JPS6410091B2 - - Google Patents

Info

Publication number
JPS6410091B2
JPS6410091B2 JP18458680A JP18458680A JPS6410091B2 JP S6410091 B2 JPS6410091 B2 JP S6410091B2 JP 18458680 A JP18458680 A JP 18458680A JP 18458680 A JP18458680 A JP 18458680A JP S6410091 B2 JPS6410091 B2 JP S6410091B2
Authority
JP
Japan
Prior art keywords
melt
compound semiconductor
vapor pressure
heat treatment
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18458680A
Other languages
Japanese (ja)
Other versions
JPS57107025A (en
Inventor
Tsutomu Tsuji
Hideo Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18458680A priority Critical patent/JPS57107025A/en
Publication of JPS57107025A publication Critical patent/JPS57107025A/en
Publication of JPS6410091B2 publication Critical patent/JPS6410091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は化合物半導体を高温で熱処理する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heat treating a compound semiconductor at high temperature.

イオン注入をおこなつた化合物半導体は650゜〜
1000℃の範囲の熱処理を経なければならない。と
ころが、化合物半導体を構成する元素の中には
P,As,Sbなどのような蒸気圧が大きいものが
あるので、これら高蒸気圧の元素を含む化合物半
導体を高温で熱処理するためには、化合物半導体
表面を何らかの膜で被覆することをおこなうか又
は、該高蒸気圧の元素を含んだガス雰囲気中に曝
して熱処理することをおこなわねばならなかつ
た。しかし膜で被覆して熱処理する前者の方法に
は、化合物半導体中の不純物や構成元素の一部が
該膜中に侵入してしまう問題があつた。一方後者
の方法(一般にキヤツプレスアニーリングと称し
ている)は、ガスの圧力や流量に依存して熱処理
後の半導体表面が曇ることが数多く生じた。こ
の、表面が劣化する原因は、高蒸気圧の元素の飽
和蒸気圧が再現性良く、また制御性良く得られ難
いことにあつた。
Compound semiconductors with ion implantation are 650°~
Must undergo heat treatment in the range of 1000℃. However, some of the elements constituting compound semiconductors have high vapor pressures, such as P, As, and Sb, so in order to heat-treat compound semiconductors containing these high vapor pressure elements at high temperatures, It was necessary to cover the semiconductor surface with some kind of film or to heat-treat it by exposing it to a gas atmosphere containing the high vapor pressure element. However, the former method, in which the compound semiconductor is coated with a film and then heat-treated, has a problem in that impurities and some of the constituent elements in the compound semiconductor enter the film. On the other hand, in the latter method (generally referred to as capsule annealing), the semiconductor surface often becomes cloudy after heat treatment depending on the pressure and flow rate of the gas. The cause of this surface deterioration was that it was difficult to obtain a saturated vapor pressure of a high vapor pressure element with good reproducibility and good controllability.

上記の熱処理方法の問題点や欠点を解決する1
つの方法としてGaは侵入しないがAs蒸気の交換
は可能なカーボン製容器に熱処理をおこなう化合
物半導体としてGaAsウエーハを入れ、次に
GaAsがあらかじめ溶かし込まれたGa溶融液中に
該容器を挿入して加熱する方法がMCAT(Melt
Controlled Ambient Technique)として最近提
案された。このMCATではGa溶融液で囲まれた
空間内のAsの圧力が飽和蒸気圧に到達するまで
Gaメルト表面から高蒸気圧のAsが自動的に供給
されるので、該空間内に熱処理をおこないたい
GaAsウエーハをあらかじめ置いておくだけで、
自動的にかつ安定して得られるAsの飽和蒸気圧
の雰囲気下でGaAsの熱処理をおこなうことがで
きる。しかし熱処理を長時間や繰り返しておこな
つたりすると、Ga溶融液中の高蒸気圧のAsの量
が減少し、従つて飽和蒸気圧に到達する時間が長
くなり、その結果、ウエーハ表面の劣化を生じる
問題があつた。すなわち、従来のMCAT法は本
質的に長時間の熱処理や大容積の空間を必要とす
る多数枚のウエーハの熱処理をおこなえないなど
の欠点があつた。
Solving the problems and drawbacks of the above heat treatment method 1
One method is to place a GaAs wafer as a compound semiconductor to be heat-treated in a carbon container that does not allow Ga to enter but allows the exchange of As vapor.
MCAT (Melt
Controlled Ambient Technique). In this MCAT, the pressure of As in the space surrounded by the Ga melt reaches the saturated vapor pressure.
As high vapor pressure As is automatically supplied from the surface of the Ga melt, heat treatment can be carried out within the space.
Just by placing the GaAs wafer in advance,
GaAs can be heat-treated automatically and stably in an atmosphere with a saturated As vapor pressure. However, if heat treatment is performed for a long time or repeatedly, the amount of As with high vapor pressure in the Ga melt will decrease, and therefore the time to reach the saturated vapor pressure will become longer, resulting in deterioration of the wafer surface. There was a problem that arose. In other words, the conventional MCAT method inherently has drawbacks such as the inability to heat treat a large number of wafers, which requires a long heat treatment time and a large volume of space.

