JPH06316816A - Carbon fiber - Google Patents

Carbon fiber

Info

Publication number
JPH06316816A
JPH06316816A JP4002023A JP202392A JPH06316816A JP H06316816 A JPH06316816 A JP H06316816A JP 4002023 A JP4002023 A JP 4002023A JP 202392 A JP202392 A JP 202392A JP H06316816 A JPH06316816 A JP H06316816A
Authority
JP
Japan
Prior art keywords
carbon
fine particles
carbon fibers
particles
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4002023A
Other languages
Japanese (ja)
Other versions
JP3071536B2 (en
Inventor
Kenji Hashimoto
健治 橋本
Takao Masuda
隆夫 増田
Shin Mukai
紳 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP4002023A priority Critical patent/JP3071536B2/en
Publication of JPH06316816A publication Critical patent/JPH06316816A/en
Application granted granted Critical
Publication of JP3071536B2 publication Critical patent/JP3071536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers having fine carbon particles densely adhered to their surfaces and high in adhesivity to matrices by densely adhering seed carbon fine particles to the surfaces of carbon fibers. CONSTITUTION:Hydrogen gas and benzene vapor are allowed to stationarily flow in a reactor 1, and the benzene solution of ferrocene is injected into the reactor with a constant volume pulse pump 3. The mixture is heated with the heated reactor wall 4 to produce catalyst fine particles. The seed fine particles are formed from the catalyst fine particles and the benzene vapor, and carbon fibers grown on the catalyst fine particles in the gas phase further grow continuity. After a specified reaction time the hydrogen gas is switched to nitrogen gas to stop the reaction, and the grown carbon fibers are taken out. The intervals of the pulses, the temperature and time of the reaction, the kind and feeding amount of the carbon source, the kind of the solvent, etc., are controlled to keep the sizes of the fine carbon particles densely adhered to the surfaces of the carbon fibers at 0.10-15.0mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維に関するもの
である。
FIELD OF THE INVENTION The present invention relates to carbon fibers.

【0002】[0002]

【従来の技術】炭素繊維は、ガラス繊維などに比べ、高
強度、高弾性等の優れた特性を有するために、プラスチ
ックなどの有機材料、セラミック、セメントなどの無機
材料、或いは金属材料などをマトリックスとして組合せ
た複合材料として、電子、電機、宇宙、航空、車両、建
築、レジャー用品などの広い分野で注目され、使用され
ている。
2. Description of the Related Art Carbon fibers have excellent properties such as high strength and high elasticity as compared with glass fibers and the like, and therefore, organic materials such as plastics, inorganic materials such as ceramics and cement, or metal materials are used as a matrix. As a composite material combined as above, it has been attracting attention and used in a wide range of fields such as electronics, electric machinery, space, aviation, vehicles, construction, and leisure goods.

【0003】従来、炭素繊維の製造にあたっては、合成
繊維や石油ピッチ繊維等の有機繊維を炭化する方法と、
ベンゼン、メタンといった炭化水素を炭素供給源とし
て、これを触媒下で熱分解して炭素繊維を生成させる気
相法による製造法が良く知られている。気相法による炭
素繊維の製造法については、旧くは特公昭41-12091号公
報に記載されている他に、これまでに数多く報告されて
いる。しかしながら、これまでの方法では、炭素繊維の
成長速度が遅く、長い反応時間を必要とする難点があ
り、特に触媒粒子と接触し、炭素の繊維成長種微粒子の
生成と繊維成長とが同時に並行して進むために、最適な
種微粒子を得ることが非常に難しかった。また得られる
炭素繊維も表面が滑らかであり、樹枝状或いは凹凸状に
なったものや(特開昭48-41038号、特開昭57-117623号公
報)、微小絨毛を密生させたもの(特開昭58-156512号
公報)もあるが、複合材料として用いた場合にマトリッ
クスとの密着性が充分でなく、補強効果が充分に得られ
ないという欠点があった。
Conventionally, in the production of carbon fibers, a method of carbonizing organic fibers such as synthetic fibers and petroleum pitch fibers,
A production method by a gas phase method in which a hydrocarbon such as benzene or methane is used as a carbon supply source and is thermally decomposed under a catalyst to produce carbon fiber is well known. Regarding the production method of carbon fiber by the vapor phase method, in addition to the former description in Japanese Patent Publication No. 41-12091, many reports have been made so far. However, the conventional methods have a drawback that the growth rate of carbon fiber is slow and a long reaction time is required, and in particular, contact with catalyst particles causes simultaneous generation of carbon fiber growth seed particles and fiber growth. It was very difficult to obtain the optimum seed particles in order to proceed. The obtained carbon fibers also have a smooth surface and are dendritic or uneven (JP-A-48-41038 and JP-A-57-117623), and densely packed microvilli (special characteristics). However, when used as a composite material, there is a drawback that the adhesion to the matrix is insufficient and the reinforcing effect cannot be obtained sufficiently.

