horizontally, and the raw material crystal (IIg+-zc
d, ) +-yTey (y=0.8. z=0.1
) and heated with a heater at 500°C for 60 minutes to obtain Melt 5.

第4図(b)において、第4図(alの状態より石英管
1を右に回して保持板2が下側より垂直に立つようにし
て、メルト5をソース・ウェハ4に接触させ、500℃
で60分保持し、メルト5を飽和さセる。
In FIG. 4(b), turn the quartz tube 1 clockwise from the state shown in FIG. ℃
Hold for 60 minutes to saturate Melt 5.

第4図fe)において、第4図(b)の状態より石英管
1を左に回して保持板2を水平にし、基板3を飽和状態
のメルト5に接触させて基板3上にエピタキシャル成長
を行う。500°Cで60分保持し、0.02°C/分
の冷却速度で5℃下げる。所望の組成11gl−,Cd
、 Te (x = 0.3 )を有する厚さ20μm
のエピタキシャル結晶層を得る。
In Fig. 4 (fe), the quartz tube 1 is turned to the left from the state shown in Fig. 4 (b) to make the holding plate 2 horizontal, the substrate 3 is brought into contact with the saturated melt 5, and epitaxial growth is performed on the substrate 3. . Hold at 500°C for 60 minutes and reduce by 5°C at a cooling rate of 0.02°C/min. Desired composition 11 gl-, Cd
, 20 μm thick with Te (x = 0.3)
to obtain an epitaxial crystal layer.

エピタキシャル成長後、第4図(alの状態に戻して炉
中冷却を行う。
After epitaxial growth, the state is returned to the state shown in FIG. 4 (al) and cooled in the furnace.

このとき冷却は大部分が熱伝導によって行われる。基板
の周囲は石英ガラスで囲まれているので、熱伝導は石英
ガラスを経由して行われる。従って基板および石英ガラ
スより比熱の大きいサファイア11が最も冷えるのが遅
い。
At this time, cooling is mostly performed by heat conduction. Since the substrate is surrounded by quartz glass, heat conduction occurs via the quartz glass. Therefore, sapphire 11, which has a higher specific heat than the substrate and quartz glass, cools down the slowest.

上記本発明に係る方法においては、冷却時に基板は他の
部分より常に高い温度に保たれ、基板上におけるメルト
蒸気の凝結を防ぎ、前記の***はなくなり平坦な表面の
エピタキシャル結晶層が得られる。
In the method according to the present invention, the substrate is always kept at a higher temperature than other parts during cooling to prevent condensation of melt vapor on the substrate, and the above-mentioned small holes are eliminated and an epitaxial crystal layer with a flat surface is obtained.

(g)9発明の効果 以上詳細に説明したように本発明によれば、基板上にお
けるメルト蒸気の凝結を防くことができるので、***の
ない、平坦な表面を有するエピタキシャル結晶成長層を
得ることができる。
(g) 9 Effects of the Invention As explained in detail above, according to the present invention, it is possible to prevent melt vapor from condensing on the substrate, thereby obtaining an epitaxial crystal growth layer having a flat surface without small holes. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はティッピング式LPE装置の説明図、第2図は
従来の液相エピタキシャル結晶成長方法シャル結晶成長
方法の説明図を示す。 図においてIはアンプル、2は基板保持板、3は基板、
4はソース・ウェハ、5ばメルト、11はサファイア板
を示す。 第1 閾
FIG. 1 is an explanatory diagram of a tipping type LPE apparatus, and FIG. 2 is an explanatory diagram of a conventional liquid phase epitaxial crystal growth method. In the figure, I is an ampoule, 2 is a substrate holding plate, 3 is a substrate,
4 is a source wafer, 5 is a melt, and 11 is a sapphire plate. 1st threshold

Claims (1)

【特許請求の範囲】 1、基板上に液相エピタキシャル法にて結晶成長するに
際し、該基板の裏面に、該基板および該基板を保持する
保持板より比熱の大きい材料を密着して成長することを
特徴とする液相エピタキシャル結晶成長方法。 2、基板裏面に密着するように、該基板および該基板を
保持する保持板より比熱の大きい材料を設けたことを特
徴とする液相エビクキシャル結晶成長装置。
[Claims] 1. When growing crystals on a substrate by liquid phase epitaxial method, a material having a higher specific heat than the substrate and the holding plate that holds the substrate is grown in close contact with the back surface of the substrate. A liquid phase epitaxial crystal growth method characterized by: 2. A liquid phase eviaxial crystal growth apparatus characterized in that a material having a higher specific heat than the substrate and the holding plate for holding the substrate is provided in close contact with the back surface of the substrate.
JP3673784A 1984-02-28 1984-02-28 Liquid phase epitaxial crystal growth method and device thereof Pending JPS60182140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3673784A JPS60182140A (en) 1984-02-28 1984-02-28 Liquid phase epitaxial crystal growth method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3673784A JPS60182140A (en) 1984-02-28 1984-02-28 Liquid phase epitaxial crystal growth method and device thereof

Publications (1)

Publication Number Publication Date
JPS60182140A true JPS60182140A (en) 1985-09-17

Family

ID=12478043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3673784A Pending JPS60182140A (en) 1984-02-28 1984-02-28 Liquid phase epitaxial crystal growth method and device thereof

Country Status (1)

Country Link
JP (1) JPS60182140A (en)

Similar Documents

Publication Publication Date Title
US4642142A (en) Process for making mercury cadmium telluride
US4906325A (en) Method of making single-crystal mercury cadmium telluride layers
JPS60182140A (en) Liquid phase epitaxial crystal growth method and device thereof
JPS5834925A (en) Liquid phase epitaxial growth device
JPH042689A (en) Method for hetero-epitaxial liquid phase growth
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
SU555761A1 (en) Method of producing p-n-junctions
JPH01249691A (en) Production of superconducting thin film
SU1633032A1 (en) Method of producing semiconductor hetero-structures
JPS60123024A (en) Liquid-phase epitaxial crystal growth method and device thereof
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPH0543400A (en) Production of gaas single crystal
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPH04127544A (en) Manufacture of semiconductor crystal and semiconductor manufacturing device therefor
JPH04196411A (en) Formation of polycrystalline silicon film
JPH0582458A (en) Manufacture of semiconductor crystal
JPS6389498A (en) Production of silicon-added gallium arsenide single crystal
JPH05330983A (en) Device for liquid-phase epitaxial growth
JPH06345589A (en) Device for growing epitaxially in liquid phase
Song Excimer-laser-induced phase transformation of Si thin films on SiO (2) at high temperatures
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
JPS6011294A (en) Method for growing single crystal
JPH0712030B2 (en) (II)-(VI) Group compound semiconductor crystal growth apparatus
JPS5926998A (en) Method for epitaxial growth in liquid phase
JPH01208393A (en) Slider boat for liquid-phase epitaxial growth