本発明の目的は化合物半導体ウエーハを生産性
に優れかつ表面劣化を生じないように高温で熱処
理できる化合物半導体の熱処理方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compound semiconductor heat treatment method that can heat compound semiconductor wafers at high temperatures with excellent productivity and without causing surface deterioration.

本発明によれば熱処理しようとする化合物半導
体を構成する構成元素のうち、少なくとも一種類
以上の低融点構成元素の溶融液中に高蒸気圧を持
つた他の構成元素を溶かし込んでなる金属溶融液
から、前記高蒸気圧を持つた構成元素を供給しな
がら熱処理を行なうMCAT(Melt Controlled
Ambient Technique)法において、前記金属溶
融液上に熱処理しようとする化合物半導体を構成
する元素のうち低融点元素と高蒸気圧元素とを含
んでなる化合物半導体を載置せしめ、前記金属溶
融液中に、前記載置せしめた化合物半導体から前
記高蒸気圧を持つた構成元素を供給しながら熱処
理を行なうことを特徴とする化合物半導体の熱処
理方法が得られる。
According to the present invention, a metal molten product is obtained by dissolving other constituent elements having a high vapor pressure into a melt of at least one kind of low melting point constituent elements among the constituent elements constituting the compound semiconductor to be heat-treated. MCAT (Melt Controlled
In the Ambient Technique method, a compound semiconductor containing a low melting point element and a high vapor pressure element among the elements constituting the compound semiconductor to be heat treated is placed on the metal melt, and the compound semiconductor is placed in the metal melt. There is obtained a method for heat treatment of a compound semiconductor, characterized in that the heat treatment is carried out while supplying the constituent elements having a high vapor pressure from the compound semiconductor placed above.

次に本発明の詳細を化合物半導体としてGaAs
基板を用いた場合についての一実施例とともに説
明をおこなう。
Next, we will explain the details of the present invention using GaAs as a compound semiconductor.
An example of the case where a substrate is used will be explained.