【0004】[0004]

【発明が解決しようとする課題】本発明は、マトリック
スとの密着性に優れた炭素繊維を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a carbon fiber having excellent adhesion to a matrix.

【0005】[0005]

【課題を解決するための手段】本発明は、表面に0.10〜
15.0μmの微小炭素粒状体が密集形成されている炭素繊
維である。
SUMMARY OF THE INVENTION The present invention provides a surface containing 0.10 to
It is a carbon fiber in which minute carbon particles of 15.0 μm are densely formed.

【0006】本発明の炭素繊維は、触媒微粒子を高密度
に生成させて、触媒微粒子や繊維が成長するに至らなか
った炭素の種微粒子を、成長した繊維の表面に一面に密
に付着させ、繊維の表面に炭素を半球状に析出させ、更
にその隙間に熱CVDにより炭素を析出させて表面に微
小な炭素粒状体が密集した炭素繊維である。この微小な
粒状体は、マトリックスと複合体を作るときに強固な投
描効果を示し、繊維とマトリックスとの密着性の高い優
れた特性を発揮することが可能となる。
In the carbon fiber of the present invention, the catalyst fine particles are produced at a high density, and the catalyst fine particles and the carbon seed fine particles, which have not yet grown, are closely adhered to the surface of the grown fiber. It is a carbon fiber in which carbon is deposited in a hemispherical shape on the surface of the fiber, and carbon is further deposited in the gaps by thermal CVD so that fine carbon particles are densely packed on the surface. This fine granular material exhibits a strong drawing effect when forming a composite with the matrix, and can exhibit excellent properties with high adhesion between the fiber and the matrix.

【0007】本発明の炭素繊維を得るには、触媒成分を
炭素供給源と共に定量的に流すのではなく、パルスとし
て高温の反応域に導入する方法が挙げられる。それによ
り、高密度な状態の触媒微粒子域を得ることが可能とな
り、触媒微粒子への伝熱が非常に良くなり、発生した触
媒微粒子と炭素供給源との接触が瞬時となって炭素の種
微粒子生成が最初に起こり、次いで供給されてくる炭素
供給源と種微粒子の接触により炭素繊維が成長してゆく
という過程を経るため、種微粒子生成過程と繊維成長過
程とを区別することができ、触媒微粒子と炭素供給源を
供給する量やこれらが接触するまでの時間、種微粒子が
炭素供給源と接触して繊維が成長する時間などを自由に
制御することができ、繊維成長に必要な最適の大きさの
種微粒子の生成を容易に行なうことができ、従来の方法
に比べ、数十〜数百倍の成長速度で炭素繊維を得ること
ができる。
In order to obtain the carbon fiber of the present invention, a method of introducing the catalyst component as a pulse into the high temperature reaction zone rather than quantitatively flowing it together with the carbon supply source can be mentioned. As a result, it becomes possible to obtain a high-density catalyst fine particle region, the heat transfer to the catalyst fine particles becomes very good, and the contact between the generated catalyst fine particles and the carbon supply source becomes instantaneous and the carbon seed fine particles become Since the generation of carbon occurs first and then the carbon fiber grows due to the contact between the supplied carbon source and the seed particles, it is possible to distinguish the seed particle generation process from the fiber growth process. It is possible to freely control the amount of fine particles and carbon supply source, the time until they come into contact with each other, the time for seed fine particles to come into contact with the carbon supply source, and the time for fiber growth. It is possible to easily generate seed fine particles having a size, and it is possible to obtain carbon fibers at a growth rate several tens to several hundreds of times that of conventional methods.

【0008】本発明の炭素繊維を得るにあたって使用す
る炭素供給源としては、通常炭化水素が用いられ、例え
ば、メタン、エタン、プロパン、アセチレン、エチレ
ン、プロピレンなどの脂肪族炭化水素、ベンゼン、トル
エン、ナフタレン、アンスラセンなどの芳香族炭化水素
などが使用される。
As the carbon source used for obtaining the carbon fiber of the present invention, hydrocarbons are usually used. For example, methane, ethane, propane, acetylene, ethylene, propylene and other aliphatic hydrocarbons, benzene, toluene, Aromatic hydrocarbons such as naphthalene and anthracene are used.