第1図は本発明の原理を説明するための図で、
発明を実施するための第1の装置の断面図を示
す。まず、底に多数個の貫通孔(全孔面積は1.8
cm2)を有するカーボン製の第1の容器12にGa
溶融液を入れ、さらに熱処理温度下で該Ga溶融
液中にAs又はGaAsを少なくとも該温度における
溶解度まであらかじめ溶かし込んでおく。次に
Asが溶解度以上にまで溶けている前記Ga溶融液
11上にGaAs13を載置し、水素ガス流中600
℃で熱処理をおこないGa溶融液表面の酸化膜を
除去する。一方、カーボン製の第2の容器14に
熱処理するGaAsウエーハ15を入れる。次に第
1の容器12で第2の容器14に蓋をする。この
とき第1及び第2の容器とGa溶融液とで囲まれ
た空間16(容積は0.01cm3)はあらかじめ水素で
置換しておく。水素は精製した純水素を用いる。
最後に本装置を950℃に徐々に加熱して熱処理を
おこなつた。熱処理の温度と時間はイオン注入条
件によつて適当な値を任意に選ぶことができる。
FIG. 1 is a diagram for explaining the principle of the present invention.
1 shows a sectional view of a first device for implementing the invention; FIG. First, there are many through holes on the bottom (total hole area is 1.8
cm 2 ) in a carbon first container 12 with Ga
A melt is poured into the Ga melt, and As or GaAs is preliminarily dissolved in the Ga melt at a heat treatment temperature to at least the solubility at the temperature. next
GaAs 13 is placed on the Ga melt 11 in which As is dissolved to a level higher than its solubility, and the GaAs 13 is placed on the Ga melt 11 in which As is dissolved to a level higher than its solubility.
Heat treatment is performed at ℃ to remove the oxide film on the surface of the Ga melt. On the other hand, a GaAs wafer 15 to be heat treated is placed in a second container 14 made of carbon. Next, the second container 14 is covered with the first container 12. At this time, the space 16 (volume: 0.01 cm 3 ) surrounded by the first and second containers and the Ga melt is replaced with hydrogen in advance. Purified pure hydrogen is used as hydrogen.
Finally, the device was heated gradually to 950°C for heat treatment. The temperature and time of the heat treatment can be arbitrarily selected as appropriate values depending on the ion implantation conditions.

次に金属溶融液上に載置せしめた化合物半導体
の役割を第1図と第2図を用いて説明する。金属
溶融液21特にGaの溶融液は強い表面張力のた
め球状になり易いが、溶融液が球状になると第2
図に示すように空間26は閉じなくなり、空間2
6内の蒸発元素は飽和しなくなる。このように第
1図のGa溶融液11上のGaAs13はGa溶融液
11を押しつぶす重石の働きをしている。Ga溶
融液11上のGaAs13のさらに重要な役割は、
該Ga溶融液11中の高蒸気圧元素であるAsが不
足したときに、GaAs13がGa溶融液11中に溶
け込んで不足分を補うことである。このように金
属溶融液上に、少なくとも該金属と高蒸気圧元素
とからなる化合物半導体を載置せしめることによ
り長時間の熱処理や、多数枚ウエーハの大規模な
熱処理を簡単にかつ再現性良くおこなうことがで
きる。また第1の容器の底の貫通孔は蒸発元素の
通り道になるだけでなく、Gaのような金属溶融
液がGaAsのような化合物半導体ウエーハと直接
触れることを防止する働きをする。
Next, the role of the compound semiconductor placed on the metal melt will be explained using FIGS. 1 and 2. Metal molten liquid 21 Ga molten liquid in particular tends to become spherical due to its strong surface tension, but if the molten liquid becomes spherical, the second
As shown in the figure, the space 26 no longer closes, and the space 2
The evaporated elements within 6 become unsaturated. In this way, the GaAs 13 on the Ga melt 11 in FIG. 1 acts as a weight to crush the Ga melt 11. The more important role of GaAs 13 on Ga melt 11 is
When As, which is a high vapor pressure element, is insufficient in the Ga melt 11, GaAs 13 is dissolved into the Ga melt 11 to compensate for the shortage. By placing a compound semiconductor consisting of at least the metal and a high vapor pressure element on top of the metal melt, long-term heat treatment or large-scale heat treatment of a large number of wafers can be performed easily and with good reproducibility. be able to. Further, the through hole at the bottom of the first container not only serves as a passage for the evaporated elements, but also serves to prevent a molten liquid of a metal such as Ga from coming into direct contact with a compound semiconductor wafer such as GaAs.

次に生産に適した大規模な装置を用いた場合の
本発明の他の実施例について、装置の断面を示す
第3図を用いて説明する。化合物半導体ウエーハ
としてGaAs基板上にエピタキシアル成長した
Al0.3Ga0.7As層を用いた。Gaを溶かしたGa溶融
液31を底に複数個の貫通孔を有するカーボン製
の第1の容器32に入れ、さらに前記Ga溶融液
31上にGaAs33を載置し、水素ガス流中600
℃で熱処理をおこないGa溶融液31表面の酸化
膜を除去した。一方、カーボン製の第2の容器3
4に熱処理されるAl0.3Ga0.7Asのウエーハ35を
多数枚入れ、次に第1の容器32で第2の容器3
4に蓋をする。最後に先の実施例と同様に水素で
置換したのち800℃、1時間の熱処理をおこなう。
熱処理後の表面は極めて平滑であつた。
Next, another embodiment of the present invention using a large-scale apparatus suitable for production will be described with reference to FIG. 3, which shows a cross section of the apparatus. Epitaxially grown on a GaAs substrate as a compound semiconductor wafer
An Al 0.3 Ga 0.7 As layer was used. A Ga melt 31 in which Ga has been dissolved is placed in a first container 32 made of carbon having a plurality of through holes in the bottom, and GaAs 33 is placed on the Ga melt 31, and the GaAs 33 is placed in a hydrogen gas flow for 600 m
The oxide film on the surface of the Ga melt 31 was removed by heat treatment at .degree. On the other hand, the second container 3 made of carbon
A large number of Al 0.3 Ga 0.7 As wafers 35 to be heat treated are placed in the first container 32 and then transferred to the second container 3.
Put the lid on step 4. Finally, as in the previous example, after replacing with hydrogen, heat treatment is performed at 800° C. for 1 hour.
The surface after heat treatment was extremely smooth.

次にこの優れた本発明の熱処理方法において、
表面劣化を避けるために重要な要素である蒸発元
素が飽和蒸気圧に到達する時間tについて検討
し、さらに本発明の熱処理方法が実用的にも優れ
たものであることを説明する。ここでは化合物半
導体としてGaAsを、高蒸気圧の蒸発元素として
Asを例に説明をおこなう。
Next, in this excellent heat treatment method of the present invention,
The time t for the evaporated elements to reach the saturated vapor pressure, which is an important element for avoiding surface deterioration, will be discussed, and furthermore, the practical superiority of the heat treatment method of the present invention will be explained. Here, GaAs is used as a compound semiconductor, and GaAs is used as a high vapor pressure evaporation element.
Let's explain using As as an example.

単位時間に蒸発面積がSであるGa溶融液から
蒸発するAsの量Wは次式に従つて計算される。
The amount W of As evaporated from a Ga melt with an evaporation area S per unit time is calculated according to the following equation.

W=xSPAS(M/2πRoT)1/2 (1) ここでは蒸発係数、PASは温度Tにおける蒸
発元素のAsの飽和蒸気圧、xとMは少なくとも
溶解度まで溶けているAsのGaメルト表面におけ
るモル分率と分子量、Roは気体定数である。As
が容積υ内で飽和蒸気に達するまで蒸発するには ω=MPυ/RT (2) のAsが必要である。従つて となる。=1,x=2.2×10-2,T=1073゜K,
M=74.9g,mol-1とする(3)式は t=3.3×10-3υ/S (4) と表わされる。実施例1の装置はυ=0.01cm3,S
=1.8cm2であるからt=1.84×10-5秒となる。熱処
理を受けるGaAsウエーハの表面あるいは周囲は
昇温とともに飽和蒸気圧に瞬時に達することがわ
かる。650゜〜1000℃の温度範囲でt<1〜2秒で
あることが必要と考えられているが、第3図に示
す第2の実施例の装置(υ=16cm2,S=1.8cm2
でも高々t=0.03秒であるから、この生産用の装
置でもAsが飽和蒸気圧に達するのは充分に短時
間であることが理解できる。
W=xSP AS (M/2πRoT) 1/2 (1) Here, the evaporation coefficient, P AS is the saturated vapor pressure of the evaporated element As at temperature T, and x and M are the Ga melt surface of As dissolved at least to the solubility. molar fraction and molecular weight, Ro is the gas constant. As
To evaporate until reaching saturated vapor within the volume υ, ω=MPυ/RT (2) of As is required. Accordingly becomes. =1, x=2.2×10 -2 , T=1073°K,
Equation (3) where M=74.9g and mol -1 is expressed as t=3.3×10 -3 υ/S (4). The device of Example 1 has υ=0.01cm 3 , S
= 1.8 cm 2 , so t = 1.84 x 10 -5 seconds. It can be seen that the surface or surrounding area of the GaAs wafer undergoing heat treatment instantly reaches saturated vapor pressure as the temperature rises. It is thought that it is necessary that t < 1 to 2 seconds in the temperature range of 650° to 1000°C . )
However, since t=0.03 seconds at most, it can be understood that it is a sufficiently short time for As to reach the saturated vapor pressure even in this production equipment.