【0009】触媒としては、金属触媒が用いられ、金属
としては、鉄、ニッケル、コバルト、チタン、ジルコ
ン、ヴァナジウム、ニオブマンガン、ロジウム、タング
ステン、パラジウム、白金、シリコンなどであり、これ
らの金属は直接金属を蒸発させたり、有機金属化合物と
して用いたりすることができる。
As the catalyst, a metal catalyst is used, and as the metal, iron, nickel, cobalt, titanium, zircon, vanadium, niobium manganese, rhodium, tungsten, palladium, platinum, silicon and the like are directly used. The metal can be evaporated or used as an organometallic compound.

【0010】キャリーガスとしては、水素ガス、一酸化
炭素ガスといった還元性のガスを単独で、或いはこれに
窒素ガス、二酸化炭素ガスなどを混合して用いる。
As the carry gas, a reducing gas such as hydrogen gas or carbon monoxide gas is used alone, or is mixed with nitrogen gas, carbon dioxide gas or the like.

【0011】本発明の炭素繊維を得る方法の一例につい
て、概略図を用いて以下に詳述する。図1は、反応器部
分における繊維製造手順の一例を示すもので、反応器1
中にキャリアガスとして水素を、反応器中間部にある原
料導入口2より炭素供給源としてベンゼン蒸気を定常的
に流し()、次いでこの状態のところへ、触媒として
鉄の有機化合物であるフェロセンをベンゼンに溶解した
溶液を定量パルスポンプ3より液パルスで打込み、反応
器壁4に衝突させる。反応器壁4は、所定の温度に加熱
されており、ここに衝突した液パルスは瞬時に熱せられ
た触媒微粒子を生成して炭素繊維析出帯域5全体に拡散
する()。生成した触媒微粒子は、ベンゼン蒸気と接
触し、種微粒子となり、これから気相成長した炭素繊維
(VGCF)が短時間に成長を続け、反応器の下流に設
置された内管6にトラップされ、更に繊維は成長を続け
る()。また、この内管はなくても反応管下流に成長
した繊維が運ばれる。その際に、一部の繊維は反応管に
付着して成長する。一定の反応時間を経過後にキャリア
ガスを窒素ガスに切替えて反応を停止し、VGCFを回
収する()。
An example of the method for obtaining the carbon fiber of the present invention will be described in detail below with reference to the schematic view. FIG. 1 shows an example of a fiber manufacturing procedure in the reactor part.
Hydrogen was used as a carrier gas, and benzene vapor was constantly flown from the raw material inlet 2 in the middle of the reactor as a carbon supply source (), and then ferrocene, which is an iron organic compound, was used as a catalyst to reach this state. The solution dissolved in benzene is injected with a liquid pulse from the metering pulse pump 3 to collide with the reactor wall 4. The reactor wall 4 is heated to a predetermined temperature, and the liquid pulse impinging on the reactor wall instantly generates heated catalyst fine particles and diffuses them throughout the carbon fiber deposition zone 5 (). The produced catalyst fine particles contact with benzene vapor and become seed fine particles, and the vapor grown carbon fibers (VGCF) continue to grow in a short time and are trapped in the inner pipe 6 installed downstream of the reactor. Fiber continues to grow (). Further, even if this inner tube is not provided, the grown fiber is carried downstream of the reaction tube. At that time, some fibers adhere to the reaction tube and grow. After a certain reaction time has passed, the carrier gas is switched to nitrogen gas to stop the reaction, and VGCF is recovered ().

【0012】概略図に示した方法以外にも、触媒の導入
については、例えば反応器中心に極微細管から超微粒子
でパルスを噴霧するといった方法をとることもできる。
また、ベンゼン蒸気をキャリアガスと共に最初から流す
とか、反応器に予熱部を設けておくといったことも可能
である。繊維の補捉は、自重で堆積させてもよいし、反
応器外へ排出するとか、縦型で自由落下させるとかの方
法をとることもできる。
In addition to the method shown in the schematic diagram, the catalyst may be introduced by spraying a pulse with ultrafine particles from an ultrafine tube to the center of the reactor.
Further, it is also possible to flow benzene vapor together with the carrier gas from the beginning, or to pre-heat the reactor. The fibers may be trapped by their own weight, or may be discharged to the outside of the reactor or vertically dropped.