尚、AsはGa溶融液から蒸発するのみならず熱
処理するGaAsウエーハからも蒸発するが、Ga溶
融液中のAsの拡散係数(800℃で2×10-5cm2
sec-1)に比べてGaAs中のAsの拡散係数は8桁
も低いために、GaAs表面のAs濃度がたとえば3
%減少する範囲はGaAs表面からわずか25Å程度
にすぎなく、GaAs表面の劣化に及ぼすようなAs
の蒸発はほとんどないことがわかる。
Note that As evaporates not only from the Ga melt but also from the heat-treated GaAs wafer, but the diffusion coefficient of As in the Ga melt (2×10 -5 cm 2 at 800°C)
sec -1 ), the diffusion coefficient of As in GaAs is eight orders of magnitude lower than that of
% reduction is only about 25 Å from the GaAs surface, and As
It can be seen that there is almost no evaporation.

以上述べたように本発明を実施することによ
り、化合物半導体を表面の劣化をともなわずに生
産性良く高温で熱処理することができる。またイ
オン注入した不純物が高蒸気圧の元素である場合
にも本発明の思想が適用できる。
By carrying out the present invention as described above, a compound semiconductor can be heat-treated at high temperatures with good productivity without surface deterioration. The idea of the present invention can also be applied when the ion-implanted impurity is an element with a high vapor pressure.

以上の説明では金属溶融液としてGaを、化合
物半導体としてGaAsとAlGaAsを例に述べてき
たが、In元素を構成元素とする化合物半導体にお
いては金属溶融液としてはInでも良く、この種の
化合物半導体としてはGaP,InP,InAs,GaSb,
InSbさらにはInGaP,InGaAsPなどがある。
In the above explanation, we have used Ga as an example of the metal melt and GaAs and AlGaAs as the compound semiconductors, but in the case of compound semiconductors containing In as a constituent element, In may be used as the metal melt, and this type of compound semiconductor GaP, InP, InAs, GaSb,
In addition to InSb, there are also InGaP, InGaAsP, etc.

InGaAsPの場合にはGa溶融液中にInGaAsPを
溶かし込んで、AsとPのソースとするのが良い。
さらに実施例では金属溶融液を入れる第1の容器
の材料としてカーボンを例に説明してきたが、金
属溶融液と反応を生じ難いBNなどを用いても良
い。
In the case of InGaAsP, it is preferable to dissolve the InGaAsP into the Ga melt and use it as a source of As and P.
Further, in the embodiments, carbon has been used as an example of the material for the first container containing the molten metal, but BN or the like, which does not easily react with the molten metal, may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は本発明を実施するための装置
の断面図で、第2図は本発明を説明するための断
面図である。これらの図で、11,31はGa溶
融液、12,22,32は第1の容器、13,3
3はGaAs、14,24,34は第2の容器、1
5は熱処理されるGaAsウエーハ、35は熱処理
されるAlGaAs/GaAsウエーハ、16,26は
閉じた空間を、また21は金属溶融液、25は化
合物半導体ウエーハをそれぞれ示す。
1 and 3 are cross-sectional views of an apparatus for carrying out the present invention, and FIG. 2 is a cross-sectional view for explaining the present invention. In these figures, 11 and 31 are Ga melt, 12, 22, and 32 are first containers, and 13 and 3 are
3 is GaAs, 14, 24, 34 are the second containers, 1
5 is a GaAs wafer to be heat treated, 35 is an AlGaAs/GaAs wafer to be heat treated, 16 and 26 are closed spaces, 21 is a metal melt, and 25 is a compound semiconductor wafer.

Claims (1)

【特許請求の範囲】[Claims] 1 熱処理しようとする化合物半導体を構成する
構成元素のうち、少なくとも一種類以上の低融点
構成元素の溶融液中に高蒸気圧を持つた他の構成
元素を溶かし込んでなる金属溶融液から、前記高
蒸気圧を持つた構成元素を供給しながら熱処理を
行なうMCAT(Melt Controlled Ambient
Technique)法において、前記金属溶融液上に熱
処理しようとする化合物半導体を構成する元素の
うち低融点元素と高蒸気圧元素とを含んでなる化
合物半導体を載置せしめ、前記金属溶融液中に、
前記載置せしめた化合物半導体から前記高蒸気圧
を持つた構成元素を供給しながら熱処理を行なう
ことを特徴とする化合物半導体の熱処理方法。
1. Among the constituent elements constituting the compound semiconductor to be heat-treated, the above-mentioned metal melt is obtained by dissolving other constituent elements having a high vapor pressure into a melt of at least one kind of low melting point constituent element. MCAT (Melt Controlled Ambient
In the method, a compound semiconductor containing a low melting point element and a high vapor pressure element among the elements constituting the compound semiconductor to be heat-treated is placed on the metal melt, and in the metal melt,
A method for heat treatment of a compound semiconductor, characterized in that the heat treatment is carried out while supplying the constituent element having a high vapor pressure from the compound semiconductor placed above.
JP18458680A 1980-12-25 1980-12-25 Heat treatment of compound semiconductor Granted JPS57107025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18458680A JPS57107025A (en) 1980-12-25 1980-12-25 Heat treatment of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18458680A JPS57107025A (en) 1980-12-25 1980-12-25 Heat treatment of compound semiconductor

Publications (2)

Publication Number Publication Date
JPS57107025A JPS57107025A (en) 1982-07-03
JPS6410091B2 true JPS6410091B2 (en) 1989-02-21

Family

ID=16155793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18458680A Granted JPS57107025A (en) 1980-12-25 1980-12-25 Heat treatment of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS57107025A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283020A (en) * 1987-05-14 1988-11-18 Sanyo Electric Co Ltd Heat treating method
KR100407955B1 (en) * 2001-05-29 2003-12-03 엘지전자 주식회사 method for forming GaAs on fusion substrate

Also Published As

Publication number Publication date
JPS57107025A (en) 1982-07-03

Similar Documents

Publication Publication Date Title
US3316130A (en) Epitaxial growth of semiconductor devices
US4470192A (en) Method of selected area doping of compound semiconductors
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US3762968A (en) Method of forming region of a desired conductivity type in the surface of a semiconductor body
JPS6410091B2 (en)
US3397094A (en) Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
US4135952A (en) Process for annealing semiconductor materials
JP2004519837A (en) Epitaxial wafer equipment
JPS6130030A (en) Method of annealing multi-element semiconductor
US3669763A (en) Traveling solvent method of growing silicon carbide crystals and junctions utilizing yttrium as the solvent
US2835613A (en) Method of surface-treating semi-conductors
US4198247A (en) Sealant films for materials having high intrinsic vapor pressure
US4717443A (en) Mass transport of indium phosphide
US4302278A (en) GaAs Crystal surface passivation method
Kerr et al. Antimony passivation of molecular‐beam epitaxially grown GaAs surfaces
US3007819A (en) Method of treating semiconductor material
JPH022840B2 (en)
JPS58175828A (en) Cap-less-annealing method by metallic solution seal
US5093284A (en) Process for homogenizing compound semiconductor single crystal in properties
JPH0143454B2 (en)
JPH026385A (en) Method for forming thin film and apparatus therefor
Williams et al. Rapid annealing of GaAs and related compounds
Hardeman et al. Oxide removal from silicon wafers studied by transient mass spectrometry and X-ray photoelectron spectroscopy
US3447977A (en) Method of producing semiconductor members
JPS61276316A (en) Manufacture of semiconductor device