【0013】液パルスの導入は、0.2〜4.0秒、好ましく
は0.3〜0.6秒の範囲内のパルス間隔で行なうのが良い。
通常、析出帯域の反応温度は、800〜1300℃、反応時間
は、バッチ式では10秒〜10分、連続式では成長域滞留時
間が10秒〜2分である。炭素源の供給量は、0.01〜0.1ml
/min、キャリアガスの流量は10〜60ml/minである。パ
ルス間隔、反応温度、反応時間、炭素源の種類や供給
量、溶媒の種類などを適宜選択調節することにより、炭
素繊維の成長速度、得られる炭素繊維の太さ、長さ、表
面状態などを制御することができる。炭素繊維の成長
は、100〜1500μm/secの速度で制御することができ、
繊維径1.0〜6.0μm、長さ3〜50mmのものを得ることがで
きる。炭素繊維表面に密集する微小炭素粒状体の大きさ
は、0.10〜15.0μmである。以下に実施例を示す。
The introduction of the liquid pulse is preferably carried out at a pulse interval within the range of 0.2 to 4.0 seconds, preferably 0.3 to 0.6 seconds.
Usually, the reaction temperature in the precipitation zone is 800 to 1300 ° C., the reaction time is 10 seconds to 10 minutes in the batch system, and the growth zone residence time is 10 seconds to 2 minutes in the continuous system. Supply amount of carbon source is 0.01 ~ 0.1ml
/ Min, the flow rate of the carrier gas is 10 to 60 ml / min. By appropriately adjusting the pulse interval, reaction temperature, reaction time, type and supply amount of carbon source, type of solvent, etc., the growth rate of carbon fiber, the thickness, length, surface condition of the obtained carbon fiber, etc. Can be controlled. The growth of carbon fiber can be controlled at a speed of 100-1500 μm / sec,
A fiber having a fiber diameter of 1.0 to 6.0 μm and a length of 3 to 50 mm can be obtained. The size of the fine carbon particles densely packed on the carbon fiber surface is 0.10 to 15.0 μm. Examples will be shown below.

【0014】[0014]

【実施例】【Example】

(実施例1)電気炉内に予熱部と反応部(炭素繊維析出
帯域)とを持つ、中間部に原料導入口のついた反応器を
設置し、30分間窒素ガスを流した後、水素ガスを60ml/
minの流量で流しておき、反応管を加熱する。予熱部の
温度800℃、反応部の温度1050℃になったところで、ベ
ンゼンを0.1ml/minの流量で原料導入口より流し、安定
したところで、フェロセンの10%ベンゼン溶液を0.025m
l単位で0.5秒間隔のパルスで1秒間原料導入口より対壁
へ打込み、打込開始後0.5分間反応経過したところでベ
ンゼン及び水素ガスの供給を停止し、窒素ガスに切替
え、反応を停止した。得られた炭素繊維は、図2に示す
ように、表面に0.18〜1.0μmの炭素粒状体が密集した、
径10〜20μm、長さ35〜45mmのものであった。
(Example 1) A reactor having a preheating part and a reaction part (carbon fiber deposition zone) with a raw material inlet was installed in an electric furnace, and nitrogen gas was allowed to flow for 30 minutes, and then hydrogen gas was supplied. 60 ml /
Heat the reaction tube by letting it flow at a flow rate of min. When the temperature of the preheating part reached 800 ° C and the temperature of the reaction part reached 1050 ° C, benzene was flowed through the raw material inlet at a flow rate of 0.1 ml / min, and when it was stable, 10% benzene solution of ferrocene was added to 0.025 m.
Impulses were made from the raw material introduction port to the opposite wall for 1 second with a pulse at intervals of 0.5 second in l units, and when the reaction had elapsed for 0.5 minutes after the initiation of the injection, the supply of benzene and hydrogen gas was stopped, and the reaction was stopped by switching to nitrogen gas. As shown in FIG. 2, the obtained carbon fibers were densely packed with 0.18 to 1.0 μm carbon particles on the surface.
The diameter was 10 to 20 μm and the length was 35 to 45 mm.

【0015】(実施例2)実施例1において、反応部の
温度を1100℃、ベンゼン流量0.07ml/min、液パルス0.3
秒間隔で1秒間、反応経過時間0.25分とした以外は実施
例1と同様にして反応を行なった。得られた炭素繊維
は、図3に示すように、表面に1.0〜4.5μmの炭素粒状
体が密集した、径2.5〜6.0μm、長さ40〜50mmのもので
あった。
Example 2 In Example 1, the temperature of the reaction section was 1100 ° C., the benzene flow rate was 0.07 ml / min, and the liquid pulse was 0.3.
The reaction was carried out in the same manner as in Example 1 except that the interval was 1 second and the reaction elapsed time was 0.25 minutes. As shown in FIG. 3, the obtained carbon fiber had a diameter of 2.5 to 6.0 μm and a length of 40 to 50 mm in which 1.0 to 4.5 μm of carbon particles were densely packed on the surface.

【0016】[0016]

【発明の効果】本発明によれば、複合材料としたときに
マトリックスとの密着性に優れた炭素繊維を得ることが
できる。
According to the present invention, it is possible to obtain a carbon fiber having excellent adhesion to a matrix when it is made into a composite material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭素繊維を得るための製法の一例を示
す概略図である。
FIG. 1 is a schematic view showing an example of a production method for obtaining the carbon fiber of the present invention.

【図2】本発明の実施例1によって得られた炭素繊維の
電子顕微鏡写真である。
FIG. 2 is an electron micrograph of carbon fiber obtained according to Example 1 of the present invention.

【図3】本発明の実施例2によって得られた炭素繊維の
電子顕微鏡写真である。
FIG. 3 is an electron micrograph of carbon fiber obtained according to Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1:反応器 2:原料導入口 3:定量パルスポンプ 4:反応器壁 5:炭素繊維析出帯域 6:内管 1: Reactor 2: Raw material inlet 3: Constant pulse pump 4: Reactor wall 5: Carbon fiber deposition zone 6: Inner tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に0.10〜15.0μmの微小炭素粒状体
が密集形成されている炭素繊維。
1. A carbon fiber in which minute carbon particles of 0.10 to 15.0 μm are densely formed on the surface.
JP4002023A 1992-01-09 1992-01-09 Carbon fiber Expired - Lifetime JP3071536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002023A JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002023A JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Publications (2)

Publication Number Publication Date
JPH06316816A true JPH06316816A (en) 1994-11-15
JP3071536B2 JP3071536B2 (en) 2000-07-31

Family

ID=11517737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002023A Expired - Lifetime JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Country Status (1)

Country Link
JP (1) JP3071536B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049412A1 (en) 2000-12-20 2002-06-27 Showa Denko K.K. Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
JP2003063812A (en) * 2001-08-29 2003-03-05 Japan Science & Technology Corp Carbon nanotube with beads and manufacturing method thereof
JP2009062670A (en) * 2001-08-03 2009-03-26 Showa Denko Kk Fine carbon fiber and composition thereof
CN102296381A (en) * 2011-06-16 2011-12-28 西北工业大学 Wet vapor regulating and controlling system for filament processing dryer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049412A1 (en) 2000-12-20 2002-06-27 Showa Denko K.K. Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
US7122132B2 (en) 2000-12-20 2006-10-17 Showa Denko K.K. Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
EP2277435A1 (en) 2000-12-20 2011-01-26 Showa Denko K.K. Branched vapor grown carbon fiber, electrically conductive transparent composition and use thereof
JP2009062670A (en) * 2001-08-03 2009-03-26 Showa Denko Kk Fine carbon fiber and composition thereof
JP2003063812A (en) * 2001-08-29 2003-03-05 Japan Science & Technology Corp Carbon nanotube with beads and manufacturing method thereof
CN102296381A (en) * 2011-06-16 2011-12-28 西北工业大学 Wet vapor regulating and controlling system for filament processing dryer

Also Published As

Publication number Publication date
JP3071536B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
JP2778434B2 (en) Method for producing vapor grown carbon fiber
US5102647A (en) Method of producing vapor growth carbon fibers
Nikolaev et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide
JPH0424320B2 (en)
JPS6054998A (en) Production of carbon fiber grown in vapor phase
WO2006033367A1 (en) Process and apparatus for producing carbon nanostructure
JPS62242B2 (en)
JP5735234B2 (en) Method and apparatus for producing carbon nanotube continuous fiber
KR20080111534A (en) Method for the production of carbon nanotubes in a fluidized bed
CN101018737A (en) Process for producing catalyst patricle diameter control type carbon nanostructure production, production apparatus therefor, and carbon nanostructure
JP3071571B2 (en) Method for producing vapor grown carbon fiber
KR100376202B1 (en) Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
US11383213B2 (en) System and method of producing a composite product
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP3071536B2 (en) Carbon fiber
US7524479B2 (en) Method for producing vapor grown carbon fiber
JPH06146117A (en) Production of carbon fiber by vapor-phase method
JPH0246691B2 (en)
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS60231821A (en) Production of carbonaceous fiber
Mukai et al. The production of vapor grown carbon fibers from a mixture of benzene, toluene and xylene using the liquid pulse injection technique
JPH026617A (en) Production of carbon fiber
JPS6262914A (en) Production of carbonaceous fiber
JPH0314623A (en) Production of carbon fiber
JP2721075B2 (en) Method for producing vapor grown carbon fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12